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Abstract

Visual attributes are human-nameable, cross-categorical image concepts used by
people everyday to describe objects. For instance, cats are “furry” while turtles are
not. Some shoes are “shiny” while others are not. These human-intuitive attributes
have significant uses in the computer vision field. Yet it is even more intuitive, and
informative, to be able to ascribe the degree of some attribute in an image relative
to that of others. If asked to describe a donkey, we are much less inclined to name
all the attributes associated with the animal and are more likely to describe it in
terms of a similar animal, using relative descriptions such as “like a horse but shorter
and with longer ears.” In this way, we can use relative attributes to build a richer
vocabulary for textually describing an assortment of images.

Currently, there exist rank learning methods that are useful for modeling relative
visual attributes, but these methods generally require training samples in the form of
relative partial orderings, labeled by humans. However, annotating training samples
can be very time-consuming.

In this work, we investigate three active learning methods for image ranking over
relative visual attributes designed to minimize the annotation effort. The active
learners seek to select training samples that provide the most useful information
by choosing the most ambiguous image samples for annotation at each step in the
learning loop. We accomplish this by using a low margin-based approach to sample
selection. Two of our three active learners operate exclusively under this condition.
For the final proposed active learner, we introduce a novel form of active sample
selection that selects training samples that are both visually diverse and satisfy the
low-margin property.

Experimental results indicate that on average, the active learner employing a
combination of the low-margin and visual-diversity property performs best, as it
outperforms the other active learners that operate solely under the low-margin con-
dition. In addition, all three active learners consistently outperform the baseline
approach of random sample selection, supporting the effectiveness of our proposed
active learning methods as applied to image ranking over relative visual attributes.
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Chapter 1

Introduction

Visual attributes are human-nameable mid-level image concepts (e.g., furry, shiny,
round) that can be shared across multiple image categories. They can be machine-
learnable and therefore have several applications for visual recognition systems in
describing and categorizing images [11, 20, 21]. Since visual attributes are observable
properties of images that are nameable but not themselves categorical, combinations
of a handful of visual attributes can be used to describe a massive variety of images
across multiple categories [11, 27]. This offers much more flexibility for object
recognition than that gained from simple identity assignment.

For instance, we can train an identifier for ducks by showing the learning system
multiple pictures of ducks. If we would like to train an identifier for chickens next,
we could show the system multiple pictures of chickens, and so on. Clearly, this
strategy will become expensive if we intend to train identifiers for a wide variety of
other kinds of birds later on. Instead, it would save huge time and effort if we simply
train attribute identifiers capable of describing various visual characteristics of birds.
For example, we know that ducks have webbed feet and chickens do not, chickens
have pointy beaks and ducks do not, and penguins have both webbed feet and pointy
beaks. Then instead of training three separate identifiers for ducks, chickens, and
penguins, we can instead train just two identifiers for the attributes has webbed feet
and has pointy beak to uniquely identify the three birds.

Yet it is often even more intuitive, and informative, to describe images based on
the relative strengths (as opposed to absolute presence) of visual attributes compared
to those of others (e.g., X is rounder than Y but less round than Z). Visual attributes
that vary across a spectrum are known as relative visual attributes [27]. They
provide a more human-intuitive, semantically meaningful way to represent and work
with visual data, making it easier to describe objects.

For instance, suppose someone asks you to describe a donkey. You are probably
less inclined to describe all the features of the donkey (e.g., “It walks on four legs,
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Figure 1.1: Relative vs Binary Attributes The top set of images are divided into two
groups: is smiling and is not smiling. When we use this attribute as a binary classifier, we can
overgeneralize and miss lots of other information. Compare this to the bottom set of images, which
are ranked across a spectrum according to the relative attribute, smiling. Now we see just how
much some images are more or less smiling than others, giving us a much clearer idea of how the
images relate to each other over this relative attribute.

has a short mane, large snout, two eyes, two long ears, hooves, etc.”) and more likely
to compare it to a similar-looking animal such as a horse using relative attributes
(e.g., “It looks like a horse but has a less thick mane, longer ears, etc”).

Relative attributes also provide much more information than binary attributes
since they vary across a spectrum (see Figure 1.1), whereas binary attributes are
limited to providing only two pieces of information (e.g., “Does this object have X
or not?”). This is especially helpful in cases where the absolute prescence or absence
of an attribute is ambiguous. This greatly expands our ability to learn identifiers
for unseen classes of images across a spectrum of categories [27].

Consider Figure 1.2. Suppose we want to learn an identifier for boots and already
have knowledge of pumps, clogs, and their association with the attribute, pointy.
The left image of the pump is clearly pointy while the right image of the clog is
clearly not, but what would we assign the middle image of the boot? It remains
ambiguous whether boots are pointy or not pointy. It is much easier and intuitive
to just say “Boots are less pointy than pumps but more pointy than clogs.”

In addition, we can extend the usefulness of relative attributes to practical ap-
plications such as image search [19]. Suppose we want to look for images of shoes
similar to ones we already own, but more long on the leg and less shiny; using
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Figure 1.2: Learning an Identifier with Relative Attributes It is difficult to
assign a value for to boot in the middle over the attribute, is pointy, since it is ambiguous whether
the boot is pointy or not. It is much intuitive to use relative attributes and define the boot as: less

pointy than the pump but more pointy than the clog.

relative attributes makes the process much more natural.
There exist a variety of methods for learning to rank [22, 17, 13, 16] that could

also be applied to learn relative visual attributes. These ranking functions are
generally trained by collecting annotations from humans in the form of click data,
such that user preferences over a query (text, image, etc.) are used to learn a
function that ranks items in terms of relevancy. Clustering and distance-based
approaches are then used to induce a ranking over these images.

However, this form of data collection is less intuitive than judging over relative
strengths of attributes. We prefer to ask questions in the form of “Is the face in
Image 1 chubbier than the face in Image 2?” or “Of these images, which ones are
most [some attribute]? Which ones are second most [some attribute]? ...” such that
ranking by relative attributes over image samples come more naturally. To this end,
we use a large margin based approach to rank learning that can be trained using
relative comparisons among training examples [18], which offer a robust method for
supervised learning over high-dimensional data. Training labels are simply in the
form of sets of partial orderings (see Figure 1.3), and the goal is to learn a ranking
function that imposes those desired orderings as well as generalizes to new, unseen
images.

However, the labelling process necessary to learn an adequate ranking function
is costly. Manually assigning partial orderings to sets of images can be expensive,
and for many real world applications, the size of a candidate training pool of images
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Figure 1.3: Example of a Labeled Sample To train a ranking function, we need
annotations in the form of partial orderings over a set of images based on their relative strengths
of the attribute. Notice here that the assigned rank values (2, 4, 4, 1) are not “absolute” scores of
any sort, but are relative only among the set of images in this training sample.

may extend to the tens and thousands, making annotating all of them unfeasible.
Multiply that by the number of attributes necessary to relate a number of different
image instances and classes, and we quickly see how overwhelming the process can
get.

Our goal is to introduce an active learning algorithm that selects the best images
to use as training samples, thereby greatly minimizing the total number of training
images and human labeling effort necessary to train an accurate ranking function.

To give an intuition of the role of active learning, consider the following example.
Suppose we have an image database of peoples’ faces containing 10% male faces and
90% female faces, and we conveniently want to learn a ranking function that ranks
faces based on masculinity. If we simply selected image samples at random, we
would select images with female faces 90% of the time, which might train a ranking
function that is really good at judging relative levels of masculinity among female
faces, but most likely we want one that is just as good at judging relative levels
of masculinity among male faces. A good portion of the 90% of the time spent
annotating female faces could have gone into annotating both male and female
faces, which would yield a ranking function with much more generalizability using
approximately the same amount of effort.

This is why we seek to implement sample selection techniques that make the most
out of annotator effort at each step in the learning process so as not to waste any
work. Factors to consider include whether or not we have seen a similar image before,
how uncertain we are over these images’ current rankings, how much information
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they will provide once ranked, and how easy or difficult it will be for annotators to
rank the samples.

So far, most work on active learning has been over classification tasks(e.g., [31,
26, 34]) with some on ranking (e.g., [5, 38, 23]), although few have been put into
practice for image-ranking in general(e.g., [33, 28]), and none have been applied to
image ranking over visual attributes in particular.

Here, we investigate two active rank learning approaches and propose a third
approach toward smart selection of image samples. All three approaches utilize
a margin-based criterion, which seeks to pick out the image samples that were
most difficult to rank at the previous iteration (i.e., images having the lowest rank
margin) and would therefore provide the most useful information for training an
updated ranking function at the next iteration once annotated.

The first approach, the myopic active learner, actively selects images samples
on a pair-by-pair basis (considering only rank margins between pairs of data). The
second approach, the far-sighted active learner, actively selects image samples that
minimize the cumulative rank margin within a batch (based on [38]). The third
approach, the diversity-based far-sighted active learner is an extension of the far-
sighted learner that actively selects for low-margin image samples that are also
visually diverse.

We demonstrate the effectiveness of these active learning methods in three unique
domains: the Outdoor Scenes [25] data set, the Public Figure Face [20] data set, and
the Shoes [2] data set. In addition, we apply our active learning models to up to 27
distinct relative visual attributes over the three data sets to show the performance
of our learning method across various visual contexts. The three active learners will
be tested against each other as well as against three baseline approaches discussed
further in Section 4.2.

Results indicate that all three active learners consistently outperform the base-
line approach of random sample selection, suggesting their effectiveness in image
ranking over relative attributes. Among the active learners, on average, our pro-
posed diversity-based far-sighted learner outperforms the far-sighted learner, and
the far-sighted learner outperforms the myopic learner, suggesting that a combina-
tion of both the low-margin condition and visual-diversity condition is most effective
for learning to rank images.

In this work, I will investigate low margin-based active learning methods and
apply them to the novel problem of image ranking over relative visual attributes as
well as introduce a new active learning method for ranking over relative attributes.
Chapter 2 discusses related work and explains the context for my contributions.
Chapter 3 describes the process of learning a ranking function and introduces the
three active learners in detail. Chapter 4 presents the experiments and results. We
conclude the paper with Chapter 5, which summarizes the findings and suggests
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potential candidates for future work in this area.
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Chapter 2

Related Work

The importance of visual attributes has been well-explored in computer vision. Sev-
eral works have been dedicated to discovering these types of attributes from public
sources [2, 36]. These attributes can benefit object recognition [11, 3] and facial
recognition [20]. They also allow us to describe classes of images using human-
intuitive semantics that enable zero-shot learning of, and knowledge transfer be-
tween, classes and concepts [21, 29].

In the case of relative information, several works use relative data as applied to
images in terms of relative degree of image similarity [20, 35], although these do not
involve relative visual attributes since they require training a system to a specific
model or image category, as opposed to category-independent relative attributes. In
more recent work, relative visual attributes have been explored with applications to
zero-shot learning [27] and image search [19].

With regards to learning to rank, there have been several works dedicated to
rank learning algorithms including those making use of margin-based criterion [18],
bipartite or k-partite ranking with boosting [28, 12], distance-based approaches [13],
and works investigating supervised learning using both the pairwise and listwise
approaches [7, 38]. In practical applications, rank learning has largely been applied
to document and text retrieval [18, 22, 6] and to some extent image retrieval [17, 16].
For the latter, annotations generally take the form of click data, evaluating a human
user’s preferences towards an image query. However, the ranking functions in these
works are intended for ranking images in terms of their relevance to a specific query
and not over relative visual attributes. While some recent works have investigated
rank learning over relative visual attributes [27, 19], they do not investigate active
learning as we will do here.

Much work has been done on both margin-based [1, 31, 30] and diversity-
based [37, 4, 24, 15] active learning techniques for classification over documents
and images [39, 26, 34, 14, 9]. The goal of these works is to actively learn classifiers
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that distinguish between relevant and irrelevant documents or images with regards
to some query by selecting data items that would provide the most information
for learning an updated classifier once annotated. Margin-based active learning for
ranking has also received attention [5, 38]. The goal there is to actively learn rank-
ing functions that rank items according to some criteria by selecting data items that
would provide the most information for learning an updated ranking function once
annotated.

Most applications of active learning to ranking, however, have largely fallen in
the context of text and document retrieval [10, 23]. Works applied to active learning
for image ranking in particular are more rare. While a few exist [33, 28], they use
“bipartite” ranking methods that are still largely based on traditional classification
strategies. Questions are of the form “is this image relevant or irrelevant?” and
then a ranking is extracted from what are essentially binary labels (each image
only receives one of two labels, “relevant” or “irrelevant”). On the other hand, our
approaches allow multiple images within a batch of samples to be uniquely ranked
relative to each other, which is not only more informative, but also a more natural
way of ranking as opposed to assigning absolute scores to individual images. Also,
like most other works involving image-ranking, these only focus on active learning
for image ranking over query relevance and not over relative visual attributes. This
is a very important distinction for the following reasons:

• In relevancy judgment, the highest ranked items are the most important, and
therefore the ordering goes one way. On the other hand, ranking over relative
attributes is a bidirectional process (e.g., “X is more masculine-looking than
Y” is just as important as “Z is less masculine or more feminine-looking than
Y”).

• Ranking over relative attributes is more complicated, because it is more sub-
ject to individual differences in opinion (e.g., “Are lips that are thinner but
wider considered bigger or smaller than lips that are thicker but narrower?”).
In many cases, there may not be a perfect, indisputable, ground-truth ranking
at all.

• Relevance judgment in information retrieval is still a membership problem
(e.g., “How relevant is this data item to this topic or class?”), where everything
is based on some ideal model. This is not the same with relative attributes,
where concepts are cross-categorical and have no real “anchor.” The same set
of features may or may not indicate greater presence of the attribute under
different conditions. It may be the the case that what constitutes greater
attribute presence is dependent on the context (e.g., “There is greater presence
of maleness in a face when it possesses more facial hair, but only if it also has
more facial musculature”).
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My main contribution is to apply three active learning strategies to image ranking
over relative visual attributes, which to the best of our knowledge, has not yet been
investigated.

The first two active learning strategies, which we call the myopic and far-sighted
active learners, are adapted from Yu’s [38] approximated selective sampling (ASEL)
and selective sampling (SEL) methods, respectively. The former method approaches
low margin-based sample selection on a pair-by-pair basis, considering only margin
distances between pairs of samples, while the latter method considers the cumulative
margin distance among all members within a batch of samples. Yu’s active learn-
ing strategies appear promising, but to our knowledge, they have only so far been
applied to artificial rank data or labels that did not arise from relative judgements.
Instead of asking annotators to rank sets of images up front, these experiments asked
annotators to impose absolute (not relative to anything) rank scores on individual
query items. Here, we seek to apply the active learning methods to actual images,
querying annotators with sets of images that must be ranked based on the relative
strengths of some visual attribute as opposed to assignment of absolute rank scores.

The third proposed active learning strategy is called the diversity-based far-
sighted learner. It adheres to the low-margin condition while simultaneously select-
ing for visually diverse image samples.

9



Chapter 3

Approach

We first explain how we train a ranking function for relative visual attributes (Sec-
tion 3.1). Next, we discuss the general active learning setup (Section 3.2). Finally,
we introduce three types of active learners: the myopic active learner (Section 3.3.1),
the far-sighted active learner (Section 3.3.2), and the diversity-based far-sighted ac-
tive learner (Section 3.3.3).

3.1 Training a Ranking Function for Images

Suppose we are given a set of images I = {i} represented in R
n by feature vectors

{xi} describing their texture, color, or other low-level cues. Let “xi >a xj” denote
“xi has more of attribute a than xj” and “xi =a xj” denote “xi has the same amount
of attribute a as xj.” Then given a set of pairs O = {(xi, xj)}, if (xi, xj) ∈ O, then
xi >a xj, and given a set of pairs S = {(xi, xj)}, if (xi, xj) ∈ S, then xi =a xj (see
Figure 3.1).

The goal is to learn a ranking function F :

F (xi) = wT xi (3.1)

that best satisfies the following constraints:

∀(xi, xj) ∈ O : wT xi > wT xj (3.2)

∀(xi, xj) ∈ S : wT xi = wT xj, (3.3)

where w ∈ R
n is the weight vector to be learned. In other words, we aim to learn

a weight vector, w, that ranks the images in the desired order dictated by O and S

by projecting their corresponding feature vectors onto w.
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Figure 3.1: Example of Pairs from Sets O and S for Attribute: Open. The
top pair of images belong in the set of pairs, O, because the left image of buildings is more open
than the right image of trees. The bottom pair of images belong in the set of pairs, S, because
both images of coasts are equally open.

This NP-hard problem can be approximated by using the method described
in [18] and introducing non-negative slack variables, γi,j and ǫi,j. The reformulation
also imposes a parameter, C, as a trade-off constant between maximizing the dis-
tance between the closest data pairs (xi, xj) when projected onto w (we refer to this
distance as the rank margin, or 1

‖w‖
), and minimizing the training error by satisfying

the constraints in equations 3.2 and 3.3 (see Figure 3.2). This becomes the following
optimization problem.

Minimize:

1

2
‖wT‖ + C

(

∑

ǫ2
i,j +

∑

γ2
i,j

)

(3.4)

Subject to:

∀(xi, xj) ∈ O : wT xi ≥ wT xj + 1 − ǫi,j (3.5)

∀(xi, xj) ∈ S : |wT xi − wT xj| ≤ γi,j (3.6)

∀(i, j) : ǫi,j ≥ 0, γi,j ≥ 0. (3.7)

By rearranging constraints of Equations 3.5 and 3.6 to:

∀(xi, xj) ∈ O : wT (xi − xj) ≥ 1 − ǫi,j (3.8)
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Figure 3.2: Learning a Ranking Function The rank margin is the distance between
the two closest projections onto w. When learning a ranking function, we seek to derive a w

that imposes the desired ordering while maximizing the margin to increase the ranking function’s
generalizability.

∀(xi, xj) ∈ S : |wT (xi − xj)| ≤ γi,j, (3.9)

these now take the form of support vector machine (SVM) classification constraints
on pairwise difference vectors (xi − xj). The rank margin mentioned above ( 1

‖w‖
),

which in classification problems represents the distance from support vectors to the
boundary, here in ranking represents the distance between the closest data pairs
when projected onto the learned weight vector, w. This problem is now solvable
using Newton’s method [8]. Although we use linear ranking functions in our ex-
periments here, the formulas above are kernelizable and thus extend to nonlinear
ranking functions.

By minimizing the slack variables while adhering to the constraints in Equa-
tions 3.8 and 3.9, we learn a ranking function that satisfies those constraints with
minimal error. By maximizing the rank margin 1

‖w‖
(or minimizing ‖w‖), we learn

a ranking function that has maximum generalizability (see Figure 3.3).

3.2 Active Learning

Recall that O is the set of pairs (xi, xj) of feature vectors such that xi has more of
some attribute than xj, and S is the set of pairs (xi, xj) of feature vectors such that
xi has the same amount of the attribute as xj. Once we establish how to learn a
ranking function, the next step is to determine how to populate these sets such that
we can best learn an accurate ranking function.
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Figure 3.3: Maximizing the Margin Here, two candidate weight vectors, w1 and w2 rank
four points. w1 is the better candidate, because it yields the largest rank margin.

Like most supervised learning settings, we can simply query a human annotator
for labels. For pairwise rankings, questions may be in the form of “Is Image 1 more
or less [some attribute] than Image 2?” For batch selections, questions may be in
the form of “Of these set of images, assign them rank labels from 1-4 with 4 being
most [some attribute] and 1 being least [some attribute]” or “Of these set of images,
select the ones with the most [some attribute], then do so again with the remaining
images until all have been processed.” Annotating pairs of images at a time is easier,
but annotating batches of images provides more information at a time [7].

Theoretically, one can annotate hundreds and thousands of images with rank
labels in order to train an accurate ranking function. Realistically, this is incon-
venient, highly time consuming, and likely frustrating for the annotator. It would
save much human effort if we aim to select only image samples for labeling that will
provide the most information once annotated, thus populating O and S with only
the most useful samples.

Consider this scenario. Suppose we have a set of images of scenes, including
pictures of mountains, forests, oceans, highways, and tall buildings. At first, we
select two images, one of a mountain and one of a highway, for an annotator to
rank with regards to the attribute, natural. The annotator ranks the image of the
mountain as more natural than the image of the highway, and we train a ranking
function using this new information. The rudimentary ranking function is now
likely to rank pictures of similar-looking mountains as more natural than images of
similar-looking highways.

Now suppose for the second round, we choose two more images of a mountain
and highway that look pretty similar to those from the first set. The annotator
once again ranks the image of the mountain as more natural than the image of
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the highway. We train a new ranking function using this updated information, and
produce one that does not act much differently from the first one. This is because
we selected, for our second sample set, images whose relative rankings the predictive
model was already pretty sure of since it had seen something similar before. Had we
selected images whose rankings were more uncertain, such as pictures of oceans or
tall buildings, the refined ranking function would be much more useful the second
time around. Essentially, at each step in the learning process, we use newly labeled
image samples to fine tune the ranking function, but this is only effective if the
image samples actually provide new and meaningful information.

This is the sample selection problem that active learning seeks to solve. The
goal is to choose only image samples whose annotation will provide not only new,
but maximum information towards training a ranking function. To determine which
new training samples to select for the current iteration, we must utilize information
gained from the previous iterations, which in this case is the most recently learned
ranking function (see Figures 3.4 and 3.5).

In classification problems, the learning machine might select samples that lie
closest to the classification boundary, because they were the most difficult to classify
and therefore are likely to provide the most information once annotated. We apply
a related rationale to image ranking.

In the image ranking problem, the distance between adjacent feature vector pairs
when projected onto the weight vector, w, represents the confidence level in those
assigned rankings. The smaller the distance, or margin, between a data pair, the less
certain the machine is about how that data pair was ranked. Therefore, the closest
feature vector projections, or those with the smallest margin, make up the support
vectors of ranking — samples that were most difficult to rank and therefore likely to
provide the most information once annotated. This is the low margin-based sample
selection method that all three of our active learners will employ in the upcoming
experiments. Descriptions of these active learners follow in the next section.

3.3 Actively Learning to Rank

We now introduce three different types of active learners that utilize the low margin-
based sample selection approach discussed in the previous section. Section 3.3.1
presents a conventional pairwise low-margin approach, or the myopic active learner.
Section 3.3.2 presents a listwise low-margin approach that considers cumulative
margin spaces beyond that between a data pair, or the far-sighted active learner.
Section 3.3.3 introduces a listwise low-margin approach that is also sensitive to visual
similarity among images, or the diversity-based far-sighted active learner, also called
the far-sighted-D active learner.
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Figure 3.4: Active Learning for Image Ranking. The active learning loop involves
selecting a sample of images from an unlabeled pool of data for the annotator to rank, adding the
annotation to an accumulating labeled set, using the updated labeled set to learn a new ranking
function, applying what we just learned (i.e., the ranking function) to the unlabeled set, and using
the result to actively select for a new set of samples for annotation.

3.3.1 Myopic Active Learner - A Pairwise Low-Margin Ap-
proach

Annotation for ranking requires at least a sample size of s = 2, or one data pair.
The myopic active learner employs the low margin-based sample selection approach
presented in Section 3.2 by selecting the data pair whose members lie closest to each
other when projected onto the weight vector, w (see Figure 3.6).

Although annotating a pair of images is quick and easy, annotating a batch of
s > 2 images provides much more information per iteration. The myopic learner
can extend to selecting for samples of size s > 2 by simply selecting the s

2
data pairs

with the lowest margins (see Figure 3.7). Note that s must be even. Figure 3.8
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1. Randomly select a number of samples from an unlabeled set U to order.

2. User orders all s samples.

3. Add the samples with the orders to the labeled set L and learn a ranking
function F (see Section 3.1) from it.

4. If F satisfies some condition, return it. Otherwise, select s number of samples
from U using an active sample selection method.

5. Repeat from step 2 until an accurate enough F is reached or until we have
exhausted the data from U .

Figure 3.5: Steps for Active Learning in Ranking

Figure 3.6: Myopic Learner and Pair Selection. The myopic learner, under the
low-margin condition, selects the data pair with the lowest margin, or members that lie closest to
each other.

details the steps of this process.
This learner is called the myopic learner, because it considers only the distances

within, but not among, every data pair when selecting for image samples. This selec-
tion method is cost-efficient since it only requires computing the distance between
each adjacent pair of data to determine a sample set. The image samples might
also be easier for humans to rank since there may be sufficient visual dissimilarity
(with regards to the attribute) between pairs. For instance, suppose s = 4, then
the myopic learner may choose an image pair that both have a lot of some attribute
and another image pair that both have very little of the same attribute. It would
be easier to rank these four images as a whole than had they all been high-scoring
candidates. Of course, since this learner does not minimize the cumulative distance
among all s samples, even though it does select for an informative batch of image
samples, it is not necessarily the most informative batch.

For that, we need to look beyond pairwise margins.
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Figure 3.7: Myopic Learner and Batch Selection. For sample sizes s > 2, the
myopic learner selects the s

2
data pairs with the lowest margins. Here, the s = 4, so the myopic

learner selects two data pairs with the lowest margins.

1. Compute |F (xi − xj)| for every pair of feature vectors in the unlabeled set U.

2. Sort the pairs in ascending order based on the value of |F (xi − xj)| (e.g.,
{(xi, xj), . . .}).

3. Take the top s unique feature vectors, or top s
2

pairs, from the pair list to
build sample set S.

Figure 3.8: Steps for Sample Selection - Myopic Learner

3.3.2 Far-sighted Active Learner - A Listwise Low-Margin
Approach

Unlike the myopic learner, the far-sighted active learner seeks samples with the
mimimum cumulative margin distance among all data members, not just margin
distance between independent pairs. In other words, after we project feature vectors
from the unlabeled training set U onto weight vector, w, we aim to choose the closest
s data members. For sample set S of size s, the objective is to minimize |F (xi−xj)|
for all (xi, xj) ∈ S, as follows.

S∗ = argmin
S⊆U

∑

∀(xi,xj)∈S

|F (xi − xj)|, (3.10)

for all possible S of size s that can be built from the unlabelled dataset U (see
Figure 3.9).

To accomplish this using brute force, we would need to evaluate

M(S) =
∑

∀(xi,xj)∈S

|F (xi − xj)| (3.11)

for every possible S, which is highly costly for large sizes of U . Yu [38] proposes a
more efficient algorithm that involves sorting the feature vectors of U by the learned
ranking function, then evaluating only the cumulative margin of each contiguous set
of s sorted members in succession. Each time we shift one member up, we remove
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Figure 3.9: Far-sighted Learner and Batch Selection. For sample size s = 4, the
far-sighted learner aims to select the set of samples with the lowest cumulative margin across all

data members (compare to Figure 3.7, which only looks at margin distances between data pairs).

Figure 3.10: Updating to the Next Sample Set. This graphical depiction of step 6b
of Figure 3.11 illustrates the process of updating the current sample set. We remove the oldest
data member from the previous sample set and add in the next data member over from the sorted
list to get the new sample set. Updating the cumulative margin involves subtracting the sum of
the distances between the removed data member and the rest of the old sample members (Mxi

)
and adding the sum of the distances between the newly added data member and the remaining
sample members (Mxi+s

).

the oldest data member from the sample set and add in the next data member over
from the sorted list. We also update the cumulative margin by subtracting from
it the sum of the distances between the removed data member and the rest of the
sample members (excluding the newly added data member), and we add to it the
sum of the distances between the newly added data member and the remaining
members of the sample set (see Figure 3.10). Figure 3.11 provides the steps in more
detail. This method requires only (O(|U |)) evaluations, reducing the cost to linear
time.

This learner is called the far-sighted learner, because it considers cumulative
distance among all data members when selecting for image samples. Because the
selected images have the lowest cumulative margins, they will provide the most
information for learning a ranking function once annotated.
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1. Build a set of rankings R by applying the previously learned ranking function
F to the unlabelled dataset U .

2. Order the data members of U according to the corresponding rank values of
R and write the newly ordered data to UR.

3. Put the first s data members from UR into temporary sample set ST .

4. Compute M(ST ) (defined in Equation 3.11) and assign it to M1.

5. Set a Mmin := A large number and i := 1.

6. Repeat the following until i > |UR| − s

(a) If Mmin > Mi, then Mmin := Mi, I := i

(b) Mi+1 := Mi − Mxi
+ Mx(i+s)

where

Mxi
=
∑

i<j<i+s |F (xi − xj)|

Mx(i+s)
=
∑

i<j<i+s |F (xj − xi+s)|

(See Figure 3.10)

(c) i := i + 1

7. Final sample set S = {xI , xI+1, . . . , xI+s−1}.

Figure 3.11: Steps for Sample Selection - Far-sighted Learner

However, because the far-sighted learner by nature chooses samples whose rank-
ings it has least confidence and most uncertainty in, it may select samples com-
posed of all visually similar (with respect to the attribute) images, making them
more difficult for a human to rank. This not only makes the decision process more
time-consuming, but also increases the likelihood of annotators giving questionable
or flat-out “wrong” rankings. In fact, one caveat of margin-based sample selection
is that the image sample will only provide the most “good” information assum-
ing the annotation is correct, but “correctness” can be highly subjective among
similar-looking image samples whose rankings are ambiguous. To account for these
problems, we introduce the constraint of visual diversity in the following section.

3.3.3 Diversity-Based Far-sighted Learner - A Visually-Sensitive
Extension

The myopic and far-sighted learners both select image samples based solely on
the low-margin condition. But what if by doing so, they select images that look
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Figure 3.12: Visually Similar vs Diverse Images The image pair on the left is more
visually similar than the image pair on the right. Over the relative attribute, diagonal-plane,
the correct ranking for the rightmost pair is much more obvious and might even provide more
information than the leftmost pair.

extremely similar such that their rankings are highly subjective and ambiguous?
Should an annotator provide “wrong” or “questionable” rankings, the result would
be counterproductive and perhaps even destructive for the learners (see Figure 3.12).

On the other hand, if the annotator cannot simply decide between any of the
samples and in surrender ranks them all as equal, this may not harm the learning
system, but it certainly would not provide much if any new information for the
system.

Under the assumption that visually diverse images are more distinguishable,
therefore easier and faster to rank, and more likely to take on different rank values
with respect to each other, we propose a novel form of active learning to rank. This
is a diversity-based extension of the far-sighted learner, named the “far-sighted-D”
learner, that incorporates a “visual diversity” condition.

First, we need a evaluation metric for “visual diversity” as applied to images.
Since we will be working with images’ feature vectors, we will consider two images
to be “more diverse” if the Euclidean distance between their feature vectors is larger
and “less diverse” if the Euclidean distance between their feature vectors is smaller.

Our diversity-based far-sighted-D learner will first divide the unlabeled set of
training images U into k clusters using k-means clustering such that k ≥ s (recall
that s is the size of the sample set of images selected for annotation) based on
proximity of the feature vectors in Euclidean space. Then, it employs the same
approach as the far-sighted learner described in Section 3.3.2 with one change: The
far-sighted-D learner only selects images that belong to different clusters (see Fig-
ure 3.13). The goal is to select image samples that minimize the cumulative margin
while simultaneously satisfying the visual-diversity constraint. The k in this case
determines the tradeoff between lower margin and more visual diversity.

In order to accomplish this, we would once again face the problem of needing
to evaluate every possible s combination of the data members in U in order to
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Figure 3.13: Far-sighted-D Learner and Batch Selection. For sample size s = 4
and cluster number k = 4, the far-sighted-D learner first uses k-means clustering to divide the data
into k clusters. It then projects all data onto the weight vector, w, and from those, selects the
closest s data members (i.e., ones with the lowest cumulative margin) such that each one belongs
to a different cluster, enforcing diversity.

check that they satisfy the visual-diversity constraint, which would be far too ex-
pensive. Instead, we propose an alternative method that approximates the goal
(i.e., selecting image samples that minimize the cumulative margin while satisfying
the visual-diversity constraint). This approximation will satisfy the visual-diversity
constraint (i.e., selecting samples whose members belong to different clusters), but
it does not guarantee minimum cumulative margin given the constraint. In other
words, there could exist other sample sets whose cumulative margins are still smaller
even though they, too, satisfy the visual-diversity constraint. However, this approx-
imation works in a much more manageable O(|U |2) time, and we find it to still be
effective performance-wise, as later results will show (see Chapter 4).

The first few steps work exactly as steps 1-5 from Figure 3.11, so the setup is the
same as that for the far-sighted learner: We first build a sorted list of data members
by applying the previously learned ranking function to the unlabeled set, U . We
then compute the cumulative margin of the first s sorted data members. From here,
we iterate through each contiguous set of s sorted members in succession, checking
if the current sample set members satisfy two constraints:

1. The current sample set yields the lowest cumulative margin seen so far.

2. The members of the current sample set satisfy the [diversity condition].
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The “diversity condition” is that all members of the current sample set belong to
different clusters, as discussed above. However, other metrics for evaluating diversity
outside the scope of this paper could also be applied here.

• If the current sample set does not satisfy constraint 1, we simply examine
the next sample set by removing the oldest data member and adding in the
next data member over from the sorted list, just like we did before for the
far-sighted learner as shown in Figure 3.10.

• If the current sample set satisfies both constraint 1 and 2, we record the new
lowest cumulative margin seen so far and the samples belonging in the set that
yielded this value. We then examine the next sample set over, again as shown
in Figure 3.10.

• If the current sample set satisfies constraint 1 but not constraint 2, we start
a subprocess. Prior to this, we make sure to store the current sample set for
retrieval later. The subprocess:

– We employ an “offender selection criterion” to identify one of the mem-
bers in the sample set that is causing us to fail constraint 2. The offender
selection criterion as follows: “Examine any members that belong to the
same cluster within the sample set and of those, pick the one whose cumu-
lative margin distance to the remaining sample members is the largest.”
We throw out the chosen “offender” from the set and add in the next
data member over from the sorted list to get a new sample set.

– We continue checking for constraints 1 and 2 as before and updating the
sample set like in the last step above until we either finally pass both con-
straints 1 and 2 or start to fail constraint 1. If we pass constraints 1 and
2, we record the new lowest cumulative margin and the samples belonging
to the current set that yielded the value and terminate the subprocess.
If we fail constraint 1, we immediately terminate the subprocess.

When we are done with this subprocess, we retrieve the previously stored
sample set, and examine the next sample set over, as shown in Figure 3.10.

Figure 3.14 presents a more detailed description of the steps.
One obvious concern for this learning approach is that it may still be computa-

tionally expensive, evaluating training candidates in O(|U |2) time. In a trial study,
we ran this approach 20 times using s = 4 and k = 10 over 2688 images of scenes
represented by 557-dimensional feature vectures. We found the average running
time across all 20 runs to be 0.74 seconds (compared to 0.39 seconds by the far-
sighted learner). Although this value may become more problematic to performance
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for much larger data sets, in practice, it may still be trivial compared to the time it
takes for humans to annotate the images and effort saved by using a diversity-based
learning method that selects for visually distinct images. Section 4.7.3 discusses
more on performance and human effort saved.
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1. Build a set of rankings R by applying the previously learned ranking function
F to the unlabelled dataset U .

2. Order the data members of U according to the corresponding rank values of
R and write the newly ordered data to UR.

3. Put the first s data members from UR into temporary sample set ST .

4. Compute M(ST ) (defined in Equation 3.11) and assign it to M1.

5. Set a Mmin := A large number and i := 1.

6. Repeat the following until i > |UR| − s

(a) Set vector ivec = {i, i + 1, . . . , i + s − 1} and let ivec(j) denote “the jth

member of ivec”

(b) Mprev = Mi

(c) If Mmin ≤ Mprev, then skip to step (e)

(d) Otherwise:

i. If [diversity condition] is satisfied, then Mmin := Mprev, Ivec :=
ivec, then skip to step (e)

ii. Otherwise:
A. Identify one of the ”offenders” from ivec using [offender selec-

tion criterion] and assign it to o

B. Remove o from ivec

C. n = max(ivec)+1 (i.e., index of the the next member to be added)
D. Mprev := Mprev − Mxo

+ Mxn
where

Mxo
=
∑

1<j<s−1 |F (xo − xivec(j))|

Mxn
=
∑

1<j<s−1 |F (xn − xivec(j))|

E. Add n to ivec

F. Repeat from step (c)

(e) Mi+1 := Mi − Mxi
+ Mx(i+s)

where

Mxi
=
∑

i<j<i+s |F (xi − xj)|

Mx(i+s)
=
∑

i<j<i+s |F (xj − xi+s)|

(f) i := i + 1

7. Final sample set S = {xIvec(1), xIvec(2), . . . , xIvec(I+s−1)}.

Figure 3.14: Steps for Sample Selection - Far-sighted-D Learner
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Chapter 4

Experiments

The following experiments pit all three active sample selection methods against
each other along with three baseline approaches (see Section 4.2) and evaluate their
performance across three different data sets, the OSR [25], Pubfig [20], and Shoes [2]
data sets, over 27 visual attributes total (see Section 4.1).

Section 4.3 explains the general setup of the experiments. In Section 4.5, we
perform a sanity check by training the learners using artificially generated rank
data. In Section 4.6, we train ranking functions using the different learners by
annotating image samples with rank labels extrapolated from previously human-
annotated, pairwise-ranked images. Finally, Section 4.7 puts the learners to practice
by running the active learning loop in real time and collecting human annotation
for each successive batch of learner-selected image samples live.

4.1 Description of Data Sets

For our experiments, we will be using three data sets.
The OSR data set contains 2,688 images of eight types of scenery (coast, forest,

highway, inside city, mountain, open country, street, and tall building), represented
by 512 low-level gist features and 45 global color features. We choose to use the
following six visual attributes for ranking the scenic images: natural, open, perspec-
tive, large objects, diagonal plane, close depth (See Figure 4.1).

The Pubfig data set contains 772 images of eight celebrities’ faces (Alexander
Rodriquez, Clive Owen, Hugh Laurie, Jared Leto, Miley Cyrus, Scarlett Johansson,
Viggo Mortensen, and Zac Efron), represented by 512 low-level gist features and
30 global color features. We choose to use the following 11 visual attributes for
ranking the facial images: male, white, young, smiling, chubby, visible forehead,
bushy eyebrows, narrow eyes, pointy nose, big lips, and round face (See Figure 4.2).

The Shoes data set contains 14,658 images of ten kinds of shoes (athletic shoes,
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boots, clogs, flats, high heels, pumps, rain boots, sneakers, stiletto, and wedding
shoes), represented by 960 low-level gist features and 30 global color features. We
choose to use the following ten visual attributes for ranking the shoe images: pointy
at the front, open, bright in color, covered with ornaments, shiny, high at the heel,
long on the leg, formal, sporty, and feminine (See Figure 4.3).

Each image is filtered and processed through several visual channels (texture,
shape, intensity, etc) specific to each data set (OSR, Pubfig, Shoes) to produce a
vector of view and scale-invariant features used to represent the image. Each data
set has its own unique set of features that have been previously shown to be capable
of summarizing multiple characteristics of an image [25, 32, 20, 2]. We also choose
the image categories and visual attributes from each data set such that the attributes
are distinct from one another, simple to identify, and show adequate variation across
the categories. Because the three data sets are substantially diverse (i.e., Features
making up a face are much different than those that make up scenery), the following
experiments do well to comprehensively summarize active learning performance for
image ranking throughout various visual contexts.

4.2 Baseline Approaches

This section introduces three baseline approaches: the passive learner, passive-D
learner, and handicapped learner. These serve as points of comparison for our
active learners. Like the active learners, the following methods differ in the way
they select image samples at each iteration in the learning loop.

The passive learner does not process anything from the unlabeled training set
and simply picks image samples at random. Because it performs sample selection at
random, we expect this learner to perform worse than the far-sighted-D, far-sighted,
and myopic learners.

The passive-D learner is based on “visual diversity” in the same way as the
far-sighted-D learner in that it partitions the unlabeled training data into k clusters
using k-means clustering and only selects s samples such that each sample member
belongs to a unique cluster. The passive-D learner first uses k-means clustering
to partition the data, where k ≥ s, then randomly selects one sample from each
cluster. Of the remaining k samples, it randomly selects s to be labeled. Since
the passive-D learner complies to the visual-diversity condition but ignores the low-
margin condition, it allows us to see the performance effect of utilizing the diversity
condition alone. It can also help determine whether any performance increase in
using the far-sighted-D learner is due to a combination of the visual-diversity and
low-margin conditions, or soley the former. We expect the passive-D learner to
perform better than the passive learner but worse than the far-sighted-D learner.
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Figure 4.1: OSR Attributes. This figure provides visual examples of the different types of
attributes from the OSR data set [25]: Natural, Open, Perspective, Large-Objects, Diagonal-Plane,
and Close-Depth.
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Figure 4.2: Pubfig Attributes. This figure provides visual examples of the different types of
attributes from the Pubfig data set [20]: Male, White, Young, Smiling, Chubby, Visible Forehead,
Bushy Eyebrows, Narrow Eyes, Pointy Nose, Big Lips.
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Figure 4.3: Shoes Attributes. This figure provides visual examples of the different types
of attributes from the Shoes data set [20]: Pointy at the Front, Open, Bright in Color, Covered
with Ornaments, Shiny, High at the Heel, Long on the Leg, Formal, Sporty, and Feminine.
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The handicapped learner employs the opposite sample selection technique from
that of the myopic learner. Instead of selecting the closest data pairs, or those with
the smallest margins, the handicapped learner selects the farthest data pairs, or
those with the largest margins. This means that the handicapped learner chooses
image pairs whose rank values it already has much confidence in, so labeling these
poorly-chosen samples would provide very little extra information for refining a
ranking function. We expect the handicapped learner, as the “worst-choice” baseline
approach, to perform even worse the passive learner.

4.3 General Experimental Setup

To run experiments over the different learners, we will divide the data sets into
two groups, the unlabeled training set and the labeled test set. The training set
provides the pool of unlabeled data from which learners will select image samples to
be annotated. We will use the test set to evaluate the accuracy of the learned ranking
functions by measuring the ordinal similarity between the function-generated and
ground-truth rank values of the test set images with Kendall’s tau (See Section 4.4),
a rank-based correlation coefficient.

Experimentation over all six learners (three active and three baseline approaches)
requires selecting images of sample size, s > 2 in order to differentiate the per-
formance between the far-sighted and myopic learners. By nature of the myopic
learner’s pair-based approach, it is also necessary to have an even sample size.
Therefore, we use a sample size of s=4 in the following experiments.

For the diversity-based learners (far-sighted-D and passive-D), we use k = 10
number of clusters in our experiments. Since the three data sets we will be working
with contain images from eight to ten different categories, we feel that choosing ten
clusters should sufficiently enforce diversity among the images of these data sets.

4.4 Accuracy Metric: Kendall’s tau (τ)

To evaluate the accuracy of learned ranking functions in our experiments, we will
use Kendall’s tau (τ), a rank-based correlation coefficient that measures the degree
of association between two sets of ordinal data, to measure the similarity between
the function-calculated rankings and ground-truth rankings of our test data.

Below is an explanation of the metric’s logistics.
Let {x1, x2, ..., xn} and {y1, y2, ..., yn} be rank values that comprise the set X of

function-calculated rank values and set Y of ground-truth rank values, respectively.
A rank value pair (xi, yi), (xj, yj) is concordant if xi > xj and yi > yj or if xi < xj

and yi < yj. A rank value pair (xi, yi), (xj, yj) is discordant if xi > xj and yi < yj
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or if xi > xj and yi < yj. A rank value pair (xi, yi), (xj, yj) is neither concordant
nor discordant if xi = xj or yi = yj. In this way, we can accomodate partial orders.

Kendall’s tau represents the number of concordant pairs less the number of
discordant pairs divided by the total number of rank value pairs:

τ =
(# concordant pairs) − (# discordant pairs)

1
2
n(n − 1)

(4.1)

In summary, 0 < τ < 1 indicates that there is much agreement over the rankings
between the two sets, with +1 being a perfectly positive correlation, and −1 < τ < 0
indicates that there is much disagreement over the rankings between the two sets,
with -1 being a perfectly negative correlation. τ = 0 indicates no correlation between
the two sets of rankings. Using this metric, we can evaluate the accuracy of the
learned ranking function.

4.5 Simulation Using Artificial Data

In this section, we test the learners against artificially generated rank data. Dur-
ing training, human uncertainty may arise over the labelling of ambiguous image
samples. By using artificial data, this provides a sanity check and shows how learn-
ing to rank fares in a “blank-slate” situation where an unconditional, unambiguous
“ground-truth” ranking exists over all data.

Section4.5.1 explains the experimental setup for this artificial simulation, and
Section 4.5.2 details the results.

4.5.1 Experimental Setup

To achieve artificial ranking, we first produce an arbitrary ranking function, which is
some randomly-generated weight vector, w. We then assign synthetic ground-truth
rank values, derived from the arbitrary ranking function, to 700 randomly-generated
10-dimensional feature vectors. We set aside 670 of the features vectors, chosen at
random, for the training set and remaining 30 for the test set. From the 670 of the
training set, we randomly choose four samples as seeds to train an initial ranking
function. The type of learner used determines subsequent samples. We run all six
learners for 25 iterations, assigning the selected sample at each iteration the ground-
truth rank value derived from the previously generated w. For the diversity-based
learners, far-sighted-D and passive-D, we partition data from the training set into
k = 10 clusters. At each iteration in the learning process, we compute the accuracy
of the currently learned ranking function using Kendall’s τ . We repeat the entire
process 20 times, each time generating a new w and new set of feature vectors, and
average the results across all 20 runs.
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Figure 4.4: Performance Results (Using Artificial Data) These plots show the
performance results of our experiments using artifically imposed rankings over synthetic data and
images from the OSR, Pubfig, and Shoes data sets. We see that the active selection approaches
generally outperform the passive ones, and the “handicapped” baseline is the weakest of all.

We conduct the same experiment three more times using actual image data from
the OSR, Pubfig, and Shoes data sets. We employ identical constaints, except we
use feature vectors of 700 randomly-selected images from the provided data sets for
each of the 20 runs instead of randomly-generated feature vectors. The ground-truth
rank values are still artificially imposed, but because the training and test data are
of actual images, it provides a point of comparison for learning to rank images over
learning to rank synthetic data.

4.5.2 Simulation Results

Figure 4.4 shows the results of the simulation experiments.
We see that there is definite performance differences between the active learners

(far-sighted-D, far-sighted, and myopic), the passive-D and passive learners, and
the handicapped learner. In all cases, the active learners outperform the passive-D
and passive learners, and the handicapped learner perform the worst, which is the
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expected trend. The far-sighted learner outperforms the myopic learner in three of
the experiments (artificial data, OSR, and Pubfig), and the far-sighted-D learner
performs the best for the Pubfig data set and as well as, but no worse than, the
other active learners for the rest of the experiments. These results suggest that
active learning methods are definitely more advantageous over random sample se-
lection, and that taking a both low-margin and diversity-based approach (i.e., the
far-sighted-D learner) may be optimal for performance in certain cases, although
it does not impair it in any way, keeping in mind that the rankings used in the
experiments of this section are artificially imposed.

In order to generalize the performance capabilities of these learners to real-world
applications, the next sections apply this same experimental setup to actual images.

4.6 Learning With Pairwise-Extrapolated Rank

Labels

Artificially-generated rankings give us an idea of what to expect, so now we move on
to working with attribute-specific rankings as applied to images. To our knowledge,
visual attribute-specific rank data are not publicly available, so we must build our
own global rank hierarchy over images from our data sets by collecting information
from human annotators and extrapolating the rank labels. Section 4.6.1 details
how this is done. Section 4.6.2 explains the experimental setup for each data set.
Section 4.6.3 describes results from the OSR data set, Section 4.6.4 describes results
from the Pubfig data set, and Section 4.6.5 describes results from the Shoes data
set.

4.6.1 Data Collection and Rank Extrapolation Method

Using Amazon’s Mechanical Turk (MTurk)1, Kovashka, Parikh, and Grauman asked
human participants to rank pairs of images from each data set [19], using questions
in the form of “Is the [object] in Image 1 more or less [some attribute] than the
[object] in Image 2?” Participants also specified a confidence level in the labels
they gave, choosing among “very obvious,” “somewhat obvious,” and “subtle, not
obvious.” Figure 4.5 provides an example of the UI used.

From the OSR data set, they randomly selected 241 images and collected a total
of 5,620 pairwise rankings over those images. For each attribute, they used 202-217
of the 241 images to collect 920-940 of the 5,620 pairwise rankings. From the Pubfig

1Amazon’s Mechanical Turk (MTurk) is a crowdsourcing site that allows people to post
Human Intelligence Tasks (HITs) for participants to complete for some amount of pay
(https://www.mturk.com/).
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Figure 4.5: MTurk UI for Ranking Image Pairs. This figure shows the MTurk UI
used to collect pairwise rank data. The UI asks annotators questions in the form of “Is the [object]
in Image 1 more or less [some attribute] than the [object] in Image 2?” Participants also specified
a confidence level in the labels they gave, choosing among “very obvious,” “somewhat obvious,”
and “subtle, not obvious.”

data set, they randomly selected 242 images and collected a total of 10,860 pairwise
rankings over those images. For each attribute, they used 200-211 of the 242 images
to collect 947-1009 of the 10,860 pairwise rankings. From the Shoes data set, they
randomly selected 240 images and collected a total of 7,100 pairwise rankings over
those images. For each attribute, they used 161-172 of the 240 images to collect
700-725 of the 7,100 pairwise rankings. For more robust and reliable results, they
queried multiple annotators on the same pair of images. We use this data here to
impose a global, ground truth ranking over every image used.

Since the same pair of images received independent labels from multiple annota-
tors, we must aggregate these labels. In order to do this, we first assign numerical
rank scores to each pair of images. Within a pair, if Image 1 was ranked higher
than Image 2, we assign the former a score of 2 and the latter a score of 1 and
vice versa. If Image 1 was ranked the same as Image 2, both receive scores of 1.5.
Then for each unique image pair, which may have multiple different rank scores, we
compute a weighted average. Using each individual annotator’s confidence level to
determine weights, we give labels designated as “very obvious” twice the weight of
labels designated as “somewhat obvious” and labels designated as “somewhat obvi-
ous” three times as much weight as labels designated as “subtle, not obvious.” If all
annotators designate an image pair as “subtle, not obvious,” then we cast away that
image pair as unreliable data. Remaining on the conservative side, we only consider
averaged rank scores that differ by more than .3 to be “different.” In other words, we
are only confident that two images should be ranked differently if there is sufficient
distance between their averaged rank scores (in this case, .3 units). For instance,
within a unique image pair, if the averaged rank score is 1.2 for Image 1 and 1.4 for
Image 2, we would consider Image 1 and Image 2 to be ranked equally. However,
if the averaged rank score of is 1.2 for Image 1 but 1.6 for Image 2, then we would
consider Image 2 to be ranked higher than Image 1. We chose this distance value of
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Figure 4.6: OSR, Pubfig, and Shoes Images Sorted by Extrapolated Ranks.
This figure shows images from the OSR, Pubfig, and Shoes data sets sorted by the ground-truth
rankings extrapolated from the pairwise-ranked data over the attributes open, smiling, and formal,
respectively. We see that even though the extrapolated rankings arrived from calculation, they are
fairly accurate.

.3 units based on exploratory trial-and-error runs over some test annotations. This
safeguards against fluctuations in averages caused by uncertainty among annotators
by essentially clustering close rank scores together.

Using the newly aggregated pairwise rankings for each attribute, we train a
general ranking function. We then impose a final “ground truth” hierarchy by
applying the ranking function to the same images used to train that ranking function
in the first place. Although these ground-truth rank values arrive from computation,
they are largely based on human-provided information and appear to be visually
appropriate when the images are displayed in sorted order, as depicted in Figure 4.6.

Therefore, we use these extrapolated rankings for annotating samples in this
section’s experiments.

4.6.2 Experimental Setup

Of the 200-217 images previously ranked for each attribute of the OSR and Pubfig
data sets, we set aside 40, chosen at random, to serve the test set and randomly
select 4 more as seeds to train an initial ranking function. From the remaining
held-out set of 156-173 images, we randomly choose 120 to serve as the training
set. We run all six learners for 25 iterations, assigning the selected sample at each
iteration the ground-truth rank value derived in Section 4.6.1. Like before, for the

35



diversity-based learners, far-sighted-D and passive-D, we partition data from the
training set into k = 10 clusters. At each iteration in the learning process, we
compute the accuracy of the currently learned ranking function using Kendall’s tau.
We conduct the entire process 20 times, each time choosing at random 120 images
from the held-out set of 160-177 but keeping everything else constant, and average
the results across all 20 runs.

Since we have less images to work with for the Shoes data set (161-172 per
attribute), we set aside 30 images to serve as the test set (as opposed to 40) and
four as seeds to train an initial ranking function. Of the remaining held-out set of
127-139 images, we randomly choose 100 to serve as the training set (as opposed to
120). Insead of running the learners for 25 iterations as with the OSR and Pubfig
data sets, we run the learners for 22 iterations with the Shoes data set. Other than
these parameter adjustments, the experimental setup for the Shoes data set remain
identical to that of the OSR and Pubfig data sets.

4.6.3 Results - OSR

Figure 4.7 shows the results for the OSR data set.
First, we examine the baseline approaches. Consistent with our predictions,

the handicapped learner performs the worst out of all the learners. The passive
learner performs worse than both the low-margin-based active learners and the
diversity-based learners, indicating that selecting samples with low margins and
selecting samples with diverse feature vectors both improve performance relative to
random sample selection. Since in addition, the far-sighted-D learner outperforms
the passive-D learner, this indicates that a combination of the low-margin condition
and the visual-diversity condition fares better than merely the diversity condition
alone.

In comparing the active learners against each other, the performance differences
are not as radical, but we we do see that the far-sighted learner generally outper-
forms the myopic learning across the OSR attributes, and the far-sighted-D learner
generally outperforms all of the other learners. However, for some of the attributes,
it may take up to ten iterations before a performance difference is seen (e.g. close-
depth). Past the tenth iteration, nearly all attributes show the performance trend of
the far-sighted-D learner outperforming the far-sighted learner, and the far-sighted
learner outperforming the myopic learner.

Although performance in the long run is meaningful, we are especially interested
in learners that perform well early in the annotation process, since our motivation is
to minimize human effort as much as possible. We do not see much of this happening
among the active learners for the OSR data set except for one attribute, open. Notice
that the learning curves for this attribute initially start out at an already-high τ
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Figure 4.7: Performance Results - OSR (Using Extrapolated Ranks). Per-
formance results after running the six learners over the six attributes of the OSR data set: natural,
open, perspective, large-objects, diagonal-plane, and close-depth. From these results, we can see
that in general, the far-sighted-D learner performs the best. The active learners generally outper-
form the passive learners, and the handicapped learner performs the worst, as expected.
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Figure 4.8: Extremal Images of the Perspective and Large-Objects At-
tributes. Here, we pick out three of the highest and lowest ranked images from the at-
tributes, perspective and large-objects, based on the rankings extrapolated from the pairwise-ranked
data in Section 4.6.1. Notice that the items making up the top and bottom ranks of the perspective

attribute are much more varied than those of the large-objects attribute. Also notice that pictures
of mountains and roads appear in both the top and bottom ranked items for the perspective at-
tribute. This overlap does not show up for large-objects. Therefore, it’s likely that it takes more
of certain kinds of sample images to train a ranker for perspective scenes than for large-object
scenes. This suggests why our active learners show more noticeable advantage against the passive
learners on the challenging perspective attribute compared to some of the other attributes in the
OSR data set.
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value, suggesting that choosing a good seed is important, preferably one whose
images show varying degrees of the attribute such that it will provide a fair amount
of information to start the learning process on a good note.

Between the active learners and the baselines, however, we see this kind of “early
performance differentiation” more commonly, such as with the attribute, perspective.
Compared to attributes such as large-objects and close-depth, where there is not
much early differentiation between the active learners and baselines, it is likely that
the type of samples selected to train ranking functions for the perspective attribute
matter more early on, because this attribute is more semantically complicated and
therefore requires a certain variety of training samples to produce optimal results.
On the other hand, what constitutes a larger object or how far away an object
appears from the camera is more obvious and so benefits less from active learning(see
Figure 4.8).

In summary, our OSR results suggest that the proposed far-sighted-D learner
generally performs the best.

4.6.4 Results - Pubfig

Figure 4.7 shows the results for the Pubfig data set.
First, we analyze performance between the active learners and the baselines.
Like before, the handicapped learner performs the worst, indicating that margin

space is important in sample selection. In most cases, the active learners outperform
the passive and passive-D learners. Two major exceptions are the attributes, white
and round face, where all learners (except for the handicapped learner on the at-
tribute, round face) perform about equally well (although the far-sighted-D does
slightly outperform the others for some of the iterations for the attribute, white).

A likely explanation is that in the case where an attribute is difficult to learn
to rank because of ambiguity over how to annotate the samples, we expect to find
both active and passive learners to perform about the same (See Figure 4.10). Low-
margin based active learners are even more likely to select image samples whose
rankings are ambiguous for human judges, since by definition they select image
samples with the most uncertainty, which may be counterproductive to learning a
ranking function. Diversity-based learners may not necessarily be immune either
if the factors for ambiguity are tied to subjective uncertainty over the attribute’s
definition.

For instance, every image has different lighting that may effect how we perceive
whiteness. Questions arise such as “Should we take lighting effects into account or
should we simply ignore the lighting effects and rank the image based on what we
feel the actual color of the face should be?” In the case of the round-face attribute,
a large number of images are cropped at the sides of the face, making it difficult
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Figure 4.9: Performance Results - Pubfig (Using Extrapolated Rank). Per-
formance results after running the six learners over the 11 attributes of the Pubfig data set: male,
white, young, smiling, chubby, visible forehead, bushy eyebrows, narrow eyes, pointy nose, big lips,
and round face. From these results, we can see that in general, the far-sighted-D learner performs
the best except in cases where the attribute is highly localized (e.g., smiling, pointy nose). The
active learners generally outperform the passive learners, and the handicapped learner performs
the worst, as expected. An exceptional case is the attribute white, where all learners perform
similarly, likely due to rank ambiguity.
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Figure 4.10: Ambiguity in Ranking Two Faces Based on Whiteness The faces
of Zac Efron and Clive Owen in these pictures both have very different colors. Zac has a more
pink undertone to his face and Clive has more gold undertone to his face. The question of “Which
one is more white?” depends on whether you consider a pink undertone to be darker than a gold
undertone or vice versa.

for human annotators to determine roundness. Indeed, there might not even exist
a real, objective ground-truth ordering over some of the more exceptional cases, an
issue that would be a good candidate for investigation in future works.

For six of the attributes (smiling, visible forehead, bushy eyebrows, narrow eyes, pointy
nose, and big lips), the far-sighted learner outperforms the myopic learner. In the
remaining cases, it generally performs as well as, but not considerably any worse
than, the myopic learner, suggesting that a far-sighted approach by be better than
a myopic one, but it certainly does not detract from performance in any way.

Finally, the far-sighted-D learner overall performs the best for all of the attributes
except for four (white, smiling, pointy nose, and round face). However, even in these
exceptional cases, it still performs as well and not considerably any worse than
the other active learners. Also, in no case does the passive-D learner outperform
the far-sighted-D learner, which suggests that it is a combination of both the low-
margin and visual-diversity condition that gives the far-sighted-D learner the boost
in performance over the rest.

We now examine the cases where the far-sighted-D learner does not outperform
the far-sighted and myopic learners. The reason for the attributes white and round
face is likely due to the large amount of ambiguity involved in ranking (also ex-
plained above), equalizing the playing field for all sample selection methods. As for
the attributes pointy nose and smiling, we note that the far-sighted learner outper-
forms the myopic learner in both cases but the far-sighted-D learner only performs
as well as the far-sighted learner and no better, indicating that selecting image sam-
ples with the lowest margins is still important, but selecting images with diverse
feature vectors is not as important. One explanation is that the features involved
in characterizing smiles and noses are too localized, such that it matters less that
a learner selects faces that look different and more that a learner selects mouths
or noses that look different. Because our image descriptors are global, these local
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Figure 4.11: Degree of Smiling vs Image Similarity Although the bottom two
images of Zac Efron are more similar, they have different degrees of smiling. While the top two
images of Zac Efron and Scarlett Johansson are different, they have similar degrees of smiling. It
is far better to focus only on the features defining the mouth (red box) than the all the features
as a whole in this case.

parts cannot be completely isolated such that the local differences have sufficient
influence (See Figure 4.11).

Note, however, that attributes such as big lips and bushy eyebrows show very
good results with clear performance differentiation between the learners despite
also being attributes largely characterized only a small part of the face. This can be
explained by the observation that faces (from our Pubfig data set) that have bigger
lips or bushier eyebrows tend to look more similar with respects to other facial
features as well. For instance, pictures of people with bigger lips from our data set
tend to have other, more feminine facial features as well. Despite the attribute itself
applying to only a small portion of the face, it may not be completely independent
of some of the other features of the face. Smiles, on the other hand, are almost
entirely dependent on features defining the mouth. In the case of the pointy nose
attribute, the degree of pointiness a nose appears to have can change even among
images of the same person depending on the head rotation and lighting.

Future work may involve incorporating discovery of relevant features into active
learning.

4.6.5 Results - Shoes

Figure 4.12 shows the results for the Shoes data set.
First, we analyze performance between the active learners and the baselines.
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Figure 4.12: Performance Results - Shoes (Using Extrapolated Ranks).
Performance results after running the six learners over the ten attributes of the Pubfig data set:
pointy at the front, open, bright in color, covered with ornaments, shiny, high at the heel, long
on the leg, formal, sporty, and feminine. From these results, we can see that in general, the
far-sighted-D learner performs the best. The active learners generally outperform the passive
learners, and the handicapped learner performs the worst, as expected. One exceptional case is
the attribute bright-in-color, where all learners perform similarly, likely due to ambiguity in the
attribute’s definition. 43



Like above, the passive and handicapped learners generally perform worse than
the active learners, with the handicapped learner performing the worst overall. The
passive-D learner shows improvement in performance over the passive learner in
some cases, but otherwise performs as well as and no worse the passive learner. This
suggests that a visual-diversity condition is sometimes, but not always, advantageous
in learning to rank images of shoes, though it does not appear to impair it.

In all except four cases, all active learners outperform both the passive-D and
passive learners, although in those four exceptional cases, the passive-D and pas-
sive learner only perform as well as the far-sighted learner or the myopic learner
for the first half of the iterations, after which they perform worse and continue do-
ing so for the remaining iterations. In other words, given enough iterations (ten
to twelve for the Shoes data set), all active learners consistently outperform the
passive and passive-D learners. Note that in all cases, however, the far-sighted-D
learner consistently outperforms both the passive-D and passive learners, empha-
sizing the importance of a sample selection method utilizing both low-margin and
visual-diversity conditions.

We now take a look at performance among the active learners.
The far-sighted learner performs better than the myopic learner for four of the

ten attributes and as well as, but not considerably worse than, the myopic learner
for the rest, with the exception of the attribute, sporty, where the myopic learner
outperforms the far-sighted learner. This indicates that a far-sighted approach for
ranking shoes is sometimes, but not always, more advantageous over the myopic
approach.

Finally, results indicate that in nearly all cases, far-sighted-D learner outperforms
the rest of the learners. The one notable exception is the bright-in-color attribute,
which is also interestingly the only case out of all our experiments so far where the
far-sighted-D learner performs substantially worse than one of the active learners
(far-sighted learner) for over half the iterations.

This could be due to the annotation ambiguity problem discussed in Section 4.6.4,
since it also deals with an aspect of color (brightness) that could have multiple
meanings. Indeed, taking a look at some of the higher and lower ranked shoes from
the bright-in-color group, we see large disagreements between what people think
brightness means. A few annotators ranked shoes as having higher bright-in-color
values if they were simply more colorful (e.g., red, yellow) as opposed to white or
black (see Figure 4.13). Others ranked shoes as having higher bright-in-color values
if they were were more shiny. When we strip away such ambiguity by ranking shoes
only based on the attribute shiny, we see that performance results are much better.

This raises one other interesting question. Why does the far-sighted-D learner
initially perform worse than the far-sighted learner for the bright-in-color shoes at-
tribute when it performed as well as and sometimes even better than the far-sighted
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Figure 4.13: Shoes Ranked on Bright-in-color and Shiny Attributes. This
figure shows two spectrums of shoes images sorted by the extrapolated ranks from Section 4.6.2
over the attributes, bright-in-color and shiny. There is some disagreement over what constitutes a
image that’s more bright-in-color. It appears that the leftmost two images of the top spectrum were
ranked based on how colorful the shoes were (e.g., red, yellow as opposed to white, gray, black),
whereas the rightmost two images appear to be ranked based on how shiny the shoes were. On
the contrary, the shoes ranked by the less-ambiguous attribute, shiny, show much more agreement
and produced better performance curves.

learner for the white attribute of the Pubfig data set in Section 4.6.4? A likely ex-
planation is that the factors for ambiguity over what constitutes more “brightness”
in shoes is so much more varied than those over what constitutes more “whiteness”
in faces that selecting for more diverse image samples actually becomes counterpro-
ductive for learning. For instance, faces come in one general shade, but one shoe can
possesss multiple colors. Uncertainty over which shades of colors (e.g., gold vs pink)
more closely resemble “whiteness” is usually what causes ambiguity over ranking
faces based on the white attribute, whereas factors such as shininess also play a
role in determining a shoe’s brightness. What if a sample contains a shoe that has
vibrant colors but lacks luster and a shoe that has darker colors but reflects more
light? In this case, adding the visual-diversity condition to the low-margin condition
for active learning may actually adversely affect the learner’s performance.

Overall, with the exception of the aforementioned special cases, our results con-
tinue to support the superiority of the proposed far-sighted-D learner over the other
learners as applied to the average case.

4.7 Learning With Live Annotation

This section puts the learners into practice by running the active learning loop in
real time over the OSR data set and asking humans to rank selected image samples
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at each iteration in the learning loop. Unlike the previous Section (4.6), where
rank labels first were collected in bulk then processed, here we collect annotations
and process them live. Using Amazon’s MTurk, we ask participants to annotate
successive batches of learner-selected image samples at each step in the learning
process. Section 4.7.1 elaborates on the MTurk interface and the experimental
setup. Section 4.7.2 discusses the results and Section 4.7.3 provides a brief analysis
of the effort saved using the far-sighted-D learner.

4.7.1 User Interface and Experimental Setup

Using Amazon’s MTurk, we ask each participant to rank six batches of four image
samples, each batch selected by one of the six learners. In order to make the
annotation process easy and intuitive, we ask participants to simply “select the
image[s] with the most amount of [some attribute]” out of each batch of four images
(since we are using a sample size of s = 4). Until all four images are accounted
for, this process is repeated for the remaining, unselected images, terminating when
there are no more images from the sample left to annotate. Figure 4.14 provides
an example of the UI used. Once the participant finishes annotating all batches of
samples, the interface turns in the labeled results for processing, and each learning
algorithm selects a new batch of four samples for the participants to annotate.

To make the results more reliable, we ask five different participants to rank
identical samples, and then we aggregate the result. The rank aggregation process
is as follows:

First, we assign a numerical rank score from one to four to each image of the
training sample based on the annotations provided by the human participants, with
one being the lowest rank and four being the highest rank. Note that these scores
indicate relative attribute strength only among the images contained in each sample
set of four. Images may share the same rank score if they are ranked the same by
the annotator.

We then weed out any outliers by comparing each annotation to the mean of the
remaining four annotations using Kendall’s τ . If τ < .7 (a value that was chosen
based on exploratory trial-and-error runs over some test annotations), then that
annotation is thrown out as unreliable. After weeding out inconsistent data, we
average the scores of the remaining annotations.

Finally, we assign images whose averaged ranked scores are relatively close to
each other the same rank score using mean shift clustering. In other words, we
are only confident that two images should be ranked differently if there is sufficient
distance between their averaged rank scores. This last step is essentially the same
as the corresponding step described in Section 4.6.1, where we combined rank values
of data pairs that differed by less than 0.3 units. Like before, this step safeguards
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Figure 4.14: MTurk UI for Ranking Image Samples. Our UI asks annotators
to check the boxes under images with the “most amount of [some attribute]” starting with four
images. After doing so, the participant is asked to repeat the process with the remaining, unchecked
images until all have been labeled. From this, we can derive an ordering over these set of images
and assign relative rank scores from 1-4 to each image, with four being the highest rank and one
being the lowest. Note that these scores are not absolute rank values but are relative only among
the set of images contained in this training sample.

against fluctuations in averages caused by minor uncertainty among annotators.
Consider the following case: Suppose four annotators rank a sample of images in
the same way such that the rank scores for each are {1, 2, 4, 4} but one annotator
ranks the same sample slightly differently such that the rank scores are {1, 2, 4, 3}.
The averaged rank score will be {1, 2, 4, 3.8}, but since the averaged rank scores of
the third and fourth element are relatively close together, it would be more sensible
to consider them as sharing one rank.

The limitations of MTurk prevent us from ensuring that the same set of anno-
tators rank every image sample at each iteration the learning process. Instead, one
set of annotators in charge of labeling samples at one iteration is likely to be differ-
ent from the set of annotators in charge of labeling samples at the next iteration.
One issue is that the first set of annotators might have a very different “aggregated
opinion” than the second set over what constitutes a stronger or weaker attribute.
For instance, group A may be inclined to say a face is more masculine-looking if
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it has more facial hair while group B would make the same decision only if it is
also more muscular. To mitigate this issue, we show each new set of annotators the
results of previously ranked image samples prior to the annotation process so that
their labels are more likely to be consistent with those of their predecessors.

We use the image pairs from Section 4.6.1 as the test set here and the aggregated
pairwise rank values as the ground-truth values. To evaluate the accuracy of a
learned ranking function, we apply it to each pair from the test set, compute a
Kendall’s τ value between the function-calculated and ground-truth pairwise rank
values, then average all the τ ’s together. To ensure reliability of using these pairwise
ranked images as test images, we also show the annotators a subset of the pairwise-
ranked test images prior to the annotation prcoess so that their labels will likely be
consistent with those of the test set.

The OSR data set contains 2688 images. Of those, 202-217 (depending on the
attribute) were used in collecting the pairwise ranked data discussed in Section 4.6.1
and are therefore set aside here as the test set. The remaining 2486-2471 image serve
as the training set. Of these, we randomly select four samples (for each attribute)
as seeds to train an initial ranking function. We run all six learners for six to seven
iterations, querying human annotators for rank labels at each iteration. Like before,
for the diversity-based learners, far-sighted-D and passive-D, we partition data from
the training set into k = 10 clusters.

4.7.2 Results

Figure 4.15 shows the results of the experiment. Due to time constraints, we were
only able to perform the live annotation experiments over the attributes of the OSR
data set.

First we look at the baseline approaches.
For all but one attribute (perspective), the handicapped learner performs the

worst, as expected. For that one exception, the handicapped learner may have
merely received a boost in performance at the very beginning from chance (i.e.,
just happened to choose an informative sample set without intending to), resulting
only in a higher starting performance curve. Indeed, after the second iteration,
the handicapped learner starts choosing uninformative samples again and no longer
improves in performance. It even begins to decrease a bit in performance whereas
the other learners continue to improve.

The passive learner performs worse than the active learners for three attributes
(perspective, large-objects, and close-depth) and about as well but not necessarily bet-
ter than the active learners for the remaining attributes (natural, open, and diagonal-
plane). However, for two of the attributes, natural and open, the passive learner
initially performs better than one of the active learners, but then falls below them
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Figure 4.15: Performance Results - OSR (Live Annotation) Performance results
after running the six learners over the six attributes of the OSR data set: natural, open, perspective,
large-objects, diagonal-plane, and close-depth. From these results, we can see that overall, the far-
sighted-D learner performs the best. The active learners generally outperform the passive learners,
with the exception of the attribute diagonal-plane. The handicapped learner performs the worst,
as expected.
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and continues to perform worse than the active learners after the third iteration.
In the case of the attribute, diagonal-plane, however, the passive learner does not
perform much differently from most other active learners (with the exception of the
far-sighted-D learner, which outperforms all other learners).

Note that out of all the attributes, diagonal-plane yields results with the lowest
accuracy, topping at a measly τ < .3. Taking a look at the types of samples selected
in as early as the second iteration of the learning process (see Figure 4.16), we see
that ambiguity over ranking similar-looking images might be a reason. In several
instances, two or more images from a sample appear ambiguous in terms of the
diagonal-plane attribute, making it difficult to label. However, note that the far-
sighted-D learner fares very well in comparison, possibly because it aims to choose
dissimilar-looking (and therefore less-ambiguous) samples while still selecting low-
margin samples that will provide much information once annotated.

The passive-D learner performs worse than the far-sighted-D learner in all cases
and performs better than the passive learner in all except for one case, the diagonal-
plane attribute, likely for the same reason stated above. This shows that both the
low-margin and the visual-diversity conditions are important for the best perfor-
mance.

Next we examine the active learners.
With the exception of the attribute, perspective, the far-sighted-D learner consis-

tently outperforms all other learners across the attributes. However, for the perspec-
tive attribute, the far-sighted-D learner does start to outperform the other learn-
ers at the fourth iteration and maintains a large performance gap afterwards. A
reasonable explanation is that it is not the far-sighted-D learner that is behaving
irregularly, but the myopic and handicapped learners (which are the only learners
that outperform the far-sighted-D learner at the beginning). As explained above,
the handicapped learner spikes in performance at the very beginning of the learning
loop due to selecting unexpectedly informative samples by chance. It is likely that
this is also what happens with the myopic learner, as we see that its performance
curve gains a sharp spike for the first two iterations but then ceases to improve any
more afterwards. The handicapped learner shows this same trend. On the other
hand, all other learners, including the far-sighted-D learner, continue to show grad-
ual improvement. Overall, there is still strong evidence in favor of the far-sighted-D
learner.

The performance difference between the regular far-sighted learner and myopic
learner is a bit more subtle. The far-sighted learner outperforms the myopic learner
for most of the iterations in three cases (natural, large-objects, and close-depth),
and the myopic learner outperforms the far-sighted learner for most of the itera-
tions in the remaining three cases (open, perspective, and diagonal-plane). However,
for nearly all of the attributes, one eventually catches up to and sometimes even
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Figure 4.16: Ambiguity over Ranking Scenes by the Attribute: Diagonal
Plane. This figure shows the image samples selected by each learner at the second iteration
of learning loop for the attribute diagonal-plane. Images bounded by colored boxes on each row
represent candidates for ambiguity. In the Passive row, if you factor the mountain slopes in Image
1 into the diagonal-plane attribute, then it would be ranked higher than Image 2. Otherwise, the
ground in Image 1 is actually flatter than the ground in Image 2. For the Myopic row, if you only
count the roads in Images 1 and 2 towards the diagonal-plane attribute, then they would be ranked
equally. If you include the slopes from Image 1, then Image 1 would be ranked higher. For the
Far-sighted row, there is even more confusion. Should ground in Image 4 be considered strongly
slanting or very flat? The answer may vary depending on how you look at it. In this case, samples
selected by the diversity-based learners would provide the clearest information whereas samples
selected by the margin-based learners would provide the most confusing information.
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Figure 4.17: Comparison of Actively Selected Samples for Attribute: Large
Objects. Of the three active learners, the far-sighted-D learner performs better than the far-
sighted learner, and the far-sighted learner performs better than the myopic learner when it comes
to ranking by the attribute large objects. This figure shows the image samples selected by each
active learner at the fifth iteration of learning loop sorted from highest to lowest rank. From the
figure, we can see that the rightmost three images of the far-sighted-selected samples are similar-
looking. Despite this, it’s easy to see that the gate in the second image of the Far-sighted row is
larger than any of the objects in the third image, but the third and fourth image rank about the
same in terms of large objects. Because it is easy to decide upon the correct rankings for images
over an attribute like large objects, we expect the far-sighted learner to perform better than the
myopic-learner since it adheres to the low-margin condition more strictly. On the other hand, we
can see that far-sighted-D selects a diverse set of images. This not only makes them easier to rank,
but each image in this sample is diverse enough such that each receives a separate rank value. Since
the far-sighted-D learner must also partially satisfy the low-margin condition of sample selection,
its batch of samples will provide even more information, allowing it to outperform the regular
far-sighted learner.
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surpasses the other. Overall, both learners perform roughly the same, although the
far-sighted learner tends to outperform the myopic learner in specific cases where
images are easier to label (see Figure 4.17), whereas the myopic learner tends to
outperform the far-sighted learner in specific cases where labelling is a bit more
ambiguous in terms of the attribute (see Figure 4.16). Assuming no ambiguity,
annotating samples selected by the far-sighted learner ideally yields the most in-
formation to train a ranking function, so in cases where assigning ranks is easy,
the far-sighted learner is expected to outperform the myopic learner. However,
when there is more ambiguity involved, the far-sighted learner is more likely than
the myopic learner to select image samples that are all very similar to each other
(as opposed to the myopic learner, which would only be expected to select similar
pairs of images), thus making a good annotation difficult to come up with. Still,
in all cases, the proposed far-sighted-D learner fares the best, as it strikes a bal-
ance between choosing samples that offer the most information, provided they are
well-annotated, and choosing samples that are adequately diverse, such that it both
offers substantial information once annotated as well as makes for easier annotation.

4.7.3 Discussion on Human Effort Saved

It took our annotators on average 4 minutes to complete a task where they had to
label six batches of image samples (one selected by each type of learning algorithm).
However, this is an overestimate since it includes the time it took for the annotators
to read the instructions for completing the task as well as look over example anno-
tations from previous annotators and the test set images. Therefore, we assume it
took three minutes to actually perform the entire labeling task, or 30 seconds per
sample set.

Now consider the attribute that yielded the worst performance across all learners,
the diagonal-plane attribute. At the second iteration, the far-sighted-D learner has
achieved an accuracy of τ = .18. The next best learner does not reach that point
until three iterations later. In this case, all else being equal, using the far-sighted-D
learner saved us 1.5 minutes worth of human labeling effort. Even if we factor in
the fact that it takes the far-sighted-D learner approximately 0.74 seconds to select
four samples from 2688 OSR images (see last paragraph of Section 3.3.3), this value
is negligible compared to the 1.5 minutes of human effort saved.

Next we take a look at an attribute that yielded one of the better performances
across all the learners, the close-depth attribute. At the third iteration (which is the
point where performance begins to differentiate for all learners), the far-sighted-D
learner has achieved an accuracy of τ = .55. One iteration afterwards, the far-sighted
learner catches up, though the myopic learner does not hit that point until the sixth
iteration. For ranking images over the close-depth attribute, all else being equal, we
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Figure 4.18: OSR Performance Curves Plotted Against Time. These perfor-
mance curves for the diagonal-plane and close-depth attributes are like the ones from 4.15, except
instead of being plotted against the number of iterations, these are plotted against human effort
spent in terms if time (minutes). As we can see, using the far-sighted-D learner saves the most
human effort in terms of time spent annotating.
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spent 30 more seconds worth of human labeling effort using the far-sighted learner
and 1.5 minutes more seconds worth of human labeling effort using the myopic
learner compared to the far-sighted-D approach. As for the baseline approaches,
not one of them even reach that point. In fact, in four of the six attributes, the
passive learner never (within the six to seven iterations observed) performs as well
as how the far-sighted-D learner performed at its third iteration, equating to some
two minutes worth of lost time (possibly more, since we do not know how much
longer it would have taken for the passive learner to finally catch up).

Keep in mind that since we do not have data on the time it took for the an-
notators to rank each individual learner-selected batch of samples, we assume here
that it takes the same amount of time for the human to annotate all sample sets
regardless of which learner selected it. Ideally, however, it should take less time to
annotate samples selected by the diversity-based learners since they work to pick
more visually diverse images. Knowing this, it’s likely that in reality, we saved even
more effort using the far-sighted-D learner than previously stated. While a few
minutes may not seem like much at first, in seeking to learn ranking functions for
multiple attributes across a number of data sets, the numbers can quickly add up.

In summary, although there is evidence to support that employing a sample
selection method under the low-margin condition alone (e.g., the far-sighted and
myopic learner) or the visual-diversity condition alone (e.g., the passive-D learner)
yields better performance than a random sample selection method (i.e., the passive
learner), it is clear that a combination of the two (e.g., the far-sighted-D learner)
performs the best and saves the most human effort.
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Chapter 5

Conclusion

In this work, we present a novel active learning model for image ranking over relative
visual attributes. It not only selects images with the lowest rank margins as training
samples, but also selects images that are visually diverse. Experimental results
demonstrate the effectiveness of using this new model for training ranking functions
on an assortment of images from data sets as diverse as faces, scenes, and shoes
across as many as 27 distinct attributes using minimal human labeling effort. This
suggests that our model can likely be applied to many other image classes and
attributes as well, training ranking functions for a variety of attributes in less time
than traditional methods. Since relative attributes allow us to capture semantic
relationships between images as well as describe objects across multiple categories
in an easier, more human-intuitive way as opposed to binary attributes, they are
clearly useful in many computer vision applications such as recognition and image
retrieval. Given the importance of relative visual attributes, the ability to derive
ranking functions for more relative attributes in less time is highly valuable.

There is also potential for future work. In a majority of cases, our model learns
an accurate ranking function in fewer iterations, using less training samples and
human labeling effort. However, there are two exceptional cases: One case is where
multiple, possibly conflicting factors define an attribute’s relative strength such
that selecting more visually diverse image samples leads to high uncertainty and
ambiguity over how to rank them. The second case is where the attribute is highly
localized such that only a few features matter in determining its strength, and
therefore it provides little to no advantage to use the entire set of features for
evaluating image diversity. This suggests possibilities for future work in this area,
such as the weeding out or avoidance of ambiguous image cases, automatic discovery
of features most relevant to the attribute, and other ways to evaluate visual diversity
other than the Euclidean distance between feature vectors. Indeed, there is much
promise in further enrichment of the active learning model for image ranking over
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relative visual attributes.
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