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Abstract

The body pose of a person wearing a camera is of great interest for applica-
tions in augmented reality, healthcare, and robotics, yet much of the person’s
body is out of view for a typical wearable camera. We propose a learning-based
approach to estimate the camera wearer’s 3D body pose from egocentric video
sequences. Our key insight is to leverage interactions with another person—
whose body pose we can directly observe—as a signal inherently linked to the
body pose of the first-person subject.

We show that since interactions between individuals often induce a well-
ordered series of back-and-forth responses, it is possible to learn a temporal
model of the interlinked poses even though one party is largely out of view. We
demonstrate our idea on a variety of domains with dyadic interaction and show
the substantial impact on egocentric body pose estimation, which improves the
state of the art.
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1 Introduction

Wearable cameras are becoming an increasingly viable platform for entertainment
and productivity. In augmented reality (AR), wearable headsets will let users blend
useful information from the virtual world together with their real first-person visual
experience to access information in a timely manner or interact with games. In
healthcare, wearables can open up new forms of remote therapy for rehabilitating
patients trying to improve their body’s physical function in their own home. In
robotics, wearables could simplify video-based learning from demonstration.

In all such cases and many more, the camera receives a first-person or “egocentric”
perspective of the surrounding visual world. A vision system analyzing the egocen-
tric video stream should not only extract high-level information about the visible
surroundings (object, scenes, events), but also the current state of the person wear-
ing the camera. In particular, the body pose of the camera wearer is of great interest,
since it reveals his/her physical activity, postures, and gestures. Unfortunately, the
camera wearer’s body is often largely out of the camera’s field of view. While this
makes state-of-the-art third-person pose methods poorly suited [10, 23, 31, 39, 50,
54], recent work suggests that an ego-video stream nonetheless offers implicit cues
for first-person body pose [25, 59]. However, prior work restricts the task to static
environments devoid of inter-person interactions, forcing the algorithms to rely on
low-level cues like apparent camera motion or coarse scene layout.

Our idea is to facilitate the recovery of 3D body pose for the camera wearer (or
“ego-pose” for short) by paying attention to the interactions between the first and
second person as observed in a first-person video stream.! Inter-person interactions

are extremely common and occupy a large part of any individual’s day-to-day activ-

!Throughout, we use “second person” to refer to the person the camera wearer is currently
interacting with; if the wearer is “I”, the interactee or partner in the interaction is “you”.
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Figure 1: Daily Inter-person Interactions — Inter-person interactions are common in
daily activity and offer rich signals for perception. Our work considers how interactions
viewed from a first-person wearable camera can facilitate egocentric 3D body pose estima-
tion.

ities. As is well-known in cognitive science [8, 41, 52], human body pose is largely
influenced by an inherent synchronization between interacting individuals. For in-
stance, a person who sees someone reaching out their hand for a handshake will most
likely respond by also reaching out their hand; a person animatedly gesturing while
telling a story may see their interacting partner nod in response; children playing may
interact closely with their body motions. See Figure 1.

This motivates us to build a model which accounts for both the action and reac-
tion dynamics inherent within a dyadic interaction sequence while predicting a camera
wearer’s pose. To that end, we introduce “You2Me”: an approach to ego-pose es-
timation that explicitly captures the interplay between the first and second person
body poses. Our model uses a recurrent neural network to incorporate cues from the
observed second-person pose together with the camera motion and scene appearance
to infer the latent ego-pose across the entire video sequence. See Figure 2.

We validate our You2Me ego-pose approach on two forms of ground-truth capture—
from Kinect sensors and a Panoptic Studio [27]—on video data spanning 10 subjects
and several interaction domains (conversation, sports, hand games, and ball tossing).
Our results demonstrate that even though the first-person’s body is largely out of
view, the inferred second-person pose provides a useful prior on likely interactions,
significantly boosting the estimates possible with the ego-camera motion and scene
context alone. Furthermore, our You2Me approach outperforms the state-of-the-art
approach for ego-pose as well as a current standard deep third-person pose method

when adapted to our setting.
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Figure 2: Concept Overview — Our goal is to infer the full 3D body pose sequence of a
person from their egocentric video, captured by a single chest-mounted camera. We propose
an LSTM that focuses on human-human interaction dynamics to predict the wearer’s pose
by taking into account the interactee’s pose, which is visible from the ego-view. The figure
shows the input video with the interactee’s (second-person) pose highlighted, and the output
3D joint predictions of the wearer’s pose with corresponding pictures of the camera wearer.
Note that our approach sees only the egocentric video (top); it does not see the bottom row
of images showing the “first person” behind the camera.




2 Related Work

We focus on the relatively unexplored problem of predicting the invisible egocen-
tric full-body human pose from a single egocentric video stream. To contextualize our
idea, we review related works involving first- and third-person body pose estimation,

egocentric video analysis, and social signals in first-person video.

2.1 Third-person body pose and interactions

There is extensive literature on human body pose estimation from the traditional
third-person viewpoint, where the person is entirely visible [45]. Recent approaches
explore novel CNN-based methods, which have substantially improved the detection
of wvisible body poses in images and video [10, 11, 17, 23, 31, 50, 55, 60]. Our
approach instead estimates the largely “invisible” first-person pose. Multi-person pose
tracking work investigates structure in human motion and inter-person interactions
in order to limit the potential pose trajectories [10, 24]. Beyond body pose, there
is a growing interest in modeling human-human interactions [22, 34, 49] to predict
pedestrian trajectories [1, 2, 37], analyze social behavior and group activities [6, 14,
22, 37, 51], and understand human-object interactions [12, 18, 53]. Our method
also capitalizes on the structure in inter-person interactions. However, whereas these
existing methods assume that all people are fully within the view of the camera,
our approach addresses interactions between an individual in-view and an individual

out-of-view, i.e., the camera wearer.

2.2 Egocentric video analysis

Recent egocentric vision work focuses primarily on recognizing objects [13], ac-
tivities [16, 32, 33, 38, 40, 43, 44, 48, 58|, visible hand and arm poses [7, 28, 29,



42], eye gaze [30], or anticipating future camera trajectories [9, 35]. In contrast, we
explore 3D pose estimation for the camera wearer’s full body, and unlike any of the
above methods, we show that the inferred body pose of another individual during an

interaction directly benefits the pose estimates.

2.3 First-person body pose from video

Egocentric 3D full body pose estimation has received only limited attention [25,
47, 59]. The first attempt to the problem is the geometry-based “inside-out mocap”
approach [47], which uses structure from motion (SfM) to reconstruct the 3D location
of 16 body mounted cameras placed on a person’s joints. In contrast, we propose a
learning-based solution, and it requires only a single chest-mounted camera, which
makes it more suitable and comfortable for daily activity.

More recently, two methods based on monocular first-person video have been
proposed [25, 59]. The method in [25] infers the poses of a camera wearer by us-
ing both homographies and static visual cues to optimize an implicit motion graph.
The method in [59] uses a humanoid simulator in a control-based approach to re-
cover the sequence of actions affecting pose, and it is evaluated quantitatively only
on synthetic sequences. Whereas both prior learning-based methods focus on sweep-
ing motions that induce notable camera movements (like bending, sitting, walking,
running), our approach improves the prediction of upper-body joint locations dur-
ing sequences when the camera remains relatively still (like handshakes and other
conversational gestures). Furthermore, unlike [59], our method does not require a
simulator and does all its learning directly from video accompanied by ground truth
ego-poses. Most importantly, unlike any of the existing methods [25, 47, 59], our
approach discovers the connection between the dynamics in inter-person interactions

and egocentric body poses.

2.4 Social signals in first-person video

Being person-centric by definition, first-person video is naturally a rich source of
social information. Prior work exploring social signals focuses on detecting social
groups [3, 4, 15] and mutual gaze [56, 57] or shared gaze [36] from ego-video. More

relevant to our work, the activity recognition method of [58] uses paired egocentric



videos to learn gestures and micro-actions in dyadic interactions. That approach
captures the correlations among inter-person actions (e.g., pointing, passing item,
receiving item, etc.) in two synchronized novel video clips to better classify them.
However, whereas [58] requires two egocentric videos at test time, our approach relies
only on a single ego-video. While eliminating the second camera introduces new tech-
nical challenges (since we cannot view both the action and response), it offers greater
flexibility as we do not have to synchronize footage or require another individual to
wear a camera. Furthermore, our approach infers body pose, whereas [58] classifies

clips into a fixed vocabulary of seven actions.



3 Owur Approach

The goal is to take a single first-person video as input, and estimate the camera
wearer’s 3D body pose sequence as output. Our main insight is to leverage not only
the appearance and motion evident in the first-person video, but also an estimate of
the second-person’s body poses.

In this section, we present a recurrent neural network model that utilizes first- and
second-person features—both extracted from monocular egocentric video—to predict
the 3D joints of the camera wearer. After defining the pose encoding (Sec 3.1), we
define the three inputs to our network (Sec 3.2 to 3.4), followed by the recurrent long
short-term memory (LSTM) network that uses them to make sequential predictions
for a video (Sec 3.5).

3.1 Problem formulation

Given N video frames from a chest-mounted camera, we estimate a corresponding
sequence of N 3D human poses. Each output pose p; € R3/ is a stick figure skeleton
of 3D points consisting of J joint positions for the predicted body pose of the camera
wearer at frame t. Note that our goal is to infer pose as opposed to classifying the
action.

Each predicted 3D body joint is positioned in a person-centric coordinate system
with its origin at the camera on the wearer’s chest. The first axis is parallel to the
ground and points towards the direction in which the wearer is facing. The second
axis is parallel to the ground and lies along the same plane as the shoulder line. The
third axis is perpendicular to the ground plane. To account for people of varying sizes,

we normalize each skeleton for scale based on the shoulder width of the individual.



3.2 Dynamic first-person motion features

As shown in [25], motion patterns observed from the first-person camera offer a
strong scene-independent cue about the camera wearer’s body articulations, despite
the limbs themselves largely being out of the field of view. For example, a sudden drop
in elevation can indicate movement towards a sitting posture, or a counterclockwise
rotation can indicate shoulders tilting to the left.

To capture these patterns, we construct scene-invariant dynamic features by ex-
tracting a sequence of homographies between each successive video frame, follow-
ing [25]. While a homography is only strictly scene invariant when the camera is
purely rotating, the egocentric camera translates very little between successive frames
when the frame rate is high. These homographies facilitate generalization to novel
environments, since the motion signals are independent of the exact appearance of
the scene.

We estimate the homography from flow correspondences by solving a homogeneous
linear equation via SVD [21]. Each element in the resulting 3 x3 homography matrix is
then normalized by the top-left corner element. The stack of normalized homographies
over a given duration is used to represent the global camera movement within the
interval. For frame f, at timestep ¢ in a given video, the motion representation
is constructed by calculating the homographies between successive frames within the
interval [f;_15, fi]. We then vectorize the homographies and combine them into a m; €
R3% vector, which represents a half-second interval of camera movements preceding
frame f; (for 30 fps video).

3.3 Static first-person scene features

While the dynamic features reveal important cues for sweeping actions that induce
notable camera movements, such as running, walking, or sitting and standing, they are
more ambiguous for sequences with little motion in the egocentric video. To account
for this, our second feature input attends to the appearance of the surrounding scene.
In everyday life, many static scene structures are heavily associated with certain
poses. For example, if the camera wearer leans forward to touch his/her toes, the
egocentric camera may see the floor; if the camera wearer stands while looking at a

computer monitor, the egocentric camera will see a different image than if the camera



wearer sits while looking at the same monitor. As with the dynamic features above,
the surrounding scene provides cues about ego-pose without the camera wearer’s body
being visible.

To obtain static first-person scene features, we use a ResNet-152 model pre-trained
on ImageNet. Dropping the last fully connected layer on the pre-trained model,
we treat the rest of the ResNet-152 as a fixed feature extractor for video frames.
Given frame f;, we run the image through the modified ResNet-152, which outputs
sy € R?8 Whereas the ego-pose method of [25] relies on a standing vs. sitting
image classifier to capture static context, we find our full visual encoding of the scene
contributes to more accurate pose learning. Note that this feature by default also
captures elements of the second-person pose; however, without extracting the pose
explicitly it would be much more data inefficient to learn it simply from ResNet

features, as we will see in results.

3.4 Second-person body pose interaction features

Our third and most important input consists of the “second-person” pose of the
person with whom the camera wearer is interacting. Whereas both the dynamic and
static features help capture poses that come from larger common actions, we propose
to incorporate second-person pose to explicitly account for the interaction dynamics
that influence gestures and micro-actions performed in sequence between two people
engaged in an interaction.

In human-human interactions, there is a great deal of symbiosis between both
actors. Specific actions solicit certain reactions, which in turn influence the body
pose of the individual. For example, if we see an individual windup to throw a ball,
our natural response is to raise our arms to catch or block the ball. Or, more subtly,
if we see a person turn slightly to look at a passerby, we may turn to follow their
gaze. By understanding this dynamic, we can gather important ego-pose information
for the camera wearer by simply observing the visible pose of the person with whom
he/she interacts.

Thus, our third feature records the interactee’s inferred pose. Still using the
egocentric video, we estimate the pose of the interactee in each frame. Here we
can leverage recent successes for pose estimation from a third-person perspective:

unlike the camera wearer, the second person is visible, i.e., the ego-camera footage



gives a third-person view of the interactee. In particular, we use OpenPose [10] to
infer interactee poses due to its efficiency and accuracy, though other third-person
methods could also be employed. OpenPose provides real-time multi-person keypoint
detection: given a stack of frames, it returns a corresponding stack of 25 2D keypoint
joint estimations. For each frame f;, we flatten the output 25 keypoint estimates
into a vector o; € R (denoted o; for “other”). Note that our learning approach is
flexible to the exact encodings of the ego- and second-person poses, i.e., it is fine for
the second-person pose estimate to be 2D keypoints while the ego-pose is expressed
in 3D. As we will see in experiments, the second-person pose is crucial in improving
ego-pose prediction.

To handle scenarios when the interactee is occluded or moves out of view, we
simply set o; to be the zero vector to represent a missing second-person skeleton.
While the pose of the interactee provides crucial information to the LSTM (defined
next), we find that the priors learned from the LSTM are strong enough to continue to
predict accurate poses for a short period ($ 15 frames) with no view of the interactee

(cf. Sec. ). Figure 3 illustrates the complete set of features for some ego-frames.

3.5 Recurrent neural network for pose inference

All three video-based cues defined above serve as input to a recurrent neural
network to perform pose estimation for the full sequence. In particular, we define a
Long Short-Term Memory (LSTM) network [19, 20] for our task. The LSTM learns
the current state of the camera wearer, scene, and interactee, and uses this encoding
to predict the camera wearer’s future poses. The LSTM’s hidden state captures the
sequential patterns of linked body poses that result from inter-person back-and-forth
responses.

While the LSTM can be trained to perform regression on the real-valued coordi-
nates of the body pose, we found a classification task to train more robustly (as often
reported in the literature). Hence, we first quantize the space of training body poses
into a large number (K = 500) of fine-grained poses using K-means. Now the task
is to map to the closest possible quantized pose at each time step. We visualize the
granularity of differences between each cluster center in Figure 4. With 500 pose clus-
ters, we get a good diversity of poses, enough to reasonably capture all possible poses

in the training set. Additionally, the poses are fine-grained enough to accurately

10



Input frame ResNet + GradCAM | Flow for homography OpenPose

Figure 3: Features Extracted for You2Me — Visualization of features extracted from
ego-video frames. The ResNet Grad-CAM [46] heatmaps suggest that when a person is
further away, the focus is on static objects in the room (couch, bike, wall rug) which help
capture coarse posture, but when the interactee is closer, the focus is more on the person,
which influences finer details. While the flow/homography does especially well capturing
motion from the camera wearer’s hands, many sequences lack global motion and produce
flows similar to the bottom row example. OpenPose generates a 2D representation of the
interactee’s pose even with slight occlusions.

capture smaller movements of the arms and the legs (gesturing, micro-actions), or
intermediate poses in larger movements (swinging, walking, sitting).

Given a hidden state dimension of D, the hidden state vector h; € R of the LSTM
at time t captures the cumulative latent representation of the camera wearer’s pose at
that instant in the video. For each frame f;, we extract the homography matrix my,
the ResNet-152 scene feature vector s;, and the second-person joint position vector

o;. To provide a more compact representation of the scene to the LSTM (useful to

11
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conserve GPU memory), we project s; to a lower-dimensional embedding z; € R¥:

Ty = ¢x(st;Wx)7 (31>

where W, is of size £ x 2048 and consists of the embedding weights for ¢,(.). The
embedding is then passed through a batch normalization layer.

The LSTM uses the wearer’s pose in the previous frame p;,_; as input for the
current frame. Let p;_; be a K-dimensional one-hot vector indicating the pose for
the camera wearer at the previous frame ¢ — 1. We learn a linear embedding for the

pose indicator to map it to vector z:

2t = (bz(pt—l; Wz)y (32>

where W, is of size F x K and consists of the learned embedding weights for ¢,(.).
All the features are concatenated (indicated by operation @) into a single vector
th R135+50+2E:

by =my D o D T D 2, (3.3)

which is then used as input to the LSTM cell for the corresponding prediction at time

t. This introduces the following recurrence for the hidden state vector:
h’t = LSTM(ht_l, bt, 91), (34)

where 6; denotes the LSTM parameters.

We define the loss for the network as the cross entropy loss across an entire se-
quence for predicting the correct (quantized) pose in each frame. Specifically, the loss
L for a video of length N is:

LW, Wa, Wy, 0) = = " log(op(Wphy)), (3.5)

where op(-) is the softmax probability of the correct pose “class”, and W, is the
linear classifier layer of dimension K x D. Recall that the quantization is fine-grained
(K = 500 pose clusters) such that this estimate is quite specific; on average the
nearest quantized pose in the codebook is just 0.35 cm away per joint (see Figure 4).

The inferred pose ID at time ¢ (i.e., the argmax over the pose posteriors at that

13
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Figure 5: You2Me Network Architecture — Network architecture for our You2Me
approach. (a) For each video frame, we extract three features. ResNet provides static
visual cues about the scene. Stacked homographies for the past 15 frames provide motion
cues for the ego-camera. Finally, we extract the inferred 2D pose of the visible interactee
with OpenPose [10]. All three features are concatenated (&) and fed into the LSTM. (b)
illustrates our LSTM, which takes as input the feature vector from (a) and an embedding
of the camera wearer’s pose estimated from the previous frame. Outputs from the LSTM
produce ego-pose predictions, assigning one of the 500 possible quantized body poses to
each frame.

(a)

timestep) is taken as the input for z,,; for the subsequent frame.

At test time, we use the trained LSTM model to predict the sequence of poses.
From time ¢t — 1 to ¢, we use the predicted cluster p;_; from the previous LSTM cell
in Eq. 3.2. Figure 5 overviews the LSTM.

14



4 You2Me Video Datasets

We present a first-person interaction dataset consisting of 42 two-minute sequences
from one-on-one interactions between 10 different individuals. We asked each individ-
ual (in turn) to wear a chest mounted GoPro camera and perform various interactive
activities with another individual. We collect egocentric video captured by the cam-
era, which is then synchronized with the body-pose ground truth for both the camera
wearer and the individual standing in front of the camera. The dataset captures
four classes of activities: hand games, tossing and catching, sports, and conversation.
The classes are broad enough such that intra-class variation exists. For example,
the sports category contains instances of (reenacted) basketball, tennis, boxing, etc.;
the conversation category contains instances of individuals playing charades, selling
a product, negotiating, etc. In about 50% of the frames, no first-person body parts
are visible. To ensure that our approach is generalizable, we employ two methods of

capture, as detailed next.

4.1 Panoptic Studio capture

Our first capture mode uses a Panoptic Studio dome, following [27]. The studio
capture consists of 14 sequences recorded in 1920 x 1080 resolution at 30 fps using
the GoPro Hero3 chest mounted camera on the medium field of view setting. The
ground truth skeletons of the camera wearer and the individual in front of the camera
are then reconstructed at 30 fps, matching the frame rate at which we extract the
video. Each skeleton is parameterized by J = 19 3D joint positions obtained using
the method of [27]. Capturing video in the dome offers extremely accurate ground
truth, at the expense of a more constrained background environment. A total of six
participants of different height, body shape, and gender enacted sequences from each

of the four activity classes.

15



4.2 Kinect capture

Our second capture mode uses Kinect sensors for ground truth poses. The Kinect
capture consists of 28 sequences also recorded in 1920x 1080 resolution at 30 fps. We
use the GoPro Hero4 chest mounted camera on the wide field of view setting, and
both people’s ground truth skeleton poses are captured at 30 fps using the Kinect V2
sensor. The pose is represented by J = 25 3D joint positions defined in the MS Kinect
SDK. Given the greater mobility of the Kinect in contrast to the Panoptic Studio, we
ask four participants to enact sequences from each of the activity classes in various
places such as offices, labs, and apartment rooms. The videos from this dataset are
taken in unconstrained environments but are all indoors due to the limitations of the
Kinect V2 sensor. While Kinect-sensed ground truth poses are more noisy than those
captured in the Panoptic Studio, prior work demonstrates that overall the Kinect

poses are very well aligned with human judgments of pose [25].

We stress that our method uses only the egocentric camera video as input at test
time for both datasets. Further, we emphasize that no existing dataset is suitable for
our task. Existing pose detection and tracking datasets (e.g., [5, 26]) are captured in
the third-person viewpoint. Existing egocentric datasets are either limited to visible
hands and arms [29, 38|, contain only single-person sequences [5, 25, 26], consist of
synthetic test data [59], or lack body-pose joint labels [58]. All our data will be made
publicly available.

16



5 Experiments

We evaluate our approach on both the Panoptic Studio and Kinect captures. For
both sets, each video clip contains a single execution of an activity. Our method is
trained and tested in a activity-agnostic setting: the training and test sets are split
such that each set contains roughly an equal number of sequences from each activity
domain (conversation, sports, etc.). For the Panoptic Studio, we train on 7 sequences
and test on 7. For the Kinect set, we train on 18 sequences and test on 10 that are
recorded at locations not seen in the training set. For both, we ensure that the people

appearing in test clips do not appear in the training set.

5.1 Implementation Details

We generate training data by creating sliding windows of size 512 frames with an
overlap of 32 frames for each sequence in the training set. For the LSTM, we use an
embedding dimension of £ = 256 and a fixed hidden state dimension of D = 512.
Batch size is 32 and learning rate is 0.001 for the first 10 epochs then decreased to
0.0001. The model was trained on a single GPU with PyTorch. In initial experiments,
we found results relatively insensitive to values of K between 300 and 600, and fixed
K =500 for all results. Run-time for our method averages 36 fps.

Furthermore, rather than feeding in raw video to the LSTM, we first perform some
preprocessing on the images. Each raw video is extracted at a frame rate of 30 fps.
The frames are then resized to 224 x 224 x 3 images and normalized with a mean
of [0.485,0.456,0.406] and standard deviation of [0.229,0.24,0.225] across the three

channels. A stack of these preprocessed images serves as input to the LSTM.

17



5.2 Baselines

We compare to the following methods:

e Ego-pose motion graph (MotionGraph) [25]: the current state-of-the art
method for predicting body pose from real egocentric video [25]. We use the
authors’ code! and retrain their model on our dataset. This method also outputs

quantized poses; we use the identical 500 pose clusters as for our method.

e Third-person pose deconv network (DeconvNet) [54]: We adapt the
human pose estimation baseline of [54] to our task.? Their approach adds
deconvolutional layers to ResNet, and achieves the state-of-the-art on the 2017
COCO keypoint challenge. We use the same network structure presented in
the baseline, but retrain it on our egocentric dataset. While this network is
intended for detecting visible poses in third-person images, it is useful to gauge
how well an extremely effective off-the-shelf deep pose method can learn from

ego-video.

e Ours without pose information (Ours w/o o;): This is a simplified ver-
sion of our model in which we do not feed the second-person 2D joints to the
LSTM. The remaining network is unchanged and takes as input the extracted
image features and homographies. This ablation isolates the impact of modeling

interactee poses versus all remaining design choices in our method.

e Always standing (Stand) and Always sitting (Sit): a simple guessing
method (stronger than a truly random guess) that exploits the prior that most
poses are somewhere near a standing or a sitting pose. The standing and sitting

poses are averaged over the training sequences.

5.3 Evaluation Metric

We rotate each skeleton so the shoulder is parallel to the yz plane and the body
center is at the origin, then calculate error as the Euclidean distance between the

predicted 3D joints and the ground truth, averaged over the sequence and scaled to

'http://www.hao-jiang.net/code/egopose/ego_pose_code.tar.gz
Zhttps://github.com/leoxiaobin/pose.pytorch
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Kinect Panoptic

Upp \ Bot \ All Upp \ Bot \ All
Ours 17.0 (1.3) | 14.9 (1.2) | 15.5 (1.2) || 10.2 (3.1) | 14.7 (4.5) | 11.9 (3.5)
Ours w/o o 25.7 (2.0) | 18.9 (2.3) | 22.0(1.9) || 16.8 (2.4) | 205 (3.3) | 18.2 (1.7)
MotionGraph [25] || 24.4 (2.4) | 157 (1.3) | 21.2(1.9) | 11.9 (2.8) | 20.7 (3.0) | 15.2 (2.8
DeconvNet [54] 26.0 (1.2) 20.3 (0.8) 23.3 (1.2) 18.3 (1.2) 21.2 (3.5) 19.4 (1.8
Stand 27.8 (3.5) 23.1 (1.6) 254 (2.1) 10.6 (4.4) 18.5 (8.2) 13.5 (5.5
Sit 21.8 (1.0) 43.3 (1.8) 28.5 (1.2) 17.3 (2.1) 28.9 (1.4) 21.6 (14

Table 5.1: Average joint error (cm) for all methods on the two dataset captures. Our
approach is stronger than the existing methods, and the second-person pose is crucial to its
performance. Standard errors for all methods on the two dataset captures are displayed in
parentheses. The standard error of our approach is comparable with the other methods

centimeters (cm) based on a reference shoulder distance of 30 cm. Note that the
predicted joints are always some cluster center, whereas the ground truth is the exact
pose (non-quantized); so, even if we predict the best discrete pose nearest to the

ground truth, there will be non-zero error.

5.4 Results

Table 5.1 shows that the proposed method consistently gives better results than all
of the competing methods. We show errors averaged over all J joints, and separately
for the upper body joints which have highest variance in everyday activity (head,
elbow, wrists, hands) and the lower body joints (hips, knees, ankles, foot). Our
approach outperforms MotionGraph [25] and Ours w/o o;. This result supports
our key technical novelty of modeling mutual pose interactions between the first and
second person. Our method’s improvement is even more significant in the upper
body joints, which agrees with the fact that the most highly correlated inter-person
poses occur with gestural motions of the head and arms. The results show that the
information provided by the pose of the interactee is essential for deriving accurate
body pose estimates for the camera wearer.

We find that our method’s impact is greatest on the conversation sequences, and
lowest on the sports sequences. This suggests that during conversation sequences
which involve less global motion, second-person pose provides essential information
for more accurate upper body ego-pose predictions. Sports sequences, on the other

hand, often have the interactee moving out of view for long periods, explaining our
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Figure 6: Common Second Person Priors for Sample Pose Clusters — Most common
second-person 2D poses (top) seen immediately preceding a given predicted 3D pose cluster
(bottom) for test sequences. You2Me captures useful interaction links like mutual reaches
or tied conversation gestures.

method’s lower degree of impact for sports.

While Sit and Stand offer a reasonable prior for most test frames, our method still
makes significant gains on them, showing the ability to make more informed estimates
on the limbs (e.g., 10 cm better on average for the upper body keypoints). Sit has
a much larger lower body and overall error than any other method, which is in line
with the distribution of the test data. Our method also outperforms DeconvNet [54],
which suggests that approaches for detecting poses from a third-person point of view
do not easily adapt to handle the first-person pose task.

Figure 6 shows examples of the linked poses our method benefits from. We display
the second-person pose estimates immediately preceding various ego-pose estimates
for cases where our method improves over the Ours w/o o; baseline. Intuitively, gains
happen for interactions with good body language links, such as mutually extending
hands or smaller conversational gestures.

Figures 7 and 8 show example success and failure cases for our approach, respec-
tively. In Figure 7, our method outperforms MotionGraph [25] in predicting upper
body movements of the camera wearer, e.g., better capturing the swing of an arm
before catching a ball or reaching out to grab an object during a conversation. The
failures in Figure 8 show the importance of the second-person pose to our approach.
Analyzing the frames with the highest errors, we find failure cases occur primarily

when the camera wearer is crouched over, the camera is pointed towards the floor,
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Figure 7: Success Cases for You2Me Results — Example inferred poses for three
different activity domains trained in a domain-agnostic setting. Row 1: ego-video view
with OpenPose overlay (input to our method is only the raw frame). Row 2: 3D ground
truth poses in multicolor, displayed as interacting with the 2D OpenPose skeletons in yellow.
Note: for ease of viewing, we show them side by side. Row 3: results from our approach.
Row 4: MotionGraph [25] results. In the last column, the interactee is fully occluded in the
ego-view, but our predicted pose is still accurate.
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or the view of the interactee is obstructed. While our LSTM has enough priors to
continue to accurately predict poses for a few frames without the interactee pose,
absent second person poses over extended periods are detrimental. We also provide a
supplemental video® demonstrating our approach on video sequences of various test
subjects and capture locations.

We show examples of success cases across the four different action domains: con-
versation, sports, hand games, and ball tossing. In both the Kinect and Panoptic
Studio captures, our method is able to perform well. Most notably, our approach is
able to determine when the camera wearer is going to squat or sit, when they are
raising their hand to receive or catch an item, and when they are gesturing as part
of a conversation.

Consistent with the quantitative results provided by Figure 7, compared against
the baselines, we notice a significant difference between our approach and the Mo-

tionGraph [25] . While our approach is able to detect when the camera wearer is

3http://vision.cs.utexas.edu/projects/you2me/demo . mp4
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Figure 8: Failure Cases for You2Me Results — Example failure cases. Typical failure
cases are when the ego-view points at the ground or at feet, lacking the interactee’s pose
for a long duration.

Ours - ‘

Kinect Panoptic
Upp ‘ Bot ‘ All Upp ‘ Bot ‘ All
Ours 17.0 | 14.9 | 15.5 || 10.2 | 14.7 | 11.9
w/o Xy 16.7 | 16.3 | 16.1 10.7 | 15.3 | 124
w/o o 25.7 | 18.9 | 22.0 || 16.8 | 20.5 | 18.2
w/o both || 209 | 17.7 | 194 || 174 | 194 | 18.1

Table 5.2: Ablation study to gauge the importance of the second-person pose features oy
and scene features z;. Error in cm.

clapping as part of a hand game, the MotionGraph [25] fails to do so. Similarly,
when we remove the OpenPose features, Ours w/o o, is also unable to capture
when a person’s hand is raised. However, our approach is even able to detect when
the camera wearer is returning a single handed clap or a double handed clap in the
hand-game.

Table 5.2 shows an ablation study, where we add or remove features from our
LSTM to quantify the impact of the second-person pose. Recall that o; is the second-
person pose and z; is the ResNet scene feature. The results indicate that Ours and
the w/o z; model, which both use the second-person pose (OpenPose estimates),
consistently outperform the w/o o; and w/o both models that lack the second-person

pose estimate. Moreover, the results show that the addition of o, most significantly
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Kinect Panoptic
Upp \ Bot \ All Upp\ Bot \ All

ot 17.0 | 15.0 | 15.5 || 10.2 | 14.7 | 11.9
GT 16.2 | 14.9 | 15.1 || 8.3 | 13.5 | 10.2
Still 226 | 15.0 | 189 || 25.6 | 24.6 | 25.2
Zero 23.7 | 275 | 20.0 || 188 | 21.8 | 19.9
Random || 19.5 | 17.7 | 18.0 || 22.3 | 17.6 | 18.9

Table 5.3: Effects of second-person pose source. Error in cm.

improves upper body predictions. The features of the interactee captured by the
ResNet (w/o 0;) do not sufficiently capture the information encoded in the explicit
pose estimate.

Table 5.3 analyzes to what extent the imperfect second-person pose estimates
affect our results. First, we substitute in for o; the ground truth (GT) skeleton
of the interactee, i.e., the true pose for the second person as given by the Panoptic
Studio or Kinect. We see that more accurate second-person poses can further improve
results, though the margins are smaller than those separating our method from the
baselines. Next, to confirm our network properly learns a correlative function between
the interactee pose and the ego-pose, we feed incorrect values for o;: either the average
standing pose (Still), empty poses (Zero), or random poses from another sequence of
another class (Random). In all cases, the network produces poorer results, showing

that our method is indeed leveraging the true structure in interactions.
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6 Conclusions

With the growing usage of wearable cameras across entertainment, healthcare,
and gaming industries, there has been developing interest in accurately predicting
the body pose of a camera wearer from a single egocentric video stream. Accurately
predicting the ego-pose can reveal the individual’s physical activities, postures, and
gestures, making it possible for the system to directly interact with or assist the
wearer. To this end, we presented the You2Me approach to predict a camera wearer’s
pose given video from a single chest-mounted camera. Our key insight is to capture
the ties in interaction between the first (unobserved) and second (observed) person
poses. Our results on two capture scenarios from several different activity domains
demonstrate that promise of our idea, and we obtain state-of-the-art results for ego-
pose.

Despite the demonstrated successes of our approach, we acknowledge noticeable
weaknesses in our approach. As mentioned earlier, our method performs poorly when
the second-person pose is not visible. We also notice that our method is prone to
producing unsmooth output, which could be caused by a loss in granularity from
clustering the set of all possible poses. Finally, our approach occasionally produces
lags in the pose estimation sequences. For example, the wearer may reach out to
initiate a hand-shake and our method may not predict the hand-shake pose sequence
until the interactee’s hand is already outstretched. In this case, the network instead
assumes that the wearer is returning a handshake. We hypothesize that this is because
the network is best at predicting the wearer’s pose sequence only after the second-
person’s entire interacting pose sequence has already unfolded. To address this issue,
our future work could explore a bidirectional LSTM, which involve using a reversed
copy of the input sequence as an additional layer to reason about the full context of
the whole video sequence.

Future work will include better reasoning about the absence of second-person
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poses when interactions are not taking place. For instance, when the interactee
leaves from a conversation or is obstructed from the view of the camera in a sports
scene, our method should be able to reason about the poses from only motion and
static cues. Furthermore, we would be interested in extending our method to handle
sequences with multiple “second people”. While dyadic interactions are common in
daily activity, more commonly, people interact with multiple individuals all at once.
Larger social settings such as conference meetings or team sports offer a richer set
of social signals which may be jointly exploited to improve the ego-pose estimation
of the camera wearer. Finally, we are also interested in exploring how ego-pose
estimates might reciprocate to boost second-person pose estimates. Our method
already suggests that the symmetry of poses between the interactee and the camera
wearer can be used to improve the pose estimation of the wearer. Similar to the joint
learning framework used in [58], we suppose that these ego-pose improvements can in

turn be used to further improve existing second-person pose estimation techniques.
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