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In this Supplementary Material, we provide details omitted in the main text:

— Section 1: Other implementation details on model training and inference
(Section 3.1 and 3.2 in the main text), as well as performance evaluation
(Section 4.1 in the main text).

— Section 2: Additional discussions, comparisons and results analysis (Sec-
tion 4.3 and 4.4 in the main text)

— Section 3: Details of an LSTM cell

1 Implementation Details

1.1 Model Training

Shot boundaries detection As mentioned in section 3 and 4 of the main text, when
B is not given (which is the case in the datasets [5,14, 16] in our experiments),
we learn a shot-boundary detection model to infer the boundaries of the shots.
In this paper, shot boundaries for each video are predicted by a pre-trained
LSTM. By thresholding the predicted confidence for each frame, we get the shot
boundaries for each video. The optimal shot boundaries are determined by the
summarization performance on the validation set. The average shot durations
are 45, 75, and 35 frames for SumMe, TVSum, and VI'W respectively. This is
also consistent with the prior knowledge that videos of TVSum are much longer
than ones of the other two datasets.

Keyshots for training Given the generated shots in section 1.1, our model still
needs to know the ground-truth during training, ¢.e. which of them are keyshots,
denoted as KEYSHOTS-TRAIN. However, the keyshots annotated by human, de-
noted as KEYSHOTS-HUMAN, do not necessarily align with the generated shots.
For example, one can annotate a keyshot from the 60-th frame to the 80-th frame,
but the predicted shots may be [0,50], [51,70], and [71,110], ---. To construct
KEYSHOTS-TRAIN from KEYSHOTS-HUMAN, we first compute the overlapping ra-
tio of each shot w.r.t. KEYSHOTS-HUMAN, which is the overlapping between a
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shot and KEYSHOTS-HUMAN divided by the shot length. We rank all shots in
the descending order by their overlapping ratios, and select them in order into
KEYSHOTS-TRAIN so that the total duration of KEYSHOTS-TRAIN is below the
one of KEYSHOTS-HUMAN. Taking the example above, scores of the first 3 shots
are 0,0.5,0.25. So if the total duration of KEYSHOTS-TRAIN is less than the one
of KEYSHOTS-HUMAN, we always take [51,70] prior to [71,110].

Hyperparameter tuning For different combinations, we tune the hyperparameters
by their performances on the validation set, and the optimal hyperparameters
are as follows:

— For re-SEQ2SEQ (A = A*,n =n*), A* = 0.1, n* = 0.15 on SumMe, A\* = 0.1,
n* =0.1 on TVSum and A* = 0.2, n* = 0.2 on VIW.

— For re-sEQ2SEQ (A = 0,7 = n*), n* = 0.2 on SumMe, n* = 0.2 on TVSum
and n* = 0.25 on VI'W.

— For re-SEQ2SEQ (A = \*,n = 0), A* = 0.2 on SumMe, \* = 0.15 on TVSum
and \* = 0.3 on VIW.

Applicability to long videos As in previous works [19,11], we introduced hierar-
chical modeling to cope with long videos. The longest videos in our experiments
are 10 minutes or more. One level of hierarchy in the encoder can help reduce the
amount of inputs in an order of magnitude. For even longer ones, e.g. ego-centric
videos [8,9], we can stack more hierarchies.

1.2 Model Inference

Summary formats Our model generates a sequence of predicted features. Those
features do not directly correspond to real video shots. To form a set of the
original video keyshots as summary for inference, we find the nearest neighbor
shot in the video for each predicted feature y; on Euclidean distance and add
it to the summary. To convert the keyshot to the frame-level importance for
evaluation (e.g. required by SumMe [5]), we directly mark frames which are
contained in the summary with score 1, and 0 for frames not covered by the
summary.

Summary length Note that during inference or testing, the input video is consid-
ered as unseen and naturally the model doesn’t see the ground-truth summary
or know when to stop. In this case, we learn an extra EOS vector standing for
the end of summary. We also learn a scalar function END(-) — when END(EOS) is
greater than 0.5, we will stop generating the summary (feature vectors). We also
learn a begin-of-summary (BOS) vector to initialize the decoder LSTM, with a
multilayer perceptron which takes the average of all the feature vectors in the
sequence as the inputs.

Computational cost The average inference time for each video in our experiments
is 1.2s given the frame features. Extracting features would be 2ms per frame
which can be processed offline. Additionally, the use case can be made while
summarized videos are pre-computed and stored.
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1.3 Evaluation with User Summaries

Comparison of User Summaries (CUS) [2] is one of the most widely used eval-
uation metric for video summarization, where the summary of any video in the
dataset is annotated by a number of users, i.e. after watching the video, all
the users are asked to provide their summaries. Those user summaries are then
regarded as the ground-truth and compared with automatically generated sum-
maries by the summarization model(s). Most state-of-the-arts datasets apply
CUS and F-score for performance evaluation, including the datasets used in our
experiments.

We compute the F-score between the predicted summaries with every human-
created summary on both TVSum [14] and SumMe [4,5]. Then we follow the
evaluation protocols proposed in each dataset: average for TVSum [14], and take
the maximum for SumMe [4, 5] over the number of human summaries to obtain
the F-score for each predicted summary. Note that the authors of SumMe [5]
switched from average to maximum in [4]. We hence follow [4] to make a fair com-
parison with existing works [1,3,4,14,17-19]. Similar to CUS, Gygli et al. [5]
propose a leave-one-out strategy to measure the human performance by av-
eraging the F-score of each user’s summary to others’. However, this human
performance does not necessarily upperbound the performance of a predicted
summary, which is typically evaluated by comparing with all users [4, 5, 14].

The major drawback of evaluation with CUS is the time-consuming and
labor-intensive annotation procedure, which leads to the limited size of each an-
notated dataset, mostly less than 100 videos. Supervised methods, in particular
deep neural network-based ones, perform well but require a large amount of an-
notated data [18]. Our model overcomes the challenge by enabling learning from
unlabeled videos, thus reducing the need for labeled data.

2 Additional Experiments and Discussions

2.1 Novelty versus Basic Seq2seq Models

Supervised models for summarization explicitly minimize the discrepancy be-
tween the prediction and the human summary in terms of whether a frame/shot
is selected or not [1,3-5,14,17-19]. They do not optimize whether the pre-
dicted summary can recover the original video. For unsupervised models [7, 10,
14], while the objective is to reconstruct, this is almost never achievable as the
summary is lossy. Our method overcomes this challenge by proposing similarity
embedding of the hidden states encoding the original video and the summary
respectively, not the raw videos.

Moreover, it is worth noting that the summary and the original video live in
two different domains. While conceptually the encoder for the original video can
be used to encode the summary, we would need to solve the domain shift /adaptation
problem (for video representation) first. Designing another encoder (the retro-
spective encoder) was perceived as directly solving the problem at hand.
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2.2 Semi-supervised Learning with Fewer Annotated Training
Videos

We further examine the effectiveness of re-SEQ2SEQ on benefiting from unlabeled
video data in a more challenging setting: when there are fewer annotated videos
available. We pre-train the model with 500 unlabeled videos, and fine-tune the
model in the augmented setting. However, we only take a portion of (annotated)
training videos for fine-tuning. The rest remains the same, e.g. 10 videos for
validation and 10 videos for testing.

The results of using fewer annotated training data are reported in Table 1.
In short, consistent with Table 2 in the main text, we see that unlabeled data
clearly help improve the summarization performance. In particular, with 10%
training videos fewer, the fine-tuned model obtains comparable results to ones
in supervised learning, as reported in Table 1 of the main text.

Table 1. F-scores on TVSum [14] in the semi-supervised learning setting. The model
is pre-trained on 500 videos and further fine-tuned with a portion of annotated training
videos.

portion 50% | 70% | 75% | 80% | 85% | 90% | 100%
pre-training| 58.4 | 61.5 | 62.2 | 62.8 | 63.5 | 64.0 | 64.4

2.3 Shot Importance Prediction

In practice, most summarization datasets [5,14] threshold the duration of the
summary within 15% of the video length. However, SEQ2SEQ models tend to
generate summaries with high precision yet low recall, i.e. the total duration of
summarized keyshots may be far below the threshold (on average 10.5%), which
is also observed in re-SEQ2SEQ (on average 12.1%). It is very hard to require the
decoder to generate exact length of total keyshots duration, given limited data in
various lengths. During inference, we follow the same strategy as in [18] and add
in few more keyshots by their importance. The importance of each shot s;,b €
{1,---,B} is predicted by a function fs(sp) as in [19]. In our implementation,
fs(-) is a multilayer perceptron (MLP) with one hidden layer (256-dims) and
trained to minimize the difference between the prediction of the input shot s
and its ground-truth importance, which is 1 for keyshots and 0 otherwise. When
the total duration of summarized keyshots by re-SEQ2SEQ is below the threshold,
we add the remaining shots to the summary in the descending order of their
importance by fs(-) until the threshold is reached, to raise recall.

To specify the contribution of the proposed approach, in Table 2 we compare
the performances of using fs(+) for shot-level importance only (rank shots in the
descending order of their importance and select the top ones within the threshold
as the summary), denoted as MLP-IMPORTANCE; keyshots only, denoted as re-
SEQ2SEQ (A = A*,n = n*) W/0 IMPORTANCE and our model, re-SEQ2SEQ (A =
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A*,n = n*). In brief, re-SEQ2SEQ (A = \*,n = n*) W/0 IMPORTANCE achieves
good results on both datasets, but re-SEQ2SEQ (A = A\*,n = *) improves over it
with only few shots added to raise recall. Despite that MLP-Importance is used
as an baseline in [18] and performs the worst among all three, it still helps to
wrap up the summary for a given threshold in re-SEQ2SEQ (A = \*,n = n*).

Table 2. Performances of using importance only (MLP-IMPORTANCE), keyshots only
(re-SEQ2SEQ (A = A*,n = n") wW/0 IMPORTANCE), and re-SEQ2SEQ (A = A*,n = n").
See text for more details.

SumMe|TVSum
MLP-IMPORTANCE 43.0 61.4
re-SEQ2SEQ (A = A", n =n") w/0 IMPORTANCE| 43.4 62.3
re-SEQ2SEQ (A = A", n =1n") 44.9 | 63.9

2.4 Diversity of Generated Summaries

We follow [5] to assess the diversity of generated summaries. The metric is the
averaged distance between each shot and its nearest cluster center (keyshot) -
the smaller the more diverse. We compare our model to dppLSTM [18] which
explicitly promotes diversity and MLP-shot [18] which does not do so explicitly,
and the results are shown in Table 3. The marginal difference between ours
and dppLSTM is also confirmed by re-training our model with DPP over the
summarized shots as in [18] — we obtain a slightly improved F-score of 64.1 versus
63.9 without adding DPP.

Table 3. Diversity assessments of summaries generated by different models (the smaller
the more diverse). See text for details.

model MLP-shot [18]|dppLSTM [18]|our model
diversity assessment 0.49 0.35 0.38

2.5 Comparison with Autoencoders

Besides [10] which we have compared thoroughly in the Table 1 and Table 4 of
the main text, Yang et al. [15] also apply autoencoders and deep neural networks
to their method. However, their work focuses on highlight detection — while it is
a form of reducing video data, it is not considered as a summary of the video as
the highlight refers to the salient moments while a summary needs to maintain
coverage, relevance and diversity. We compared with their model which attains
an F-score of 52.3 on TVSum (while ours is 63.9).
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2.6 Generic and Query-specific Video Summarization

Sharghi et al. [12,13] study the query-specific video summarization which is a
very different task from our focus on generic video summarization. In particu-
lar, in their task, queries are required as input to generate the summary, which
thus entails different data annotation and evaluation metrics. When our model is
compared with theirs on generic video summarization, their model degenerates
to [3] (after removing the query-related component as advised by the authors
of [3]) and attains an F-score of only 58.0 on TVSum (while ours is 63.9). Fur-
thermore, we consider extending our method to query-based summarization as
a future work — note that our datasets do not support that query-specific form
of summarization.

3 Long Short-Term Memory (LSTM)

As designed for modeling long-range dependencies, at the core of the LSTMs [6]
are memory cells ¢, which at every time step allow the network to learn when
to forget previous hidden states and when to update hidden states given new
information. The cells are modulated by nonlinear sigmoidal gates, and are ap-
plied multiplicatively. The gates in LSTMs also play an important role: the input
gate (i) controlling to what extent the LSTM counsiders its current input (),
the forget gate (f) allowing the LSTM to forget its previous memory (c;), and
the output gate (o) regulating how much of the memory to transfer to the hid-
den states (h;). To summarize, they jointly collaborate to form the LSTM and
in particular make it possible to learn complex long-term dependencies. The
recurrences for the LSTM are then defined as:

iy = sigmoid(W;[z/} , hi_1]")
y = sigmoid(Wy[z/}, hf ]")
oy = sigmoid(W,[xy, hl |]T) (1)
¢ =iy © tanh(Wela{ hi |") + fi © eia
h; = o, ® tanh(cy),
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