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Abstract

Relative attribute models can compare images in terms of all detected

properties or attributes, exhaustively predicting which image is fancier, more

colorful, more natural, and so on without any regard to ordering. However,

when humans are asked to compare images, certain attribute differences will

naturally stick out and come to mind first. These most noticeable differences,

or prominent differences in relative attributes, are likely to be described first.

In addition, certain differences in attributes, although present and true, may

not be mentioned at all.

In this work, we introduce and model prominent differences, a rich new

functionality for comparing images. Using instance-level human annotations

of most noticeable differences, we build a model trained using relative attribute

features that predicts prominent attributes for new image pairs. We test our

model on the challenging UT-Zap50K shoes and LFW-10 faces datasets, and

outperform an array of baseline methods. We then demonstrate how our

prominence model improves two vision tasks, image search and textual de-

scription generation, enabling more natural communication between people

and vision systems.
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1 Introduction

Suppose you are asked to compare and contrast cats and dogs. You would likely

quickly say that cats meow and dogs bark, then perhaps state that dogs are usually

larger than cats. As soon as you are given the topic, cats and dogs, these differences

stick out and are most noticeable and apparent. However, consider that cats and dogs

have a huge number of actual differences. For instance, cats have retractable claws,

whereas dogs’ claws do not retract, and most cats will lick themselves clean, whereas

dogs usually need a bath. Although these differences are certainly present and true,

they are much less noticeable to us, and we would likely mention them later in our

answer, or not mention them at all.

In general, when we perform any compare and contrast task on a pair of objects,

certain differences in properties stick out as being most noticeable out of the space of

all discernible differences. These most noticeable differences, or prominent differences,

intuitively stick out to us as most noticeable and would be described first, while most

other differences are not as noticeable and do not stand out. We can liken this to

filling in a Venn Diagram, something many of us learned in grade school (see Figure

1). Given a topic, prominent differences that stick out to us are written first, and

likely end up at the top of the circles, whereas other differences are not as noticeable,

and generally appear later down the list or do not appear.

In this work, our main goal is to learn and model prominent differences in visual

content. As a motivating example, many forms of visual media make use of prominent

differences in their expression. For example, comparative advertising (Figure 2a and

2b) makes use of prominent differences to emphasize certain differences between com-

peting products. In Apple’s “Get a Mac” advertising campaign [35], a PC and a Mac

are personified as two different individuals (Figure 2a). Looking at the advertisement,

what sticks out is how formal, old-fashioned, and businesslike the PC personification

looks compared to the more casual and relaxed Mac. Figures are also often used to
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make statements between two different offerings: Verizon’s 3G coverage ad [41] makes

use of coverage maps of the United States to emphasize their advantage over AT&T

(Figure 2b). Although the maps are certainly very different in their color, what sticks

out as prominent and most noticeable is the wider coverage area of Verizon’s map

compared to AT&T’s map. Understanding prominence reveals deep information on

human perception of visual differences, and has significant potential to improve ma-

chine understanding of visual media and enhance communication between humans

and vision systems.

In particular, in this work we focus on learning prominent differences in relative

visual attributes. To provide some background on attributes in vision, when we

compare images, we generally describe differences by their attributes. Attributes are

human-nameable visual properties of images [1–3, 5–8, 11, 14, 17, 20, 21, 24, 26, 27,

29, 30, 32, 38, 39, 42–44, 48, 50, 51], and are used to describe anything from material

properties (smooth, furry), parts (4-legged, has glasses), shapes (round, boxy), to styles

(sporty, formal) and expressions (smiling, angry). Attributes are machine-learnable

and can also be shared across different categories of images, making them valuable

as semantic cues in many human-centric applications. For instance, attributes have

made a significant impact on image search [21, 22, 44, 48], face verification [26,

30], description generation [8, 24, 34, 38, 42, 48], and human supervision for visual

recognition [3, 14, 27, 28, 38, 48].

At their introduction, attributes work placed a focus on presence/absence predi-

cates (e.g., is standing, is not standing) [8, 25, 28]. As such, these predicate properties

are referred to as binary attributes. Binary attributes work well for describing clear-

cut properties such as parts, where each image distinctly contains or does not contain

the property (e.g., a zebra has four legs and a tail, but not wings), and have seen suc-

cess at predicting importance of objects [1], predicting aesthetic quality of images [7],

and ranking image search results using binary attribute-based queries [44]. However,

binary attributes are limited in their expression, and do not work well with many at-

tributes that are not binary present or absent (e.g., people’s expressions, where many

people are not simply always smiling or not smiling, or shoe styles, where many shoes

are not simply always formal or not formal).

More recently, relative attributes, or attributes that indicate an image’s attribute

strength with respect to other images, were first introduced by Parikh and Grauman

[38] as a more intuitive and meaningful representation of comparative image proper-
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Figure 1: Compare and Contrast Poster - Compare and contrast is one of our most
natural forms of thinking, and a skill we obtain at a young age and use for learning and

language throughout our lives. This poster from a first-grade classroom [10] shows a Venn
Diagram, and implicitly illustrates which differences are prominent from the order in
which they are listed from top to bottom; out of all the points given, the prominent

difference is that dogs bark while cats meow.
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(a) PC Versus Mac - In Apple’s “Get a Mac” campaign, which ran from 2006 to 2009
[35], a PC (left) and a Mac (right) are personified as two individuals. In comparing the
two personifications, the PC and Mac prominently differ in how formal and businesslike

they are: the PC person is very formal and businesslike, as seen in his rigid clothing,
hairstyle, and gestures, whereas the Mac person is much more casual and relaxed.

(b) Verizon Versus AT&T - Verizon’s “There’s a Map For That” advertisements from
2009 [41] uses human perception of prominent differences to illustrate differences between
AT&T and Verizon’s network. Looking at the coverage maps, coverage area stands out as
the prominent difference between the maps, as opposed to the difference in color, which is

present simply for brand awareness.

Figure 2: Comparative Advertising - Two examples of comparative advertising, using
prominent differences in visual attributes to convey differences in products to consumers.
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ties, and have since been widely used for different vision tasks [6, 9, 21, 32, 42, 45,

46, 49–51]. Relative attributes express more/less comparisons of attribute strength

between images (e.g., person X is smiling more than person Y, but smiling less than

person Z), and are modeled as real-valued scores for each attribute indicating its

strength in an image [38, 45, 46, 49]. Relative attributes allow for fine-grained com-

parisons between images of the same category (e.g., this high-heeled shoe is more

fancy, more shiny, and less tall than the other high heel), and also allow one to mea-

sure the magnitude of differences in each attribute between two images. With these

capabilities, relative attributes have been applied to describe images more naturally

[42], discern fine-grained differences [50, 51], and predict an image’s virality [6].

In visual compare and contrast tasks, prominent differences in relative attributes

will stick out to us and be most noticeable for different image pairs. For instance,

in Figure 3a, human judges point out dark hair as the prominent relative attribute

difference between the two people: the person on the left has noticeably darker hair

than the person on the right. In Figure 3d, color sticks out as the prominent difference

between the two shoes: the left shoe is noticeably less colorful than the right shoe.

The proposed prominent differences have many applications in computer vision.

Humans interact with vision systems as both users and supervisors, and communicate

prominent differences through what they say. During an interactive search task, where

humans provide comparative feedback (e.g, I would like to see images like this shoe,

but more formal [21]), the relative attributes that people elect to comment on are

likely prominent differences. Prominence, by definition, influences which attributes

humans provide first when comparing and contrasting images, and consequently af-

fects how humans understand computer-generated descriptions of image pairs. When

humans act as supervisors, teaching a vision system about a new and unseen image

category through comparisons with seen categories (e.g., donkeys are like horses, but

with longer ears, smaller hooves, and flatter backs), prominent differences are likely

to be presented first to the machine.

Thinking about why we perceive prominent differences, it is important to note that

a large difference in relative attribute strength does not necessarily, or even regularly,

correspond to a prominent difference. For instance, the individuals in Figure 3b differ

significantly in the dark hair attribute, just like the individuals in Figure 3a: however,

most human judges in our experiments observe smiling as the prominent difference

for that image pair. Although the shoes in Figure 3f differ significantly in how colorful
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(a) dark hair (>) (b) smiling (<) (c) visible forehead (>)

(d) colorful (<) (e) fancy (>) (f) formal (<)

Figure 3: Prominent Differences in Image Pairs - Prominent differences in relative
attributes differ for different pairs of images. Even though 3a and 3b both differ in how
dark their hair is, dark hair sticks out as the most prominent difference in 3a but not in
3b. The large difference in color palette makes colorful the prominent difference in 3d,
while in 3f, a combination of visual attribute differences between the sneaker and dress

shoe result in formal as the prominent difference.

they are, similar to the shoes in Figure 3d, their observed prominent difference is that

the left shoe is noticeably less formal than the right shoe. A set of image pairs may

have the same wide difference in a particular relative attribute, but that attribute

may only be a prominent difference for some pairs but not for others. This suggests

a trivial solution of declaring prominence as the most widely separated attribute in

a pair is insufficient (as we will confirm later).

Indeed, there is a large variety of reasons why an attribute may stand out as

a prominent difference in a pair of images: in this work, we seek to capture these

causes in our approach. Large differences in relative attribute strength certainly play

a role, as observed in Figure 3d. Absence of other significant attribute differences

can also influence prominence: the people in Figure 3a have very similar expressions

and complexions, so their hair color stands out, even though both have different

degrees of greying hair. Unusual and uncommon occurrences also impact how we

perceive prominence: for instance, the man in Figure 3c has an unusually high hairline

and large forehead, making visible forehead the prominent difference. Interactions

between visual properties and attributes also act as a complex influence on prominent

differences: Figure 3e’s left shoe has an elegant shape and combination of different

materials, colors, and textures, compared to the relatively simple and bland right
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shoe. In this instance, the left shoe is prominently fancier than the right shoe. In

this work, we will train a model to learn these pairwise interactions between relative

attributes in order to predict prominent differences.

Existing relative attribute rankers [38, 45, 46, 49] can predict the strength of

relative attributes in individual images. However, no existing vision systems represent

or predict prominent differences. Although relative attribute models can show which

attributes have the largest difference in strength for image pairs, as noted previously,

this is only one reason out of many that could contribute to prominence. Binary

attribute dominance [48] represents how much a binary attribute stands out over

others for categories of images. For example, binary attribute dominance can express

that is furry stands out more for cats than is big or swims. However, binary attribute

dominance cannot take into account pairwise relationships or relative comparisons in

attributes (e.g., Persian cats are more furry and less nimble than Cornish Rex cats),

and loses important fine-grained information by abstracting to categories (see Section

2.3 for more details).

In this work, we introduce and model prominent differences in attributes. We

propose a model that, given a pair of novel images, predicts which attribute stands

out as the most prominent difference for that image pair. To train our model, we

create feature vectors for training image pairs using the outputs of state-of-the-art rel-

ative attribute ranking models, capturing the complex pairwise interactions between

relative attributes that contribute to prominent differences. We collect prominent dif-

ference annotations at a large scale and transform these annotations into prominence

ground truth, the first annotated dataset collected for this purpose.

We evaluate our prominence model on two unique and challenging domains: the

UT-Zap50K shoes dataset [50] and the LFW10 faces dataset [43]. These datasets

are designed for fine-grained recognition and comparisons between related images,

making them suitable for prominent difference modeling. We assemble a new relative

attribute vocabulary for UT-Zap50K and use the existing vocabulary from LFW10,

collecting prominence data for image pairs from both datasets. We show that our

model significantly outperforms an array of baselines for predicting prominent differ-

ences on novel image pairs, including the state-of-the-art binary dominance approach

[48].

We then illustrate how our prominence model can be used to enhance two vision

applications: interactive image search and description generation. For the first appli-
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cation, we consider an interactive image search framework called WhittleSearch [21,

22], in which users provide feedback in the form of relative attribute comparisons to

whittle away irrelevant images. Users of this system are prone to provide prominent

differences as feedback, instead of arbitrary comparisons; we leverage this to return

relevant images to users in fewer iterations. For our second task, we tackle generat-

ing textual descriptions of novel image pairs using their attributes. We demonstrate

that describing prominent differences in relative attributes leads to more natural and

expressive textual descriptions.

In this work, we introduce and learn prominent differences in relative visual at-

tributes, and demonstrate how prominent differences can be used to enhance image

search and description generation. In Chapter 2, we discuss related work, with a

focus on attributes and the vision tasks to which we apply prominent differences. In

Chapter 3, we present our novel approach for modeling and annotating prominent

differences. In Chapter 4, we illustrate how we apply prominent differences to inter-

active image search and textual description generation. In Chapter 5, we present our

experimental setup and results. We conclude in Chapter 6, where we summarize our

work and suggest future work in the area.
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2 Related Work

We now review related work on attributes, with more emphasis placed on relative

attributes and models of visual importance. We then present work evaluated on the

applications to which we apply prominent differences: image search and description

generation.

2.1 Attributes

Human-nameable semantic properties, or attributes, have been used for a variety

of applications [1–3, 5–8, 11, 14, 17, 20, 21, 24, 26, 27, 29, 30, 32, 38, 39, 42–44, 48, 50,

51]. Attributes are human-readable and machine-understandable properties of images

(e.g., smiling, shiny) that are used by people to describe images. Attributes serve

as expressive mid-level features for recognition in scene classification [39] and face

verification [26, 30]. Attributes also express a vocabulary for human input: Branson

et al. [3] conduct fine-grained recognition with interactive attribute guidance, while

Lad and Parikh [27] conduct semi-supervised clustering using attribute descriptions.

In addition, attributes have served as a bridge for learning unseen visual categories

using human descriptions, known as zero-shot learning [14, 28, 38, 48].

In the past few years, deep neural networks have improved attribute prediction

and performance in many areas, such as face retrieval [30] and clothing search [29].

Neural networks have also enabled new methods to produce attributes: Huang et al.

[11] explore unsupervised learning and prediction of new attribute vocabularies with

deep convolutional networks.

Broadly, attributes have been used in vision as a communication medium between

humans and computers. Our approach seeks to improve this channel, by introducing

and predicting prominent differences. In contrast to any of the above, instead of
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detecting individual objects or properties in an image, we learn which properties

among all stick out to people as prominent between image pairs.

2.2 Relative Attributes

More recently, relative attributes, first introduced in [38], have been widely used

to indicate an image’s attribute strength with respect to other images [6, 9, 21, 32,

42, 45, 46, 49–51], encoding more than just binary presence or absence. This richer

representation helps to discern fine-grained differences [50, 51], describe images more

naturally [42], or predict a person’s age [9] or an image’s virality [6]. Recent work has

also explored using neural networks to predict relative attributes with success [45, 46,

49].

However, no prior work considers which relative attributes stand out over oth-

ers, and what attributes humans use when comparing images. Our work introduces

and models prominent differences, a novel functionality representing most noticeable

differences in relative attributes. It is important to emphasize that prominent differ-

ences do not correspond to the relative attributes that have the largest differences

in strength (See Section 5.3 for experimental results); relative attribute strength is

just one factor out of many interactions between visual attributes that contributes to

prominent differences.

2.3 Importance of Objects and Attributes

Different concepts of visual importance have used attributes as features and/or a

vocabulary [1, 7, 37, 47, 48]. Object importance is defined as the likelihood that an

object would be named first by a viewer out of the objects in an image [47]. Berg et

al. [1] learn object importance from natural language descriptions of images, and use

binary attribute scores as a feature for predicting object importance in novel images.

In contrast, we predict which relative attributes are perceived as most noticeably dif-

ferent between image pairs, using pairwise relative attribute scores as input features.

Dhar et al. [7] use binary attributes to predict the perceived aesthetic quality of new

images, while Kong et al. [18] use a deep neural network incorporating joint learn-

ing of binary attributes and visual content to rank photo aesthetics. As opposed to
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aesthetic quality, we consider the separate concept of prominent differences selected

from a vocabulary of visual properties.

In their recent work, Turakhia and Parikh [48] introduce the related concept of bi-

nary attribute dominance. Attribute dominance is defined as a ranking score for each

binary attribute indicating how much that attribute stands out over other attributes

for each high-level object category. For example, given the category of high heeled

shoes, the binary attribute fancy has a higher dominance score than comfortable or

rugged. The authors collect attribute dominance ground truth for each category by

presenting annotators with all possible pairs of binary attributes and observing the

frequency each attribute was picked as standing out more over its corresponding pairs.

Attribute dominance is modeled by projecting the categorical dominance values onto

individual images from within the category and training a predictor using individual

image binary classifier outputs as features.

Our work is distinct in several notable factors. (1) At a high level, the goals are

different. We seek to learn which differences stick out as most noticeable in a given

image comparison, while attribute dominance models which binary attributes are

more noticeable than others per visual category. (2) We define prominent differences

as natural “first impressions”, the top k relative attributes out of the vocabulary that

are most noticeable for an image pair, as opposed to a single strength score for each

binary attribute intended to apply to all instances in a large object category. (3)

We present annotators with individual image pairs and the entire relative attribute

vocabulary and ask for a single prominent difference, a task similar to brainstorm-

ing for compare and contrast, whereas Turakhia and Parikh [48] annotate exhaustive

binary attribute pairs for each category, which is much less scalable and not as intu-

itive. (4) We model prominent differences at the instance image level, capturing rich

differences between individual images, whereas attribute dominance can only capture

general category-level properties. For instance, given instance images of tennis shoes,

the attribute dominance model may detect general trends that sporty and comfortable

are more dominant than other binary attributes; however, our prominent differences

model captures individual differences between specific tennis shoes, such as one shoe

being prominently more colorful than other, in addition to learning categorical trends.

(5) We evaluate our approach on challenging, single-domain datasets designed for fine-

grained recognition and test on unseen instance pairs, whereas Turakhia and Parikh

[48] evaluate on categorical datasets and test on unseen categories.
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2.4 Image Saliency

Works modeling saliency (e.g., [13, 16, 37]) have used attributes and other visual

features to predict which areas of an image attract human attention, or, in other

words, where humans tend to look. Although saliency has an influence on promi-

nent differences, for instance in how areas of fixation influence human perception of

attributes, prominence is a higher-level, pairwise concept, and the result of a combi-

nation of visual attribute factors.

2.5 Image Search

Image search has benefited from approaches using attributes [21, 44, 48, 51].

Siddiquie et al. [44] introduce image search using binary attribute queries, while

Turakhia and Parikh [48] improve attribute query-based search for image categories

by using the order in which people name attributes. We also use attribute ordering,

but apply it to the instance-level and interactive WhittleSearch framework [21, 22].

In WhittleSearch, human relative attribute feedback is used to whittle away images

(i.e., I want images like this shoe, but more formal). Recent work adds equality

selection to WhittleSearch using just noticeable differences [51]. In contrast, instead

of introducing more mechanics to WhittleSearch, we use the existing order in which

people select feedback comparisons as signals for prominent differences, leading to

faster target retrieval without any extra feedback required.

2.6 Describing Images

As machine-understandable semantic properties, attributes are well-suited for vi-

sual description tasks [8, 24, 34, 38, 42, 48]. Recent work uses attributes to generate

binary attribute descriptions of objects [8], full sentence descriptions [24], and includes

improvements to these systems that list only more noticeable attributes [48].

Recent work also explores generating referring expressions, or phrases identifying

a specific object in an image [33, 34]. Mitchell et al. [34] generate expressions using an

attribute vocabulary, while Mao et al. [33] use deep learning to generate expressions

from raw images. Instead, our work focuses on differences between images, which
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could potentially be applied to enhance referring expressions by predicting prominent

differences between objects in an image. Parikh and Grauman [38] describe image

pairs by relative attribute comparisons, while Sadovnik et al. [42] explore whether to

say a binary or relative statement for a particular attribute. However, both [38] and

[42] use an arbitrary order to list all applicable comparison statements; we seek to

improve these comparative descriptions by focusing on differences that are prominent

and natural for human communication (e.g., describing the most prominent differences

to create more intuitive and expressive descriptions of image pairs).
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3 Approach

First, we present an overview of relative attribute models (Section 3.1). We discuss

relative attributes and how they differ from binary attributes. We then present the

general paradigm for learning a model for predicting relative visual attribute strength

using labeled image pairs.

Next, we explain our approach for modeling prominent differences (Section 3.2).

We present the main problem we seek to solve, then describe how we construct our

model for learning prominent differences. We demonstrate how we use relative at-

tribute outputs as inputs to our model, how we train our prominence model using

prominence labeled image pairs, and how we predict prominent differences for new

image pairs.

Finally, we detail how we annotate and collect prominent difference data to train

and evaluate our approach (Section 3.3). We illustrate the interface and intuition

behind our instance-level prominence data collection from human annotators, and

how we transform these human annotations into ground truth prominent differences.

3.1 Relative Attribute Models

Relative attributes are visual semantic properties that represent the strength of

an attribute in an image relative to other images [38]. While binary attributes only

represent the presence or absence of a property in an image, i.e., is smiling or is not

smiling, relative attributes encode comparisons between images, i.e., the person on

the left is smiling more than the person on the right. This allows for comparisons

between images (e.g., shoe X is more fancy, less rugged, and more pointy than shoe

Y), and also reveals richer information for certain images and properties that cannot

necessarily be represented by binary presence/absence.

14



less sporty more sporty

less smiling more smiling

Figure 4: Relative Attributes - Relative attributes [6, 9, 21, 32, 38, 42, 45, 50, 51] allow
us to rank images across a range of relative strengths for a particular attribute. Using

relative attributes, we can compare whether one shoe image is more sporty than another,
or whether one face image is more smiling than another. In addition, we can also use

relative attributes to compare how large the difference is between two images in terms of a
particular attribute. However, as we will show, widest difference alone is not enough to

capture prominent differences between image pairs.

Now, we describe a general framework for relative attribute predictors. Suppose

we have a set of images I = {xi}, along with a vocabulary of M relative attributes

A = {am}Mm=1. LetD(xi) ∈ RD represent the image’s D-dimensional visual descriptor.

This descriptor could be comprised of GIST [36], color, part-based representations,

convolutional neural network (CNN) features, or just the raw pixels of the image.

Given a target attribute am from the vocabulary, along with a pair of images yij =

(xi, xj), the goal of the relative attribute ranker is to determine if one image contains

more of attribute am than the other, or if both images have similar relative strengths

of attribute am.

Relative attribute models currently use ordered and unordered pairs of images for

supervised training [6, 9, 21, 32, 38, 42, 45, 50, 51]. A learning algorithm is given a set

of ordered image pairs Om = {(i, j)} and a set of unordered image pairs Sm = {(i, j)}
such that (i, j) ∈ Om =⇒ i > j, i.e., image i contains more of attribute am that

image j, and (i, j) ∈ Sm =⇒ i ∼ j, i.e., image i and image j have similar strengths

of attribute am.
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The idea of a relative attribute model is to learn a ranking function Rm(D(xi)) for

each attribute am such that the following constraints are satisfied as well as possible:

∀(i, j) ∈ Om : Rm(D(xi)) > Rm(D(xj)) (3.1)

∀(i, j) ∈ Sm : Rm(D(xi)) = Rm(D(xj)). (3.2)

The definition of what satisfies the constraints best depends on the specific rel-

ative attribute model being used, such as a RankNet objective [4, 45, 46, 49] for a

deep convolutional neural network based ranker, or wide margin paired classification

objective [38] for a ranking SVM [15] based ranker. We employ both such models in

our implementation, and review them briefly next.

Ranking SVM relative attribute models optimize R(svm)
m (D(xi)) = wT

mD(xi) to

preserve the ordering of constraints while maximizing the distance between the closest

data points (D(xi),D(xj)) when projected onto w. w ∈ RD is the weight vector to

be learned, and in this case, is linear; however, nonlinear models are also possible

using the kernel method. Ranking SVM relative attributes have seen wide use [6,

9, 21, 32, 38, 42, 50, 51], are flexible in their choice of input image descriptors, and

generally require fewer training observations to achieve reasonable performance on

relative attribute prediction.

Deep CNN based relative attribute rankers have recently emerged in the literature

as an alternative to train strong predictors of relative attribute strength [45, 46, 49].

These models generally combine a CNN optimized for paired ranking loss [4], and

use raw image pixels and image crops as input. Deep CNN rankers have seen higher

prediction accuracy for relative attributes over ranking SVM models; however, they

require significantly more time to train the network and generally need and benefit

more from larger amounts of training data.

Given a novel pair of images yuv = (xu, xv), we can compare their relative attribute

scores rum = Rm(D(xu)) and rvm = Rm(D(xv)) to determine whether xu contains more

of attribute am, xv contains more of attribute am, or xu and xv are similar in terms

of attribute am. In addition, we can also compute the “relative difference” in relative

attribute scores by computing |rum − rvm|, and use this as a measure of how different

two images are in terms of attribute am. By computing this difference for all attributes
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and taking the maximum

Wuv = arg max
m

|rum − rvm| (3.3)

we can obtain the attributeWuv with the widest difference in relative attribute score

for the image pair yuv. In later sections we will refer to this quantity as the widest

relative attribute difference.

Although the widest relative attribute differenceWuv indicates the attribute with

the largest strength difference between an image, we hypothesize that this attribute

is not necessarily the same attribute that humans perceive as the most prominent

difference for image pairs. As discussed in the introduction (Section 1), a set of image

pairs may have some attribute as the widest score difference, but that attribute would

be prominent for some pairs but not for others. There are many different reasons that

contribute to an attribute standing out as prominent, including unusual occurrences

or absences of attributes, interactions between attributes in one image, and pairwise

interactions between the attributes of the image pair. Our results in Section 5.3 will

support this, demonstrating that just selecting widest relative attribute difference is

inadequate for predicting prominence.

3.2 Modeling Prominent Differences

We now introduce our model for representing and predicting prominent differ-

ences. Our approach uses pairwise relative attribute scores from the entire attribute

vocabulary as input features, exposing the complex interplay between the attributes

of a specific image pair that results in prominent differences. We illustrate how we

train our model using prominent difference annotations of instance image pairs, and

demonstrate how our model is used to predict the most prominent difference for new

image pairs.

Suppose we have a set of images I = {xi}, along with a vocabulary of M relative

attributes A = {am}Mm=1 as defined before. These relative attributes could be specific

to the image set in consideration, or could be generic relative visual attributes for

any type of image. For instance, a domain-specific vocabulary for shoes could con-

tain relative attributes such as ruggedness, sportiness, tallness, etc., while a generic

vocabulary could contain relative attributes such as colorfulness, blurriness, interest-
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ingness.

In addition, for each attribute am in the vocabulary, we are given a set of unordered

prominence image pairs Um = {(xi, xj)} such that the most prominent difference

when comparing image xi and image xj is the relative attribute am. Note that Um is

distinct from Om and Sm, the sets of ordered and unordered relative attribute pairs

used to train a relative attribute ranker. While Om and Sm represent relative attribute

strength comparisons for one attribute, Um represents most prominent differences in

terms of relative attributes for image pairs across the whole vocabulary.

Our goal is to construct a model that, given a novel pair of images yuv = (xu, xv),

predicts which single attribute Auv is the most prominent difference for that image

pair.

To do this, we build M predictors

Pm(yuv) (3.4)

for m = 1, . . . ,M such that Pm(yuv) is the predicted confidence score that the promi-

nent difference between image pair yuv is the attribute am.

In order to represent an image pair yij as an unordered pair for training and testing,

we need a pairwise invariant transformation φ(yij) that transforms the features of

the two images into a single, joint representation. This representation needs to be

symmetric (i.e., φ(yij) = φ(yji)) so that the model always predicts the same most

prominent difference for a specific pair of images.

To create our pairwise representation, we first obtain the relative attribute ranking

score

rim = Rm(D(xi)) (3.5)

for each image xi in the pair using a relative attribute ranker Rm as described before,

for all attributes in the vocabulary, resulting in M relative attribute scores ri1, . . . , r
i
M .

We use relative attribute scores to represent each image so that our model captures

the pairwise interactions between all relative attributes that result in prominent dif-

ferences.

Then, we convert the M relative attribute scores for each image into a pairwise

invariant representation. We experiment with different pairwise invariant transforma-
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tions, including element-wise product, absolute difference, and average. For its strong

performance on prominence prediction, we select the average of the pair’s scores for

each attribute and concatenate the absolute difference between the pair’s attribute

scores, creating a feature vector of length 2M :

φ(yij) = (
ri1 + rj1

2
, . . . ,

riM + rjM
2

,
∣∣ri1 − rj1∣∣, . . . , ∣∣riM − rjM ∣∣) (3.6)

This feature representation captures the individual relative attribute scores while

maintaining symmetry: pair scores for each attribute can be reconstructed simply by

average± absdifference
2

. Additionally, we standardize all pairwise feature vectors before

input into our model.

We experiment with two different relative attribute rankers R(D(xi)) for gener-

ating relative attribute scores ri; one ranking SVM model and one deep CNN model,

as defined above (Section 3.1). The first model we use is the ranking SVM relative

attribute model with similarity first introduced by Parikh and Grauman [38], while

the second is the the deep convolutional neural network with a spatial transformer

network introduced by Singh and Lee [45]. We experiment with both rankers as the

relative attribute score predictor for our prominence model, and report results from

both.

Given our pairwise relative attribute features φ(yuv), we now predict the confidence

score for each attribute am using

Pm(yuv) = Sm(wT
mφ(yuv)) (3.7)

where wT
m are weights learned by a binary linear classifier, and Sm is a function

mapping linear classifier scores to confidence values.

To learn the linear classifier predictor weights wT
m for each attribute am, we first

mark all training pairs from Um as positive examples, and training pairs from other

prominence sets {yij|yij /∈ Um} as negative examples. We use a single binary classifier

for each attribute using its positive and negative training pairs. Specifically, we use

a linear SVM classifier for its strong performance in practice, though certainly other

classifiers would be applicable.

To address the class imbalance problem, where the number of negative examples,

i.e., all image pairs that are not most prominent in a particular attribute, outweighs
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Figure 5: Pipeline for Prominent Difference Prediction - To predict the most
prominent difference given a new image pair, our approach first computes the relative

attribute scores over the entire vocabulary for each individual image, then combines these
scores into a pairwise representation, which is used as feature input into the multiclass
prominence classifier. The classifier returns the predicted most prominent difference for

the image pair.

the number of positive examples, we adjust the SVM misclassification cost to give a

higher penalty to misclassifying positive examples.

Raw linear SVM classifier outputs generally provide poor estimates of probability,

producing distorted probability distributions. So, to transform the classifier output

wT
mφ(yij) to a confidence score Pm(yuv), we use Platt’s method [40], indicated by Sm,

which transforms each SVM classifier output into the posterior probability that am

is prominent given input φ(yij).

Platt scaling produces probability estimates by fitting a logistic transformation of

classifier scores:

Sm(wT
mφ(yij)) =

1

1 + exp(AmwT
mφ(yij) +Bm)

. (3.8)

The parameters Am and Bm are learned using maximum likelihood estimation,

optimized on the same training data as the original SVM classifier.

Now, given our set of M confidence predictors Pm, we extract the most prominent
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attribute Auv for a novel image pair yuv by choosing the attribute model with the

highest outputted confidence level:

Auv = arg max
m

(Pm(yuv))). (3.9)

In addition, we can also return the top k prominent differences for an image pair

using our model by sorting attribute confidence values and selecting the k attributes

with the highest confidence scores. This can be used, for instance, to generate a

textual description for a pair of images comparing their k most prominent differences.

Our model follows the structure of a one versus all multiclass classifier, with our

relative attribute features φ(yuv) as input features and the most prominent attribute

as input class labels. Other models could certainly be considered for predicting promi-

nence, such as a one versus one multiclass classifier, which trains
(
M
2

)
binary classifiers,

one between each unique pair of classes, or a ranker model, which would return a full

ranking of attributes by how prominent they are.

We experiment with both multiclass classification models, and chose the one ver-

sus all model for several reasons: its strong performance for prominence prediction,

its easy interpretability for individual attributes as compared to a one versus one

multiclass model, and its efficiency (only requiring one classifier per attribute in the

vocabulary). We choose a classifier approach versus a ranker for its ease of collecting

intuitive and natural human perceptions of “first impression” prominence (see the

next section, Section 3.3), as opposed to exhaustive comparisons between all different

pairs of attributes in the vocabulary, which is more cumbersome for humans and can

lead to more noisy results.

3.3 Annotating Prominent Differences

In order to build a set of ground truth values for prominence training and evalu-

ation, we collect human annotations of prominent differences for image pairs at the

image pair instance level. These annotations are used as the target prominence la-

bels during training, as well as the ground truth prominence labels to evaluate our

approach. We collect annotations at a large scale using Amazon Mechanical Turk, a

crowd-sourcing platform for workers to complete jobs, known as Human Intelligence

Tasks or HITs.
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Figure 6: Annotation Interface for Prominence - We provide annotators with a pair
of instance images, and ask for the single most noticeable difference between the two

images. We provide the entire relative attribute vocabulary as choices.

To collect human perception of prominent differences, we show Mechanical Turk

annotators a pair of randomly selected instance images, along with a list of all M

attributes {am},m ∈ {1, . . . ,M}. We ask the annotators which single attribute out

of the list sticks out as being the most noticeable difference for that image pair.

To help annotators better understand the task at hand, we present the following

situation as intuition: “Imagine that your friend cannot see the pair of images. You

would like to tell your friend the most noticeable difference between the images.”

To moderate more thoughtful answers, we also ask annotators to justify in a short

sentence why they chose their answer for a subset of questions. See Figure 6 for our

annotation interface.

It is important to highlight that we ask each annotator to select just one attribute

as prominent. This enables Mechanical Turk annotators to provide their first impres-

sion of the most noticeable difference when comparing and contrasting a new pair

of images. Additionally, we provide the entire vocabulary of M attributes to choose

from for every sample image pair, which aids in ensuring that at least a subset of
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attribute choices are noticeably different for almost all image pairs.

Our annotation system has several strengths when compared to the format used

by Turakhia and Parikh [48] for annotating binary attribute dominance. In our anno-

tation task, we ask annotators to select one attribute out of all as prominent, which is

more natural and intuitive than the pairwise attribute task used in their dominance

work, where two arbitrary attributes are given and annotators must choose one of

the two, even if neither are dominant. Finally, our annotation system is much more

scalable: it requires only one annotation question per image pair, regardless of the

number of attributes in the vocabulary, versus
(
M
2

)
combinations of attribute pair

questions required to annotate one instance of dominance. This allows us to collect

and train prominent differences at the instance level, capturing fine-grained infor-

mation on which specific images and features lead to prominence, whereas Turakhia

and Parikh collect dominance at the category-level, projecting the same dominance

strengths for all instance images in a category.

To obtain our prominent difference ground truth labels for image pairs, we first

collect annotations from seven Mechanical Turk annotators for each pair in our sam-

ple. This gives us a set of prominent attribute choices. For each image pair, we order

the attributes by their frequency chosen as prominent, creating a ranking of attributes

for each image pair. We use the most frequently chosen attribute, i.e., highest ranked

attribute ri1, as the ground truth label for each input image pair to our model.

We experiment with two different datasets, the UT Zappos50K (UT-Zap50K)

Shoes Dataset [50] and LFW10 Faces Dataset [43], and collect prominence anno-

tations for both datasets. These datasets were designed for evaluating fine-grained

recognition and comparison tasks, where two images of a similar type (e.g., two pairs

of shoes, or two people’s faces) are compared in terms of their relative attributes.

We create a new relative attribute vocabulary of 10 attributes for UT-Zap50K using

human annotation responses from [52], with the attributes (1) sporty, (2) comfortable,

(3) shiny, (4) rugged, (5) fancy, (6) colorful, (7) feminine, (8) tall, (9) formal, (10)

stylish, and use the existing relative attribute vocabulary of 10 attributes for LFW,

(1) bald head, (2) dark hair, (3) eyes open, (4) good looking, (5) masculine, (6) mouth

open, (7) smiling, (8) visible teeth, (9) visible forehead, (10) young. We select these

relative attribute vocabularies for their size (10 attributes), so that there are a large

variety of properties for making comparisons, and aim for as little overlap as possible

between attributes, so that prominent differences can be more clear-cut. For more
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detail on the datasets used, as well as training and testing splits, see Section 5.1.

We collect prominence data for 4, 990 sample image pairs for each of UT-Zap50K

and LFW10, with seven annotators per pair, and transform these pairs into ground

truth. In terms of annotator agreement, 77 percent of image pairs had three or more

annotators agree on the top prominent difference, and 51 percent of pairs had four

or more annotators agree on the top prominent difference for UT-Zap50K, with 87

percent and 53 percent for LFW-10, respectively. On average, 3.8 unique attributes

were chosen as most noticeable for each image pair for UT-Zap50K, with 3.3 unique

attributes chosen per pair for LFW10. This high level of agreement shows that

prominent differences are in fact consistent for most image pair comparisons, and

that people tend to agree on prominent differences when shown an image pair.

We illustrate examples of ground truth most prominent differences in Figure 7 and

8. From these examples, we observe different annotator-provided rationales for promi-

nent differences, provided as common explanations in our data collection studies. For

instance, Figure 8e’s prominent difference is dark hair and Figure 7b’s prominent

difference is tall because annotators state the image pairs are most different in that

attribute. In Figure 8f and Figure 7f, eyes open and stylish stand out to human

judges, respectively, because of the unusualness of having eyes closed in a picture and

for the unusual style of the high heel. Finally, visible teeth and shiny stand out for

Figure 8a and Figure 7e even though those differences are not stark, because anno-

tators stated that other attributes had less noticeable differences. These rationales

show that our feature design for learning prominent differences is well motivated:

interactions between all relative attributes present in a pair of images cause human

perceptions of prominence.

We have now illustrated how we model and learn prominent differences using

relative attribute features, as well as how we annotate prominent differences and

transform human annotations into ground truth. Next, we will introduce our ap-

proaches for applying prominent differences on two vision tasks: image search and

description generation.
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(a) sporty (>) (b) tall (<) (c) rugged (>)

(d) sporty (>) (e) shiny (<) (f) stylish (>)

Figure 7: Ground Truth Prominent Differences for UT-Zap50K - Sample image
pairs from the UT-Zap50K shoes dataset along with their ground truth most prominent

attribute differences.

(a) visible teeth (<) (b) smiling (<) (c) visible forehead (<)

(d) bald (>) (e) dark hair (>) (f) eyes open (<)

Figure 8: Ground Truth Prominent Differences for LFW10 - Sample image pairs
are shown along with the most prominent attribute difference for each, determined as the

annotators’ most chosen attribute out of the vocabulary for that image pair.
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4 Applications

We now illustrate our approaches for applying our prominent difference predictor

on two human-centric applications. In Section 4.1, we present an application of

prominence on interactive image search. In Section 4.2, we show use of prominent

differences to generate textual comparisons of image pairs. For experimental details

and results, see Section 5.4 and 5.5.

4.1 Image Search

We consider applying prominent differences to WhittleSearch [21, 22], an interac-

tive image search framework that allows users to provide relative attribute feedback in

the form of comparisons (e.g., I would like images that are more formal than reference

image X) to refine search results.

WhittleSearch considers the scenario in which a user has a target image in mind

(e.g., a specific shoe or specific image of a person), and would like to find that image,

or ones similar to it, in a database of images. At each iteration of WhittleSearch, the

user is shown a page of K top-ranked image results. The user selects some subset of

reference images from the page, and specifies feedback using these reference images

in the form “What I am looking for is more/less am than image xref ,” where am is

an attribute name and xref is a reference image. The user is able to freely choose the

reference images and attributes on which they wish to specify feedback.

User feedback from the current search iteration, along with feedback from all

previous iterations, is then converted into C relative attribute constraints, where, for

all feedback statements of the form “What I am looking for is more am than image
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xref ,” a relevant image xi should satisfy the constraint

rim > rrefm , (4.1)

and for all statements of the form “What I am looking for is less am than image xref ,”

relevant image xi should satisfy the constraint

rim < rrefm , (4.2)

where rim and rrefm are relative attribute scores for attribute am predicted by the ranker

Rm for the database image and reference image, respectively.

At the end of each iteration, WhittleSearch orders the images in the database

according to how many of the C relative attribute constraints are satisfied by each

image: the group of images that satisfy all C constraints appear first, followed by

images that satisfy C − 1, etc. It is important to note that in the method of [21],

images within groups that satisfy the same number of constraints are ordered ran-

domly. The top ranked K results from the new ordering are shown, corresponding

to the group(s) satisfying the most constraints, marking the start of a new iteration.

The user provides additional feedback to add to the set of constraints, “whittling

away” images not meeting the user’s requirements, until the target image is found.

A probabilistic extension is given in [19].

When users provide feedback in the form of “What I am looking for is more/less

am than image xref”, it is likely they will provide the most prominent attribute

differences between the chosen reference image xref and their mental target (Figure

9). Thus, images are more likely to be relevant if they are prominently different in

attribute am with image xref , for all C user-specified feedback constraints. We model

this in our approach by introducing a target probability term p(xi) for each database

image xi using prominence values:

p(xi) ∝
C∏
c=1

Pmc((xi, xrefc)), (4.3)

where Pmc is our prominence predictor for attribute mc, and attribute mc and refer-

ence image refc are the constraint parameters from constraint c, for all constraints

c = 1, . . . , C.
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Figure 9: WhittleSearch Relative Attribute Feedback - In WhittleSearch [21, 22], a
user has in their mind a target image or concept that they are searching for. The user is
shown a page of results, and chooses reference images and feedback constraints from the

page (shown in the boxes). Our hypothesis is that users will not randomly select different
relative attributes as comparisons between reference images and their target; instead, they

will likely provide prominent differences between the reference and their target as
feedback. We leverage this in our approach.
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We use p(xi) to rank the images within each group of images satisfying N con-

straints, by listing them in descending order of p(xi), with images satisfying promi-

nence relationships best listed first in each group. We use this approach to maintain

the overall constraint group ordering of WhittleSearch, while significantly improving

the ordering of images within constraint brackets.

A significant strength of our approach is that it does not require any additional

user input: we use simply use the attributes chosen in the existing feedback method.

We hypothesize that this approach is especially impactful for reducing the rank of

the target image in the first few iterations of WhittleSearch, when many images from

the database satisfy all or most of the user’s chosen feedback constraints.

4.2 Description Generation

For our second application, we consider applying prominent differences to generate

descriptions of images with respect to each other. In particular, given a novel image

pair, we would like to generate a textual description comparing the two images in

terms of their relative attribute differences (e.g., Image X is more sporty, less formal,

and more colorful than Image Y).

As explained in the introduction, when humans are asked to describe two images

with respect to each other, such as in a compare and contrast task, they will likely

state most prominent differences first. In addition, humans will not name all possible

differences that are present between the images; instead, humans will focus on only

a subset of the most noticeable differences in their expression.

Currently, relative attribute models can generate textual descriptions comparing

two images in terms of all relative attributes in the vocabulary, in arbitrary order

[38]. We argue that this is not natural or intuitive. With a large attribute vocabu-

lary, listing out all differences generates descriptions that are too long and impractical

for real-world use. To reduce the size of generated descriptions, [38] output a ran-

domly chosen subset of k attributes to form the description. This approach can miss

important differences and place less noticeable, or even irrelevant, differences first,

producing less descriptive comparisons.

We propose generating descriptions using the k most prominent differences. Namely,

given a novel image pair yuv, we compute prominent difference confidence scores

Pm(yuv) for all M attributes in the vocabulary. We then sort all attributes in de-
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scending order of their prominence confidence scores. Using this ordering, we can

generate a description with k comparison statements by using the top k attributes

from the ranking. We can either state the prominent differences directly without

relative attribute direction, or use predicted relative attribute scores or ground truth

to state comparison directions. For example, given two shoe images, our model can

generate the description “The left shoe is more sporty, less stylish, and less shiny than

the right shoe,” stating the three most prominent differences between the instance

images.

We have thus illustrated our approaches for applying prominent differences to two

applications, image search and description generation. We now present our experi-

mental results, including an overview of the datasets used, experimental setup, and

results of evaluating our approach on predicting prominent differences, followed by

setup and results on image search and description generation.
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5 Results

We first introduce the two image datasets we use, the annotations that we collect

as ground truth, as well as the splits used during evaluation (Section 5.1). We then

introduce the four baselines that we use to compare our approach: binary attribute

dominance [48], widest relative attribute difference, single image prominence, and

prior (Section 5.2). Finally, we show the evaluation of our approach on prominent

difference prediction (Section 5.3), as well as our experimental setup and results on

image search (Section 5.4) and description generation (Section 5.5).

5.1 Datasets

5.1.1 UT-Zap50K Shoes Dataset

The UT Zappos50K (UT-Zap50K) Dataset [50] is a dataset of 50,025 shoe catalog

images and four relative attributes from Zappos.com. The shoe images are divided

into four major types (Boots, Sandals, Shoes, Slippers), followed by subdivision into

19 functional categories (e.g., Ankle Boots, Mid-Calf Boots, Flat Sandals, Oxfords

Shoes, Heels Shoes). Visually, the shoe images are centered, oriented, and placed

on a white background. The UT-Zap50K dataset was created in the context of fine-

grained recognition tasks such as online shopping and fine-grained comparisons, where

users are comparing similar images, such as two pairs of high heels, in terms of relative

attributes, making it well suited for prominence evaluation and our comparison-based

applications.

The dataset comes with instance-level comparison labels for four relative at-

tributes: however, to increase our vocabulary and variety for prominence prediction,

we introduce a new vocabulary of ten relative attributes to conduct our experiments:

(1) sporty, (2) comfortable, (3) shiny, (4) rugged, (5) fancy, (6) colorful, (7) feminine,
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Figure 10: Annotation Interface for Relative Attributes - We collect relative
attribute annotations for UT-Zap50K using our new attribute vocabulary to train and

validate our relative attribute rankers. For LFW10, we use the relative attribute
annotations provided in the dataset [43].

(8) tall, (9) formal, (10) stylish (see Figure 11). These attributes were selected from

Amazon Mechanical Turk data collected by Yu and Grauman [52], in which users

were presented with pairs of UT-Zap50K images and asked to provide the first adjec-

tive difference that comes to mind, filling in the sentence “Image A is a little more

adjective than Image B.” We select our 10 attributes out of the most frequently stated

words by users, ensuring that no attributes are synonyms of each other, and that all

are understandable to the average Mechanical Turk user. We use the 19 functional

categories as described above as categories for the binary attribute dominance base-

line [48], for a balance between number of categories and number of instance images

per category.

For our experiments, we randomly sample 2,000 images from the dataset and use

this subset for all subsequent data collection and sampling. We sample 4,990 pairs
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randomly from our pool of 2,000 images, and collect prominent difference data for

each pair. Each image pair is labeled by seven annotators, using the annotation

approach in Section 3.3. This prominence data is used for training and as the ground

truth for prominence evaluation.

In order to train and validate the relative attribute rankers, we sample 1,600 image

pairs and collect relative attribute annotations for each of the 10 attributes in our

vocabulary for each pair, for a total of 16,000 relative attribute annotations. For

the relative attribute annotation task, we present users with an image pair and ask

whether Image 1 has more or less of each attribute than Image 2 (see Figure 10).

Each attribute is labeled by five annotators. We transform the raw relative attribute

annotations into ground truth by labeling image pairs with only 3 people in agreement

for an attribute label as ground truth equal, and image pairs with 4 or more people

in agreement for an attribute label as ground truth more/less.

For models that use image features, such as the wide margin relative attribute

ranker [38] and the binary attribute classifiers, we generate state-of-the-art CNN

features from the fc7 fully-connected layer of AlexNet [23], a deep convolutional neu-

ral network trained on the ImageNet dataset, a large-scale database for visual ob-

ject recognition. These 4096-dimension CNN features outperform the 960-dimension

GIST and 30-dimension Lab color features given in the UT-Zap50K dataset in our

experiments, so we report results for the CNN features only. For the deep CNN+STN

relative attribute ranker, we use raw images as input, scaling and cropping using the

method presented by Singh and Lee [45].

For model evaluation on prominence, we use 10-fold cross validation, splitting on

individual images. In particular, for each split, we use 1,800 images for training and

200 for testing. For binary (single image) models, we train using all instances from the

training set. For pairwise models such as prominent difference and relative attribute

models, we train using image pairs contained within the training set and test with

image pairs contained within the testing set. All models receive on average the same

proportion of training instances to testing instances.

5.1.2 LFW10 Faces Dataset

The LFW10 Dataset [43] is a collection of 2000 images randomly selected from the

Labeled Faces in the Wild dataset (LFW) [12], along with 10,000 relative attribute
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(a) ←−−− sporty −−−→ (b) ←−−− comfortable −−−→

(c) ←−−− shiny −−−→ (d) ←−−− rugged −−−→

(e) ←−−− fancy −−−→ (f) ←−−− colorful −−−→

(g) ←−−− feminine −−−→ (h) ←−−− tall −−−→

(i) ←−−− formal −−−→ (j) ←−−− stylish −−−→

Figure 11: UT-Zap50K Dataset Attributes - Visual examples of the ten different
UT-Zap50K attributes used in our experiments. For each attribute, we show a sample
image with less of the attribute on the left, more of the attribute on the right, and a

median example in the middle.
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image pairs collected over ten different attributes, (1) bald head, (2) dark hair, (3) eyes

open, (4) good looking, (5) masculine, (6) mouth open, (7) smiling, (8) visible teeth, (9)

visible forehead, (10) young (see Figure 12). Each relative attribute pair is annotated

by five different annotators, who are given the task of answering whether or not one

image is more/less/the same for a particular attribute compared to another image.

The face images from Labeled Faces in the Wild are collected from the web and

detected by the Viola-Jones face detector and aligned. The dataset images contain a

variety of poses, backgrounds, lighting, and other difficult conditions.

For our experiments, we directly use the LFW10 relative attributes as our vo-

cabulary. We create categories for the binary attribute dominance baseline [48] by

matching the LFW10 images to their people labels, and use individual people as cat-

egories. We keep all individuals with three or more instance images in the dataset,

resulting in a total set of 1,064 images belonging to 150 individual categories.

We sample 1,463 image pairs randomly from our image set and collect prominent

difference data from each pair, with seven annotators per pair. We use the given

relative attribute annotations in LFW10, consisting of 500 training and testing anno-

tations per attribute. We discard this split, combining both training and testing pairs

for LFW10 into one set, then selecting only the annotated pairs that are contained

within our image set, resulting in a total of 2,675 image pairs over ten attributes.

We transform the individual Mechanical Turk labels by choosing the majority chosen

label of the five annotators as the ground truth for training and evaluation.

For image features for LFW10, we use the 8,300 dimension part-based features

learned on dense SIFT [31] bag of words features, provided in [43]. These features

isolate local regions of the face, and have been shown to significantly outperform

global descriptor representations for relative attribute prediction. We reduce the

dimensionality of these features to 200 using principal components analysis (PCA) to

avoid overfitting. As with UT-Zap50K, for the deep CNN relative attribute ranker,

we use scaled and cropped raw images as input. We evaluate prominence using 5-

fold cross validation, splitting on individual images in the same method used for

UT-Zap50K.
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(a) ←−−− bald head −−−→ (b) ←−−− dark hair −−−→

(c) ←−−− eyes open −−−→ (d) ←−−− good looking −−−→

(e) ←−−− masculine −−−→ (f) ←−−− mouth open −−−→

(g) ←−−− smiling −−−→ (h) ←−−− visible teeth −−−→

(i) ←−−− visible forehead −−−→ (j) ←−−− young −−−→

Figure 12: LFW10 Dataset Attributes - Visual examples of the ten different LFW10
attributes used in our experiments. For each attribute, we show a sample image with less
of each attribute on the left, more of the attribute on the right, and a median example in

the middle.
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5.2 Baselines

We now introduce the four baselines that we use to compare our approach: binary

attribute dominance [48] (Section 5.2.1), widest relative attribute difference (Section

5.2.2), single image prominence (Section 5.2.3), and prior (Section 5.2.4).

5.2.1 Binary Attribute Dominance

Our first baseline is Turakhia and Parikh’s binary attribute dominance model [48],

as introduced in Related Work (Section 2.3).

To ensure a fair baseline, we follow the approach of Turakhia and Parikh [48] as

closely as possible, collecting dominance annotations to train the dominance base-

line model, and building binary attribute classifiers to produce input features for the

dominance model. First, we directly convert our vocabulary of relative attributes

for each dataset into binary attributes, e.g., sportiness becomes is sporty or is not

sporty, fanciness becomes is fancy or is not fancy, etc. We collect binary attribute

ground truth for each single image and attribute in our datasets, asking annotators

whether the image contains or does not contain each attribute. We show each at-

tribute and image to five different Mechanical Turk annotators, and take the majority

presence/absence vote as the binary attribute ground truth. We use this ground truth

to train M binary attribute SVM classifiers, one for each attribute.

Next, we collect dominance annotations at the category level, using the same

interface and parameters as Turakhia and Parikh [48]. For the UT-Zap50K shoes

dataset, we use the functional categories as stated in Section 5.1.1, resulting in 19

categories (e.g., Ankle Boots, Flat Sandals, Sneakers and Athletic Shoes, Clogs and

Mules) across a total of 2,000 images. For the LFW10 faces dataset, we use individual

people as categories, with 150 categories across a total of 1,463 images. For each

category, and for each possible combination pair of attributes, we ask annotators to

choose which attribute pops out more (see Figure 13). Dominance ground truth,

as defined by [48], is the number of annotators that selected the attribute when it

appeared as one of the options for that category.

We show examples of ground truth attribute dominance from UT-Zap50K and

LFW10 in Figure 14 and 15. For each category, we show the top 3 highest ranked

dominant binary attributes. From these examples, we can see that attribute dom-
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Figure 13: Annotation Interface for Attribute Dominance [48] - To gather data for
training this baseline, we use the same interface and method as used by Turakhia and
Parikh [48]. We show users a montage of images from a category, and a pair of binary
attributes from the vocabulary. We then ask users which of the two presence/absence

attributes stands out more.
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(a) BoatShoes
stylish, comfortable, colorful

(b) OxfordsShoes
comfortable, formal, stylish

(c) KneeHighBoots
tall, colorful, feminine

(d) SlipperFlats
colorful, comfortable, fancy

(e) HeelsShoes
stylish, feminine, fancy

(f) LoafersShoes
comfortable, formal, stylish

Figure 14: Ground Truth Attribute Dominance [48] for UT-Zap50K - Six
categories out of the 19 total are shown with their Mechanical Turk annotation montages,

along with the ranked top three dominant attributes for each category.

inance captures general attribute trends within a category, such as formal for the

OxfordsShoes in 14b, stylish for the HeelsShoes in 14e, and masculine for the man in

15a. However, many attribute differences among instances in a category are lost by

the generalization. Although the KneeHighBoots category in Figure 14c is labeled

with colorful as dominant, only certain instance images within the category are col-

orful, and the others are quite dull. Although the woman in Figure 15d is labeled

with smiling as the most dominant attribute, she is only smiling in some instances

but not in others.

We follow the approach of Turakhia and Parikh [48] for training, projecting the

category-level dominance ground truth to each training image in the split. We repre-

sent the images by their Platt scaled [40] binary attribute SVM classifier outputs. In
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(a) masculine, good looking, smiling (b) not dark hair, smiling, not young

(c) good looking, dark hair, eyes open
(d) smiling, visible teeth, good

looking

(e) eyes open, not bald head, dark
hair (f) smiling, dark hair, visible teeth

Figure 15: Ground Truth Attribute Dominance [48] for LFW10 - Six categories
out of the 150 total are shown with their Mechanical Turk annotation montages, along

with the ranked top three dominant attributes for each category.
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our experiments, the dominance model is trained on all images in the training split,

which usually results in it learning from all categories.

Note that the method of [48] does not predict prominent differences. Nonethe-

less, in order to provide a comparison with our approach, we add a mapping from

attribute dominance predictions to estimated prominent differences. In particular,

to predict the most prominent difference given a novel image pair yuv = (xu, xv),

we first compute binary attribute dominance values for each image in the pair, re-

sulting in dominance values du = (du1 , d
u
2 , . . . , d

u
M) for xu and dv = (dv1, d

v
2, . . . , d

v
M)

for xv. We select the attribute with the highest dominance value among both images

auvd = arg maxm([du, dv]) as the predicted most prominent attribute difference for that

pair. This method selects the attribute that sticks out as most dominant from either

of the single images in the input pair.

5.2.2 Widest Relative Attribute Difference

For our second baseline, we consider using the widest relative attribute difference

Wuv to predict prominent differences (cf. Section 3.2). To reiterate, given a novel pair

of images yuv = (xu, xv), we use their relative attribute strengths ru = (ru1 , r
u
2 , . . . , r

u
M)

and rv = (rv1 , r
v
2 , . . . , r

v
M) as predicted by relative attribute rankers, and select the

attribute with the widest pairwise difference in strengthWuv = arg maxm(|rum − rvm|).
We use the same relative attribute models, tuning parameters, and output scores

as used by our prominent difference model. We tune the relative attribute models for

strong performance on ordered relative attribute prediction, with 86% accuracy on

UT-Zap50K and 80% accuracy on LFW10 using the SVM ranker, and 89% accuracy

and 86% accuracy using the CNN ranker. We experiment with manipulating rela-

tive attribute scores using per-attribute standardization to a standard normal and

normalization to [0, 1] before widest difference computation for better comparisons

between different attribute outputs, and select normalization for both rankers and

datasets for its strongest performance on prominence evaluation.

5.2.3 Single Image Prominence

Our third baseline is a “single image prominence” model, which uses as ground

truth the projection of prominent difference annotations onto both images in each
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labeled pair. This model observes the same prominence ground truth as our proposed

approach, but learns from individual images, without any pairwise knowledge.

We train a linear SVM for each attribute, using relative attribute scores of in-

dividual images as input features, and label an image as positive if it is part of an

image pair that is ground truth prominent in the target attribute. We convert the

outputs of each SVM into posterior probabilities using Platt’s method [40], resulting

in predicted confidence scores pm(xi) for each attribute am.

Given a novel image pair (xi, xj), we predict the most prominent attribute using

this baseline model by computing the predicted prominence confidence levels of each

image in the pair for all attributes, and selecting the attribute with the highest

posterior probability:

arg max
m

(pm(xi), pm(xj)). (5.1)

The model follows the general structure of a one versus all multiclass SVM classi-

fier, but has overlap between different classes for certain data points, because certain

individual images may be part of multiple image pairs with different prominent at-

tribute ground truths, and will be labeled as prominent in multiple attributes.

5.2.4 Prior Frequency

Our final baseline is a simple “prior frequency” model, which predicts prominent

differences proportionally according to their frequency of occurrence in the ground

truth. For instance, if 20% of image pairs were labeled as most prominently different

in sporty in the ground truth, the prior model will predict sporty as most prominent

20% of the time. This baseline performs stronger on average than a purely random

model, and provides a reference from which to see improvement by other baselines

and our approach.

5.3 Prominent Differences Evaluation

We evaluate prominent difference prediction using both datasets (UT-Zap50K

and LFW10), for our prominence model and all baselines. As our main evaluation
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measure, we consider the prediction accuracy of each model. We have each model

predict a single, most prominent attribute difference for each image pair, using the

approaches previously described.

Recall that seven annotators supply ground truth prominence on each image pair.

Because there is not always a unanimous prominent attribute difference, we evaluate

accuracy over a range of k maximum attributes marked as ground truth correct, to

help account for variance in human perception. Specifically, we take the prominence

annotations for each image and sort attributes by the number of times each was

marked, creating a partial ranking of c attributes (due to many attributes not being

selected for each image pair). We take the min(k, c) top ranked attributes as ground

truth prominent, and mark a pair as correctly predicted if the predictionAuv is present

in the ground truth. At k = 1, only the ground truth most prominent attribute is

considered correct.

We show our accuracy results in Figure 16. We divide results for each dataset

into two plots for clarity, one corresponding to each ranker (ranking SVM and deep

CNN+STN) used to produce relative attribute scores. Between the two plots for both

datasets, the prior and binary attribute dominance baselines are shared; results from

single image prominence, widest relative difference, and our approach are different

across the two plots because of the two relative attribute rankers employed (i.e.,

CNN for right plots; ranking SVM for left plots).

Overall, our approach significantly outperforms all baselines for prominence pre-

diction. We observe sizable gains of roughly 20-22% on Zap50K, and 6-15% on LFW10

for prediction accuracy over the strongest baselines, across all sizes of ground truth.

This clearly demonstrates the advantage of our approach, which uses pairwise relative

attribute features to learn the complex interactions between attributes that result in

prominent differences.

Our results show that the baselines of widest relative difference, binary attribute

dominance, and single image prominence are not enough to predict prominent dif-

ferences. In the case of widest relative difference, its lower accuracy compared to

our approach demonstrates that the widest difference in attribute strength is only

one contributing factor for prominent differences: our approach is able to capture

other interactions between the visual properties of the images, and therefore predict

prominence more accurately.

We also outperform the binary attribute dominance model of Turakhia and Parikh
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Figure 16: Prominence Evaluation Accuracy - Prominence prediction accuracy
results for our model and baselines. UT-Zap50K shown on top, LFW10 shown on bottom,

with ranking SVM relative attribute scores used on the left and CNN relative attribute
scores used on the right. Our model significantly outperforms all baselines.
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[48] by a significant margin: attribute dominance performs roughly in line with the

widest relative difference for UT-Zap50K, but has very poor performance on LFW10,

in line with the Prior baseline. We infer that the binary dominance model’s better

performance on UT-Zap50K is due to the more homogeneous shoe categories in terms

of binary attributes; for instance, most high heels are stylish and formal, most boots

are rugged, and most athletic shoes and sneakers are sporty. Thus, binary dominance

data is more consistent for these categories, and, when projected onto individual im-

ages, has greater success. With LFW10, where the binary dominance model learns

from categories of specific individuals, many of the dominant attributes in LFW10 dif-

fer within images in one group. For instance, although Arnold Schwarzenegger would

be referred to as masculine in most of his images, it is not possible for a categorical

dominance model to accurately learn attributes such as smiling, eyes open, visible

teeth, mouth open, or young just from a collage of images with various expressions.

Based on the performance of our third baseline, the single image prominence

model, we demonstrate that prominent differences are a pairwise phenomenon and

must be modeled as the relationship between two images, instead of per each image

in the pair. Comparisons between images require both images as context; modeling

using single images is not sufficient.

Comparing the CNN relative attribute ranker scores to the ranking SVM scores,

our approach achieves similar performance on UT-Zap50K but benefits from the CNN

ranker scores for LFW10. The widest relative difference baseline performs slightly

stronger with CNN ranker scores compared to ranking SVM scores, but still performs

significantly below our approach. It is important to highlight that our idea and

contributions are orthogonal to the choice of relative attribute ranking model: our

approach can learn from relative attribute scores generated from any ranker model.

For a secondary evaluation of prominence, we show individual attribute average

precision (AP) for our model compared to the three baselines, in Tables 5.1, 5.2, 5.3,

and 5.4 (excluding the Prior baseline, because it does not output confidence scores

per attribute). We generate precision-recall curves for each attribute by marking

all image pairs with that attribute in the top 3 annotated prominent differences as

ground truth positive, and all other image pairs as ground truth negative. Since

prominent differences are not a per-attribute phenomenon, and are thus more suited

for full-model accuracy evaluation as shown in Figure 16, we show these AP values as a

supplement to the accuracy figures, to reveal more about the per-attribute parts of our
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Sporty Comfort Shiny Rugged Fancy Color. Femin. Tall Formal Stylish All Attributes
Single 55.72 43.01 23.29 18.02 27.00 43.19 27.63 36.83 18.28 22.67 31.56 ± 3.97

Dominance [48] 57.44 41.09 30.09 27.68 33.33 49.28 36.21 52.00 24.46 24.86 37.64 ± 3.74
Widest RA 60.44 37.55 29.48 25.55 32.29 57.37 49.41 71.23 26.26 21.57 41.11 ± 5.46

Ours 76.29 59.87 49.60 45.01 40.18 73.34 54.05 80.59 39.28 33.74 55.19 ± 5.29

Table 5.1: Average Precision for UT-Zap50K, SVM Models

Sporty Comfort Shiny Rugged Fancy Color. Femin. Tall Formal Stylish All Attributes
Single 34.97 40.71 22.41 19.35 26.66 42.04 26.97 37.34 18.03 21.43 28.99 ± 2.86

Dominance [48] 57.44 41.09 30.09 27.68 33.33 49.28 36.21 52.00 24.46 24.86 37.64 ± 3.74
Widest RA 59.15 38.75 26.41 23.20 32.10 58.88 43.61 68.35 21.11 21.66 39.32 ± 5.54

Ours 75.59 57.22 45.48 34.79 31.03 72.12 52.23 78.62 26.80 24.58 49.85 ± 6.51

Table 5.2: Average Precision for UT-Zap50K, CNN Models

Bald DarkHair EyeOpen Looks Mascul. Mouth Smile Teeth Foreh. Young All Attributes
Single 24.66 38.79 12.17 23.46 36.90 38.59 44.97 40.95 12.16 19.59 29.22 ± 5.48

Dominance [48] 24.35 36.55 12.93 25.66 27.58 39.25 52.53 38.28 10.68 18.90 28.68 ± 5.83
Widest RA 29.57 42.19 13.13 23.70 49.25 36.61 54.24 50.31 15.07 22.64 33.68 ± 6.72

Ours 34.24 42.43 14.83 26.19 52.01 47.54 55.71 48.16 12.82 23.98 35.79 ± 6.99

Table 5.3: Average Precision for LFW10, SVM Models

Bald DarkHair EyeOpen Looks Mascul. Mouth Smile Teeth Foreh. Young All Attributes
Single 43.48 42.21 13.83 22.85 45.83 40.02 48.04 44.68 11.44 19.50 33.19 ± 6.48

Dominance [48] 24.35 36.55 12.94 25.66 27.58 39.25 52.53 38.29 10.69 18.90 28.68 ± 5.83
Widest RA 41.05 51.52 18.30 24.78 60.31 40.12 58.73 56.41 18.05 27.95 39.72 ± 7.45

Ours 43.66 52.35 18.49 23.33 55.69 44.78 57.64 57.91 14.12 28.36 39.48 ± 7.67

Table 5.4: Average Precision for LFW10, CNN Models

model and baselines. Results show that our model has higher average precision over

all attributes for UT-Zap50K and both relative attribute rankers, as well as LFW10

with the ranking SVM relative attribute ranker. We obtain similar AP values to the

widest relative attribute-difference baseline using the deep CNN relative attribute

ranker.

We hypothesize that widest attribute difference works well in predicting promi-

nence for certain individual attributes, such as masculine, good looking, or visible

forehead, because these attributes tend to be prominent when they show a very wide

difference in strength. In addition, we hypothesize that our model’s weaker per-

formance on certain attributes are due to these attributes rarely being marked as

prominent in the ground truth: thus, our predictor’s individual binary classifiers Pm

for these rarely prominent attributes see very few positive examples and likely output

a noisier, low confidence value. However, in the context of our full model and goal,

to predict the most prominent difference in an image pair, low confidence scores from

attributes that are rarely prominent are not a large issue, because these attributes
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should naturally have lower confidence scores than prominent attributes for a large

majority of pairs.

Finally, we show qualitative examples of strong prominent differences as predicted

by our approach, in Figure 17. We show the model’s predicted most prominent

attribute, along with its relative attribute direction for reference, and also report

the two “runner-up” attributes with the next highest confidence values. From these

results, we can observe the capability of our model to accurately predict prominence

in images with large numbers of complex differences, as well as similar images with

few differences. For example, the shoes in Figure 17a are very different in many

attributes; despite these difficulties, our model accurately predicts colorful as the

most prominent difference. Although the images in Figure 17o are of the same person

with a very similar expression, our model is able to accurately predict visible teeth as

the most prominent difference.

In Figure 18, we show weak predictions and mistakes made by our model; our

model’s prediction is shown in bold, and the ground truth top prominent attributes

are shown in parentheses. In Figure 18b, our model mistakenly identifies tall as

most prominent, whereas more human annotators perceived comfortable as the most

prominent difference over tall. In Figure 18f, our model identifies visible teeth as the

prominent difference; although the two individuals certainly differ in that attribute,

what sticks out to humans is their difference in mouth open.
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(a) colorful (>),
sporty, comfortable

(b) sporty (>),
colorful, comfortable

(c) tall (<),
colorful, sporty

(d) shiny (>),
feminine, colorful

(e) rugged (<),
tall, feminine

(f) feminine (>),
comfortable, shiny

(g) colorful (>),
sporty, comfortable

(h) formal (>),
comfortable, shiny

(i) tall (<),
comfortable, sporty

(j) masculine (>),
smiling, visible teeth

(k) bald head (<),
dark hair, visible teeth

(l) dark hair (<),
mouth open, smiling

(m) masculine (<),
mouth open, visible teeth

(n) smiling (>),
visible teeth, masculine

(o) visible teeth (>),
mouth open, smiling

Figure 17: Sample Prominent Difference Prediction, Strong Results - Sample
image pairs from UT-Zap50K and LFW10 showing strong prediction results that agree
with human annotated ground truth. The predicted most prominent attribute and its
relative direction is shown in bold; the next two strongest attributes are also shown for

each pair.
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(a) sporty (>)
(feminine, shiny, comfortable)

(b) tall (<)
(comfortable, colorful, tall)

(c) sporty (>)
(comfortable, stylish)

(d) tall (>)
(feminine, comfortable, rugged)

(e) masculine (<)
(dark hair, good looking, young)

(f) visible teeth (>)
(mouth open)

(g) dark hair (>)
(bald, mouth open, visible forehead)

(h) smiling (>)
(visible teeth, young)

Figure 18: Sample Prominent Difference Prediction, Failure Cases - Sample image
pairs from UT-Zap50K and LFW10 showing weak prediction results made by our method.

The predicted most prominent attribute is shown in bold. Ranked ground truth
prominent differences are shown in parentheses.
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5.4 Image Search

For our image search application on WhittleSearch [21, 22], we evaluate a proof-

of-concept experiment using the UT-Zap50K shoes dataset. We use the UT-Zap50K

shoes dataset for its large size, which is suitable as a simulated database. We sample

5,000 new images outside of our experimental sample from Zap50K, and use this as

our image database for the search experiment.

Due to the size and cost of obtaining human feedback for each possible pair of

images, we generate user search feedback automatically using a modified version of

the automatic feedback approach described in [21]. A random subset of images from

the top results page are chosen as reference images. For the user’s feedback between

the target xt and each reference image xref , the user selects the most prominent

difference At,ref to provide feedback upon. To simulate variance in human perception,

we add noise by randomly selecting 75% of user-specified feedback using the prominent

difference method, and 25% as random differences from the attribute vocabulary.

For our experiment, we select 200 random images as the user’s mental targets.

At each iteration, the user is shown the top 16 results as ranked by the search algo-

rithm, selects 8 images from the results as reference images, and provides 8 feedback

constraints using these references.

In Figure 19, we show the average target image ranking (lower is better) for each

iteration of WhittleSearch, between the baseline WhittleSearch ranking implemen-

tation [21] and our proposed prominence ranking approach. From these results, we

observe that our proposed approach substantially improves the rank of the target

image in the first few iterations of WhittleSearch. In these first iterations, many

database images satisfy most of the user-specified constraints, leading to random or-

derings within constraint groups for the baseline; our prominence ranking method

is able to intelligently order these groups and find the user’s target in fewer total

iterations, using the same feedback method as the baseline.

We also display examples of top search results produced by our model and the

baseline in Figure 20, after two feedback iterations with four feedback constraints

each iteration. From these qualitative examples, we can observe that our model

produces more relevant top results. In Figure 20a, where the user’s target image is a

dark, formal flat-style shoe, our approach returns shoes that are a similar style and

color to the user’s target as top results, whereas the baseline returns an array of less
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Figure 19: Image Search Results - We show the target image rank over multiple
iterations of WhittleSearch [21, 22], for both our proposed approach and the standard

WhittleSearch baseline. Our approach significantly lowers the ranking of the target image
in the first iterations of search, and finds the target image in fewer total iterations.

relevant shoes of different styles. In Figure 20b, our approach finds colorful and casual

sneakers similar in concept to the user target, whereas the baseline returns various

boots, clogs, and formal shoes alongside some sneakers. By predicting which images

are most prominently perceived as different when compared to the user’s selected

reference images and attributes, the search is able to deliver more relevant images

without requiring additional user feedback.
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(a)

(b)

Figure 20: Qualitative WhittleSearch Rankings - We show the target image along
with the top eight ranked images produced by the baseline WhittleSearch [21] and our
prominence approach, with both methods receiving two feedback iterations with four

identical feedback constraints each. Our approach brings more relevant images to the top
results by using prominent differences, without requiring any additional user input.
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5.5 Description Generation

We evaluate the comparison descriptions generated by our model in one offline

experiment and one online experiment. For our offline experiment, we have our model

and baselines output the top k most prominent attributes that would be present in

a description, and check what percentage of the k ground truth prominent attributes

are described by our generated descriptions. We compare our approach to three of

the baselines we use for prominence evaluation: widest relative difference, binary

dominance [48], and single image prominence. We report our results in Figure 21.

Our model outperforms all baselines, demonstrating that our predictor is able to

generate descriptions with more stated prominent differences.

For our online experiment, we ask annotators on Mechanical Turk to judge our

generated descriptions. Specifically, we present two descriptions to the annotator:

our generated description with predicted most prominent attribute differences, and

a baseline description with randomly chosen attribute differences selected among all

true attributes. We ask annotators to select the description that is most natural and

appropriate for the image pair. We sample 200 image pairs from UT-Zap50K and 100

image pairs from LFW10, all unseen by our model, generate descriptions with three

stated differences each, and have seven Mechanical Turk annotators provide their

feedback for each image pair. We take the majority vote of the seven annotators for

each image pair.

For UT-Zap50K, 69% of people preferred our description, compared to 31% for the

baseline random description, with a p-value < 0.0001, while for LFW10, 61% of people

preferred our description, compared to 39% for the baseline random description, with

a p-value of 0.01. We also ran the same experiment, using annotator ground truth

prominence rankings instead of our prominence predictor: people preferred the ground

truth description 69% of the time for UT-Zap50K and 70% of the time for LFW10.

See Table 5.5 for a summary of these study results. We hypothesize the descriptions

generated by our approach for UT-Zap50K are more preferred and closer to the ground

truth due to the higher prediction accuracy of the UT-Zap50K prominence model

compared to the LFW10 prominence model.

In Figure 22, we show qualitative examples of descriptions generated by our ap-

proach and the random baseline, with the first three rows as success cases (i.e., a

majority of human judges prefer our description), and the last row as failure cases
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Figure 21: Description Generation Accuracy - We show the offline accuracy of our
approach on describing images with the k most prominent attributes, using prominence
annotations as ground truth. UT-Zap50K is shown on top, LFW10 is shown on bottom,
with ranking SVM relative attribute scores used on the left and CNN relative attribute

scores used on the right. Our approach outperforms all baselines.
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UT-
Zap50K

Ours: 69% Baseline: 31%
Ground Truth: 69% Baseline: 31%

LFW10
Ours: 61% Baseline: 39%
Ground Truth: 70% Baseline: 30%

Table 5.5: Description Generation Study Results - Results of the online experiment,
where we show our generated description and the baseline description to human judges,
and ask which is more natural and appropriate. We also conduct an experiment with the
ground truth prominent differences compared to the baseline. Human judges significantly
prefer our generated descriptions over the baseline.

(i.e., a majority of human judges prefer the baseline description). Our generated

descriptions are generally more natural than the random baseline, because the de-

scriptions focus on the prominent differences that would be natural and appropriate

in human descriptions.

These sets of results, both offline and online, show that describing images using

prominent differences results in significantly more natural descriptions. With more

accurate predictors of prominent differences and a larger attribute vocabulary, even

stronger description results should be obtained using our description generation ap-

proach.

55



(a) Left is more tall, less sporty, and
less rugged than the right.

(less colorful, more shiny, more feminine)

(b) Left is less shiny, less formal, and
more colorful than the right.

(more feminine, more rugged, more tall)

(c) Left is more colorful, more sporty,
and less rugged than the right.

(more fancy, less rugged, more stylish)

(d) Left is less feminine, more
rugged, and less shiny than the right.

(less stylish, more comfortable, more
rugged)

(e) Left has less dark hair, more bald
head, and more mouth open than the

right.
(more good looking, more mouth open,

less dark hair)

(f) Left is more masculine, less
smiling, and less visible teeth than

the right.
(more bald head, less good looking, less

young)

(g) Left is less colorful, less
comfortable, and more sporty than

the right.
(more shiny, more fancy, more formal)

(h) Left is more masculine, less
smiling, and more visible teeth than

the right.
(less smiling, less young, more visible

forehead)

Figure 22: Sample Textual Descriptions - Sample descriptions generated by our
approach in bold, with baseline result shown in parentheses. First three rows display

success cases, where annotators chose our description as more natural, with the last row
displaying failure cases, where the baseline was chosen over our approach.
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6 Conclusion and Future Work

In this work, we introduce and model prominent differences in relative attributes,

a novel high-level functionality for comparing images. When humans describe images

with respect to each other, certain prominent differences in attributes naturally stick

out and are likely to be described first, while other differences, although present, may

not be mentioned. We present a novel approach for modeling prominent differences

at the image pair level, using relative attribute features to capture the interactions

between visual properties that result in prominent differences. Experimental results

on the UT-Zap50K shoes and LFW10 faces datasets show that our proposed approach

significantly outperforms an array of baseline methods for predicting prominence.

In addition, we demonstrate how prominent differences as predicted by our model

can be used to improve communication between humans and vision systems in two

applications: interactive image search and textual description generation.

There is strong potential for future work using prominence. Prominent differences

are naturally expressed by humans when describing different visual concepts; this

can be used to improve other human-centric vision tasks. For instance, in zero-

shot learning using relative relationships [38], where a human supervisor teaches a

machine about an unseen image category using relative attributes, humans will likely

provide prominent differences to the machine. This information, if modeled in a zero-

shot learning framework, could result in improved classification without requiring

any additional human supervision effort. In addition, prominent differences could

be used to improve referring expressions [33, 34]. Referring expressions are phrases

identifying specific objects in an image, e.g., “The man standing on the right, with the

white shirt and long hair.” Prominent differences could be used to better identify most

noticeable visual differences to help identify one object over others. Finally, prominent

similarities in relative attributes can be explored, as the similarities between images

that stand out as most noticeable. Prominent similarities may be beneficial for fine-
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grained image clustering according to natural human perception of visual properties,

and, along with prominent difference and visual importance models, could help paint

a fuller picture on what high-level properties and objects humans perceive in visual

content.
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