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Abstract
Activities in egocentric video are largely defined by the objects with which the cam-

era wearer interacts, making representations that summarize the objects in view quite
informative. Beyond simply recording how frequently each object occurs in a single
histogram, spatio-temporal binning approaches can capture the objects’ relative layout
and ordering. However, existing methods use hand-crafted binning schemes (e.g., a uni-
formly spaced pyramid of partitions), which may fail to capture the relationships that best
distinguish certain activities. We propose to learn the spatio-temporal partitions that are
discriminative for a set of egocentric activity classes. We devise a boosting approach that
automatically selects a small set of useful spatio-temporal pyramid histograms among a
randomized pool of candidate partitions. In order to efficiently focus the candidate par-
titions, we further propose an “object-centric” cutting scheme that prefers sampling bin
boundaries near those objects prominently involved in the egocentric activities. In this
way, we specialize the randomized pool of partitions to the egocentric setting and im-
prove the training efficiency for boosting. Our approach yields state-of-the-art accuracy
for recognition of challenging activities of daily living.

1 Introduction
Egocentric computer vision entails analyzing images and video that originate from a wear-
able camera, which is typically mounted on the head or chest. Seeing the world from this
first-person point of view affords a variety of exciting new applications and challenges, par-
ticularly as today’s devices become increasingly lightweight and power efficient. For exam-
ple, in the life-logging setting, a user constantly captures his daily activity, perhaps to share
it with others, or to personally review it as a memory aid [11]. Daily logs from a wear-
able camera also have compelling applications for law enforcement and defense, where an
archive of the first-person point of view may contain valuable forensic data. Furthermore, in
augmented reality applications, a user could be shown on an associated display (e.g., Google
Glass) valuable meta-data about the objects or events he observes in real time, such as prod-
uct reviews for an object he handles in the store. Egocentric video analysis also has potential
to determine how well a person can complete physical daily living tasks, thereby enabling
new forms of tele-rehabilitation [15, 21].

Nearly all such applications demand robust methods to recognize activities and events
as seen from the camera wearer’s perspective. Whereas activity analysis in the traditional
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“third person” view is often driven by human body pose, in egocentric video activities are
largely defined by the objects that the camera wearer interacts with. Accordingly, high-level
representations based on detected objects are a promising way to encode video clips when
learning egocentric activities [2, 6, 7, 21, 24]. In particular, recent work explores a “bag-of-
objects” histogram of all objects detected in a video sequence, as well as a spatio-temporal
pyramid extension that captures the objects’ relative temporal ordering [21]. Coupled with
standard discriminative classifiers, this representation shows very good results; notably, it
outperforms histograms of local space-time visual words, a favored descriptor in current
third-person activity recognition systems.

However, existing methods that pool localized visual features into space-time histogram
bins do so using hand-crafted binning schemes, whether applied to egocentric video or other-
wise. For example, the spatial pyramid widely used for image classification [18] is extended
to space-time in [4, 21], using a hierarchy of regularly sized volumetric bins to pool the
detected features at different granularities. In [17], a series of coarse partitions are defined
(dividing the video into thirds top to bottom, etc.), then aggregated by summing kernels. The
problem with defining the spatio-temporal bins a priori is that they may not offer the most
discriminative representation for the activity classes of interest. That is, the hand-crafted
histogram bins may fail to capture those space-time relationships between the component
objects (or other local features) that are most informative.

To overcome this limitation, we propose to learn discriminative spatio-temporal his-
togram partitions for egocentric activities. Rather than manually define the bin structure, we
devise a boosting approach that automatically selects a small set of useful spatio-temporal
pyramid histograms among a randomized pool of candidate partitions. In this way, we iden-
tify those partitions that most effectively pool the detected features (in this case, the detected
objects). Since training time for boosting grows linearly with the number of candidates, re-
lying on purely random space-time cuts can be computationally expensive. Therefore, we
further propose a way to meaningfully bias the partitions that comprise the candidate pool.
We devise an object-centric cutting scheme that prefers sampling bin boundaries near ob-
jects involved in the egocentric activities. In particular, our method is more likely to sample
partitions that cut through video regions containing “active” objects [21] (those being ac-
tively manipulated by the user, such as the open microwave or the pot handled on the stove),
thereby concentrating layout information on the key interactions. As a result, we focus
the randomized pool of space-time partitions to the egocentric setting while also improving
training efficiency.

We apply our method to the challenging Activities of Daily Living dataset, and show
that the proposed method improves the state of the art. The results show the value of learn-
ing discriminative space-time partitions, compared to both bag-of-words or existing spatio-
temporal pyramids. Furthermore, we demonstrate the key role played by object-centric cuts
in terms of focusing the candidate pyramids.

1.1 Related Work
For generic (non-egocentric) activity recognition, methods based on tracked limbs and body
shapes (e.g., [22, 23, 25]) analyze human actions in a model-based way. More recently,
model-free alternatives based on low-level descriptors of gradients and optical flow have
been explored (e.g., [17, 20, 26]), attempting to directly learn the motion and appearance
patterns associated with an activity. A fairly standard pipeline has emerged analogous to the
bag-of-visual-words approaches often employed for image classification: detect space-time
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interest points, extract local descriptors for each point, quantize to space-time visual words,
then represent the entire video with a histogram counting how often each word appears.

Since a pure bag-of-words lacks any notion of ordering, researchers have further drawn
inspiration from spatial pyramid image representations [18] to construct space-time his-
tograms from subcells within the video volume. These subcells count features appearing
in particular regions of the video, and as such they can flexibly capture the relative layout.
In [17], a set of spatio-temporal bin structures is defined that uses six possible spatial grids
and four temporal binning schemes, resulting in a total of 24 possible spatio-temporal par-
titions. The histograms from all partitions are combined by a summed kernel. In [4], a
space-time pyramid with a hierarchy of regularly sized cubic bins is constructed, and used to
pool the features at multiple resolutions. A related strategy is to hierarchically bin neighbor-
ing local features and discriminatively learn which space-time weightings are most informa-
tive [16]. For the egocentric setting, a temporal pyramid that divides the video into half along
the temporal axis (and uses no spatial partitions) is proposed, and used to histogram object
detector outputs [21]. Unlike any of these approaches, our idea is to learn which pyramid
structures are discriminative.

Prior work on activity recognition from wearable cameras [2, 6, 10, 29] often considers
a certain environment of interest (like a particular kitchen) for which individual familiar
objects are informative, and some explores the role of additional sensors such as Inertial
Measurement Units [28]. In contrast, we are interested in recognizing activities by a camera
wearer moving about multiple environments and without additional sensors or pre-placed
objects of interest. Such a setting is also tackled in the recent work of [21]. We leverage
their finding that object-based representations are critical for egocentric activity, and also
use their idea of “active” objects. However, while that method uses a simple hand-crafted
histogram structure consisting of two temporal bins (one for the first half of the video, one for
the second half of the video), we propose to learn a boosted combination of discriminative
spatio-temporal histogram partitions. Through direct comparison in our results, we show
that our idea achieves substantially more accurate activity recognition.

Aside from recognizing activities, egocentric video analysis also entails interesting prob-
lems in object recognition [24], event segmentation [5], novelty detection [1], summarization
or unsupervised discovery [13, 14, 19], and the relationship between gaze and activity [8].

Our approach to learn discriminative space-time bin structures for activity recognition
takes inspiration from methods for image classification that select discriminative spatial
bins [12, 27]. In [27], the spatial grid and classifier are jointly learned using a maximum
margin formulation, and in [12], boosting is used to select useful randomized spatial par-
titions. Both methods target scene classification from images. In contrast, we learn dis-
criminative partitions in space-time for activity recognition. To our knowledge, no prior
work considers discriminative learning of spatio-temporal partitions, whether for egocentric
or non-egocentric data. Furthermore, our idea to bias the randomized partitions to focus on
active objects is novel, and is critical for recognition results, as we will show in experiments.

2 Approach
The overall approach works as follows. Given a set of egocentric training videos labeled
according to their activity class, we first run object detectors on the frames to localize any
objects of interest—both those that are “passive” and those that are “active” in an interac-
tion with the camera wearer. Active objects are those being manipulated by the user, while

Citation
Citation
{Lazebnik, Schmid, and Ponce} 2006

Citation
Citation
{Laptev, Marszalek, Schmid, and Rozenfeld} 2008

Citation
Citation
{Choi, Jeon, and Lee} 2008

Citation
Citation
{Kovashka and Grauman} 2010

Citation
Citation
{Pirsiavash and Ramanan} 2012

Citation
Citation
{Behera, Hogg, and Cohn} 2012

Citation
Citation
{Fathi, Farhadi, and Rehg} 2011{}

Citation
Citation
{Hanheide, Hofemann, and Sagerer} 2006

Citation
Citation
{Sundaram and Cuevas} 2009

Citation
Citation
{Spriggs, laprotect unhbox voidb@x penalty @M  {}Torre, and Hebert} 2009

Citation
Citation
{Pirsiavash and Ramanan} 2012

Citation
Citation
{Ren and Gu} 2010

Citation
Citation
{Clarkson and Pentland} 1999

Citation
Citation
{Aghazadeh, Sullivan, and Carlsson} 2011

Citation
Citation
{Jojic, Perina, and Murino} 2010

Citation
Citation
{Kitani, Okabe, Sato, and Sugimoto} 2011

Citation
Citation
{Lee, Ghosh, and Grauman} 2012

Citation
Citation
{Fathi, Li, and Rehg} 2012

Citation
Citation
{Jiang, Yuan, and Yu} 2012

Citation
Citation
{Sharma and Jurie} 2011

Citation
Citation
{Sharma and Jurie} 2011

Citation
Citation
{Jiang, Yuan, and Yu} 2012



4 MCCANDLESS, GRAUMAN: OBJECT-CENTRIC SPATIO-TEMPORAL PYRAMIDS

(a) passive frig (b) active frig (c) passive mug (d) active mug (e) passive micro (f) active micro

Figure 1: Example passive and active instances of some objects in ADL [21].

passive objects are those which lie inert in the frame background (see Figure 1). We then
construct a series of candidate space-time pyramids, in which each axis-aligned bin bound-
ary is translated by some random shift. The random shifts are non-uniform; they are sampled
using the distribution of all active object coordinates in the training data. Given this candi-
date pool of pyramids, we compute the corresponding series of object histograms for each
training video, where a detected object is counted in the space-time bin its center occupies.
Then, we apply multi-class boosting to select a subset of discriminative pyramid structures
based on how well they can be used to classify the activities of interest. At the end, we
have a strong classifier that can predict the activity labels of new videos, using only those
randomized pyramids selected by the learning algorithm. The following subsections explain
each of these steps in more detail.

2.1 Detecting Active and Passive Objects
Our goal is to robustly predict what type of activity is occurring in an egocentric video clip.
In contrast to traditional third-person video, egocentric actions are inherently defined by the
objects the user is interacting with. Therefore, our representation is built on the pattern
of objects that appear in space and time. Specifically, the space-time pyramids we learn
will count the frequency with which each object category appears in particular space-time
regions.

Following [21], we make a distinction between active and passive instances of a given
object category. As noted in [21], objects’ appearance can often change dramatically when
the object is being interacted with. For example, the refrigerator looks quite different when
one passes by it closed, versus when one opens the door to grab some food. Therefore, we
train different deformable part model [9] detectors for active and passive versions of various
objects of interest.1 Figure 1 depicts example frames extracted from the Activities of Daily
Living (ADL) [21] video sequences that show the visual differences between passive and ac-
tive versions of three example objects. In contrast to prior work, we exploit the active/passive
object distinction to provide a helpful bias regarding where space-time partitions ought to be
sampled, as we describe in the next section.

Once all object detectors have been applied to all frames in the training or test video, we
have an (x,y, t) coordinate for the bounding box center of each detected object. Associated
with each coordinate is its (predicted) object class (active frig, passive frig, microwave, etc.)

2.2 Sampling Randomized Object-Centric Space-Time Pyramids
Once we have the predicted object locations in all training videos, we are ready to construct
space-time histogram pyramids. A space-time pyramid will consist of multiple levels of bins,
from coarse to fine. For each bin, we record how many times each object class appears in its

1We use the public code and detection outputs provided by [21].
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Figure 2: Histograms of detected active objects across x, y, and t in the training data.

respective region of the video. Then we concatenate these histograms over all pyramid levels
to get a single descriptor for the video. Thus, for a pyramid with T total bins and a bank of D
total object detectors, the dimensionality of the entire descriptor will be T D. Whereas past
work uses a pyramid with uniformly placed bins [4, 21], we propose to generate randomized
pyramids and then learn their most discriminative combination.

First we describe how to generate the randomized space-time pyramids (RSTP) without
the object-centric bias. We consider each dimension (x,y, t) in turn in a round-robin fashion
to generate a cut (i.e., place a bin boundary). Each cut is axis-aligned, meaning we use
random shifts, but no random rotations. We normalize all dimensions of an input video to
length 1. Then we sample a number uniformly at random in [0,1], and use it to place the
randomized cut in the current dimension. Note that as we work our way recursively down
the resulting tree, each subsequent cut is appropriately constrained by the span of its parent
bin. Level 0 of the pyramid is the entire video clip volume; level i consists of all 8i bins of
depth i.

While boosting gives an automated way to select informative pyramids, its training time
depends linearly on the number of candidates we include in the pool. With so many possible
randomized pyramids, the search space is extremely large. Thus, we can expect to pay a very
high training cost to evaluate sufficiently many randomized pyramids to get good results.

To avoid an excessive search, we focus the candidate pool in a way that is meaningful for
egocentric data. Rather than sample cuts uniformly at random, our idea is to sample the cuts
according to the distribution of active objects as they appear in the training videos. We refer
to these as object-centric cuts (OCC). Specifically, we construct the empirical distribution
of all active object occurrences, per dimension. To compute these distributions, we build
histograms of active object coordinates normalized by the video size along each (x,y, t) di-
mension. Then, when selecting each randomized cut, we sample its position according that
distribution. In this way we get pyramids that emphasize video regions likely to characterize
the interactions between the camera wearer and objects. For each pyramid, after generating
one OCC per dimension, we generate all subsequent child cuts using a uniform distribution.
We found this was more effective than using OCC’s at all levels, likely because we risk over-
fitting once bins are quite small in volume. Note that while the OCC’s are biased by active
objects only, we still count both active and passive objects in the resulting histograms.

Figure 2 shows the active object distributions for the ADL dataset we use to validate our
approach. We see that active objects tend to appear in the lower center field of view. This
conforms to our expectations, because active objects are close to the hands, which appear in
the bottom portion of most frames from the chest mounted camera. Furthermore, there is a
slight bias favoring the right side of the field of view, likely because many camera wearers
are right-handed. Finally, we also observe that the distribution of active objects across the
temporal dimension is nearly uniform; this reflects that we use object occurrences across all
action types.

Figure 3 shows some example frames with randomized shifts sampled using our object-
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(a) Object-centric cuts

(b) Uniformly random shifts

Figure 3: Example partitions using either object-centric (a) or uniformly sampled random-
ized cuts (b). Note that for display purposes we show cuts on example 2D frames, but all
cuts are 3D in space-time. Using the proposed object-centric cuts, we better focus histograms
surrounding the human-object interactions.

Figure 4: We take a pool of randomized space-time pyramids with object-centric cuts, and
use boosting to select those that are most discriminative for egocentric activity recognition.

centric strategy (a) or the simpler uniform strategy (b). The object detections shown are
from the ADL repository [21]. We see how OCC’s successfully focus the histograms on
regions in space-time where human-object interactions occur. As a result, they may offer
more discriminative cues that will be useful to the boosted classifier.

2.3 Boosting Discriminative Space-Time Pyramids
Finally, having constructed our object-centric pool of randomized pyramids, we are ready to
apply boosting to select those that are most discriminative for the given activity recognition
task (see Figure 4). Boosting is a general learning algorithm in which one can combine
a series of “weak” classifiers (better than chance) to form a single “strong” classifier. In
each round of boosting, the training examples are reweighted to emphasize training errors
on those examples that were misclassified by weak classifiers selected in previous rounds.
Here, our weak classifiers are non-linear (polynomial kernel) SVMs trained using one RSTP
with OCC’s. We essentially use boosting to both select useful features (pyramids) and build
the composite strong classifier.

For our implementation, we use the Stagewise Additive Modeling using a Multi-class
Exponential loss function (SAMME) boosting approach of [30], which naturally extends the
original AdaBoost algorithm to the multi-class case without reducing it to multiple two-class
problems.

SAMME boosting works as follows in our setting. We take as input a collection of N
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labeled training videos, where (Vi,ci) denotes a video clip and its associated ground-truth
activity label (drinking water, washing dishes, etc.). We generate a pool of M candidate
RSTP’s {θ1,θ2, ...,θM}, as described above. For each RSTP θ , we compute the correspond-
ing histogram for each training example, using an object’s bounding box center position
(x,y, t) to increment the appropriate bins. We concatenate the histograms from all levels to
create a single feature vector for each Vi and each θ . Then we initialize a weight wi for each
training example Vi that is inversely proportional to the number of points with the same label
as Vi (see Algorithm 1, step 2). Giving larger weights to training examples of infrequently
occurring actions helps to mitigate bias from imbalanced training data.

Next we train a separate weak multi-class SVM classifier (using LIBSVM [3]) on the
feature vectors resulting from representing the training data using each candidate partition
pattern. During each round of boosting we select the candidate partition θ j that has the
minimum weighted training error (2nd and 3rd items in step 3). SAMME computes a weight
for θ j (4th item in step 3) based on how many training examples were misclassified using
fθ j , the SVM classifier that was trained using the representation of the training data under θ j.
At the end of each boosting iteration, we update the weights for each training example (5th

item in step 3). Training examples that were previously misclassified are assigned higher
weights to encourage correct classification in future boosting rounds. Finally, we generate
the final strong classifier F (last item in step 3), which maximizes a weighted sum of correct
classifications produced by each weak classifier. See Algorithm 1 for a recap.

Given a novel input video, we run the object detectors, then extract only those RSTP
histograms that were selected by boosting, and apply F to predict its activity label.

Algorithm 1: Training a space-time pyramid classifier with boosting

INPUT:

• N labeled training videos Φ = {(Vi,ci)}N
i=1

• A pool of M partition patterns Θ = {θ}
OUTPUT:

• A strong video classifier F . For an unlabeled video V , c = F(V ) is the predicted label for V .

1. For each pattern θ ∈Θ:

• Represent each Vi ∈Φ using θ and train an SVM classifier fθ on the resulting feature vectors.

2. Initialize:

• A weight vector w with wi = 1
CNci

for each video where Nci is the number of videos with label ci,
and C is the number of distinct action labels.

• Current boosting round j = 0.

3. For each round of boosting:

• Increment j and re-normalize the weight vector w.

• For each pattern θ , compute its weighted classification error: eθ = w · I( fθ (V ) 6= c)

• Choose the pattern θ j with minimum weighted classification error e j .

• Compute the weight for θ j as: α j = log 1−e j
e j

+ log(C−1)

• Update the weight vector w: ∀i : wi = wi · exp(α j · I( fθ j (Vi) 6= ci)).

• Generate the current strong classifier as: F(V ) = argmaxcΣ
j
m=1αm · I( fθm (V ) = c)
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BoW Bag-of-objects TempPyr [21] Boost-RSTP Boost-RSTP+OCC (ours)
16.5% 34.9% 36.9% 33.7% 38.7%

Table 1: Overall classification accuracy on ADL. Our method improves the state of the art.

3 Results
To validate our method, we use the Activities of Daily Living (ADL) dataset [21]. It is the
largest available egocentric dataset for activity recognition, and to our knowledge, the most
diverse and realistic. Other recent datasets [2, 6] are tailored for a known environment of
interest, and as such have relatively few objects. The ADL dataset consists of hundreds of
egocentric clips (roughly 10 hours of video in total) collected from 20 people performing 18
actions in their own homes. These naturally occurring actions are often related to hygiene
or food preparation, e.g., combing hair, brushing teeth, doing laundry, washing dishes, etc.
The authors also provide the object detector outputs from a part-based model [9] for 26
object classes, which we directly use as input to our method. The objects include household
items. Five of the 26 detectors are for active versions of certain objects (namely, refrigerator,
microwave, mug, oven/stove, and soap liquid).2

Throughout, we use five rounds of boosting and populate our candidate pool with 4-level
pyramids. Preliminary experiments showed that the finer-grained (4-level) pyramids were
more often selected by boosting than their coarser 3-level counterparts, so we focus the pool
accordingly for all results.

We follow the exact evaluation protocol given in [21]. Specifically, we evaluate recog-
nition accuracy using leave-one-person out: we test on videos from each person i in turn,
having trained on all remaining people. We exclude the first 6 people, since their data was
used to train the object detectors.

Table 1 shows the results, in terms of the average recognition rate over all 18 action
classes. We compare our boosted RSTP+OCC approach to four baselines. The first base-
line, bag-of-words (BoW), uses space-time interest points and HoG/HoF visual words, and
represents what is now a standard representation for third-person action recognition [17].
The second baseline uses a bag-of-objects. The third baseline, the Temporal Pyramid, is
the method proposed in [21], and represents the state of the art on this dataset. We use the
authors’ publicly available code to run their method. The fourth baseline, RSTP, is just like
the proposed approach only it lacks the object-centric cuts.

Our approach outperforms all four baselines and improves the state of the art. Compared
to BoW, we have the advantage of high-level object-based features. While the Temporal
Pyramid [21] also has this benefit, it is weaker than our method due to its reliance on a hand-
crafted pyramid structure. Notably, the proposed object-centric cuts are essential for our
strong recognition result. Simply using boosting with purely randomized partitions (RSTP)
is noticeably weaker. This supports our claim that it is useful to bias bins according to object
interactions for egocentric data.

Looking more closely at our method’s confusion matrix, we find it has particularly good
accuracy for “combing hair” and “drying hands/face”. This suggests that the learned bins
were able to usefully isolate the regular space-time relationships these actions exhibit. On

2The ADL dataset has been modified since the publication of [21]; because of this, running the authors’ code
gives slightly lower accuracy than the originally published numbers. We use the modified version of the dataset
available from the authors’ webpage at the time of writing to run all experiments, including to reproduce [21] .
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Figure 5: Left: Training time as a function of pool size. Right: Training error as function of
pool size, for both uniformly sampled random shifts and the proposed object-centric parti-
tions. By focusing on object-centric shifts, we can achieve a stronger classifier with a smaller
total pool, which improves training efficiency.

the other hand, we often confuse “making tea” and “making coffee”, likely because they
involve the same active objects. Furthermore, since the distributions of objects across space-
time are similar for both, and kettles and tea bags are not modelled as active objects, it
is difficult for our boosting algorithm to select partitions that are discriminative for these
classes. An extension of our method which allows selecting partitions on a per-class basis
could allow for more fine-grained control and could help mitigate such issues, though would
be more expensive. We leave this as future work.

Compared to the Temporal Pyramid [21], we find our method is especially stronger for
“combing hair", “brush teeth", “dental floss". This indicates that our learned spatial cuts are
essential in scenes with similar objects appearing across different actions, as is the case with
these bathroom-based activities. For instance, while combing hair, floss or toothpaste might
appear on the counter, but floss or toothpaste would appear higher in the field of view when
actually in use.

Figure 5 emphasizes the benefits of object-centric cuts. On the left, we show the training
time of running boosting with increasingly larger pools of candidate pyramids, averaged
over five runs; run-time increases linearly with pool size. On the right, we show the training
error as a function of the pool size. As desired, we see that the object-centric cuts lead
to lower error with smaller pool sizes, compared to the unbiased RSTP’s. Essentially, our
method focuses the pool on those candidates that a priori have good chance at capturing
discriminative aspects of the object distribution in space-time. Thus, fewer total candidates
must be explored to find good ones, and we can train the models with less total training time.

4 Conclusions and Future Work
Our main contribution is two-fold. We show how to learn the most discriminative partition
schemes for spatio-temporal binning in action recognition, and we introduce object-centric
cuts for egocentric data. Our approach improves on the current state of the art for recognizing
activities of daily living from the first person viewpoint, and our experiments demonstrate
the positive impact of taking active object locations into account via object-centric cuts.

In future work, we intend to investigate ways of learning the most discriminative par-
tition schemes on a per-class basis. Additionally, it may be possible to incorporate other
related sampling biases. For example, our current strategy only implicitly accounts for the
positions of hands via our OCC’s, but it may be useful to incorporate explicit features about
the hands. While we obtain good results using cuts that are planar and axis-aligned, one
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could easily extend the approach to populate the pool with non-linear cuts and/or random-
ized rotations. Such a method would make histogram computation more expensive, but may
yield the discriminative partitions necessary for more fine-grained decisions.
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