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Abstract

In image classification tasks, the traditional supervised learning approach is for anno-

tators to simply label each image with its class name. We contend that this approach

may waste potentially valuable information: the reasoning that went into the choice.

This information can best be exploited in tasks where an element of subjectivity or per-

ception is involved in the annotation. Hence, in a new approach, we enrich this simple

categorical annotation by augmenting it with a “rationale”: a polygon drawn around

the region(s) of the image that the annotator found most influential in his or her clas-

sification decision. This is distinct from foreground segmentation, as the entirety of the

foreground may not have been influential to the annotator’s decision. To make use of

this extra information, when creating a representation for the features of an image in

the training set, we give special treatment to those features that fall inside of a ratio-

nale polygon. We have tested our approach on a scene classification task, with results

showing that this extra bit of information is highly useful in deciding whether an image

belongs to certain scene categories. We have further applied our approach to the more

subjective task of deciding whether a person in an image is attractive, and have seen

promising preliminary results in this domain as well.
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1

Introduction

One of the most pervasive and fundamental challenges in computer vision today is that of visual

classification. Visual classification has a wide variety of applications, such as automating the index-

ing of images for convenient retrieval, analyzing medical imagery, and data mining. There exists

an immense body of research on methods to improve image classifier performance based on a set

of training images and their class labels, but few papers have bothered to question the foundation

on which such classifiers are based: the training data itself. In any supervised learning approach

to image classification, an annotator will be shown an image and asked to put it in one or more

categories based on its content, but this has generally been where the annotation stops. In this

respect, current approaches are surprisingly inflexible in their means of collecting annotations for

learning visual categories (e.g., of objects or actions). The standard approach of getting examples

and category labels makes sense for learning a classifier, but we expect that human annotators can

give us deeper cues in their annotation to better reveal the features that distinguish each category

from the others.

We are interested in visual classification problems where a human can provide not only a cat-

egorization label, but also some insight into which aspects (in particular, which spatial regions) of

the visual most helped the human determine that label. We believe that such information is not

only useful, but is in fact necessary to learn the desired concept well for some problems - in partic-

ular, subjective and perceptual judgments (such as those about human emotions or expressions, a

judgment of quality such as a rating given to an ice skating routine, etc.).

Thus, we propose a system in which the annotator not only indicates his or her category selection,
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Is Brian Williams doing a Is this scene from a comedy Is Mack Brown’s team
serious story or soft news? or a drama? winning or losing?

Are these sitcom characters Will Judge Judy rule for the How is this figure
friends or nemeses? plaintiff or the defendant? skater’s form?

Figure 1.1: Rationales for Various Tasks - Examples of possible rationale annotations for various
tasks. All of these tasks are subjective in nature (evaluating a general mood or attitude, or giving an
opinion), and have relevant information confined to a certain portion of the image.

but also gives a rationale indicating the regions of the image that most influenced the selection by

drawing polygons around these regions (figure 1.1). It is our contention that asking the annotator

for this information can be used to focus the classifier on the features of the image that can truly

be used to discriminate between two or more classes of images.

This approach is intuitively more valuable than current automated feature selection approaches

(e.g., mutual information). Without injecting into a classifier knowledge of why a given classification

was chosen, the classifier may draw false conclusions about the class based purely on an inadequate

or biased set of training examples. For example, if we desire a classifier that distinguishes between

images of a dog and images of a butterfly, and all of our training examples for the “dog” class are

set indoors, whereas all of our “butterfly” examples contain a forest backdrop, the classifier may

end up learning mainly the visual cues given by the backdrops, and misclassify images of these

2



animals in the opposite settings. This is, of course, an extreme example, but it illustrates the point

that allowing human annotators to give rationales for their class selections could in effect give a

classifier some of the information that a human annotator has naturally learned about the categories

since birth, while an automated feature selection approach derives all of its evidence from the set

of training examples alone. With that said, an automated feature selection method such as mutual

information is potentially compatible with our approach; such a method would decide which types

of visual information are the most valuable (i.e., which visual words to use), and our approach

decides from which regions of the image to take visual information.

In order to make use of annotator rationales, our method uses a two-margin support vector

machine (SVM), as in (1). As always, we want to maximize the margin between positive and

negative examples, but in our case, we would also like to maximize the margin between positive

examples and positive “contast examples,” which include the image features that fell outside of

any rationale polygon. Intuitively, if we remove the parts of the image that an annotator felt most

influenced his or her class annotation, we should be less confident of its classification as a positive

example, so we therefore make the SVM recognize this by adding a “contrast constraint,” creating

a margin between positive examples and positive contrast examples.

This approach is a direct adaptation to computer vision of Zaidan, Eisner, and Piatko’s natural

language processing work in (1), in which the authors show how they can improve the performance of

an SVM that decides whether a movie review is positive or negative using their version of rationales:

sequences of words that the annotator highlights.

We show how this learning algorithm can be adapted to the visual domain. We apply this

algorithm to the Fifteen Scene Categories data set, demonstrating that it can be used to create

stronger binary classifiers for many of the scene categories. Additionally, we create a new data

set using images from a popular image rating website, showing how our approach can be used to

enhance machine learning for a very subjective task: judging the appearance of a person as “Hot”

or “Not.”
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2

Related Work

There is a large body of work on standard methods of learning visual classes, methods of improving

the effectiveness of human annotations, and analogous natural language processing work. We discuss

some of it and contrast it with our work here.

2.1 Standard Mode of Training

Much work has been done using a standard mode of training for visual categorization systems, as

exhibited by several benchmark visual data sets and collections (2, 3, 4, 5, 6, 7). Ordinarily, this

work involves taking a set of images and associated class labels, forming a representation of these

images based on local features, and using these image representations along with their class labels

to train a classifier. The researchers then test this classifier by asking it to predict the class labels

for some images it hasn’t yet seen and comparing these predictions to ground truth. Annotations

are generally fixed and uniform across examples, and the goal is nearly always to attain a subimage

segmentation and a set of associated object names. These efforts will often begin with a keyword

search to isolate candidate examples, followed by a thorough, human-controlled pruning to only

those images or videos that truly show the category of interest.

In (8), Oliva and Torralba look at learning descriptors about scene images, such as openness,

ruggedness, naturalness, busyness, and others. Lazebnik’s work in (9) looks at using a pyramid

match representation to get very high classification performance for a classifier over all fifteen scene

categories. Like most work in image classification, it trains a classifier using images and class labels

only and does not utilize a richer approach to annotations. Both of these tasks are related to scene
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2.2 Improving Annotation Effectiveness

categorization. However, in our scene categorization task, we want to learn what type of scene an

image is (e.g. bedroom, mountains, etc.), rather than assess certain qualities about it as in (8),

and we look at the use of annotations with rationales to improve the usefulness of the annotation,

rather than looking at improving the image representation as in (9).

2.2 Improving Annotation Effectiveness

Other work has explored ways to improve the effectiveness or efficiency of human annotations for

learning object or scene categories from training examples.

Active learning methods survey unlabeled image examples and decide for which of these a

label would be the most useful or informative (10, 11, 12, 13, 14, 15). This work could potentially

be paired with ours to make more efficient use of annotator time, though we don’t explore this

possibility here.

Some work has explored the use of games to improve the quality of annotations, where the

game aspect incentivizes reliability in annotations, such as The ESP Game (16) and Peekaboom

(17). In future work, we could reapply such ideas to use games in ensuring high quality rationale

annotations as well.

Other work has used paid annotators, e.g., via Amazon’s Mechanical Turk, to get a large

number of labels more quickly (5, 18). This tends to create some quality control challenges.

Relevance feedback in information retrieval tries to pinpoint the desired content for a specific

user, and often entails getting their reaction to some candidate responses, whether positive or

negative. This mode of user interaction has been explored in the content-based image retrieval

community extensively (10, 19).

In contrast to any of these previous attempts to improve annotation effectiveness, our approach

results in annotations that we expect will contain useful information beyond a simple class label.

2.3 Natural Language Processing

In natural language processing, there is work showing interactive new ways to solicit input from

annotators about documents aside from the usual classification labels. In (20), Raghavan, Madani,

and Jones ask annotators whether a word is relevant or not for a given topic. Druck, Settles, and

McCallum look at labeling features (words) rather than entire instances in (21). Finally, Zaidan,
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2.3 Natural Language Processing

Eisner, and Piatko explore the idea of specifying which phrases in a movie review most influenced

sentiment classification (positive review vs. negative review) in (1). The method of (1) in particular

inspires our approach, as we adapt the authors’ idea to the visual domain.
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3

Approach

In order to create a classifier that gains insight from annotator rationales, we modify somewhat the

traditional approaches to image representation and SVM classification.

3.1 Image Representation

In order to perform image classification, we first need to come up with a representation of the images

on which we will train and test our classifier. We would like our representation to be localizable,

so that it is possible to remove features only from certain portions of the image to form a contrast

example (as explained in later sections).

Our approach to image representation for both the Fifteen Scene Categories and Hot or Not

data sets is typical of recent computer vision research. We first find SIFT descriptors for each

image in the set. We then randomly select a number of the resulting SIFT descriptors over the

entire corpus of images, and cluster them using k-means, giving us a bag of k words. From the k

centers found, we map each SIFT descriptor in an image to the index of the center nearest to the

descriptor (minimum Euclidean distance) found by k-means. For each image, we create a bag of

words histogram
(
b1 b2 ... bk

)
, where any bi in the histogram is the number of SIFT descriptors

in the image with nearest center i.

These histograms taken over an entire image, henceforth referred to as “original examples,” will

serve as a subset of the training examples that we use to train a support vector machine (SVM),

after vector normalization. The remainder of the training examples (“rationale examples”) will be

7



3.1 Image Representation

Bag of words histogram from entire image. Bag of words histogram from only the
region given as a rationale.

Figure 3.1: Bag of Words Histogram Example - We find significant features in the image then
map them to their closest corresponding mean found by k-means (k = 3 in this example). These features
are represented by the stars, pluses, and triangles. Then, we transform all the significant features in the
image into a bag of words histogram (left). We also perform this same transformation on the part of the
image inside a rationale polygon (right).

based on bag of words histograms taken only over the regions inside of a rationale polygon. See

figure 3.1 for example. With these training examples, we train a linear SVM.

In the following sections, details of our representation for each data set are provided.

3.1.1 Scene Categories Data

To form a representation of the scene categories data, we first run Lowe’s SIFT keypoint detector

(22) on each image in the data set. This keypoint detector does not use dense descriptors; it takes

descriptors only at points of interest, which are determined using an edge detector (difference-of-

Gaussians or DoG) run at several different scales (see figure 3.2 for comparison). We take a subset

of around 200,000 of the resulting SIFT descriptors, and use k-means as described above (with

k = 500) to give us a frequency vector for each image, giving us the original examples for this data

set.

3.1.2 Hot or Not Data

Our representation of the Hot or Not data is similar to that of the scene categories data, with

some minor differences. Rather than using Lowe’s SIFT keypoint detector (22), we collect dense

descriptors every two pixels at a single scale of eight pixels, using the VLFeat library (23). We

chose to use dense features for this data set because we are interested in ensuring that we capture

a large number of features in the subject’s face and other body parts, and DoG features provide

8



3.2 Training an SVM with Rationale Examples

Original Image DoG Features Dense Features

Figure 3.2: DoG vs. Dense Features - An example of the difference between the points selected
on an image (left) by difference-of-Gaussians or DoG (middle) and dense feature selection (right). We
use dense feature selection on our Hot or Not data to ensure that a significant number of features are
selected from all parts of the person in the image.

no such guarantee (see figure 3.2 for comparison). We again cluster a subset of the resulting SIFT

descriptors using k-means (k = 500, as before). Finally, we create a frequency vector in the same

way as above, and use these frequency vectors as the original examples for this data set.

3.2 Training an SVM with Rationale Examples

At this point, we have two frequency vectors for each image - one original example and one rational

example. We now need a way to incorporate both of these types of training examples into a support

vector machine classifier. We might be tempted to simply throw both of these into our training set

as they are, but because we will be classifying not rationale examples, but original examples (i.e.,

full images), we must somehow modify a rationale example in order to claim legitimately that it

is a member of the class its image was labeled as. We use the method of (1) to accomplish this,

outlined in the following paragraphs.

The intuition Zaidan et al. give in (1) for adding training examples taken only over the

rationales (but with a rationale in the case of (1) being a sequence of words in a movie review

text, rather than a polygon in an image) is as follows: for any original example ~xi with a rationale

polygon ~ri (or the union of all rationale polygons if there are multiple) in its image, we can create

a “contrast example” ~vi by masking out the area of the image inside this rationale (i.e., taking

only the descriptors that fall outside of the rationale polygon), and the SVM should thus not be as

9



3.2 Training an SVM with Rationale Examples

Original Image Rationale Contrast Example

−→ −→

~xi ~ri ~vi

Figure 3.3: Original, Rationale, and Contrast Examples - ~xi is our original example (left), ~ri is
the rationale annotation (middle), and ~vi is the contrast example (right), which is the original example
with the rationale masked out. We should be less confident in the class label yi for the contrast example
due to its lack of features that the annotator found significant in his or her class choice.

confident in its classification of this contrast example due to the fact that this potentially important

region was masked out. (See figure 3.3 for example.) Hence, we ask the SVM to not only maximize

the margin between positive and negative examples, but also maximize the margin between positive

examples and positive contrast examples by finding ~w such that ~w · ~xi − ~w · ~vi ≥ µ, where µ is the

desired size of the margin between training examples taken over the full image and those taken over

only the rationales (see figure 3.4).

Normally, a soft-margin SVM finds ~w and ~ξ such that

1
2
||~w||2 + C(

∑
i

ξi) (3.1)

is minimized, subject to the constraints

(∀i) ~w · ~xi · yi ≥ 1− ξi (3.2)

(∀i) ξi ≥ 0 (3.3)

where yi ∈ {−1, 1}, representing the true label for training example ~xi, and ξi is a slack variable

allowing for a misclassification of xi. The C > 0 parameter controls the cost of such a misclassifi-

cation.

10



3.2 Training an SVM with Rationale Examples

Figure 3.4: SVM Modified for Contrast Examples - We use an SVM to optimize both the margin
between classes and the margin between original and contrast examples. The SVM should not be as
confident in its classification for a contrast example, as it lacks information that the annotator found
important in choosing a class label. This is why we want a margin between positive original examples
and positive contrast examples, as well as a margin between positive examples and negative examples.
Figure taken from (1).

To allow for our contrast examples, Zaidan et al. (1) suggest adding the constraint:

(∀i) ~w · (~xi − ~vi) · yi ≥ µ(1− ηi) (3.4)

where ~vi is one of the contrast examples we constructed from example ~xi, ηi is the corresponding

slack variable, and µ is the soft-margin for our contrast constraints. Now, we ask the SVM to find

~w, ~ξ, and ~η to minimize
1
2
||~w||2 + C(

∑
i

ξi) + Ccontrast(
∑
i

ηi) (3.5)

where Ccontrast is the cost of a misclassification of a contrast example.

Finally, we divide the constraint in 3.4 by µ in order to get a rationale example ~ri with a

constraint in the form of 3.2, which gives

(∀i) ~w · ~ri · yi ≥ 1− ηi (3.6)

where ~ri is our new training example (a rationale example), which is defined as:

~ri =
~xi − ~vi
µ

(3.7)

To normalize, we divide both the original example ~xi and the rationale example ~ri by the

magnitude of the original example ‖~xi‖, like Zaidan et al.’s method in (1).

11



3.3 Issues with the Rationale-Based Approach

After normalization, this training example ~ri is added to the normal training set with classifi-

cation yi (i.e., using the same classification as the original example from which it was derived), but

is given misclassification penalty Ccontrast rather than the misclassification penalty of C given to

original examples. This gives us three scalar parameters per SVM, (µ,C,Ccontrast), which we set

via cross-validation on held-out data.

Finally, in order to allow for a bias term in the hyperplane, we prepend a 1 to each original

training example ~xi and each contrast example ~vi. Because we take the difference of these to get

the rationale example ~ri, we prepend a 0 to each ~ri (1).

Our final training set consists of a set of original examples ~xi and a corresponding set of rationale

examples ~ri.

See figure 3.5 for a summary of our algorithm.

3.3 Issues with the Rationale-Based Approach

There are several potential issues with using rationales to enhance the performance of some classi-

fication tasks, a few of which we discuss here.

3.3.1 Amenability to Different Tasks

We believe that this approach should give the greatest performance boost when the data set in

question has images that contain a somewhat sparse set of regions that would lead it to be placed

in one category rather than another, like many images in the scene categories data set. The task

should also be one that is subjective or perceptual, as the reasoning behind a human’s classification

decision may be the most ambiguous and complex to learn in such kinds of tasks, thereby creating

the greatest opportunity for rationale polygons to steer the classifier in the right direction. For

example, in the scene categories data set, an image of a bedroom might have a bed, a dresser, and

a mirror to distinguish it from, say, a kitchen; but in the case of either a kitchen or a bedroom,

much of the image will likely consist of floor, wall, and ceiling; which are of ostensibly limited use

to a human in distinguishing between the two.

Intuitively, there are questions for which this approach, at least in its current form, does not

seem appropriate at all. For example, if the objective is to label images as either containing or

not containing a vehicle, the idea of giving a rationale, to some extent, falls apart. While it seems

12



3.3 Issues with the Rationale-Based Approach

Algorithm Summary - Training a Visual Classifier with Rationales

1 Find local features (we use SIFT descriptors, with sampling technique dependent on the
data set) for all images in data set.

2 Collect human rationale annotations for n of the images in the data set, where n is the
maximum desired training set size per class. Each of these annotations contains a class
label and one or more polygons around the region(s) most influential in the annotator’s
class decision.

3 Randomly select a large subset of the features from all images in the data set (on the
order of 100,000 features total).

4 Create a bag of words
(
~w1 ~w2 ... ~wk

)
, by clustering the feature subset using k-means

(we use k = 500).

5 For each image, construct a bag of words histogram ~xi =
(
xi1 xi2 ... xik

)
where

(∀j)xij is the number of descriptors ~d in the image such that (∀l)dist( ~wj , ~d) ≤ dist( ~wl, ~d)
(i.e., ~wj is the closest word in the bag to ~d). This bag of words histogram is an “original
example.”

6 Construct a second bag of words histogram ~ri =
(
ri1 ri2 ... rik

)
again for each image,

just like in (5), but using only those descriptors ~d falling inside of a rationale polygon
for the image. This bag of words histogram is a “rationale example.”

7 To get our final training examples for image i, we normalize both ~xi and ~ri by ‖~xi‖,
divide the rationale example by the width µ of the margin between original and contrast
examples, and prepend a 1 to original example ~xi and a 0 to rationale example ~ri, giving
us our final training examples, ~xi′ =

(
1, ~xi

‖~xi‖

)
and ~ri

′ =
(

0, ~ri
‖~xi‖·µ

)
.

8 Choose a subset of the images from each of the two classes to be learned, and train
a support vector machine using both the original examples ~xi

′ and rationale examples
~ri
′ in the training set for each of these images, with the same class label for each type

of example on a given image. For original examples (of either class), use misclassifica-
tion penalty C. For rationale examples (of either class), use misclassification penalty
Ccontrast. The parameters µ, C, and Ccontrast are set via cross-validation on held out
data.

Figure 3.5: Algorithm Summary - A summary of the steps of the algorithm that we use to classify
images using our rationale-based approach.
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3.3 Issues with the Rationale-Based Approach

reasonable to draw a polygon around the vehicle in a positive example, the “rationale” for a negative

example would simply be the entirety of the image, as one would have to look at every part of the

image in order to determine absence of a vehicle.

Figure 3.6: Difficult Ratio-
nale Example - The correct la-
bel for this image is “coast”, but
giving a useful rationale for it is
difficult, since no individual re-
gion of the image is much more
revealing of its coastal quality
than any other.

Indeed, even in the scene categories data set itself, there are

categories in which many of the images are difficult to annotate

with a useful rationale. For example, in the Coast category, some

images are simply of beach next to water (figure 3.6). An an-

notator with the best of intentions might approach this type of

image in one of two ways: by drawing a rectangle around the en-

tire image as the rationale, or by drawing a tiny polygon around

the curve where the water meets the beach. In the former case,

treating it like any other rationale seems to introduce unwanted

bias into the SVM, as it results in two training examples (that of

the full image and that of the polygon) that are nearly identical

(or different by a factor of µ). In the latter case, the tiny poly-

gon might capture very few or perhaps even zero interest points,

which is not very helpful to the SVM either. Partly due to this

problem, we filter out rationales that contain almost all or almost

none of the image.

3.3.2 Selection of Useful Rationales

An image classification system generally will not use the same logic to assign a class label to an image

that a human would. For example, an SVM that was trained based on a local feature representation

such as SIFT descriptors might make many of its class decisions largely based on repeated textures

in an image, such as the tile commonly used for kitchen flooring vs. carpeting in a bedroom, rather

than objects, such as a refrigerator in a kitchen vs. a bed in a bedroom, that a human might be

more likely to look to for a decision. This raises the question of whether the visual cues a human

picked up on will even be relevant to the processes used to classify images using currently known

image classification techniques. We believe that the answer will be “yes” in some cases, and “no”

in others. To account for the cases in which the human’s rationales will not be very helpful, we

train our classification system based not only on the regions of the image that fall inside a rationale

14



3.3 Issues with the Rationale-Based Approach

polygon, but also the entirety of the image, hence the inclusion of both the original and rationale

examples in the final set of SVM training examples. This approach helps fix cases where annotated

regions were irrelevant, and the amount of performance lost from regions where this information was

not only irrelevant but was actually detrimental will hopefully be outweighed by the performance

gains from cases where it is indeed relevant.
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4

Data

We explore the utility of our new approach to supervised learning of image classes in the domain

of two separate data sets: the Scene Categories data set and a new data set from the once popular

Hot or Not website.

4.1 Scene Categories

We chose to use the famous Fifteen Scene Categories data set (24) due to the perceptive nature

of classifying an image by its scene type, and the vast number of isolated objects in many of the

images. For example, an image of a bedroom might contain several objects that help us classify it

as such, e.g., a bed, a dresser, an alarm clock etc.; however, it may also contain plenty of distracting

information, such as a lamp or a television, that frequently appear in other scene categories and are

thus less useful in helping us classify the image. The presence of a large number of isolated objects,

some of which are more useful and others of which are less useful, make the scene categories data

set a good candidate for our approach to rationales. This data set consists of 200-400 black and

white images from each of fifteen types of indoor and ourdoor scenes. See example images in each

scene category in figure 4.1.

4.2 Hot or Not

We also created a new data set, using images from http://www.hotornot.com/. Hot or Not is a

website that shows a visitor an image of a random user (which can be restricted to a certain gender
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4.2 Hot or Not

Bedroom Coast

Forest Highway

Industrial
Inside
City

Kitchen
Living
Room

Mountain Office

Open
Coun-

try
Store

Street Suburb

Tall
Build-

ing

Figure 4.1: Fifteen Scene Categories - Sample Images - Sample images from each category of
the Fifteen Scene Categories data set (24). Rationales can be used to isolate aspects of these images
that are most unique to their particular classes, such as the part of a Bedroom image with a bed, or the
part of a Kitchen image with a refrigerator.
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4.2 Hot or Not

Male Female

Mean 9.088 8.495
Standard Deviation 0.607 1.132

Minimum 6.5 2.8
25th Percentile 8.7 7.7
Median 9.3 8.8
75th Percentile 9.5 9.4
Maximum 9.9 9.9

Table 4.1: Hot or Not Data Statistics - Sample statistics for the ratings of the 1000 men and 1000
women in our Hot or Not data set.

and/or age range) and asks the user to rate the attractiveness of the person in the image on a scale

of 1-10 (see figure 4.2 for preview of interface). After the visitor rates the person in the image, he

or she can view the average rating over all visitors (rounded to the nearest tenth) and the number

of visitors who have rated the image in total.

We have collected 1000 images of males and 1000 images of females from this website, along with

their ratings, the number of users who rated the image, the URL, and the short “introduction” that

the person in the picture supplied. We only used in our data set images that had been reportedly

rated at least 100 times.

After collecting these images, we found some interesting statistics about the data. In general,

the ratings seemed quite high, with a mean rating of about 9.1 for men and 8.5 for women. In fact,

the lowest rating of any man in our data set was a 6.5. See table 4.1 for more statistics.

Despite the relatively small portion of the rating scale that is apparently being utilized, the

relative ratings seemed anecdotally accurate; i.e., if one person had a significantly higher rating

than another person of the same gender, the one with the higher rating generally seemed more

attractive than the one with the lower rating.

This data set is an excellent fit for testing our approach in terms of our intuition that rationales

are essential to learn a subjective classification task well, and this is about as subjective as tasks

come (“beauty is in the eye of the beholder”). Rather than simply discarding all information prior

to the final conclusion, the inclusion of rationales in our annotations has the potential to give our

classifier much richer insight into the thought process of the human annotator.

18



4.2 Hot or Not

Figure 4.2: Hot or Not Interface - An example of the interface found on the Hot or Not website,
http://www.hotornot.com/. Includes rating buttons 1-10 at the top, the image of the person to be rated
below (with their introduction underneath the image), and, on the left, the rating and number of votes
for the previously rated image.

19

http://www.hotornot.com/


5

Annotations

Central to our approach are the human annotators, who will provide rationales for each image

that we hope will give deep insight into the reasoning that went into their class decision. We use

Amazon’s Mechanical Turk (MTurk)1 to gather most of our annotations in order to create a large

data set with a wide variety of annotation styles. Gathering annotations from a large number of

sources fits well with our belief in rationales as an approach to subjective tasks.

5.1 Scene Categories

We crowdsourced our annotations of the Fifteen Scene Categories data set (24) to MTurk. In

general, the quality of the results varied greatly. In addition to written instructions for annotating

an image, our instructions included three sample images from each category (which were removed

from the remainder of this study), and a demo video showing how a single annotation is done using

the interface. We imposed just two absolute requirements on our annotators (i.e., work that failed

to adhere to either of these instructions would be automatically rejected without pay): that they

draw at least one polygon per image (which must consist of at least three vertices, by definition),

and that they must click the same class label for each polygon they draw. For more details and

interesting statistics on the annotations, see table 5.1.

Our goal was originally to have three annotators take on each image, but due to the overwhelming

lack of good responses, we repeatedly posted poorly done annotations until we felt we had an
1MTurk (https://www.mturk.com) allows requesters to post small tasks, called “HITs” (Human Intelligence

Tasks), to its website for users, called “workers,” to complete for a configurable amount of pay per task.
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5.1 Scene Categories

Annotation Task Summary

Jobs Posted 34,021
Accepted 8055 (23.7%)
Rejected 25,966 (76.3%)

due to No True Polygons 25,901 (99.7%)
due to Multiple Classes 118 (0.5%)

# Unique Workers 545
Mean Jobs/Worker 62
Total Man-Hours 205

Mean Time/Job 21.7 seconds
Total Man-Hours on Approved Jobs 102

Mean Time/Approved Job 45.4 seconds

Correct Class Label 26,497 (77.9%)
Incorrect Class Label 7329 (21.5%)
Multiple Class Labels 118 (0.3%)
No Class Label 77 (0.2%)

0 Polygons 25,901 (76.1%)
1 Polygon 7490 (22.0%)
2 Polygons 400 (1.2%)
3 Polygons 161 (0.5%)
4 Polygons 41 (0.1%)
5 Polygons 16
6 Polygons 7
7 Polygons 4
8 Polygons 1
9+ Polygons 0

Table 5.1: Scene Categories MTurk Run Statistics - A set of summary statistics from our scene
categories annotation run on Amazon’s Mechanical Turk.
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5.1 Scene Categories

adequate data set size, which came out to an average of about 1.80 annotations for each image in

the data set (other than those used as examples of the class in the instructions).

Overall, we found the majority of the results in which workers followed the instructions to

be quite good (figure 5.1). Some workers drew very tight polygons around objects of interest

(figure 5.2), which we explicitly noted was not mandatory in our instructions. A small yet vocal

minority took a bit of artistic license with their annotations (figure 5.3). In spite of the likely

detrimental effect these “artistic” annotations had on the performance of our approach, we allowed

these rationales to be used in our data set on the philosophical grounds that the rationales are

subjective. We also left all incorrect labels intact, training based on the label the annotator provided,

whether correct or not (but still testing only on ground truth). The only results we pruned from

our data set were those that (a) had no polygons marked, (b) had different class labels associated

with different polygons, (c) captured almost all (> 95%) of the image inside a polygon, (d) captured

almost none (< 5%) of the image inside a polygon, or (e) had one or more “polygons” with edges

crossing (figure 5.4).

Figure 5.1: Examples of normal annotations.

Figure 5.2: Examples of annotations with especially tight bounds.

There were several categories in which it appears that some images were non-trivial for even

the human annotators to correctly label (see table 5.2). Unsurprisingly, there was a high rate of

human confusion for closely-related category pairs such as inside city vs. tall building, inside city vs.

street, street vs. highway, and open country vs. mountain. This human confusion likely impacted
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5.2 Hot or Not

Figure 5.3: Examples of “artistic” annotations.

Figure 5.4: Pruning Examples - Examples of each different pruning case, (a) no polygons, (b)
multiple class labels (Tall Building and Highway in this case], (c) almost entire image, (d) very little of
image, (e) crossed edges. (Best viewed in color.)

our SVM’s power to correctly classify these ambiguous categories, but we would like to think that

incorrect category labels is another way in which rationales can be valuable. For example, there

were many images in the Open Country category that had mountains in their background, so if an

annotator had incorrectly labeled such an image as Mountain but used as his or her rationale the

mountains that were indeed in the background, it is still possible that we gain something from this

annotation. Had the annotator not given a rationale, however, this example would likely only hurt

our results.

5.2 Hot or Not

With the Hot or Not data, we have both annotated a small subset of the images ourselves (at

least 100 images in each of the “Hot” men, Hot women, “Not” men, and Not women classes) and

crowdsourced a larger portion of the images to Mechanical Turk. For this data set, because we

wanted to use the scores from the Hot or Not website as our classifications since they were the

average of ratings taken from hundreds of people (a more robust estimate of “groundtruth,” if such

a thing exists for this task, than a single individual’s opinion), we did not ask MTurk annotators

to give a “Hot” or “Not” class label to the image presented in the MTurk job. We instead told
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5.2 Hot or Not

Human Confusion Matrix (%)

NL B C F H ID IC K LR M OF OC SO SR SU TB

B 0 96 0 - - - - - 3 - - - 0 - - -

C 0 - 87 2 0 0 1 - - 4 - 4 - 0 2 0

F 0 0 1 83 0 - 0 - - 6 0 7 - 1 2 0

H 0 0 0 0 84 1 3 0 - 1 0 2 0 7 1 0

ID 0 - 1 0 0 89 1 0 0 0 0 1 1 1 1 4

IC 0 0 0 0 0 3 26 0 1 0 5 1 7 15 17 25

K 0 0 - - - 0 - 88 8 - 2 0 1 - 0 0

LR 0 2 - - - 0 0 1 96 - 1 - 0 - 0 0

M 0 0 1 2 0 - - - 0 95 - 2 - - 0 0

OF 0 1 - 0 - 0 - 0 9 - 88 - 2 0 - 0

OC 0 - 7 17 1 0 0 - - 25 - 43 - 1 5 -

SO - 0 - - 0 1 2 2 1 0 2 0 90 1 0 0

SR 0 - 0 - 4 0 24 - - 1 0 1 0 61 2 6

SU 1 0 1 1 - 0 5 - 6 - 1 3 0 3 75 4

TB 0 - 1 - - 1 11 0 - 0 0 1 - 1 1 85

Confusion Matrix of our “Original Examples Only” Baseline (%)

NL B C F H ID IC K LR M OF OC SO SR SU TB

B - 38 2 1 4 4 2 13 10 2 6 0 5 5 2 6

C - 1 64 4 9 0 0 1 0 12 0 6 0 0 2 1

F - 0 0 91 0 0 0 0 0 4 0 1 2 0 2 0

H - 2 12 0 67 5 1 0 0 1 0 1 1 4 3 3

ID - 10 4 0 8 18 11 6 4 1 4 0 16 11 5 2

IC - 3 1 1 7 3 27 18 3 1 5 0 8 7 1 15

K - 13 1 0 2 6 9 28 17 0 15 0 4 3 2 1

LR - 15 0 0 2 5 4 11 31 1 14 0 7 1 8 2

M - 2 9 11 6 0 0 0 0 62 0 3 1 1 4 0

OF - 9 0 0 1 3 6 15 18 0 45 0 1 1 1 0

OC - 2 21 11 6 1 0 0 0 22 0 32 0 0 2 1

SO - 3 0 3 0 5 4 3 6 1 2 0 62 6 4 1

SR - 1 1 1 3 13 15 1 4 2 0 0 14 34 6 7

SU - 1 0 1 1 1 0 1 3 2 2 0 2 0 85 2

TB - 2 15 1 5 6 7 3 2 1 3 2 2 1 2 48

Table 5.2: Human Confusion Matrix for Scene Categories - The confusion matrix for our run
of the scene categories data set on MTurk (top) compared with the confusion matrix for our baseline
classifier (bottom). Some categories are difficult even for humans to classify correctly, such as Inside
City (frequently labeled as Tall Building, Suburb, or Street), where our baseline classifier’s performance
was higher than human performance. Labels across top are No Label (annotator didn’t choose a class
label), Bedroom, Coast, Forest, Highway, Industrial, Inside City, Kitchen, Living Room, Mountain,
Office, Open Country, Store, Street, Suburb, Tall Building.
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5.2 Hot or Not

the MTurk worker that the consensus among at least 100 people was that the person in this image

is attractive or unattractive, and instructed them to draw polygons around the parts of the image

they think best demonstrates the attractiveness or unattractiveness, as decided by the Hot or Not

rating. In hopes that it would improve the quality of annotations, we also asked that the worker

add a comment on each polygon he or she annotated indicating the thought behind the choice,

but did not enforce this requirement for the purpose of deciding whether to pay the worker for the

job. See figure 5.5 for an example of our MTurk interface for this task. Many workers did adhere

to this requirement, adding labels to their polygons such as [sic] CUTE FACE, soldier, girl, fat,

athletic upper body, THICK EYEBROW, pimple, and long beutiful hair. As in the scene categories

MTurk run, the instructions included a video example of the way we wanted workers to do their

annotations, with annotations shown for four images (one from each class) which we removed from

the dataset.

In general, the quality of these annotations was quite high (see figure 5.6 for samples). In

contrast with the scene categories run, the vast majority of workers annotated at least one polygon.1

See table 5.3 for statistics on the Mechanical Turk run of the Hot or Not data.

1This was perhaps due to the fact that in this case, there was no requirement to choose a class label, so had the

worker not drawn a polygon he or she would have done no work for the job, making the requirement to do something

beyond giving a class label potentially less ambiguous.
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5.2 Hot or Not

Figure 5.5: Hot or Not MTurk Interface - An example of the interface we used to gather rationale
annotations on Mechanical Turk for our Hot or Not data set. The worker is informed in the instructions
that the man in the image was considered attractive based on the rating we found for him on the Hot
or Not website. In this case, the annotator’s rationale for this man’s attractiveness is a polygon around
his arms labeled with “strong arms.”
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5.2 Hot or Not

Male Female
Hot Not Hot Not

Figure 5.6: Hot or Not Annotations from MTurk - For the Hot or Not task, annotators were
shown an image of a man or a woman rated in either the top or bottom 25% in our data set, and were
asked to outline what they found attractive about the person in the image if it was from the top 25%, or
what they found unattractive about the person in the image if it was from the bottom 25%. They were
also asked to type a short label for each polygon. Generally, most of the annotators seemed to take the
task seriously and produced high quality rationale annotations.
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5.2 Hot or Not

Annotation Task Summary

Jobs Posted 2000
Accepted 1845 (92.3%)
Rejected (due to No True Polygons) 155 (7.8%)

# Unique Workers 104
Mean Jobs/Worker 19
Total Man-Hours 43

Mean Time/Job 77.5 seconds
Total Man-Hours on Approved Jobs 42

Mean Time/Approved Job 82.4 seconds

0 Polygons 155 (7.8%)
1 Polygon 1660 (83.0%)
2 Polygons 162 (8.1%)
3 Polygons 19 (1.0%)
4 Polygons 3 (0.2%)
5 Polygons 0
6 Polygons 1 (0.1%)
7+ Polygons 0

Table 5.3: Hot or Not MTurk Run Statistics - A set of summary statistics from our Hot or Not
annotation run on Amazon’s Mechanical Turk.
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6

Results

We would like to show that annotator rationales can be of value to building classifiers for different

tasks. In attempting this, for each task, we will train a classifier using our approach (a training set

consisting of both original examples and rationale examples), and using the traditional approach

(original examples only) as a baseline, in addition to another baseline where we use only the rationale

examples as our training set. We will also add a few extra baselines for each of the two tasks. For

the scene categories task, we add a mutual information baseline, which automates discriminative

feature selection, as described by Dorko and Schmid in (25). For the Hot or Not task, we add facial

recognition baselines.

To evaluate results from the scene categories task, we perform several trials by training on a

fixed set (across our approach and baselines) of randomly selected training examples and then test

on the rest of the data, calculating precision-recall curves and mean average precision per class. We

then compare these metrics on our approach to the same metrics for each of our baselines.

To evaluate performance of the Hot or Not task, we again perform trials by training on a fixed

set of randomly selected training examples, and then test on the rest of the data, calculating the

percent of test examples correctly classified.

6.1 Scene Categories

We begin by evaluating our approach on the Scene Categories data set.
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6.1 Scene Categories

6.1.1 Methodology

We have tested our approach on our Mechanical Turk annotation data from the Fifteen Scene

Categories data set using the aforementioned procedures against three baselines. In one trial run,

we train a binary classifier for each of the fifteen classes and measure its precision and recall1 at

different SVM decision thresholds2 to find a precision-recall curve for each class. We also compute

the mean average precision for each classifier to give a single numerical point of comparison between

our approach and the baselines. In each trial, 25 images from each class (that were not held out

for parameter optimization) are randomly selected to be used as training examples and the same

training set is used for our approach and each of the three baselines, for a training set size of 25

positive examples and (15−1)×25 = 350 negative examples for each classifier. Then, 100 images per

scene category that were not selected as training examples (or held out for parameter optimization)

are randomly selected as test examples, for a total of 1500 test examples (100 positive and 1400

negative for any particular classifier).

100 trial runs were performed to get the following results.

6.1.2 Baselines

To evaluate our approach’s performance on the classification task, we compare our performance

with that of three baselines.

The first is the Originals Only baseline. This baseline can be thought of as our comparison

to the typical approach to image classification, as it uses only the original training examples with

the full bag of words histograms, making no use of rationales. Beating this baseline would suggest

that there is reason to make use of rationales for scene classification over the traditional approach.

Our second baseline is the Rationales Only baseline. For this baseline, we only use the

rationale examples. Beating this baseline would suggest that rationales are not merely foreground
1In the case of a classifier for the “Bedroom” class, for example, we define “retrieved images” to be those images

that our classifier labeled as Bedrooms. “Precision” is then the number of retrieved images that are actually in the

Bedroom class divided by the total number of retrieved images – a measure of false positives. “Recall” is the number

of retrieved images that are actually bedrooms divided by the total number of bedroom images in the corpus – a

measure of false negatives.
2To come up with these thresholds, we rank the test examples by their decision value and take a threshold (and

hence get a precision and recall value) at each one of them.
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6.1 Scene Categories

segmentation, as this baseline would essentially be the result of cropping out all parts of the image

that don’t fall into a rationale polygon.

Our last baseline is the Mutual Information baseline. We approach Mutual Information

as described by Dorko and Schmid in (25). It is an automated way of selecting the k most

discriminative features (in our case, the most discriminative words in our bag of words histograms)

between the two classes for which we want a classifier. We set k = 100, so this baseline takes the

top 100 words from our bag of 500 words. Beating this baseline would suggest that rationales are

more powerful than automated feature selection, a necessary condition for rationales to be useful,

as we would prefer to use an automated approach over a manual one if they are equally powerful.

In testing each of these baselines, we use the same images in our training and test sets, and

perform parameter cross-validation in the same way as our approach.

6.1.3 Results of Scene Categories Experiment

Our test showed an improvement in mean average precision with our approach over the maximum

baseline per class in the cases of 13 out of the 15 scene categories (see table 6.1). We also show the

precision-recall curve plots for the 8 image categories most improved by our approach in figure 6.1.

6.1.4 Discussion

We discuss the extent to which our approach to using rationales is successful in creating classifiers

for scene categories and attempt to explain the differences in success by scene category.

6.1.4.1 Success of our Approach

We have shown that for the majority of scene categories, using annotator rationales can be very

helpful in building a binary SVM classifier. The mean average precision of our approach beat all

three baselines for thirteen of the scene categories, and the improvement is statistically significant

with α = 0.1 in eleven of the thirteen.

Having beaten the Originals Only baseline in all but one category suggests that there is value

in using rationales over the traditional approach of using only original examples. We’ve shown that

rationales must provide some insight into the differentiation of scene categories that a simple class

label cannot.
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6.1 Scene Categories

Mean Average Precision per Scene Class
Originals Rationales Mutual Gain Over

Only Only Information Maximum
# Class Name Ours (P-Value) (P-Value) (P-Value) Baseline
1 Kitchen 0.1395 0.1196 (0.0000) 0.1277 (0.0000) 0.1202 (0.0000) +0.0879
2 Living Room 0.1238 0.1142 (0.0000) 0.1131 (0.0000) 0.1159 (0.0000) +0.0656
3 Inside City 0.1487 0.1299 (0.0000) 0.1394 (0.0000) 0.1245 (0.0000) +0.0644
4 Coast 0.4513 0.4243 (0.0000) 0.4205 (0.0000) 0.4129 (0.0000) +0.0617
5 Highway 0.2379 0.2240 (0.0000) 0.2221 (0.0000) 0.2112 (0.0000) +0.0603
6 Bedroom 0.3167 0.3011 (0.0621) 0.2611 (0.0000) 0.2927 (0.0055) +0.0505
7 Street 0.0790 0.0778 (0.0000) 0.0766 (0.0000) 0.0775 (0.0000) +0.0159
8 Open Country 0.0950 0.0926 (0.0000) 0.0946 (0.0003) 0.0941 (0.0000) +0.0036
9 Mountain 0.1158 0.1154 (0.0322) 0.1151 (0.0004) 0.1154 (0.0793) +0.0028
10 Office 0.1052 0.1051 (0.0566) 0.1051 (0.0082) 0.1048 (0.0000) +0.0007
11 Tall Building 0.0689 0.0688 (0.0003) 0.0689 (0.0512) 0.0686 (0.0000) +0.0006
12 Store 0.0867 0.0866 (0.3187) 0.0857 (0.0000) 0.0866 (0.1526) +0.0004
13 Forest 0.4006 0.3956 (0.0000) 0.4004 (0.2750) 0.3897 (0.0000) +0.0003
14 Suburb 0.0735 0.0735 (0.2908) 0.0737 (0.9965) 0.0733 (0.0000) -0.0027
15 Industrial 0.1046 0.1056 (0.7757) 0.0911 (0.0000) 0.0981 (0.0000) -0.0099

Table 6.1: Scene Categories Mean Average Precision - A table of the scene categories showing
their mean average precisions with rationales (column “Ours”), Originals Only baseline, Rationales Only
baseline, Mutual Information baseline, with the P-Value for a one-sided t-test of our improvement over
each of the baselines, and the improvement of our approach over the best of the three baselines per class
(“Gain Over Maximum Baseline”). Classes are sorted in order of highest gain over the top baseline. In
all but two cases (classes Suburb and Industrial), our mean average precision is higher than any of the
three baselines, and of the thirteen classes where we beat all three baselines, our mean average precision
was statistically significantly higher at α = 0.1 than any of the other three baselines for all but two
classes (Store, Forest). So, our approach had a statistically significant win over any other method for
eleven out of the fifteen (11/15) classes.
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6.1 Scene Categories

Figure 6.1: Scene Categories Precision-Recall Curves - Precision-recall curves for the eight scene
categories most improved by our approach (based on gain in mean average precision of our approach over
the top baseline). “Ours” curves represent the performance for our approach, “OO” curves represent the
performance of the Originals Only baseline, “RO” curves represent the performance of the Rationales
Only baseline, and “MI” curves represent the performance of the Mutual Information baseline.
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Beating the Rationales Only baseline in all but one category legitimizes this approach in the

sense that we would not get the same results by simply cropping out the parts of the image that

do not lie in a rationale polygon. We can claim that, on this task, altering the SVM to support

two soft-margins as Zaidan et al. suggest in (1) gives superior performance to simply training on

a subset of an image based on its foreground segmentation.

Finally, beating the Mutual Information baseline in every scene category tells us that human

insight has value beyond the insight of a simple mathematical formula. Our approach cannot be

rejected on the grounds that the same thing could be accomplished more quickly using automated

discriminative feature selection.

In summation, our results reveal that using rationales to learn binary scene classifiers is more

powerful than the traditional approach to learning a classifier, a foreground segmentation, and

automated discriminative feature selection. The human reasoning behind a class selection is more

powerful than the class selection alone.

6.1.4.2 Intercategory Performance Disparities

A glance at the gains in mean average precision in table 6.1 and the different shapes of the

precision-recall curves as shown in figure 6.1 reveals significant differences in how rationales affect

classification performance for a given scene category. Our approach most benefits classification

performance of the classes Kitchen, Inside City, and Coast, and least benefits (or hurts) the classes

Industrial, Store, and Tall Building. See figure 6.2 for sample images from these categories.

With some observation, these disparities aren’t difficult to explain. In the classes most benefited

by our method, there is generally a great deal of distracting visual information in the images, from

which rationales could help steer away the classifier. In the Kitchen category, for example, we can

find many images with ostensibly irrelevant local features, such as rich textures in the wall and floor

tiling that might be highly influential in the classifier’s choice if it didn’t have the rationales to steer

it in the direction of more discriminative aspects of the Kitchen category. On the other hand, in the

classes least benefited by our method, there is a very high concentration of evidence of the image’s

category at most of its high gradient points, which are where our descriptors are concentrated. In

the Forest category, for example, nearly every high gradient point in the image is part of a tree, a

highly representative object of the Forest class. Essentially, for the classes our approach performed

the worst on, the DoG interest point detector was already detecting the points that would give the
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most evidence that an image is a member of its class, acting as a type of rationale on its own in

these categories, and additional rationales provide little benefit in that situation.

Kitchen Industrial

Living
Room

Suburb

Inside
City

Forest

The three classes most helped The three classes least helped
by our approach. by our approach.

Figure 6.2: Best and Worst Scene Categories - Sample images from the scenes data set of those
categories that our approach benefited the most (left) and the least (right).

6.2 Hot or Not

We would like to evaluate the usefulness of rationales for a highly subjective classification task, so

we also test our approach on a new data set with images from the Hot or Not website, designing a

classifier that can take an image of a human and decide whether he or she is “Hot” or “Not.”

6.2.1 Methodology

We tested our approach on both our own rationale annotations and those gathered from workers on

Mechanical Turk. We separated our tests by sex, testing classification ability for men and women

separately. In order to create a binary classification task (in particular, “Hot” vs. “Not”) from a

set of images that have been rated as real numbers, we must choose a threshold for what should be

considered Hot and Not. Because it would be extremely difficult for even a human to tell beyond

a random guess whether an image near the median Hotness is actually in the top or bottom half,

we chose the more reasonable task of considering the images with top quartile (25%) ratings in our
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data set to be considered Hot, and bottom quartile ratings to be considered Not, disregarding the

middle 50% entirely for the sake of the experiment. Anecdotally, given that an image is either in

the top or bottom quartile of ratings, it is not difficult as a human to guess which of the two it is in

the vast majority of cases. This threshold parameter can, of course, be modified to create easier or

harder classification tasks, but we will stick with a threshold of 25% as a simple point of comparison

between our method and the baseline.

In one trial run for a single sex, we train a binary classifier on N randomly selected images with

both rationale examples and original examples (our approach), with rationale examples only, and

with original examples only (the traditional approach) from each of the top and bottom quartile,

labeling them as “Hot” and “Not”, respectively. Without rationales, this gives us a training set size

of 2N (N Hot examples, N Not examples). 100 trial runs were performed for each of our training

set size parameters: N = 25, 50, 75, 100.

6.2.2 Face Detection Baseline

For this data set, we also consider a baseline that focuses the classifier’s attention by using an

automatic face detector. This baseline will help show to what extent the Hot or Not class decisions

are determined based on the face alone. If it turned out that existing facial detection methods serve

as better “rationales” than humans can give, then certainly it would be a waste of the annotator’s

time to manually annotate these images. For that reason, we have performed separate1 trials using

the Viola-Jones face detector as a baseline.

We do this in two ways. First, we take the bounding box output by the face detector and use it

as if it were a rationale given by a human annotator, including both the original example and the

rationale example in the training set just as we do with our approach to rationales, and classifying

original images. The second face detection baseline we use is to simply treat the area inside the

bounding box as the entire image, throwing the rest away, and using as test examples only the area

inside the bounding box as well. In other words, we both train and test on faces only for this second

face detection baseline.
1In the face detection trials, we had to use a different, but still randomly selected training set, due to the lack of

faces found by the detector in some of the images for which we had rationales.
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Male

Training Examples per Class N = 25 50 75 100

Ours (Our Annotations) 55.40% 56.96% 58.44% 60.01%
Ours (MTurk Annotations) 53.73% 54.24% 54.58% 54.92%
Original Examples Only 52.64% 54.06% 54.42% 54.86%
Rationale Examples Only 51.07% 51.33% 52.01% 54.01%
Faces as Rationales 52.17% 53.08% 53.25% 53.40%
Faces Only 53.26% 54.41% 55.57% 56.14%

Female

Training Examples per Class N = 25 50 75 100

Ours (Our Annotations) 53.13% 54.51% 55.89% 57.07%
Ours (MTurk Annotations) 53.83% 55.03% 55.85% 56.57%
Original Examples Only 54.02% 55.03% 55.83% 55.99%
Rationale Examples Only 50.06% 50.00% 50.00% 50.00%
Faces as Rationales 53.39% 55.17% 55.77% 56.11%
Faces Only 56.96% 59.05% 60.62% 61.46%

Table 6.2: Hot or Not Results - The performance of our approach applied to the Hot or Not data
set, at four different training set sizes, along with the performance of several baselines. For males, our
method with our own annotations beats MTurk annotations and each baseline. For females, however,
the “Faces Only” baseline beats our performance.

6.2.3 Results of Hot or Not Experiment

Our tests show a significant improvement in classification performance from our approach over each

baseline in the case of classifying males based on our own annotations (rather than the Mechanical

Turk annotations). However, the improvement is much more limited when the Mechanical Turk

annotations are used. In fact, while the MTurk annotations give better classification performance

than the “original examples only” and “rationale examples only” baselines, they do not beat the

“faces only” baseline.

In the case of females, the improvement in classification performance from rationales over the

traditional baseline is much less significant than for the males. Furthermore, the “faces only”

baseline has much stronger performance than our approach.

See table 6.2 for detailed results.
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6.2.4 Discussion

We will discuss the performance of using our rationale-based approach to classify the appearance

of humans and the discrepancies between our attempts at doing so for males and females.

6.2.4.1 Success of our Approach

In table 6.2, it’s obvious that our rationales (though not MTurk rationales) were very helpful in

classifying males. In fact, with just N = 25 training examples per class, our approach beats the

performance of the traditional approach with N = 100 training examples per class (55.40% vs.

54.92%). Neither of the face baselines had particularly impressive performance compared to our

approach, either. This lends credence to our intuition that rationales can be essential when it comes

to training a classifier on such a subjective task as deciding how attractive a person is.

Although rationales do carry a time penalty per annotation, we expect the cost of giving an

image a rationale annotation in addition to a class label to be well under four times the time it

takes to classify it alone. This makes this result in which rationales beat the baseline with just a

quarter of the number of training examples (25 versus 100) a “win” in terms of annotation time as

well as number of training examples. For many tasks, for example video tasks where a rationale

could be a time segment, the marginal time cost of giving a rationale in addition to a class label

could become negligible.

On the other hand, with females, the rationales helped very little: at N = 100 training examples

per class the performance difference was only about 1% over the traditional, “original examples only”

baseline (57.07% vs. 55.99%). Worse still, the “faces only” baseline beat it handily. This leads us

to believe that, in females, the face seems much more helpful in deciding attractiveness than it is

in males.

6.2.4.2 Differences in Classifying Males and Females

We can speculate on the reasons for the performance differences in each of these different approaches

and baselines between the two genders. We notice that rationales weren’t nearly as helpful to

classifying females as they were to classifying males. One possible explanation for this phenomenon is

that the images of females seem to be tighter shots than those of males, so there are fewer background

features to distract the classifier from the human in the image, diminishing the importance of the

rationale.
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Even more striking is the difference in performance of the face detection baselines for each gender.

Classification of females is helped tremendously by face detection (see “Faces Only” baseline in table

6.2), while the effect wasn’t nearly as noticeable for classification of males. One way in which the

classification of males might lose out from removing all non-facial information (as the “faces only”

baseline does) is in the generally well-toned, shirtless upper bodies of many of the “Hot” males, and

the lack of this in the “Not” males. In contrast, the difference in body type of Hot females and Not

females comes primarily in the form of weight, rather than different textures in the skin. Because it

is difficult to create local features such as SIFT descriptors that convey image-level information like

body shape, it’s possible that in our representation, the body is less useful for differentiating Hot

females from Not females, hence the greater improvement from only using their faces. An extension

of our approach might consider more global models of appearance or shape; however, this would

require a different strategy for introducing rationales into the classifier.

6.2.4.3 Low Overall Performance

In all tests of our approach and baselines, the performance never exceeded 62% classification perfor-

mance, and the most näıve baseline, a coin toss, would give 50% classification performance as this

is a binary classification problem. It’s clear that this is a difficult task to learn. There is room for

improvement in several areas. With a higher number training examples, performance could easily

go up for many of these tests, as performance is clearly trending upwards as the size of the training

set increases in most cases (including our approach, for both male and female). A stronger image

representation might also improve the performance of both our approach and the baselines. This

could include, for example, multi-scale dense SIFT descriptors, other local feature representations

like SURF or Gist, spatial pyramid matching, and color bins.

6.2.5 Classification Performance per Image

Noticing large per-image differences in our approach’s performance relative to the baseline, we show

the images from this data set for which our approach helped and hurt classification performance

the most (see tables 6.3 and 6.4).
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Male Ours Base Female Ours Base

Not 27.60% 12.63% Hot 61.50% 16.43%

Not 31.65% 18.26% Hot 80.60% 22.54%

Hot 71.60% 42.97% Hot 52.61% 15.12%

Hot 62.65% 37.92% Not 44.70% 14.21%

Hot 68.25% 43.30% Hot 42.49% 15.02%

Table 6.3: Best Performance Improvement - Hot or Not - These are the five images of each
gender in our data set for which our method gave the greatest classification performance improvement
(based on percent gain) over our baseline test without rationales, and the correct classification rate of our
approach (column “Ours”) and the baseline (column “Base”). The classification rates are the fraction
of times the class of the image was predicted correctly over 2000 random training set splits with training
set size N = 25.
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Male Ours Base Female Ours Base

Not 6.31% 32.31% Not 2.95% 62.20%

Not 3.85% 18.67% Hot 4.36% 36.68%

Not 4.85% 20.53% Hot 7.80% 44.07%

Hot 6.25% 21.96% Not 7.24% 40.31%

Not 15.25% 47.42% Not 8.03% 42.93%

Table 6.4: Worst Performance Loss - Hot or Not - These are the five images of each gender
in our data set for which our method gave the worst classification performance loss (based on percent
loss) relative to our baseline test without rationales, and the correct classification rate of our approach
(column “Ours”) and the baseline (column “Base”) over 2000 trials. The classification rates are the
fraction of times the class of the image was predicted correctly over 2000 random training set splits with
training set size N = 25.
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Conclusions

We have presented a new way to look at supervised learning of image classes: by using not only the

“what” of an annotator’s classification, but also the “why”. We have found that asking an annotator

to not only label an image by its class but also by drawing a polygon around the region or regions that

were most influential in his or her choice can be significantly useful in multiple domains, including

creating binary classifiers of scene categories and classifying images of humans as attractive or

unattractive. These results seem to suggest that this new approach to image classification could

be useful in many other domains as well, especially perceptive or subjective tasks with images that

have sparsely distributed interesting features and those that involve a subjective decision by the

annotator.
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