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Abstract

Egocentric video and wearable computing have become increasingly preva-
lent in the past decade, resulting in a huge explosion in the amount of
available video content and increased attention from the computer vision
community. Activity recognition is a challenging task with many interesting
applications. In egocentric video, activities are largely defined by the objects
being interacted with by the camera wearer. As an extension to simply com-
puting a histogram of objects, spatio-temporal binning approaches are able
to capture relative space-time relationships between features. However, ex-
isting methods for activity recognition often use predefined spatio-temporal
binning schemes (such as a hierarchy of uniformly spaced partitions) to ag-
gregate features. This encodes information beyond what is possible with
a pure “bag of words” model, but is ultimately inflexible and may fail to
capture important spatio-temporal relationships between features. To over-
come this limitation, we propose to learn the spatio-temporal partitions that
are most discriminative for egocentric activities. We develop a boosting ap-
proach that automatically selects the best spatio-temporal partitions from
a pool of randomly generated candidates. In order to efficiently focus the
candidate partition schemes, we further propose to create biased partitions
using “object-centric” cuts in video volumes. The object-centric cutting
scheme prefers to sample bin boundaries near objects involved in egocentric
activities. This approach specializes the randomized pool for the egocentric
setting and improves training efficiency. Our proposed method yields state-
of-the-art accuracy for the challenging task of recognizing activities of daily
living.
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1 Introduction

Computer vision in an egocentric context involves the analysis of images and video

captured by a wearable camera, typically mounted on the head or chest of the

user. Viewing the world from this first-person perspective gives rise to a host of

interesting new applications and challenges. A robust and accurate method for

egocentric activity recognition would have useful practical applications, such as

a memory aid, content-based summarization, or telerehabilitation. For instance,

a recent trend in wearable computing is so-called “life-logging” which can assist

patients suffering from memory loss [23]. A robust egocentric activity recognition

system could automatically tag video clips with their corresponding types of activ-

ities. Additionally, there are many clinical benchmarks used to evaluate everyday

functional abilities of patients undergoing physical rehabilitation [11, 2, 9]. These

benchmarks are currently conducted in a hospital setting, but a robust system for

egocentric activity recognition could greatly impact the workflow for patient eval-

uation, allowing for passive long term observation of patients in their own homes.

Such applications demand robust methods for activity recognition in an egocen-

tric context. Existing work has shown promising progress in egocentric activity

recognition [17, 6], yet it remains a challenging problem.

Egocentric activity recognition differs from non-egocentric activity recognition

because activities can have long-term temporal dependencies and actions can be

interrupted by other actions. Furthermore, whereas activity analysis in the tra-

ditional “third-person” view is driven by models of optical flow or human body

pose, egocentric activities are well-defined by the types of objects that are inter-

acted with by users during particular actions (“active objects”) [17]. Thus, using

detected objects is a promising way to encode egocentric video clips, yet how

to optimally aggregate features across space-time remains unclear. The familiar

bag-of-objects approach can be used to aggregate features with reasonable perfor-

mance, but ultimately falls short because it fails to capture temporal dependencies

between features. The pyramid is a well-known extension of a pure bag-of-words

model that encodes spatial relationships between features by recursively subdivid-

ing images or video and extracting features from each spatial bin [14], yielding

impressive results across a range of applications. Existing methods for activity

recognition often rely on hand-coded partition schemes [17, 4, 13]. By using man-
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ually defined schemes for imposing spatial information, the most discriminative

space-time relationships between features may not be captured.

To overcome this limitation, we propose to learn the most discriminative his-

togram partition schemes for egocentric activity analysis. Instead of using manu-

ally defined binning structures, we develop a boosting approach that identifies and

selects the best partition schemes from a pool of randomly generated candidates.

Boosting is a general learning framework that allows one to combined multiple

“weak” classifiers (better than chance) into a “strong” classifier with good per-

formance. This process is computationally expensive in terms of the number of

weak classifiers that are used, and there are many high-dimensional partitioning

schemes we could sample. This suggests that a large pool of candidate partition

schemes is required to obtain good performance. In order to avoid generation of

partitions that are not discriminative, we further propose a method for meaning-

fully biasing the pool of candidates. In particular, we introduce “object-centric”

partitioning schemes, which prefer to sample bin boundaries near objects involved

in egocentric activities, such as an open microwave or a cup in the users hand.

Given a set of labeled training videos with object annotations (bounding boxes

and active/passive tags), our method first computes histograms of active object

locations across each (x, y, t) dimension of video. We use these histograms to gen-

erate a pool of object-centric partition schemes that tend to have bin boundaries

in regions containing human-object interactions. We compute feature vector rep-

resentations of each training video clip using each candidate in the pool, and use

these vectors to train a pool of weak SVM classifiers. Finally, we use a boosting

algorithm to select the partitions which are most discriminative and form a final

strong classifier.

We experimentally evaluate the performance of our method using the challeng-

ing Activities of Daily Living dataset, demonstrating both an improvement to the

state of the art and the key role played by object-centric cuts as a way to focus

the pool of candidates.

1.1 Related Work

Activities in a non-egocentric setting can be effectively analyzed based on tracked

limb shapes and motion across a video clip as in [18, 19, 21]. An alternative
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approach involves using lower-level features with weaker semantics such as space-

time interest points as in [22, 13, 16], which attempts to directly learn motion

patterns associated with specific activity classes. A fairly standard pipeline has

emerged, similar to that used for image classification: detection of space-time

interest points, extraction of local descriptors, quantization to space-time visual

words, and representation using a histogram of visual word counts. Bag-of-words

as a method for pooling of space-time features in video has been analyzed in

[4, 13, 17, 16, 5].

Since a pure bag-of-words does not have any notion of order or space-time

relationships between features, researchers have drawn inspiration from previous

work on spatial pyramid image representation [1, 14] to construct space-time his-

tograms from space-time sub-regions of the video volume [13, 17]. Such repre-

sentations count the number of features appearing in each sub-region, and thus

are able to encode the relative layout of features in space-time. In [13], a set

of spatio-temporal bin structures is developed using 6 possible spatial grids and

4 temporal binning schemes, resulting in a total of 24 possible spatio-temporal

partition schemes. A summed kernel is used to combine the histograms from all

partitions. In [4], features are pooled at multiple resolutions using a hierarchy of

regularly sized cubic bins. Similarly, it is possible to hierarchically bin neighbor-

ing local features and learn which space-time weightings are most discriminative

as in [12]. In the egocentric setting, a temporal pyramid that divides the video

into two equally sized regions along the temporal dimension (and makes no spatial

cuts) is proposed and used to bin the outputs of object detectors [17]. Unlike

such approaches, we propose to learn which pyramid partition structures are most

informative.

Egocentric video is an increasingly popular topic in the computer vision com-

munity. Some prior work using data from wearable cameras considers a specific

environment in which familiar individual objects are informative [5, 8, 26] or lever-

ages data obtained from additional sensors [25]. In contrast, we are interested in

classifying unscripted activities performed by a camera wearer moving in multiple

environments without pre-placed objects of interest or any additional sensors. Such

a scenario is also investigated by [17], which also found that egocentric activities

are object-driven in the sense that visible objects provide useful cues about what

types of activities are occurring, rather than tracking of limb pose or summariza-
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tion of overall motion. In other words, egocentric activity recognition is “all about

the objects” [17], particularly the objects being interacted with (“active objects”),

as recognition accuracy increases dramatically when locations of active objects in

addition to passive objects are used as features.

Aside from activity recognition, analysis of egocentric video also gives rise to

other interesting problems and challenges. For example, recent work has explored

discovery of important people for automatic summarization of egocentric video [15].

The relationship between gaze and activity in an egocentric setting is explored in

[6]. Object recognition in an egocentric setting has been explored with promising

results by [17, 7, 20].

Selection of binning strategies for features in a learned way has been explored

in the spatial domain [24, 10] for image recognition, but to our knowledge no prior

work considers learning spatio-temporal partitions in the video domain, egocentric

or otherwise. Additionally, our biased partitions based on object interactions are

both novel and critical for good recognition results.

2 Approach

The goal of our algorithm is to robustly predict what type of activity is occurring in

an egocentric video clip. Given a set of training videos labeled with their particular

activity classes, we first extract locations of objects. Objects are classified as

“active” or “passive” based on whether they are being interacted with by the

user during particular frames. Next, we construct a pool of candidate space-time

pyramids. In each pyramid, each axis-aligned bin boundary is translated by some

randomized shift. For those pyramids which are object-centric, such shifts are

sampled non-uniformly; they correspond to the empirically observed distributions

of active object coordinates in the training data. Finally, we use a multi-class

boosting algorithm to generate a robust classifier, selecting candidates based on

how well they are able to classify training examples. The following subsections

describe each step in more detail.
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(a) passive frig (b) passive soap (c) passive mug (d) passive micro

(e) active frig (f) active soap (g) active mug (h) active micro

Figure 1: Example passive and active instances of four objects in ADL [17].

2.1 Detecting Active and Passive Objects

In contrast to other forms of action recognition, egocentric action is “object-driven”

in the sense that activities are well-defined by the objects the user is interacting

with in a particular video sequence. Thus, we construct our representation based

on the locations of objects in space-time.

Following [17], we make a distinction between active and passive versions of the

same objects, noting that an object can have a vastly different appearance based

on whether or not is is being interacted with. For example, an open refrigerator

that is being interacted with looks quite different than one that is being passed

by. Figure 1 depicts example frames extracted from video sequences that show the

visual differences between passive and active versions of the same objects.

In contract to existing work, we exploit this distinction to provide a seman-

tically meaningful bias regarding where space-time partition boundaries ought to

be placed. We use the output (bounding boxes) of composite deformable part

model object detectors for active and passive versions of various objects as our

features to be pooled. These detectors were originally trained in [17]. We extract

an (x, y, t) coordinate for each detected object by computing the center of its pre-

dicted bounding box, and we count an object as occupying the space-time bin that

the center of its bounding box occupies.
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2.2 Generating Randomized Object-Centric Space-Time Pyra-

mids

Active objects, those which are being interacted with by the user in a given video

clip, are especially helpful features for egocentric activity recognition [17], yet there

is little work in the literature exploring the best ways to pool video features across

space-time. A common technique for pooling features is “bag-of-words”, an order-

less histogram of feature counts. This technique is simple, but does not encode any

potentially useful relationships between features in space-time. The “pyramid” is

an extension to bag-of-words that encodes space-time relationships between fea-

tures by recursively subdividing an image or video into multiple subregions and

concatenating bag-of-words histograms computed for each region.

Existing work relies on hand-coded partition schemes for computing pyramid

representations of datapoints, which is a problematic approach because it is in-

flexible with respect to new data and can fail to capture the most meaningful

relationships between features. To address this problem, we propose to randomly

generate a pool of candidate partitioning schemes.

A Randomized Spatio-Temporal Pyramid (RSTP) is generated using a hierar-

chical partitioning of feature space. We generate cuts independently in a round-

robin manner over dimensions (x, y, t). Each cut is axis-aligned (we incorporate

random shifts, but not random rotations). To construct a partition scheme that

is easily applicable to videos of arbitrary size, we consider partitioning an “ide-

alized” video clip that has all dimensions normalized to length 1. To generate

a single cut we sample a random number from a uniform distribution subject to

any constraints imposed by “parent cuts” and use this as a randomized offset for

an appropriate axis-aligned plane. To construct an unbiased partition scheme we

sample from a uniform distribution.

To represent a video clip using a particular partition scheme we use the output

of object detectors trained in [17], which gives bounding boxes and object labels

for each extracted frame. We use centers of bounding boxes to obtain (x, y, t)

coordinates for each individual object. We compute histograms of detected objects

for each individual level in the pyramid, where level 0 is the entire video clip volume

and level i is all the cells of depth i in the pyramid. Note that level i has 8i leaf cells.

To form the final RSTP representation, we concatenate the histograms computed
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Figure 2: Histograms of detected active objects across the x, y, and t dimensions

of training data.

for each level to form a single feature vector.

There are many high-dimensional partition schemes that we could sample ran-

domly, which suggests that a very large pool of candidate partition schemes is

required to obtain good results. However, boosting is computationally expensive,

so we would like to minimize the size of the pool while maintaining good results.

One of the main contributions of our work is the ability to generate meaning-

fully biased randomized partition schemes that tend to be more discriminative

than their unbiased counterparts. To accomplish this, we propose to replace the

uniform distribution with a discrete approximation of the distribution of active

objects across each dimension (x, y, t) and otherwise proceed normally.

To generate Object-Centric Cuts (OCCs), we first compute histograms of active

object locations across each (x, y, t) dimension of the training data. Figure 2

shows that active objects often tend to occur in the lower center of the field of

view. This conforms to our expectations, because the active objects are close to

the hands which are in the lower field of view from an egocentric perspective.

Active objects tend to occur on the right side of the field of view slightly more

often because a large percentage of users are right-handed. The distribution of

active objects across the temporal dimension is nearly uniform. This distribution

is computed across all action types; we do not compute separate active object

distributions for each action class. Since different clips can have varying lengths

with respect to time, we normalize the length of each video clip to 1 and consider

relative temporal locations of active objects. For biased partitions, we generate

the first split along each dimension according to a distribution corresponding to

the histograms of observed active object coordinates in the training data, and

we generate all subsequent child cuts using a uniform distribution. For example,

when generating a biased cut for the y dimension, we generate a random number
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(a) Object-centric cuts

(b) Uniformly random shifts

Figure 3: Example partitions using either object-centric (a) or uniformly sampled

randomized cuts (b). Note that for display purposes we show cuts on example 2D

frames, but all cuts are 3D in space-time. Using the proposed object-centric cuts,

we better focus histograms surrounding the human-object interactions.

between 0 and 1 that has a high probability of being in the range (0.5, 0.9). We

do not consider locations of passive objects at all during the generation of biased

partition schemes. Since active objects are located in close spatial proximity to

hands, creating object-centric partition schemes can be interpreted as implicitly

taking into account information about hand locations.

Figure 3 depicts some example frames overlayed with randomized shifts sam-

pled using our object-centric strategy (a) and the simple uniform strategy (b).

The depicted object detections are from the ADL repository [17]. Object-centric

cuts successfully focus the histogram bin boundaries on space-time regions where

users interact with objects. Thus, they may offer useful discriminative cues to the

boosted classifier.

Figure 4 depicts an example 2-level object-centric partition scheme. The salient

feature to note is that visible splits along the x and y dimensions correspond to

the observed distribution of active objects along the x and y dimensions of the

training data.

2.3 Boosting Discriminative Spatio-Temporal Pyramids

Once we have constructed a pool of randomized object-centric pyramids, we use

a boosting algorithm to select those which are most discriminative for egocentric
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Figure 4: An example 2-level object-centric partitioning scheme

Figure 5: We take a pool of randomized space-time pyramids with object-centric

cuts, and use boosting to select those that are most discriminative for egocentric

activity recognition.

activity recognition (see Figure 5).

The intuition behind boosting is to train a set of “weak” classifiers (better

than chance) and combine their output to form a “strong” classifier in such a way

as to take advantage of the strengths of each individual weak classifier. This is

accomplished by iteratively training classifiers on the training data. Datapoints

are re-weighted after each iteration so that classifiers added during subsequent

iterations tend to focus on examples that were previously misclassified. Each

weak classifier is a non-linear (polynomial kernel) SVM trained using one RSTP

with OCC’s.

We use the Stage-wise Additive Modeling using a Multi-class Exponential loss

function (SAMME) boosting approach of [27], which is a natural extension of the

original AdaBoost algorithm to a multi-class classification task without a reduc-
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tion to multiple binary classification problems. We selected this algorithm because

it avoids training individual classifiers for multiple one-vs.-all or one-vs.-one clas-

sification problems.

For our method, SAMME boosting works as follows. We take as input a

collection of N labeled training videos where (Vi, ci) denotes a video clip and

its associated ground-truth activity label, and a pool of M candidate partition

patterns {θ1, θ2, ..., θM}. We use the output of the aforementioned object detectors

trained on composite object models as our features to be pooled. To convert from

object bounding boxes to (x, y, t) coordinates, we simply take the center of each

bounding box. Thus, each training example Vi is a set of (o, x, y, t) object locations,

where o denotes an object label.

To represent a particular training example Vi using a particular partition

scheme θ, we compute separate bag-of-words histograms for each level in θ, and

concatenate all such histograms to form a final feature vector used in training. We

initialize a weight wi for each training example Vi that is inversely proportional

to the number of points with the same class as Vi. Giving larger weights to train-

ing examples of infrequently occurring actions helps to mitigate any bias resulting

from imbalanced training data.

We train a separate “weak” multi-class SVM (using LIBSVM [3]) classifier on

the feature vectors resulting from representing the training data using each candi-

date partition pattern θ. During each round of boosting we select the candidate

partition θj that is most discriminative (has minimum weighted training error,

which is computed as the dot product between the weight vector w and an in-

dicator of incorrect classifications using fθ). Next, we compute a weight for θj

based on how many training examples were misclassified using fθj
, the classifier

that was trained using the representation of the training data under θj. At the

end of each boosting iteration, we update the weights for each training example.

Training examples that were previously misclassified are assigned higher weights to

encourage correct classification in future boosting rounds. Finally, we generate the

final strong classifier F , which maximizes a weighted sum of correct classifications

produced by each weak classifier.

Given a novel test video V , we compute object locations, then extract only

those RSTP histograms that were selected during the boosting algorithm, and

then apply F to V to robustly predict its activity label. Algorithm 1 summarizes
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these steps in more detail.

Algorithm 1: Training a space-time pyramid classifier with boosting

INPUT:

• N labeled training videos Φ = {(Vi, ci)}Ni=1

• A pool of M partition patterns Θ = {θ}

OUTPUT:

• A strong video classifier F . For an unlabeled video V , c = F (V ) is the predicted label for
V .

1. For each pattern θ ∈ Θ:

• Represent each Vi ∈ Φ using θ and train an SVM classifier fθ on the resulting feature
vectors.

2. Initialize:

• A weight vector w with wi = 1
CNci

for each video where Nci
is the number of videos

with label ci, and C is the number of distinct action labels.

• Current boosting round j = 0.

3. For each round of boosting:

• Increment j and re-normalize the weight vector w.

• For each pattern θ, compute its weighted classification error: eθ = w·I(fθ(V ) 6= c)

• Choose the pattern θj with minimum weighted classification error ej .

• Compute the weight for θj as: αj = log 1−ej

ej
+ log(C − 1)

• Update the weight vector w: ∀i : wi = wi · exp(αj · I(fθj (Vi) 6= ci)).

• Generate the current strong classifier: F (V ) = argmaxcΣ
j
m=1αm · I(fθm

(V ) = c)

2.4 Complexity and Training Time

The asymptotic complexity of training with N training examples and a pool of M

candidate partition schemes with l levels using our method is
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Figure 6: Training times for our method as a function of pool size.

O(N ·M · 8l · ttrain + b · (N +M · ttest))

where b denotes the number of boosting rounds, and ttrain and ttest denote the

time to train and test a single SVM classifier on N feature vectors, respectively.

Fortunately, l remains small (never exceeds 4 in our experiments). In order to

predict the label for a single test video clip v, we first need to compute representa-

tions of v using each partition scheme that was selected during boosting, then find

the class c which maximizes a weighted sum of matching classifications using each

weak classifier selected during boosting. Thus, the overall asymptotic complexity

of predicting the label for a single video clip is

O(b · 8l + C · b · t)

where b is the number of boosting rounds, C is the number of possible activity

labels, and t is the time to predict the label of a test example using a weak SVM

classifier.

Figure 6 depicts empirically determined training times for our method on a

single “fold” of the cross-validation experiment described in section 3.1. For each

pool size we present mean execution time across 5 separate executions. Training

time is linear with respect to pool size.

3 Results

In this section we briefly describe properties of the dataset we use to benchmark

our method and present results from experiments we conducted. We evaluate our
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Table 1: Lists of action types and object types present in the ADL dataset.

Separate active and passive models are trained for fridge, microwave, mug/cup,

oven/stove, and soap liquid.

overall recognition accuracy and show that it improves the current state of the art,

and we demonstrate the superior discriminative power of object-centric partition

schemes.

The ADL dataset consists of hundreds of egocentric video clips (roughly 10

hours of video in total) collected from 20 people performing 18 types of unscripted

actions in their own homes. These naturally occurring actions are often related

to hygiene or food preparation and are more varied than actions presented in

previous datasets such as that of [7]. There are 26 different types of detected

objects, including 5 active and 21 passive objects. Lists of activity types and

object types are given in Table 1. Object detectors are trained on videos from the

first 6 people and tested on the videos from the remaining 14 people.

Each frame in the dataset is annotated with activity labels and bounding boxes
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for automatically detected objects and hand positions, Additionally, each object

is tagged as active or passive depending on whether it is being interacted with.

One difficulty that can arise within egocentric activity recognition is that activ-

ities can be temporarily interrupted by other activities. For instance, while waiting

for tea to brew a subject may watch TV. For cases of such interruptions, to avoid

unnecessary complications resulting from frames being annotated with multiple

activities, the ADL dataset simply uses the label of the interrupting action when

a longer action is disrupted.

The ADL dataset has been modified since the publication of [17]; because of

this, running the published code gives slightly lower accuracy than the originally

published numbers. We use the modified version of the dataset available from the

authors webpage at the time of writing to benchmark our method.

3.1 Action Recognition Performance

Following [17], we evaluate recognition performance on the ADL dataset using

a form of cross validation (the video clips from person i are used as a held out

validation set, and training occurs using the video clips from the remaining people).

We exclude videos from the first 6 people (because they were used to train the

object detectors) from our experiments.

For this experiment we tried pools of 4-level partitioning schemes of varying

sizes with a varying number of boosting rounds. We used 5 boosting rounds and

a pool of size 70. These results were obtained using both active (being interacted

with) and passive detected objects.

Table 2 shows a comparison of overall classification accuracy between our ap-

proach and the method based on temporal pyramids which is presented in [17].

The first baseline, bag-of-words uses space-time interest points, a standard rep-

resentation for action recognition in the third-person case. The second baseline

uses a bag of detected objects. The third baseline, the temporal pyramid as first

proposed in [17], has two levels, formed by making a single cut along the temporal

dimension and no cuts along the spatial dimensions. The temporal pyramid rep-

resents the state of the art on this dataset. The fourth baseline, RSTP, is similar

to our proposed approach, except it uses cuts sampled from a uniform distribution

instead of object-centric cuts.
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BoW Bag-of-objects TempPyr [17] Boost-RSTP Boost-RSTP+OCC (ours)

16.5% 34.9% 36.9% 33.7% 38.7%

Table 2: Overall classification accuracy on ADL. Our method improves the state

of the art.

Figure 7: Confusion matrices for temporal pyramid [17] (left, 36.9%) and

RSTP+OCC using detected active and passive objects (right, 38.7%).

Our approach outperforms all four baselines, improving on the state of the art.

Compared to the bag of words approach, our method has the advantage of using

high-level features (object coordinates). The temporal pyramid also has this ad-

vantage, but relies on a manually defined binning structure, making it weaker than

our proposed method. Object-centric cuts are essential for our recognition result,

as simply using cuts drawn from a uniform distribution leads to noticeably weaker

performance. This supports our claim that biasing bins according to human-object

interactions provides useful cues for recognition in an egocentric context.

As seen in Figure 7, our method has particularly good performance for “comb-

ing hair” and “drying hands/face”, suggesting that our boosting approach was

able to usefully isolate the space-time relationships present in these actions. The

temporal pyramid likely yields worse performance on “combing hair” and “drying

hands/face” because a single cut along the temporal dimension is not sufficient to

isolate the relevant space-time relationships. This indicates that the spatial cuts
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we learn are essential for scenes with similar objects throughout different action.

For example, floss or toothpaste might be visible on the counter while the user is

combing hair, but when actually in use, floss or toothpaste would appear higher

in the field of view.

On the other hand, some action types on which we do poorly are “making tea”

and “making coffee” respectively (see Table 1 for a full listing of activity types

present in the ADL dataset). Since the two activity types are similar in the sense

that they involve the same active objects, it is not unexpected that a recognition

system would confuse them often. Furthermore, since the distributions of objects

across space-time are similar, and kettles and tea bags are not modeled in an active

way, it is difficult for our boosting algorithm to select partitioning schemes that

are discriminative for these classes. An extension of our method which allowed

selection of discriminative partition schemes on a per-class basis could allow for

more fine-grained control and could help mitigate such issues, however this is left

for future work.

3.2 Effect of Object-Centric Partition Schemes

To concretely illustrate the improvement obtained from using a object-centric par-

titions, we created separate pools containing 4-level partition schemes of each bias

type and repeatedly ran our boosting algorithm, computing training error and

adding additional partitions to each pool between runs. Results from this ex-

periment are depicted in Figure 8. The pool containing object-centric partitions

usually had a lower training error than the unbiased pool. Larger improvements are

visible with smaller pool sizes, and the difference between the two pools diminishes

as pool size increases. This conforms to expectations because as the unbiased pool

grows in size, it becomes more likely to contain discriminative partition schemes,

while the biased pool is forced to contain discriminative partition schemes even at

relatively small pool sizes. This result suggests that by using object-centric parti-

tions rather than unbiased partitions, we can obtain good recognition results even

with a smaller pool, making our boosting algorithm less expensive to compute.
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Figure 8: Effect of using biased partition schemes. The object-centric pool usually

has lower training error than the pool of unbiased partition schemes. The most

significant improvement is visible at smaller pool sizes.

4 Conclusion and Future Work

Our main novel contribution is two-fold. We show how to learn the most discrim-

inative partition schemes for spatio-temporal binning in video feature space, and

we introduce object-centric partition schemes, which have a high probability of

cutting through video regions known to frequently contain active objects. Unlike

previous work, we randomly generate a pool of candidate partitioning schemes

and select those which are most discriminative using a boosting algorithm. Our

recognition approach improves on the current state of the art, and our experiments

demonstrate the positive impact of taking active object locations into account by

generating object-centric partition schemes.

In future work, we intend to investigate ways of learning the most discrimi-

native partition schemes on a per-class basis. Additionally, it may be possible to

incorporate different types of biases when generating partitions. The ADL dataset

also includes annotations for hand positions, which we have incorporated implic-

itly through our generation of object-centric cuts. However, it could be possible to

incorporate explicit information given by hand positions to obtain better results.

The partitions we focus on contain cuts that are planar and axis-aligned (we con-

sider random shifts but not random rotations, and we do not consider non-planar

splits), but it is possible to carve up the video volume in more advanced non-

linear ways. Such a method would make histogram computation more expensive,
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but may yield a more discriminative partitioning scheme that could lead to better

classification accuracy.
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