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Throughout the main text, many algorithmic details and
empirical results were omitted and only discussed briefly
so as to observe the limit on the number of pages. In this
file, we expand the discussions in the main text and provide
more details on

• the derivation of our geodesic flow kernel (GFK)
(Sec. A), explaining how eq.(5) and eq.(6) in the main
text are derived (section 3.3).

• how to compute the rank of domain (ROD) metric
(Sec. B); the idea was only sketched in section 3.5 of
the main text.

• empirical studies of domain adaptation between 3 do-
mains: Amazon, DSLR and Webcam (Sec. C).

We had conducted two parallel empirical studies, one
on the 3 domains and the other one on the 4 domains
obtained from expanding the 3 with the dataset of
Caltech-256. While both sets of empirical studies have
reached the same findings that validate our methods,
we chose to focus on domain adaptation among the 4
domains to demonstrate that our methods are robust to
the additional diversity beyond the original 3.

To be comprehensive, we report our results on those
3 domains as they provide a worthy reference point to
contrast our work directly to published ones.

• empirical studies of domain adaptation between Cal-
tech, Amazon, Webcam and DSLR (Sec. D). In the
main text (section 4), we reported only 8 of 12 pos-
sible pairs of source and target domains. This Suppl.
reports the remaining 4 pairs.

• characterizing the datasets of PASCAL, ImageNet, and
Caltech-101 with our ROD metric (Sec. E). The met-
ric corroborates our empirical findings on the cross-
dataset generalization performances of these 3 do-
mains (section 4.6, and especially Table 3).

A. The derivation of the geodesic flow kernel
Let ΩT denote the following matrix

ΩT = [PS RS ]

[
U1 0

0 U2

]
. (1)

The geodesic flow Φ(t), t ∈ (0, 1), between PS and PT
can be written as

Φ(t) = PSU1Γ(t)−RSU2Σ(t) = ΩT

[
Γ(t)

−Σ(t)

]
. (2)

Recall that the geodesic flow kernel (GFK) is defined as,

〈z∞i , z∞j 〉 =
∫ 1

0

(Φ(t)Txi)
T(Φ(t)Txj) dt = xT

iGxj ,

(3)
where

G =

∫ 1

0

Φ(t)Φ(t)Tdt. (4)

Substituting the expression of Φ(t) of eq. (2) into above,
we have (ignoring Ω for the moment),

G ∝
∫ 1

0

[
Γ(t)Γ(t) −Γ(t)Σ(t)

−Σ(t)Γ(t) Σ(t)Σ(t)

]
dt (5)

Both Γ(t) and Σ(t) are diagonal matrices with elements
being cos(tθi) and sin(tθi). Thus, we can integrate in close-
form,

λ1i =

∫ 1

0

cos2(tθi)dt = 1 +
sin(2θi)

2θi
, (6)

λ2i = −
∫ 1

0

cos(tθi) sin(tθi)dt =
cos(2θi)− 1

2θi
(7)

λ3i =

∫ 1

0

sin2(tθi)dt = 1− sin(2θi)

2θi
, (8)

which become the i-th diagonal elements of diagonal matri-
ces Λ1, Λ2, and Λ3 respectively. In terms of these matrices,
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the inner product eq. (3) is a linear kernel xT
iGxj with the

matrix G given by

G = ΩT

[
Λ1 Λ2

Λ2 Λ3

]
Ω. (9)

B. How to compute rank of domain (ROD)
B.1. Principal angles and vectors

Let PS and PT be the basis of two subspaces. The prin-
cipal angles θi between the two subspaces are recursively
defined as,

cos(θi) = max
si∈span(PS)

max
ti∈span(PT )

〈si, ti〉
‖si‖‖ti‖

, (10)

such that

sk ∈ span(PS), si⊥sk,
tk ∈ span(PT ), ti⊥tk,

k = 1, 2, · · · i− 1.

In the above, si and ti are called the principal vectors asso-
ciated with θi. Essentially, principal vectors are new basis
for the two subspaces such that after the change of the basis,
the two subspaces maximally overlap. The degrees of over-
lapping are measured in the principal angles — the smallest
angles between basis.

Given the singular value decomposition,

P T
SPT = U1ΓV

T (11)

both the principal angles and vectors can be computed effi-
ciently

θi = arccos γi, si = (PSU1)·,i, ti = (PT V )·,i, (12)

where γi is the i-th diagonal element of the diagonal matrix
Γ. (M)·,i returns the i-th column of the matrix M .

B.2. Computing ROD

Let XS ∈ RNS×D and XT ∈ RNT×D denote the data
from the source and the target domains. We use their PCA
subspaces to compute the ROD metric. The optimal dimen-
sionality d∗ of the subspaces is selected with our subspace
disagreement measure, described in section 3.4 in the main
text.

The ROD metric integrates both geometrical and statis-
tical information between two domains by

R(S, T ) = 1

d∗

d∗∑
i

θi [KL(Si‖Ti) +KL(Ti‖Si)] , (13)

where Si and Ti are two one-dimensional distributions
of XT

Ssi and XT
T ti respectively. In other words, we

project data onto the principal vectors and compare how
(dis)similar the data are distributed across domains.

We approximate these two distributions with one-
dimensional Gaussians. Note that XS and XT have zero-
means. We thus need only to compute the variances in or-
der to specify the Gaussians. These variances can be readily
computed from the projections and the covariance matrices
of the original data:

σ2
iS =

1

NS
sT
iX

T
SXSsi, σ2

iT =
1

NT
tT
iX

T
TXT ti, (14)

In terms of the approximating Gaussians, the ROD metric
is computed in close-form

R(S, T ) = 1

d∗

d∗∑
i

θi

[
1

2

σ2
iS
σ2
iT

+
1

2

σ2
iT
σ2
iS
− 1

]
. (15)

C. Results on Amazon, Webcam & DSLR
These 3 domains have been studied and benchmarked

in [3, 2, 1]. We report our own empirical studies of domain
adaptation among them, thus, offer a direct comparison to
published results.

We stress that results on these 3 domains arrive at the
same findings as those identified in section 4 of the main
text, where we report results on 4 domains (the 3 domains
augmented with Caltech-256). In particular, results in this
section validate the advantages of our GFK based methods
for domain adaptation.

C.1. Setup

As in the previous work, we report results on Amazon
→Webcam, DLSR→Webcam, and Webcam→ DSLR in
this section. We used the features provided by K. Saenko1

and followed the same experimental setting as in [3] to split
data. We randomly split data 20 times and report averaged
results.

We conduct extensive evaluations of various baseline ap-
proaches as well as those proposed in [3, 1]. The methods
we have studied include:

OrigFeat where we use original features, ie., without
learning a new representation for domain adaptation.

PCAS the PCA subspace learned from the source domain.
We project the original features into this subspace, and
then use the resulting representation for classification.

PCAT the PCA subspace learned from the target domain.
PCAS+T the PCA subspace learned from the dataset that

combines the source and the target domain directly.
PLSS the PLS subspace learned from the source domain,

which takes label information into consideration.
1The dataset and features are downloaded from

http://www.icsi.berkeley.edu/∼saenko/projects.html#data.



Table 1. Recognition accuracies on target domains with unsuper-
vised adaptation (A: Amazon, W: Webcam, and D: DSLR).

Method A→W D→W W→ D
OrigFeat 10.7± 0.4 29.5 ±0.3 32.7±0.4

PCAS 13.9±0.4 35.4±0.3 43.4±0.4
PCAT 13.8±0.4 46.9±0.4 47.2±0.6

PCAS+T 14.0±0.4 43.5±0.3 47.7±0.5
PLSS 13.3±0.4 31.6±0.3 35.6±0.6

SGF (rept.) [1] 39±2.0 26±0.8 19±1.2
SGF (impl.) 14.2±0.4 37.4±0.5 45.3±0.5
SGF (opti.) 14.6±0.4 43.1±0.3 47.1±0.5

GFK(PCA, PCA) 14.8 ±0.4 42.7±0.3 47.2±0.5
GFK(PLS, PCA) 15.0±0.4 44.6±0.3 49.7±0.5

PLST the PLS subspace learned from the target domain by
leveraging a small set of labeled target data.

PLSS+T the PLS subspace learned from the union of la-
beled source data and the small set of labeled target
data.

Metric the metric learning method for domain adaptation
proposed in [3]. We report both the previously pub-
lished results in [3] (Metric rept.) and our own imple-
mentation (Metric impl.).

SGF Gopalan et al.’s method [1], which takes advantage of
a series of subspaces by sampling the geodesic flow.
We report results on three variants: i) the results of
SGF reported in [1] (SGF rept.); ii) our implementa-
tion using the recommended parameters in [1] (SGF
impl.); iii) our implementation using the optimal di-
mensionality automatically selected by our algorithm
(SGF opti.). We have found that the dimensionality of
the subspaces is one of the most important parameters
to be tuned; for other parameters, we still use what is
recommended in [1].

GFK our geodesic flow kernel method.

Note that PLST , PLSS+T , and Metric methods can only be
used in the semi-supervised case since they require access
to the labeled data in the target domain.

C.2. Adaptation results

Table 1 and 2 summarize the averaged classification ac-
curacies as well as their standard errors in the unsupervised
and the semi-supervised tasks, respectively. The best per-
forming group of methods whose performances are within
one standard error of the highest accuracy are in red and
bold font. The second-best performing group of methods
are in blue color, in italics font, and underlined.

Across the board, our GFK based methods
GFK(PCA, PCA) and GFK(PLS, PCA) perform the
best. We contrast them to other methods in more details in
the following:

Table 2. Recognition accuracies on target domains with semi-
supervised adaptation (A: Amazon, W: Webcam, and D: DSLR).

Method A→W D→W W→ D
OrigFeat 34.9± 0.6 38.6±0.4 48.9±0.5

PCAS 43.3±0.6 56.8±0.4 60.9±0.4
PCAT 44.4±0.6 62.9±0.5 63.4±0.4

PCAS+T 45.5±0.5 61.8±0.4 64.3±0.4
PLSS 40.3±0.5 52.2±0.4 54.8±0.5
PLST 18.3±0.4 39.5±0.5 47.0±0.5

PLSS+T 38.4±0.6 49.6±0.4 54.2±0.6
Metric (rept.) [3] 44 31 27

Metric (impl.) 34.5±0.7 36.9±0.8 48.1±0.6
SGF (rept.) [1] 57±3.5 36±1.1 37±2.3

SGF (impl.) 37.4±0.5 55.2±0.6 61.0±0.5
SGF (opti.) 45.1±0.6 61.4±0.4 63.4±0.5

GFK(PCA, PCA) 46.0±0.6 61.1±0.4 63.8±0.4
GFK(PLS, PCA) 46.4±0.5 61.3±0.4 66.3±0.4
GFK(PLS, PLS) 31.7±0.5 54.5±0.6 59.6±0.6

Table 3. ROD values between Amazon/DSLR/Webcam.
ROD→ Amazon DSLR Webcam
Amazon 0 0.18 0.06
DSLR 0.18 0 0.03

Webcam 0.06 0.03 0

• Comparison between SGF and GFK. While the pre-
viously proposed method of SGF (impl.) outper-
forms OrigFeat significantly, our GFK(PCA, PCA)
and GFK(PLS, PCA) outperform SGF(impl.) most
of the time. Note that the results from our own im-
plementation are different from what were previously
reported (SGF(rept.)), though in most parts, ours attain
better accuracies. We believe that the differences are
most likely due to feature preparation and data split.
Nevertheless, our results corroborate previous findings
that it is beneficial to use subspaces to model domain
shifts [1].

SGF(opti.) is our improved version of SGF(impl.):
instead of using the recommended subspace dimen-
sionality in the published work [1], we used the opti-
mal subspace dimensionality selected by our methods.
Despite that, our methods still outperform SGF(opti.).
We attribute this advantage to two factors: i) we inte-
grate an infinite number of subspaces, thus model do-
main shift better; ii) we have used PLS, a subspace of
discriminative nature as it takes label information into
consideration, to characterize the source domain.

However, using PLS on the target domain does not
seem to be beneficial. GFK(PLS, PLS) in the semi-
supervised learning performs worse than other GFK
methods. This is likely due to the lack of sufficient
labeled target data in estimating its PLS subspace.



Table 4. Recognition accuracies on target domains with unsupervised adaptation (C: Caltech, A: Amazon, W: Webcam, and D: DSLR).
Method C→A C→W C→D A→C A→W A→D W→C W→A W→D D→C D→A D→W

OrigFeat 20.8±0.4 19.4±0.7 22.0±0.6 22.6±0.3 23.5±0.6 22.2±0.4 16.1±0.4 20.7±0.6 37.3±1.2 24.8±0.4 27.7±0.4 53.1±0.6
PCAS 34.7±0.5 31.3±0.6 33.6±1.2 34.0±0.3 31.3±0.5 29.4±0.8 23.4±0.6 28.0±0.5 68.2±1.0 26.8±0.3 28.1±0.3 61.7±0.7
PCAT 37.5±0.4 33.9±1.1 37.8±0.9 35.4±0.4 34.9±1.0 33.3±0.8 29.6±0.5 32.5±0.8 67.4±0.7 31.2±0.3 34.4±0.3 79.4±0.5

PCAS+T 36.6±0.5 32.1±1.2 34.9±1.4 35.8±0.4 32.8±0.7 31.5±0.9 28.1±0.5 31.6±0.7 74.1±0.8 30.8±0.2 33.3±0.3 79.7±0.6
PLSS 26.7±0.9 26.0±0.6 28.2±1.3 31.1±0.5 29.3±0.9 28.0±1.0 18.3±0.5 21.1±0.9 42.8±1.4 21.4±0.6 26.5±0.6 41.9±1.4

SGF(impl.) 36.8±0.5 30.6±0.8 32.6±0.8 35.3±0.5 31.0±0.7 30.7±0.8 21.7±0.4 27.5±0.5 54.3±1.2 29.4±0.5 32.0±0.4 66.0±0.5
SGF(opti.) 36.9±0.5 33.9±1.2 35.2±1.0 35.6±0.4 34.4±0.9 34.9±0.9 27.3±0.5 31.3±0.7 70.7±0.9 30.0±0.2 32.6±0.5 74.9±0.6
GFK(A,A) 36.9±0.4 33.7±1.1 35.2±1.0 35.6±0.4 34.4±0.9 35.2±0.9 27.2±0.5 31.1±0.8 70.6±0.9 29.8±0.3 32.5±0.5 74.9±0.6
GFK(S,A) 40.4±0.7 35.8±1.0 41.1±1.3 37.9±0.4 35.7±0.9 35.1±0.8 29.3±0.4 35.5±0.7 71.2±0.9 32.7±0.4 36.2±0.4 79.1±0.7

Table 5. Recognition accuracies on target domains with semi-supervised adaptation (C: Caltech, A: Amazon, W: Webcam, and D: DSLR).
Method C→D C→W C→A A→C A→W A→D W→C W→A W→D D→C D→A D→W

OrigFeat 26.5±0.7 25.2±0.8 23.1±0.4 24.0±0.3 31.6±0.6 28.1±0.6 20.8±0.5 30.8±0.6 44.3±1.0 22.4±0.5 31.3±0.7 55.5±0.7
PCAS 48.9±1.0 54.2±0.9 40.3±0.4 35.5±0.5 47.3±0.7 47.8±1.0 28.1±0.8 38.2±0.6 72.1±0.8 27.0±0.5 36.8±0.5 64.4±0.7
PCAT 49.9±0.8 52.1±0.8 41.7±0.4 37.6±0.4 51.8±0.8 44.1±1.0 33.9±0.6 41.5±0.5 70.0±0.7 34.1±0.4 42.1±0.4 81.3±0.4

PCAS+T 48.7±1.2 55.8±0.9 42.0±0.6 37.7±0.4 49.8±1.0 47.5±1.2 33.6±0.7 42.9±0.6 77.1±0.6 34.0±0.4 42.9±0.5 83.0±0.4
PLSS 43.1±1.0 45.9±1.0 36.8±0.5 31.4±0.6 41.4±0.9 45.5±1.1 24.7±0.7 32.2±0.9 49.1±0.9 26.0±0.8 34.5±0.4 49.4±1.2
PLST 27.3±1.1 25.3±0.4 28.9±0.6 26.3±0.3 23.6±0.9 28.0±1.0 22.2±0.4 25.2±0.9 47.0±1.2 25.8±0.4 27.9±0.4 47.1±0.9

PLSS+T 36.9±0.9 37.0±0.9 33.5±0.5 32.4±0.4 35.6±1.1 36.9±1.2 25.4±0.8 31.6±0.6 52.1±1.2 27.5±0.7 32.9±0.6 53.1±1.2
Metric (impl.) 35.0±1.1 34.7±1.0 33.7±0.8 27.3±0.7 36.0±1.0 33.7±0.9 21.7±0.5 32.3±0.8 51.3±0.9 22.5±0.6 30.3±0.8 55.6±0.7

SGF(impl.) 36.6±0.8 37.2±0.9 40.2±0.7 37.7±0.5 37.9±0.7 34.5±1.1 29.2±0.7 38.2±06 60.6±1.0 30.2±0.7 39.2±0.7 69.5±0.9
SGF(opti.) 50.2±0.8 54.2±0.9 42.0±0.5 37.5±0.4 54.2±0.8 46.9±1.1 32.9±0.7 43.0±0.7 75.2±0.7 32.9±0.4 44.9±0.7 78.6±0.4
GFK(A,A) 49.5±0.9 54.2±0.9 42.0±0.5 37.8±0.4 53.7±0.8 47.0±1.2 32.8±0.7 42.8±0.7 75.0±0.7 32.7±0.4 45.0±0.7 78.7±0.5
GFK(S,A) 55.0±0.9 57.0±0.9 46.1±0.6 39.6±0.4 56.9±1.0 50.9±0.9 32.3±0.6 46.2±0.7 74.1±0.9 33.9±0.6 46.2±0.6 80.2±0.4
GFK(S,S) 38.6±1.4 34.0±0.9 38.7±0.6 36.6±0.4 36.3±0.9 34.1±1.0 28.6±0.6 36.3±0.5 68.6±1.0 32.6±0.4 35.0±0.4 74.6±0.5

• Metric learning for domain adaptation. The Metric
methods in Table 2 use the correspondence between
source and target labeled data to learn a Mahalanobis
metric to map data into a new feature space for clas-
sification. Probably due to the lack of enough labeled
data in the target domains to give a reliable estimation,
it does not perform as well as subspace-based methods.

• PCA baselines. It is also interesting and surprising to
note that PCA based baselines, especially PCAS+T
and PCAT , perform quite well. They are often in the
second-best performing group, and are even better than
the SGF methods on DLSR→Webcam and Webcam
→ DSLR.

We suspect that because the domain difference be-
tween DSLR and Webcam is small, either PCAT or
PCAS+T is already able to capture the commonness
of the two domains well. For instance, both DSLR and
Webcam contain similar office images though with dif-
ferent resolutions (see Fig. 2 in the main text for an
example).

The similarity between Webcam and DSLR is also
confirmed by our ROD metric, which we will describe
next.

C.3. Analysis based on the ROD Metric

Table 3 shows the ROD values of the three domains when
paired with other domains for domain adaptation. For each
column (the target domain), we use the corresponding val-
ues in rows to rank the source domains. For example, when
Amazon is used as the target domain, Webcam is ranked

higher than DSLR. This suggests that, Webcam would lead
to better accuracies if it is used as the source domain. Our
results in Table 1 and 2 corroborate this ranking. We have
found rankings in other columns are also validated by the
adaptation results. In particular, we have identified that
DSLR and Webcam are “pals” as they prefer to use the other
as source domains.

D. Results on Caltech-256, Amazon, Webcam
& DSLR

The setup of this set of empirical studies was described
in the main text (section 4.1). We have followed sim-
ilar feature extraction and experiment protocols for do-
main adaptation among 3 domains (Amazon, Webcam and
DSLR) [1, 3]. Specifically, for the “new” domain Caltech-
256, when it is used as the source domain, we used 20
images per category and when it is used as the target do-
main, we used 3 images per category in the setting of semi-
supervised domain adaptation. For all other datasets, we
follow the previously published practice.

In the main text, we have shown domain adaptation re-
sults for 8 pairs of source and target domains. In this sec-
tion, we provide details on the remaining 4 pairs, other
methods that we have compared to, as well as experiment
details.

Table 4 shows the averaged accuracies and their standard
errors for the unsupervised tasks and Table 5 shows the re-
sults for the semi-supervised tasks. Note that, to fit the table
within the width of the page, we have shortened GFK(PCA,
PCA) with GFK(A,A), GFK(PLS, PCA) with GFK(S,A)



Table 6. ROD values between PASCAL/ImageNet/Caltech-101.
Lower values signify stronger adaptability of the corresponding
source domain.

ROD→ PASCAL ImageNet Caltech101
PASCAL 0 1.9E-3 8E-3
ImageNet 1.9E-3 0 6.6E-3

Caltech101 8E-3 6.6E-3 0

and GFK(PLS, PLS) with GFK(S,S).
In general, our GFK(PLS, PCA) performs the best, fol-

lowed by GFK(PCA, PCA), SGF with the optimal dimen-
sionalities, PCAT and/or PCAS+T .

E. ROD of PASCAL/ImageNet/Caltech-101
In Section 4.6 of the main text, we have compared the

datasets of PASCAL, ImageNet, and Caltech-101 on cross-
dataset classification accuracies. We had also calculated
their values of ROD and summarize them in Table 6. Lower
values indicate stronger adaptability of the corresponding
source domain. We can see that the ROD metric is con-
sistent with what we observe in Section 4.6 of the main
text. Take the PASCAL column for instance. ImageNet
has smaller ROD value, and is better than Caltech-101 to
serve as the source domain to adapt a classifier to the target
domain PASCAL.
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