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Abstract. 360◦ panoramas are a rich medium, yet notoriously difficult to visu-
alize in the 2D image plane. We explore how intelligent rotations of a spherical
image may enable content-aware projection with fewer perceptible distortions.
Whereas existing approaches assume the viewpoint is fixed, intuitively some
viewing angles within the sphere preserve high-level objects better than others.
To discover the relationship between these optimal snap angles and the spher-
ical panorama’s content, we develop a reinforcement learning approach for the
cubemap projection model. Implemented as a deep recurrent neural network, our
method selects a sequence of rotation actions and receives reward for avoiding
cube boundaries that overlap with important foreground objects. We show our
approach creates more visually pleasing panoramas while using 5x less compu-
tation than the baseline.
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1 Introduction

The recent emergence of inexpensive and lightweight 360◦ cameras enables exciting
new ways to capture our visual surroundings. Unlike traditional cameras that capture
only a limited field of view, 360◦ cameras capture the entire visual world from their
optical center. Advances in virtual reality technology and promotion from social media
platforms like YouTube and Facebook are further boosting the relevance of 360◦ data.

However, viewing 360◦ content presents its own challenges. Currently three main
directions are pursued: manual navigation, field-of-view (FOV) reduction, and content-
based projection. In manual navigation scenarios, a human viewer chooses which nor-
mal field-of-view subwindow to observe, e.g., via continuous head movements in a
VR headset, or mouse clicks on a screen viewing interface. In contrast, FOV reduc-
tion methods generate normal FOV videos by learning to render the most interesting or
capture-worthy portions of the viewing sphere [1–4]. While these methods relieve the
decision-making burden of manual navigation, they severely limit the information con-
veyed by discarding all unselected portions. Projection methods render a wide-angle
view, or the entire sphere, onto a single plane (e.g., equirectangular or Mercator) [5]
or multiple planes [6]. While they avoid discarding content, any projection inevitably
introduces distortions that can be unnatural for viewers. Content-based projection meth-
ods can help reduce perceived distortions by prioritizing preservation of straight lines,
? On leave from University of Texas at Austin (grauman@cs.utexas.edu).
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Fig. 1. Comparison of a cubemap before and after snap angle prediction (dotted lines separate
each face). Unlike prior work that assumes a fixed angle for projection, we propose to predict
the cube rotation that will best preserve foreground objects in the output. For example, here our
method better preserves the truck (third picture C in the second row). We show four (front, right,
left, and back) out of the six faces for visualization purposes. Best viewed in color or pdf.

conformality, or other low-level cues [7–9], optionally using manual input to know what
is worth preserving [10–14].

However, all prior automatic content-based projection methods implicitly assume
that the viewpoint of the input 360◦ image is fixed. That is, the spherical image is
processed in some default coordinate system, e.g., as the equirectangular projection
provided by the camera manufacturer. This assumption limits the quality of the out-
put image. Independent of the content-aware projection eventually used, a fixed view-
point means some arbitrary portions of the original sphere will be relegated to places
where distortions are greatest—or at least where they will require most attention by the
content-aware algorithm to “undo”.

We propose to eliminate the fixed viewpoint assumption. Our key insight is that an
intelligently chosen viewing angle can immediately lessen distortions, even when fol-
lowed by a conventional projection approach. In particular, we consider the widely used
cubemap projection [6, 15, 16]. A cubemap visualizes the entire sphere by first mapping
the sphere to a cube with rectilinear projection (where each face captures a 90◦ FOV)
and then unfolding the faces of the cube. Often, an important object can be projected
across two cube faces, destroying object integrity. In addition, rectilinear projection dis-
torts content near cube face boundaries more. See Figure 1, top. However, intuitively,
some viewing angles—some cube orientations—are less damaging than others.

We introduce an approach to automatically predict snap angles: the rotation of the
cube that will yield a set of cube faces that, among all possible rotations, most look
like nicely composed human-taken photos originating from the given 360◦ panoramic
image. While what comprises a “well-composed photo” is itself the subject of active
research [17–21], we concentrate on a high-level measure of good composition, where
the goal is to consolidate each (automatically detected) foreground object within the
bounds of one cubemap face. See Figure 1, bottom.
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Accordingly, we formalize our snap angle objective in terms of minimizing the spa-
tial mass of foreground objects near cube edges. We develop a reinforcement learning
(RL) approach to infer the optimal snap angle given a 360◦ panorama. We implement
the approach with a deep recurrent neural network that is trained end-to-end. The se-
quence of rotation “actions” chosen by our RL network can be seen as a learned coarse-
to-fine adjustment of the camera viewpoint, in the same spirit as how people refine their
camera’s orientation just before snapping a photo.

We validate our approach on a variety of 360◦ panorama images. Compared to sev-
eral informative baselines, we demonstrate that 1) snap angles better preserve important
objects, 2) our RL solution efficiently pinpoints the best snap angle, 3) cubemaps un-
wrapped after snap angle rotation suffer less perceptual distortion than the status quo
cubemap, and 4) snap angles even have potential to impact recognition applications, by
orienting 360◦ data in ways that better match the statistics of normal FOV photos used
for today’s pretrained recognition networks.

2 Related Work

Spherical image projection Spherical image projection models project either a limited
FOV [7, 22] or the entire panorama [5, 23, 6]. The former group includes rectilinear and
Pannini [7] projection; the latter includes equirectangular, stereographic, and Merca-
tor projections (see [5] for a review). Rectilinear and Pannini prioritize preservation of
lines in various ways, but always independent of the specific input image. Since any
projection of the full sphere must incur distortion, multi-view projections can be per-
ceptually stronger than a single global projection [23]. Cubemap [6], the subject of our
snap angle approach, is a multi-view projection method; as discussed above, current
approaches simply consider a cubemap in its default orientation.

Content-aware projection Built on spherical projection methods, content-based pro-
jections make image-specific choices to reduce distortion. Recent work [8] optimizes
the parameters in the Pannini projection [7] to preserve regions with greater low-level
saliency and straight lines. Interactive methods [10–13] require a user to outline regions
of interest that should be preserved or require input from a user to determine projection
orientation [14]. Our approach is content-based and fully automatic. Whereas prior au-
tomatic methods assume a fixed viewpoint for projection, we propose to actively predict
snap angles for rendering. Thus, our idea is orthogonal to 360◦ content-aware projec-
tion. Advances in the projection method could be applied in concert with our algorithm,
e.g., as post-processing to enhance the rotated faces further. For example, when gener-
ating cubemaps, one could replace rectilinear projection with others [7, 8, 10] and keep
the rest of our learning framework unchanged. Furthermore, the proposed snap angles
respect high-level image content—detected foreground objects—as opposed to typical
lower-level cues like line straightness [12, 10] or low-level saliency metrics [8].

Viewing wide-angle panoramas Since viewing 360◦ and wide-angle data is non-trivial,
there are vision-based efforts to facilitate. The system of [24] helps efficient exploration
of gigapixel panoramas. More recently, several systems automatically extract normal
FOV videos from 360◦ video, “piloting” a virtual camera by selecting the viewing angle
and/or zoom level most likely to interest a human viewer [1–4].
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Recurrent networks for attention Though treating very different problems than ours,
multiple recent methods incorporate deep recurrent neural networks (RNN) to make se-
quential decisions about where to focus attention. The influential work of [25] learns a
policy for visual attention in image classification. Active perception systems use RNNs
and/or reinforcement learning to select places to look in a novel image [26, 27], en-
vironment [28–30], or video [31–34] to detect certain objects or activities efficiently.
Broadly construed, we share the general goal of efficiently converging on a desired
target “view”, but our problem domain is entirely different.

3 Approach

We first formalize snap angle prediction as an optimization problem (Sec. 3.1). Then
present our learning framework and network architecture for snap angle prediction
(Sec. 3.2).

We concentrate on the cubemap projection [6]. Recall that a cubemap maps the
sphere to a cube with rectilinear projection (where each face captures a 90◦ FOV) and
then unfolds the six faces of the cube. The unwrapped cube can be visualized as an
unfolded box, with the lateral strip of four faces being spatially contiguous in the scene
(see Fig. 1, bottom). We explore our idea with cubemaps for a couple reasons. First, a
cubemap covers the entire 360◦ content and does not discard any information. Secondly,
each cube face is very similar to a conventional FOV, and therefore relatively easy for
a human to view and/or edit.

3.1 Problem Formulation

We first formalize snap angle prediction as an optimization problem. Let P (I, θ) denote
a projection function that takes a panorama image I and a projection angle θ as input
and outputs a cubemap after rotating the sphere (or equivalently the cube) by θ. Let
function F be an objective function that takes a cubemap as input and outputs a score
to measure the quality of the cubemap. Given a novel panorama image I , our goal is to
minimize F by predicting the snap angle θ∗:

θ∗ = argmin
θ

F (P (I, θ)). (1)

The projection function P first transforms the coordinates of each point in the panorama
based on the snap angle θ and then produces a cubemap in the standard manner.

Views from a horizontal camera position (elevation 0◦) are more informative than
others due to human recording bias. The bottom and top cube faces often align with
the sky (above) and ground (below); “stuff” regions like sky, ceiling, and floor are
thus common in these faces and foreground objects are minimal. Therefore, rotations
in azimuth tend to have greater influence on the disruption caused by cubemap edges.
Hence, without loss of generality, we focus on snap angles in azimuth only, and jointly
optimize the front/left/right/back faces of the cube.

The coordinates for each point in a panorama can be represented by a pair of latitude
and longitude (λ, ϕ). Let L denote a coordinate transformation function that takes the



Snap Angle Prediction for 360◦ Panorama 5

 Cubemap

Pixel objectness map

01_11

 Cubemap

Pixel objectness map

Fig. 2. Pixel objectness [35] foreground map examples. White pixels in the pixel objectness map
indicate foreground. Our approach learns to find cubemap orientations where the foreground
objects are not disrupted by cube edges, i.e., each object falls largely within one face.

snap angle θ and a pair of coordinates as input. We define the coordinate transformation
function L as:

L((λ, ϕ), θ) = (λ, ϕ− θ). (2)

Note when the snap angle is 90◦, the orientation of the cube is the same as the default
cube except the order of front, back, right, and left is changed. We therefore restrict
θ ∈ [0, π/2]. We discretize the space of candidate angles for θ into a uniform N = 20
azimuths grid, which we found offers fine enough camera control.

We next discuss our choice of the objective function F . A cubemap in its default
orientation has two disadvantages: 1) It does not guarantee to project each important
object onto the same cube face; 2) Due to the nature of the perspective projection,
objects projected onto cube boundaries will be distorted more than objects in the center.
Motivated by these shortcomings, our goal is to produce cubemaps that place each
important object in a single face and avoid placing objects at the cube boundaries/edges.

In particular, we propose to minimize the area of foreground objects near or on
cube boundaries. Supposing each pixel in a cube face is automatically labeled as either
object or background, our objective F measures the fraction of pixels that are labeled
as foreground near cube boundaries. A pixel is near cube boundaries if it is less than
A% of the cube length away from the left, right, or top boundary. We do not penalize
objects near the bottom boundary since it is common to place objects near the bottom
boundary in photography (e.g., potraits).

To infer which pixels belong to the foreground, we use “pixel objectness” [35].
Pixel objectness is a CNN-based foreground estimation approach that returns pixel-wise
estimates for all foreground object(s) in the scene, no matter their category. While other
foreground methods are feasible (e.g., [36–40]), we choose pixel objectness due to its
accuracy in detecting foreground objects of any category, as well as its ability to produce
a single pixel-wise foreground map which can contain multiple objects. Figure 2 shows
example pixel objectness foreground maps on cube faces. We apply pixel objectness
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to a given projected cubemap to obtain its pixel objectness score. In conjunction, other
measurements for photo quality, such as interestingness [20], memorability [18], or
aesthetics [41], could be employed within F .

3.2 Learning to Predict Snap Angles

On the one hand, a direct regression solution would attempt to infer θ∗ directly from
I . However, this is problematic because good snap angles can be multi-modal, i.e.,
available at multiple directions in the sphere, and thus poorly suited for regression.
On the other hand, a brute force solution would require projecting the panorama to a
cubemap and then evaluating F for every possible projection angle θ, which is costly.

We instead address snap angle prediction with reinforcement learning. The task is
a time-budgeted sequential decision process—an iterative adjustment of the (virtual)
camera rotation that homes in on the least distorting viewpoint for cubemap projection.
Actions are cube rotations and rewards are improvements to the pixel objectness score
F . Loosely speaking, this is reminiscent of how people take photos with a coarse-to-
fine refinement towards the desired composition. However, unlike a naive coarse-to-fine
search, our approach learns to trigger different search strategies depending on what is
observed, as we will demonstrate in results.

Specifically, let T represent the budget given to our system, indicating the number of
rotations it may attempt. We maintain a history of the model’s previous predictions. At
each time step t, our framework takes a relative snap prediction st (for example, st could
signal to update the azimuth by 45◦) and updates its previous snap angle θt = θt−1+st.
Then, based on its current observation, our system makes a prediction pt, which is used
to update the snap angle in the next time step. That is, we have st+1 = pt. Finally, we
choose the snap angle with the lowest pixel objectness objective score from the history
as our final prediction θ̂:

θ̂ = argmin
θt=θ1,...,θT

F (P (I, θt)). (3)

To further improve efficiency, one could compute pixel objectness once on a cylin-
drical panorama rather than recompute it for every cubemap rotation, and then proceed
with the iterative rotation predictions above unchanged. However, learned foreground
detectors [35, 38, 37, 39, 40] are trained on Web images in rectilinear projection, and so
their accuracy can degrade with different distortions. Thus we simply recompute the
foreground for each cubemap reprojection. See Sec. 4.1 for run-times.

Network We implement our reinforcement learning task with deep recurrent and convo-
lutional neural networks. Our framework consists of four modules: a rotator, a feature
extractor, an aggregator, and a snap angle predictor. At each time step, it processes
the data and produces a cubemap (rotator), extracts learned features (feature extractor),
integrates information over time (aggregator), and predicts the next snap angle (snap
angle predictor).

At each time step t, the rotator takes as input a panorama I in equirectangular
projection and a relative snap angle prediction st = pt−1, which is the prediction from
the previous time step. The rotator updates its current snap angle prediction with θt =
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Fig. 3. We show the rotator (left), our model (middle), and a series of cubemaps produced by our
sequential predictions (right). Our method iteratively refines the best snap angle, targeting a given
budget of allowed computation.

θt−1 + st. We set θ1 = 0 initially. Then the rotator applies the projection function P to
I based on θt with Eq 2 to produce a cubemap. Since our objective is to minimize the
total amount of foreground straddling cube face boundaries, it is more efficient for our
model to learn directly from the pixel objectness map than from raw pixels. Therefore,
we apply pixel objectness [35] to each of the four lateral cube faces to obtain a binary
objectness map per face. The rotator has the form: IW×H×3×Θ → BWc×Wc×4, where
W and H are the width and height of the input panorama in equirectangular projection
and Wc denotes the side length of a cube face. The rotator does not have any learnable
parameters since it is used to preprocess the input data.

At each time step t, the feature extractor then applies a sequence of convolutions
to the output of the rotator to produce a feature vector ft, which is then fed into the
aggregator to produce an aggregate feature vector at = A(f1, ..., ft) over time. Our
aggregator is a recurrent neural network (RNN), which also maintains its own hidden
state.

Finally, the snap angle predictor takes the aggregate feature vector as input, and
produces a relative snap angle prediction pt. In the next time step t + 1, the relative
snap angle prediction is fed into the rotator to produce a new cubemap. The snap angle
predictor contains two fully connected layers, each followed by a ReLU, and then the
output is fed into a softmax function for the N azimuth candidates. The N candidates
here are relative, and range from decreasing azimuth by N

2 to increasing azimuth by
N
2 . The snap angle predictor first produces a multinomial probability density function
π(pt) over all candidate relative snap angles, then it samples one snap angle prediction
proportional to the probability density function. See Figure 3 for an overview of the
network, and Supp. for all architecture details.

Training The parameters of our model consist of parameters of the feature extractor,
aggregator, and snap angle predictor: w = {wf , wa, wp}. We learn them to maximize
the total reward (defined below) our model can expect when predicting snap angles. The
snap angle predictor contains stochastic units and therefore cannot be trained with the
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standard backpropagation method. We therefore use REINFORCE [42]. Let π(pt|I, w)
denote the parameterized policy, which is a pdf over all possible snap angle predictions.
REINFORCE iteratively increases weights in the pdf π(pt|I, w) on those snap angles
that have received higher rewards. Formally, given a batch of training data {Ii : i =
1, . . . ,M}, we can approximate the gradient as follows:

M∑
i=1

T∑
t=1

∇w log π(pit|Ii, w)Rit (4)

where Rit denotes the reward at time t for instance i.

Reward At each time step t, we compute the objective. Let θ̂t = argminθ=θ1,...θt F (P (I, θ))
denote the snap angle with the lowest pixel objectness until time step t. Let Ot =
F (P (I, θ̂t)) denote its corresponding objective value. The reward for time step t is

R̂t = min(Ot − F (P (I, θt + pt)), 0). (5)

Thus, the model receives a reward proportional to the decrease in edge-straddling fore-
ground pixels whenever the model updates the snap angle. To speed up training, we use
a variance-reduced version of the reward Rt = R̂t − bt where bt is the average amount
of decrease in pixel objectness coverage with a random policy at time t.

4 Results

Our results address four main questions: 1) How efficiently can our approach identify
the best snap angle? (Sec. 4.1); 2) To what extent does the foreground “pixel object-
ness” objective properly capture objects important to human viewers? (Sec. 4.2); 3) To
what extent do human viewers favor snap-angle cubemaps over the default orientation?
(Sec. 4.3); and 4) Might snap angles aid image recognition? (Sec. 4.4).

Dataset We collect a dataset of 360◦ images to evaluate our approach; existing 360◦

datasets are topically narrow [43, 1, 3], restricting their use for our goal. We use YouTube
with the 360◦ filter to gather videos from four activity categories—Disney, Ski, Parade,
and Concert. After manually filtering out frames with only text or blackness, we have
150 videos and 14,076 total frames sampled at 1 FPS.

Implementation details We implement our model with Torch, and optimize with stochas-
tic gradient and REINFORCE. We set the base learning rate to 0.01 and use momentum.
We fixA = 6.25% for all results after visual inspection of a few human-taken cubemaps
(not in the test set). See Supp. for all network architecture details.

4.1 Efficient Snap Angle Prediction

We first evaluate our snap angle prediction framework. We use all 14,076 frames, 75%
for training and 25% for testing. We ensure testing and training data do not come from
the same video. We define the following baselines:

– RANDOM ROTATE: Given a budget T , predict T snap angles randomly (with no
repetition).
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Fig. 4. Predicting snap angles in a timely manner. Left: Given a budget, our method predicts snap
angles with the least foreground disruption on cube edges. Gains are larger for smaller budgets,
demonstrating our method’s efficiency. Right: Our gain over the baselines (for a budget T = 4)
as a function of the test cases’ decreasing “difficulty”, i.e., the variance in ground truth quality
for candidate angles. See text.

– UNIFORM ROTATE: Given a budget T , predict T snap angles uniformly sampled
from all candidates. When T = 1, UNIFORM receives the CANONICAL view. This
is a strong baseline since it exploits the human recording bias in the starting view.
Despite the 360◦ range of the camera, photographers still tend to direct the “front”
of the camera towards interesting content, in which case CANONICAL has some
manual intelligence built-in.

– COARSE-TO-FINE SEARCH: Divide the search space into two uniform intervals
and search the center snap angle in each interval. Then recursively search the better
interval, until the budget is exhausted.

– PANO2VID(P2V) [1]-ADAPTED: We implement a snap angle variant inspired by
the pipeline of Pano2Vid [1]. We replace C3D [44] features (which require video)
used in [1] with F7 features from VGG [45] and train a logistic classifier to learn
“capture-worthiness” [1] with Web images and randomly sampled panorama sub-
views (see Supp.). For a budget T , we evaluate T “glimpses” and choose the
snap angle with the highest encountered capture-worthiness score. We stress that
Pano2Vid addresses a different task: it creates a normal field-of-view video (dis-
carding the rest) whereas we create a well-oriented omnidirectional image. Nonethe-
less, we include this baseline to test their general approach of learning a framing
prior from human-captured data.

– SALIENCY: Select the angle that centers a cube face around the maximal saliency
region. Specifically, we compute the panorama’s saliency map [40] in equirectan-
gular form and blur it with a Gaussian kernel. We then identify the P × P pixel
square with the highest total saliency value, and predict the snap angle as the center
of the square. Unlike the other methods, this baseline is not iterative, since the max-
imal saliency region does not change with rotations. We use a window size P = 30.
Performance is not sensitive to P for 20 ≤ P ≤ 200.
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We train our approach for a spectrum of budgets T , and report results in terms
of the amount of foreground disruption as a function of the budget. Each unit of the
budget corresponds to one round of rotating, re-rendering, and predicting foregrounds.
We score foreground disruption as the average F (P (I, θ∗t )) across all four faces.

Figure 4 (left) shows the results. Our method achieves the least disruptions to fore-
ground regions among all the competing methods. UNIFORM ROTATE and COARSE-
TO-FINE SEARCH perform better than RANDOM because they benefit from hand-designed
search heuristics. Unlike UNIFORM ROTATE and COARSE-TO-FINE SEARCH, our ap-
proach is content-based and learns to trigger different search strategies depending on
what it observes. When T = 1, SALIENCY is better than RANDOM but it underper-
forms our method and UNIFORM. SALIENCY likely has difficulty capturing important
objects in panoramas, since the saliency model is trained with standard field-of-view
images. Directly adapting PANO2VID [1] for our problem results in unsatisfactory re-
sults. A capture-worthiness classifier [1] is relatively insensitive to the placement of
important objects/people and therefore less suitable for the snap angle prediction task,
which requires detailed modeling of object placement on all faces of the cube.

Figure 4 (right) plots our gains sorted by the test images’ decreasing “difficulty” for
a budget T = 4. In some test images, there is a high variance, meaning certain snap
angles are better than others. However, for others, all candidate rotations look similarly
good, in which case all methods will perform similarly. The righthand plot sorts the test
images by their variance (in descending order) in quality across all possible angles, and
reports our method’s gain as a function of that difficulty. Our method outperforms P2V-
ADAPTED, SALIENCY, COARSE-TO-FINE SEARCH, RANDOM and UNIFORM by up to
56%, 31%, 17%, 14% and 10% (absolute), respectively. Overall Figure 4 demonstrates
that our method predicts the snap angle more efficiently than the baselines.

We have thus far reported efficiency in terms of abstract budget usage. One unit of
budget entails the following: projecting a typical panorama of size 960×1920 pixels in
equirectangular form to a cubemap (8.67 seconds with our Matlab implementation) and
then computing pixel objectness (0.57 seconds). Our prediction method is very efficient
and takes 0.003 seconds to execute for a budget T = 4 with a GeForce GTX 1080
GPU. Thus, for a budget T = 4, the savings achieved by our method is approximately
2.4 minutes (5x speedup) per image compared to exhaustive search. Note that due to our
method’s efficiency, even if the Matlab projections were 1000x faster for all methods,
our 5x speedup over the baseline would remain the same. Our method achieves a good
tradeoff between speed and accuracy.

4.2 Justification for Foreground Object Objective

Next we justify empirically the pixel objectness cube-edge objective. To this end, we
have human viewers identify important objects in the source panoramas, then evaluate
to what extent our objective preserves them.

Specifically, we randomly select 340 frames among those where: 1) Each frame is
at least 10-seconds apart from the rest in order to ensure diversity in the dataset; 2) The
difference in terms of overall pixel objectness between our method and the canonical
view method is non-neglible. We collect annotations via Amazon Mechanical Turk.
Following the interface of [3], we present crowdworkers the panorama and instruct
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CANONICAL RANDOM SALIENCY P2V-ADAPTED OURS UPPERBOUND

Concert 77.6% 73.9% 76.2% 71.6% 81.5% 86.3%
Ski 64.1% 72.5% 68.1% 70.1% 78.6% 83.5%

Parade 84.0% 81.2% 86.3% 85.7% 87.6% 96.8%
Disney 58.3% 57.7% 60.8% 60.8% 65.5% 77.4%

All 74.4% 74.2% 76.0% 75.0% 81.1% 88.3%

Table 1. Performance on preserving the integrity of objects explicitly identified as important by
human observers. Higher overlap scores are better. Our method outperforms all baselines.

them to label any “important objects” with a bounding box—as many as they wish. See
Supp. for interface and annotation statistics.

Here we consider PANO2VID(P2V) [1]-ADAPTED and SALIENCY as defined in
Sec. 4.1 and two additional baselines: 1) CANONICAL VIEW: produces a cubemap using
the camera-provided orientation; 2) RANDOM VIEW: rotates the input panorama by an
arbitrary angle and then generates the cubemap. Note that the other baselines in Sec. 4.1
are not applicable here, since they are search mechanisms.

Consider the cube faceX that contains the largest number of foreground pixels from
a given bounding box after projection. We evaluate the cubemaps of our method and the
baselines based on the overlap score (IoU) between the foreground region from the cube
face X and the corresponding human-labeled important object, for each bounding box.
This metric is maximized when all pixels for the same object project to the same cube
face; higher overlap indicates better preservation of important objects.

Table 1 shows the results. Our method outperforms all baselines by a large margin.
This supports our hypothesis that avoiding foreground objects along the cube edges
helps preserve objects of interest to a viewer. Snap angles achieve this goal much better
than the baseline cubemaps. The UPPERBOUND corresponds to the maximum possi-
ble overlap achieved if exhaustively evaluating all candidate angles, and helps gauge
the difficulty of each category. Parade and Disney have the highest and lowest upper
bounds, respectively. In Disney images, the camera is often carried by the recorders, so
important objects/persons appear relatively large in the panorama and cannot fit in a sin-
gle cube face, hence a lower upper bound score. On the contrary, in Parade images the
camera is often placed in the crowd and far away from important objects, so each can be
confined to a single face. The latter also explains why the baselines do best (though still
weaker than ours) on Parade images. An ablation study decoupling the pixel objectness
performance from snap angle performance pinpoints the effects of foreground quality
on our approach (see Supp.).

4.3 User Study: Perceived Quality

Having justified the perceptual relevance of the cube-edge foreground objective (Sec. 4.2),
next we perform a user study to gauge perceptual quality of our results. Do snap angles
produce cube faces that look like human-taken photos? We evaluate on the same image
set used in Sec. 4.2.

We present cube faces produced by our method and one of the baselines at a time
in arbitrary order and inform subjects the two sets are photos from the same scene but
taken by different photographers. We instruct them to consider composition and view-
point in order to decide which set of photos is more pleasing (see Supp.). To account for
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Prefer OURS Tie Prefer CANONICAL Prefer OURS Tie Prefer RANDOM

Parade 54.8% 16.5% 28.7% 70.4% 9.6% 20.0%
Concert 48.7% 16.2% 35.1% 52.7% 16.2% 31.1%
Disney 44.8% 17.9% 37.3% 72.9% 8.5% 18.6%

Ski 64.3% 8.3% 27.4% 62.9% 16.1% 21.0%
All 53.8% 14.7% 31.5% 65.3% 12.3% 22.4%

Table 2. User study result comparing cubemaps outputs for perceived quality. Left: Comparison
between our method and CANONICAL. Right: Comparison between our method and RANDOM.

Concert Ski Parade Disney All (normalized)
Image Memorability [21]

CANONICAL 71.58 69.49 67.08 70.53 46.8%
RANDOM 71.30 69.54 67.27 70.65 48.1%
SALIENCY 71.40 69.60 67.35 70.58 49.9%

P2V-ADAPTED 71.34 69.85 67.44 70.54 52.1%
OURS 71.45 70.03 67.68 70.87 59.8%
UPPER 72.70 71.19 68.68 72.15 –

Image Aesthetics [17]
CANONICAL 33.74 41.95 30.24 32.85 44.3%

RANDOM 32.46 41.90 30.65 32.79 42.4%
SALIENCY 34.52 41.87 30.81 32.54 47.9%

P2V-ADAPTED 34.48 41.97 30.86 33.09 48.8%
OURS 35.05 42.08 31.19 32.97 52.9%
UPPER 38.45 45.76 34.74 36.81 –

Table 3. Memorability and aesthetics scores.

the subjectivity of the task, we issue each sample to 5 distinct workers and aggregate
responses with majority vote. 98 unique MTurk crowdworkers participated in the study.

Table 2 shows the results. Our method outperforms the CANONICAL baseline by
more than 22% and the RANDOM baseline by 42.9%. This result supports our claim
that by preserving object integrity, our method produces cubemaps that align better with
human perception of quality photo composition. Figure 5 shows qualitative examples.
As shown in the first two examples (top two rows), our method is able to place an
important person in the same cube face whereas the baseline splits each person and
projects a person onto two cube faces. We also present two failure cases in the last two
rows. In the bottom left, pixel objectness does not recognize the stage as foreground, and
therefore our method places the stage on two different cube faces, creating a distorted
heart-shaped stage. Please see Supp. for pixel objectness map input for failure cases.

So far, Table 1 confirms empirically that our foreground-based objective does pre-
serve those objects human viewers deem important, and Table 2 shows that human view-
ers have an absolute preference for snap angle cubemaps over other projections. As a
final test of snap angle cubemaps’ perceptual quality, we score them using state-of-the-
art metrics for aesthetics [17] and memorability [21]. Since both models are trained on
images annotated by people (for their aesthetics and memorability, respectively), higher
scores indicate higher correlation with these perceived properties (though of course no
one learned metric can perfectly represent human opinion).

Table 3 shows the results. We report the raw scores s per class as well as the score
over all classes, normalized as s−smin

smax−smin
, where smin and smax denote the lower and

upper bound, respectively. Because the metrics are fairly tolerant to local rotations,
there is a limit to how well they can capture subtle differences in cubemaps. Nonethe-
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Canonical

 Ours

 Ours

 Ours

 Ours

 Ours

Canonical

Canonical

Canonical

Canonical

Fig. 5. Qualitative examples of default CANONICAL cubemaps and our snap angle cubemaps.
Our method produces cubemaps that place important objects/persons in the same cube face to
preserve the foreground integrity. Bottom two rows show failure cases. In the bottom left, pixel
objectness [35] does not recognize the round stage as foreground, and therefore our method splits
the stage onto two different cube faces, creating a distorted heart-shaped stage. In the bottom
right, the train is too large to fit in a single cube.
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CANONICAL RANDOM OURS

Single 68.5 69.4 70.1
Pano 66.5 67.0 68.1

Table 4. Image recognition accuracy (%). Snap angles help align the 360◦ data’s statistics with
that of normal FOV Web photos, enabling easier transfer from conventional pretrained networks.

less, our method outperforms the baselines overall. Given these metrics’ limitations,
the user study in Table 2 offers the most direct and conclusive evidence for snap angles’
perceptual advantage.

4.4 Cubemap Recognition from Pretrained Nets

Since snap angles provide projections that better mimic human-taken photo composi-
tion, we hypothesize that they also align better with conventional FOV images, com-
pared to cubemaps in their canonical orientation. This suggests that snap angles may
better align with Web photos (typically used to train today’s recognition systems),
which in turn could help standard recognition models perform well on 360◦ panora-
mas. We present a preliminary proof-of-concept experiment to test this hypothesis.

We train a multi-class CNN classifier to distinguish the four activity categories in
our 360◦ dataset (Disney, Parade, etc.). The classifier uses ResNet-101 [46] pretrained
on ImageNet [47] and fine-tuned on 300 training images per class downloaded from
Google Image Search (see Supp.). Note that in all experiments until now, the category
labels on the 360◦ dataset were invisible to our algorithm. We randomly select 250
panoramas per activity as a test set. Each panorama is projected to a cubemap with the
different projection methods, and we compare the resulting recognition rates.

Table 4 shows the results. We report recognition accuracy in two forms: Single,
which treats each individual cube face as a test instance, and Pano, which classifies the
entire panorama by multiplying the predicted posteriors from all cube faces. For both
cases, snap angles produce cubemaps that achieve the best recognition rate. This result
hints at the potential for snap angles to be a bridge between pretrained normal FOV
networks on the one hand and 360◦ images on the other hand. That said, the margin is
slim, and the full impact of snap angles for recognition warrants further exploration.

5 Conclusions
We introduced the snap angle prediction problem for rendering 360◦ images. In contrast
to previous work that assumes either a fixed or manually supplied projection angle, we
propose to automatically predict the angle that will best preserve detected foreground
objects. We present a framework to efficiently and accurately predict the snap angle
in novel panoramas. We demonstrate the advantages of the proposed method, both in
terms of human perception and several statistical metrics. Future work will explore
ways to generalize snap angles to video data and expand snap angle prediction to other
projection models.
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