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Abstract

The mode of manual annotation used in an interactive
segmentation algorithm affects both its accuracy and ease-
of-use. For example, bounding boxes are fast to supply, yet
may be too coarse to get good results on difficult images;
freehand outlines are slower to supply and more specific,
yet they may be overkill for simple images. Whereas ex-
isting methods assume a fixed form of input no matter the
image, we propose to predict the tradeoff between accuracy
and effort. Our approach learns whether a graph cuts seg-
mentation will succeed if initialized with a given annotation
mode, based on the image’s visual separability and fore-
ground uncertainty. Using these predictions, we optimize
the mode of input requested on new images a user wants
segmented. Whether given a single image that should be
segmented as quickly as possible, or a batch of images that
must be segmented within a specified time budget, we show
how to select the easiest modality that will be sufficiently
strong to yield high quality segmentations. Extensive results
with real users and three datasets demonstrate the impact.

1. Introduction

Foreground segmentation is a fundamental vision prob-
lem with an array of applications. Visual search systems
need foreground segmentation to properly isolate a user’s
query. For example, suppose a mobile phone user snaps a
photo of an armchair at his friend’s home that he wants to
purchase online; the search system needs to issue a query
based on the chair’s visual features, separate from the sur-
rounding living room. Similarly, training an object recogni-
tion system often requires segmenting objects, so that they
can be learned from natural scenes. Likewise, graphics ap-
plications demand rotoscoping to insert a segmented object
into different backgrounds, or to reconstruct a 3D model of
an object visible in multiple views. In any such scenario, it
is natural for humans to help annotate the foreground.

Research oninteractive segmentationconsiders how a
human can work in concert with a segmentation algorithm

(a) Image (b) Ground Truth (c) Bounding Box (d) Sloppy Contour

Figure 1: Interactive segmentation results (shown in red) for
three images using various annotation strengths (marked in
green). Note how the most effective mode of input depends
on the image content. Our method predicts the easiest in-
put modality that will be sufficiently strong to successfully
segment a given image.

to efficiently identify the foreground region [8,16, 2, 19,
12, 7, 1]. The idea is to leverage the respective strengths
of both the human and the algorithm. While the human un-
derstands the semantics of the scene and can easily identify
the foreground, outlining pixel-level boundaries is painstak-
ing. While the algorithm can easily assign pixels to ob-
jects based on their low-level properties, predicting what
properties each object has remains elusive. Thus, the hu-
man gives high-level guidance—in the form of coarse spa-
tial annotations—and the algorithm propagates that input
down to the pixel level. Often this is done by construct-
ing a foreground color model from the user-indicated re-
gions, then optimizing foreground/background labels on
each pixel (e.g., using graph cuts [2,19]).

Existing methods assume the user always gives input in
a particular form (e.g., a bounding box or a scribble), and so
they focus on how to use that input most effectively. How-
ever, simply fixing the input modality leads to a suboptimal
tradeoff in human and machine effort. The problem is that
each mode of input requires a different degree of annotator
effort. The more elaborate inputs take more manual effort,
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yet they leave less ambiguity to the system about which pix-
els are foreground. At the same time, depending on its con-
tent, an image may be better served by one form or another.

For example, Figure1 shows (a) three images, (b) their
ground truth foreground, and their interactive segmentation
results (shown in red) using either (c) a bounding box or (d)
a freehand outline as input (marked in green). The flower
(top row) is very distinct from its background and has a
compact shape; a bounding box on that image would pro-
vide a tight foreground prior, and hence a very accurate seg-
mentation with very quick user input. In contrast, the cross
image (middle row) has a plain background but a complex
shape, making a bounding box insufficient as a prior; the
more elaborate freehand “sloppy contour” is necessary to
account for its intricate shape. Meanwhile, the bird (bot-
tom row) looks similar to the background, causing both the
bounding box and sloppy contour to fail. In that case, a
manually drawn tight polygon may be the best solution.

The tradeoffs are clear, but what is a system to do about
it? The system needs to determine what tool works best, but
before the human uses the tool! A very experienced user—
especially a vision researcher well versed in how the un-
derlying algorithms work—might be able to predict which
input tool will suffice, but to require such knowledge is to
exclude many application areas where non-experts must be
able to assist the system. Furthermore, ideally the system
should segment the object well in one shot, as opposed to
requiring back-and-forth with the user to correct its mis-
takes (e.g., with scribbles); this is especially true for visual
search on a mobile device, where a user has a query image
in hand and would like to quickly identify the foreground
and ship it to a server.

We propose to learn the image properties that indicate
how successful a given form of user input will be, once
handed to an interactive segmentation algorithm. Our ap-
proach works as follows. First, we develop features cap-
turing the degree of separability between foreground and
background regions, as well as the uncertainty of a graph
cuts-based optimal label assignment. Then, we use these
features on images for which the true foreground is known
to train discriminative models that predict whether an image
will be “easy” or “difficult” for each input modality. Given
a novel image, we apply a saliency detector to coarsely es-
timate the foreground. Using that estimate, we extract the
separability features, and apply the difficulty classifiers.

Having predicted the relative success of each modality,
we can explicitly reason about the tradeoff in user effort and
segmentation quality. We propose two ways to determine
the appropriate annotation choice. In the first, we take a
single image as input, and ask the human user to provide
the easiest (fastest) form of input that the system expects to
be sufficiently strongto do the job. In the second, we take a
batch of images as input together with a budget of time that

the user is willing to spend guiding the system. We show
how to optimize themix of input types that will maximize
total segmentation accuracy, subject to the budget.

We validate our approach on three datasets. We demon-
strate scenarios where the system must segment individ-
ual unrelated snapshots (relevant for search applications) as
well as co-segment collections of related images (relevant
for recognition and 3D reconstruction applications). We
show the proposed difficulty predictions outperform color
variance metrics as well as a state-of-the-art technique to
predict manual effort [22]. In real user studies with 101
users, our method not only meets the budget, but it does so
while producing more accurately segmented results. Over-
all, the results clearly establish the value in reasoning about
sufficient annotation strength in interactive segmentation.

2. Related Work

Early interactive segmentation methods include active
contours [8] and intelligent scissors [16], where a user
draws loose contours that the system snaps to a nearby ob-
ject. Alternatively, a user can indicate some foreground
pixels—often with a bounding box or mouse scribble—
and then use graph cuts to optimize pixel label assign-
ments based on a foreground likelihood and local smooth-
ness prior [2, 19]. Building on this idea, recent work de-
velops co-segmentation [1], topological priors [12], shape
constraints [7], and simulated human user models [10]. In
all prior methods, the user’s annotation tool is fixed. We
show how to tailor the user’s input modality to achieve best
graph cut segmentation results with minimal effort.

Active learning helps minimize the amount of labeled
examples needed to train a recognition system, and can be
used to solicit region labels [22, 20, 24, 21]. In contrast to
our work, the goal of active learning is to build a reliable
classifier, and examples are sequentially selected for label-
ing based on how they reduce category uncertainty. Our
method is class-independent and addresses interactive seg-
mentation, not recognition.

More relevant to our problem are methods that aim to
interactively annotate a given example, and thus try to op-
timize exactly what should be requested from the userfor
that particular example. For instance, in video segmen-
tation, the most useful frames to annotate are found with
tracking uncertainty measures [25, 26, 23]. In object recog-
nition, a human is asked to click on object parts, depend-
ing on what seems most informative [27]. In interactive
co-segmentation, the system guides a user to scribble on
certain areas of certain images to reduce foreground uncer-
tainty [1, 28]. Like us, all these methods try to reduce hu-
man effort. However, whereas prior work predictswhich
images should be annotated(and possibly where) to min-
imize uncertainty, we predictwhat strength of annotation
will be sufficientfor interactive segmentation to succeed.



Furthermore, whereas existing methods assume a back-and-
forth with the annotator, we take a “one-shot” approach that
makes all requests simultaneously, a potential advantage for
crowdsourcing or mobile interface settings.

Limited prior work considers estimating how difficult an
image is to segment. In [22], a classifier is learned to map
image features to the expected time it will take for a hu-
man to segment all objects with polygons. In [13], global
image features are used to predict the segmentation accu-
racy of an algorithm before it is applied. A related idea is
to run a segmentation algorithm, and then predict how good
its results are based on “object-like” descriptors of the re-
gions [18, 4, 5, 9]. Unlike any of these methods, we want to
predict difficulty for a segmentation algorithm as a function
of the strength of a human’s partial input.

3. Approach

First we define the annotation modes and interactive
segmentation model our method targets (Sec.3.1). Then,
we define features indicative of image difficulty and learn
how they relate to segmentation quality for each annotation
mode (Sec.3.2). Given a novel image, we forecast the rel-
ative success of each modality (Sec.3.3). This allows our
method to select the modality that is sufficient for an indi-
vidual image. Finally, we propose a more involved opti-
mization strategy for the case where a batch of images must
be segmented in a given time budget (Sec.3.4).

3.1. Interactive segmentation model

In interactive segmentation, the user indicates the fore-
ground with some mode of input. Our goal is to predict the
input modality that will be sufficiently strong to yield an
accurate segmentation.

Our approach chooses from three annotation modalities,
as depicted in Figure2: (1) Bounding box: The annotator
provides a tight bounding box around the foreground ob-
jects. This is typically the fastest input modality. (2)Sloppy
contour: The annotator draws a rough contour surround-
ing the foreground. This gives a tighter boundary than a
box (i.e., encompassing fewer background pixels) and of-
fers cues about the object shape. It typically takes longer.
(3) Tight polygon: The annotator draws a tight polygon
along the foreground boundaries. We equate a tight poly-
gon with perfect segmentation accuracy. This is the slowest
modality. All three are intuitive and well-used tools. Our
method extends naturally to handle other modalities where
a user specifies foreground pixels (e.g., scribbles).

No matter the annotation mode, we use the pixels inside
and outside the user-marked boundary to initialize the fore-
ground and background models, respectively. Specifically,
we use them to construct two Gaussian mixture models in
RGB color space,Gfg andGbg. Then we apply standard
graph-cut based interactive segmentation [2, 19] with the

(a) Bounding box (b) Sloppy contour (c) Tight polygon

Figure 2: Possible modes of annotation

mixture models as likelihood functions. Each image pixel
is a node, and edges connect neighboring pixels. The ob-
jective is to assign a binary foreground/background label
yp ∈ {1, 0} to each pixelp so as to minimize the total en-
ergy of all labelsL:

E(L) =
∑

p

Ap(yp) +
∑

p,q∈N

Sp,q

(

yp, yq), (1)

whereAp(yp) = − log P (Fp|Gyp
) is the unary likelihood

term indicating the cost of assigning a pixel as fg/bg, andFp

denotes the RGB color for pixelp. The termSp,q(yp, yq) =
δ(yp 6= yq) exp(−β‖Fp − Fq‖) is a standard smoothness
prior that penalizes assigning different labels to neighboring
pixels that are similar in appearance, whereβ is a scaling
parameter andN denotes a 4-connected neighborhood.

We use the algorithm of [3] to minimize Eqn.1, and use
the GrabCut idea of iteratively refining the likelihood func-
tions and the label estimates [19].

3.2. Learning segmentation difficulty per modality

Having defined the annotation choices and the basic en-
gine for segmentations, we can now explain our algorithm’s
training phase. The main idea is to train a discriminative
classifier that takes an image as input, and predicts whether
a given annotation modality will be successful once passed
to the interactive graph cuts solver above. In other words,
one classifier will decide if an image looks “easy” or “diffi-
cult” to segment with a bounding box, another classifier will
decide if it looks “easy” or “difficult” with a sloppy contour.

To compose the labeled training set, we require images
with ground truth foreground masks. For each training ex-
ample, we want to see how it would behave with each user
input mode. For the bounding box case, we simply generate
the bounding box that tightly fits the true foreground area.
For the sloppy contour case, we dilate the true mask by 20
pixels to simulate a coarse human-drawn boundary.1 After
running graph cuts (optimizing Eqn.1) for each one in turn,
we obtain twoestimated foreground masksper training im-
age:fgbox andfgcon.

We use those masks to extract a series of features (de-
fined next), then train the two SVM classifiers. LetO de-
note the normalized overlap between an estimated mask and
the true foreground. Let̄Obox andŌcon denote the median

1In a user study, we find these masks are a good proxy; on average,they
overlap with actual hand-drawn contours by 84%.



overlap among all training images for the two modes. The
ground truth label on an image is positive (“easy”, “suc-
cessful”) for an annotation modalityx if O > Ōx. That is,
the image is easy for that particular form of user input if its
accuracy is better than at least half of the examples.2

Next we define features that reveal image difficulty.
Graph cut segmentation performance is directly related to
the degree of separation between the foreground and back-
ground regions. It tends to fail if the two are similar in ap-
pearance, or if the foreground object has a complex com-
position. Furthermore, the notion of separability is tied to
the form of user input. For example, a bounding box input
can fail even for an object that is very distinct from its back-
ground if it contains many background pixels. Our features
take these factors into account.

Let IFG be an estimated foreground (as specified by ei-
ther maskfgbox or fgcon in a training image), and letIBG

denote its complement. We define the following features:

Color separability: Since the segmentation model de-
pends on fg and bg appearance, we compute dissimilarity
measures between them. We record theχ2 distance between
the color histograms computed fromIFG andIBG in RGB
(16 bins per channel) and Lab (21 bins per channel) color
space. We also consider local color dissimilarity by com-
puting theχ2 distance between the RGB color histogram
from IFG and from a small 40-pixel region aroundIFG.
This captures how distinct the region is from its neighbor-
ing pixels. Finally, we record the KL-divergence between
Gaussian mixture models estimated withIFG andIBG.

Edge complexity: We expect edges to reflect the com-
plexity of a foreground object. We record a 5-bin edge
orientation histogram fromIFG. We do this only for the
foreground, as we do not want the annotation choice to be
affected by background complexity. Next, as a measure of
image detail, we compute the sum of gradient magnitudes
for IFG andIBG, normalized by their areas. We record the
ratio between foreground and background image detail.

Label uncertainty: Our next feature directly captures
how uncertain the segmentation result is. We use the dy-
namic graph cuts approach proposed in [11] to compute the
min-marginal energies associated with each pixel’s graph
cut label assignment. We map them to uncertainty by com-
puting the change in min marginal energy when a pixel is
constrained to take the non-optimal label, and record a 5-
bin histogram of the uncertainty values withinIFG. Intu-
itively, an easy segmentation will have mostly labels with
low uncertainty, and vice versa.

Boundary alignment and object coherence: We expect
easy segments to align well with strong image boundaries.

2While a regression model would also be a reasonable choice here, we
found classification more effective in practice, likely because of the large
spread in the overlap scores obtained through graph cuts segmentation.

To estimate the extent of alignment, we first divide the im-
age into superpixels [6]. For every superpixel that lies on
the boundary betweenIFG andIBG, we see what fraction
of its area lies insideIFG. We record the average across all
superpixels as a feature. We also use number of connected
components in the resulting segmentation as a measure of
how coherent the object is.

Altogether, we have 17 features: 4 for color separabil-
ity, 6 for edge complexity, 5 for label uncertainty, and 2 for
boundary alignment and coherence. We stress that all fea-
tures are object- and dataset-independent. This is important
so that we can learn the abstract properties that reflect seg-
mentation difficulty, as opposed to the specific appearance
of previously seen objects that were difficult to segment.

3.3. Predicting difficulty on novel images

Given a novel image, we predict which of the annotation
modes will be successful. To do so, we need a coarse es-
timate of the foreground in order to compute the features
above. We use a four step process. First, we apply a salient
object detector that outputs a pixel-wise binary saliency
map [14]. Second, we refine it with “superpixel smooth-
ing”, assigning the foreground label to each superpixel that
overlaps a salient region by more than 50%. This yields a
more coherent estimate aligned with strong image bound-
aries. Third, if we have multiple input images similar in ap-
pearance (i.e., the co-segmentation case), we further reclas-
sify each superpixel using an SVM trained with superpixel
instances originating in the current fg-bg masks. Finally,we
automatically generate a bounding box and sloppy contour
(by dilation), and run graph cuts to get the estimated masks
for either modality. We use these estimates forIFG (and
their complements forIBG) to compute the features defined
above. While often an image has a primary foreground ob-
ject of interest, our method (like any graph cuts formula-
tion) can accommodate foregrounds consisting of multiple
disconnected regions.

The foreground estimate in a test image need only give a
rough placement of where the user might put the bounding
box or sloppy contour. Indeed, the whole purpose of our
work is to get the necessary guidance from a user. Nonethe-
less, the estimates must be better than chance to ensure
meaningful features. We find the saliency-based initializa-
tions are a reasonable proxy (overlapping 47-71% on av-
erage for our datasets), though in no way replace the real
human input that we will seek after applying our method.

Now we apply the difficulty classifiers to the test image.
Recall that to properly balance effort and quality, our ob-
jective is to predict which mode issufficiently strong. Al-
ways requesting tight polygons is sure to yield accurate re-
sults, but will waste human effort when the image content is
“easy”. Similarly, always requesting a bounding box is sure
to be fast, but will produce lousy results when the image is



too “hard”. Therefore, if given a single image as input, we
use a cascade to request the fastest annotation that is likely
to succeed. That is, we show the annotator a bounding box
tool if the bounding box classifier predicts “easy”. If not, we
show the sloppy contour tool if its classifier predicts “easy”.
If not, we show the user the tight polygon tool.

3.4. Annotation choices under budget constraints
In an alternative usage scenario, our system accepts a

batch of images and a budget of annotation time as in-
put. Our objective is to select the optimal annotation tool
for each imagethat will maximize total predicted accuracy,
subject to the constraint that annotation cost must not ex-
ceed the budget. This is a very practical scenario. For ex-
ample, today’s data collection efforts often entail posting
annotation jobs to a crowdsourcing service like Mechani-
cal Turk; a researcher would like to state how much money
(i.e., worker time) they are willing to spend, and get the best
possible segmentations in return.

For a high budget, a good choice may be tight polygons
on all of the hardest images, and sloppy contours on the rest.
For a low budget, it might be bounding boxes on all but the
most difficult cases, etc. Rather than hand code heuristics
to capture such intuitions, we propose to automatically op-
timize the selection. Formulating the problem is possible
since we explicitly account for the expected success/failure
of a particular kind of user input for a given image.

Suppose we haven images to segment, and a bud-
get of B, which could be specified in minutes or dollars.
Let pb

k and pc
k denote the probability of successful inter-

active segmentation for imagek with a bounding box or
sloppy contour, as predicted by our model. We map the
easy/difficult classifier outputs to probabilities of success
using Platt’s method. Letpp

k denote the probability of suc-
cess when using a tight polygon; by definition,p

p
k = 1.

Let x = [xb
1
, xc

1
, x

p
1
, . . . , xb

n, xc
n, xp

n] be an indicator vector
with three entries for each image, reflecting the three pos-
sible annotation modalities we could apply to it. That is,
xb

k = 1 would signify that imagek should be annotated
with a bounding box. Letc = [cb

1
, cc

1
, c

p
1
, . . . , cb

n, cc
n, cp

n]
be a cost vector, whereca

k denotes the cost associated with
annotating imagek with annotation typea, specified in the
same units asB. That is,cb

k = 7 means it will take 7 sec to
draw a bounding box on imagek.

We formulate the following objective to solve for the best
batch of sufficiently strong annotations:

x
∗ = arg max

x

n
∑

k=1

pb
kxb

k + pc
kxc

k + p
p
kx

p
k, (2)

s.t. c
T
x ≤ B,

xb
k + xc

k + x
p
k = 1, ∀k = 1, . . . , n,

xb
k, xc

k, x
p
k ∈ {0, 1}, ∀k = 1, . . . , n.

The objective says we want to choose the modality per
image that will maximize the predicted accuracy. The
first constraint enforces the budget, the second ensures we
choose only one modality per image, and the third restricts
the indicator entries to be binary. We maximize the ob-
jective using a linear programming (LP) based branch and
bound method for solving integer programs, which finds the
optimal integer solution by solving a series of successive
LP-relaxation problems. It takes less than a minute to solve
for about 500 images and 70 budget values.

While our approach supports image-specific annotation
costsck, we find the biggest factor in cost is which anno-
tation type is used. Therefore, we letcb

k, cc
k and c

p
k each

be constant for all imagesk, based on real user time data.
One could optionally plug in fine-grained cost predictions
per image when available, e.g., to reflect that high curvature
contours are more expensive than smooth ones.

4. Results

We evaluate on three public datasets that provide pixel-
level labels: Interactive Image Segmentation (IIS) [7]
consists of 151 unrelated images with complex shapes and
appearance;MSRC contains 591 images, and we convert
the multi-class annotations [15] to fg-bg labels by treat-
ing the main object(s) (cow, flowers, etc.) as foreground;
CMU-Cornell iCoseg [1] contains 643 images divided into
38 groups with similar foreground appearance, allowing us
to demonstrate our method in the optional co-segmentation
setting. On MSRC, we never allow the same object class
to appear in both the training and test sets, to prevent our
method from exploiting class-specific information.

We compare to the following methods:

- Otsu: [17] finds the optimal grayscale threshold that
minimizes the intra-class variance between foreground
and background. To use it to estimate fg-bg separabil-
ity, we compute theinter-class variance (at the opti-
mal threshold) and normalize by total variance. Higher
values indicate higher separability, and hence “easier”
segmentation.

- Effort Prediction: [ 22] predicts whether an image will
be easy or hard for a human to segment, using features
indicative of image complexity. We use the authors’
public code. This is a state-of-the-art method for esti-
mating image difficulty.

- Global Features:We train two SVMs (one for bound-
ing box, one for contours) to predict if an image is easy
based on a 12-bin color histogram, color variance, and
the separability score from [17]. This baseline illus-
trates the importance of our features capturing the es-
timated foreground’s separation from background.
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Figure 3: Difficulty prediction accuracy for each dataset (first three columns) and cross-dataset experiments (last column)

- GT-Input : uses the ground-truth box/contour masks
as input to our method, showing the impact of our fea-
tures in the absence of errors in the saliency step.

- Random: randomly assigns a confidence value to each
modality in the budgeted annotation results.

Otsu and Effort Prediction use the same function for both
boxes and contours, since they cannot reason about the dif-
ferent modalities. Note that methods for active interactive
(co-)segmentation [1, 28] address a different problem, and
are not comparable. In particular, they do not predict im-
age difficulty, and they assume a human repeatedly gives
feedback on multiple images with the same foreground.

All classifiers are linear SVMs, and the parameters are
chosen by cross-validation. We quantify segmentation ac-
curacy with the standard overlap scoreP∩GT

P∪GT
between the

predicted and ground truth masksP andGT .

Predicting difficulty per modality First we see how well
all methods predict the success of each annotation modality.
We test both in adataset-specificandcross-datasetmanner.
For the former, we test in a leave-one-out (IIS, MSRC) or
leave-one-group-out (iCoseg) fashion. For the latter, we test
in a leave-one-dataset-out fashion. We use each method’s
confidence on the test images to compute ROC curves.

Figure 3 shows the results. Our approach consistently
performs well across all datasets, while none of the base-
lines has uniform performance (e.g., Otsu beats other base-
lines on MSRC, but fails badly on IIS). On MSRC and
iCoseg, our approach significantly outperforms all the base-
lines, including the state-of-the-art Effort Prediction [22].
On IIS, we are again better for bounding boxes, but Global
Features is competitive on sloppy contours. We attribute
this to the complex composition of certain images in IIS
that makes saliency detection fail.

In the even more challenging cross-dataset setting

(Fig. 3, right column), our advantage remains steady. This
is a key result. It shows our method is learning which
generic cues indicate if a modality will succeed—not some
idiosyncrasies of the particular objects or cameras used in
the datasets. Whereas the Global Features and Effort Pre-
diction [22] methods learn from the holistic image content,
our method specifically learns how fg-bg separability influ-
ences graph cuts segmentation. Analyzing the linear SVM
weights, we find label uncertainty, boundary alignment, and
χ2 color distance are the most useful features. The GT-Input
result underscores the full power of the proposed features.

Figure4 shows our typical success and failure cases. For
the leftmost block of images, our method predicts a bound-
ing box or contour would be sufficient. These images usu-
ally have uniform backgrounds, and distinct, compact fore-
ground regions, which are easy to tightly capture with a box
(e.g., flower, cows). For the center block, our method pre-
dicts a bounding box would fail, but a sloppy contour would
be sufficient. These images usually have objects with com-
plex shapes, for which even a tight box can overlap many
background pixels (e.g., Christ the Redeemer, Taj Mahal).
For the rightmost block, our method predicts neither a box
or contour is sufficient. These images contain objects with
intricate shape (e.g., bicycle) or high similarity to back-
ground (e.g., elephant, bird). Notably, the same object can
look easy or difficult. For example, the skaters in the left
block are close together and seem easy to annotate with a
box, while the skaters in the right block are far apart and
tight polygons are needed to extract their limbs. This em-
phasizes the object-independence of our method; its predic-
tions truly depend on the complexity of the image.

Failures can occur if the salient region detection fails
drastically (e.g., in the person image on right, the salient
white shirt leads our method to think the image looks easy).
We can also fail by overestimating the difficulty of images
with low color separability (e.g., shadows in Stonehenge
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Figure 4: Example success (top) and failure cases (bottom) for our method, per annotation modality. Best viewed on pdf.

and white pixels by statues in left group), suggesting a more
refined edge detector could help.

Annotation choices to meet a budget Next we evaluate
our idea for optimizing requests to meet a budget. We ap-
ply our method and the baselines to estimate the probability
that each modality will succeed on each image. Then, for
each method, we use our budget solution defined in Sec.3.4
to decide which image should get which modality, such that
total annotation time will not exceed the budget. For the
cost of each modality inc, we use the average time required
by the 101 users in our user study: 7 sec for bounding box,
20 sec for sloppy contour, 54 sec for tight polygon. If the
solution says to get a box or contour on an image, we apply
graph cuts with the selected modality (Sec.3.1). If the so-
lution says to get a tight polygon, we simply use the dataset
ground truth, since it was obtained with that tool. The final
accuracy is the overlap in the estimated and ground truth
foregrounds over all images.

Figure 5 plots the results as a function of budget
size. The budget values range from the minimum possible
(bounding boxes for all images) to the maximum possible
(tight polygons for all images). Our method consistently se-
lects the modalities that best use annotation resources: atal-
most every budget point, we achieve the highest accuracy.3

This means our method saves substantial human time. For
example, in the cross-dataset result on 1,351 images, the
best baseline needs 2.25 hours more annotation effort than
we do to obtain 90% average overlap.

What choices does our method typically make? We find
as the budget increases, the bounding box requests decrease.
The number of sloppy contour requests increases at first,
then starts decreasing after a certain budget, making way
for more images to be annotated with a tight polygon. For

3By definition, all methods yield the same solution for the two ex-
tremes, and hence the same accuracy.
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Figure 5: Choosing annotation modalities to meet a budget

images where either a box or contour is likely to succeed,
our method tends to prefer a box so that it can get a tight
polygon for more images within the budget.

Application to recognition To further illustrate the prac-
tical impact of our approach, we next apply it to train a
recognition system for MSRC. Suppose we are given a set
of images known to contain an object category of interest
amidst a cluttered background. The goal is to learn a clas-
sifier that can differentiate object vs. non-object regions.
Rather than ask an annotator to give tight polygons on each
training image—the default choice for strongly supervised
recognition systems—we apply our cascaded modality se-
lection. Then we train the classifier with the resulting 15-30
interactively segmented images, and apply it to localize the
object in novel images. We test in a leave-one-image out
setting (more setup details in Supp.).

Table 1 shows the results. Our approach substantially
reduces the total annotation time required, yet its accuracy



Object
Avg. overlap (%)

Time saved (%)
All tight Ours

Flower 65.09 65.60 21.2 min (73%)
Car 60.34 60.29 3.9 min (15%)
Cow 72.90 66.53 9.2 min (68%)
Cat 51.79 46.56 13.7 min (23%)
Boat 51.08 50.77 1.4 min (10%)

Sheep 75.90 75.59 17.2 min (64%)
Table 1: We train a recognition system more efficiently by us-
ing the modality predicted to be sufficiently strong.

on novel images is still very competitive with the method
that gets perfect tight polygons on all images.

User study Finally, we conduct a user study with Me-
chanical Turk workers. We randomly select one third of the
images from each dataset to make a diverse pool of 420 im-
ages. We present users with the necessary tools to do each
modality (see Supp. for interface details), and time them as
they work on each image. If an object has multiple fore-
ground objects, they must annotate each one. We collect
responses from 5 users for each annotation mode per im-
age, then record the median time spent. In total, we obtain
2,100 responses per modality, from 101 unique users.

Figure 6 (right) shows example user annotations. We
see the most variance among the sloppy contour inputs,
since some users are more “sloppy” than others. Still,
as expected, sloppy contours typically only improve inter-
active segmentation results (85.5% average overlap accu-
racy) compared to the faster bounding boxes (82.1% aver-
age overlap accuracy).

Figure 6 (left) shows the budgeted annotation results
with real user data. The plot is like Figure5, only here 1)
we feed the real users’ boxes/contours to the graph cuts en-
gine, rather than simulate it from ground truth masks, and
2) we incur the users’ per-image annotation times at test
time (onx-axis). Across all budgets, our method allocates
effort more wisely, and it even narrows the gap with the GT-
Input. This result confirms that even though the ultimate an-
notation time may vary not only per modality, but also per
image, using a fixed cost per modality duringprediction is
sufficient to get good savings. Overall, this large-scale user
study is promising evidence that by reasoning about the ex-
pected success of different annotation modalities, we can
use valuable annotator effort much more efficiently.
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