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Existing methods for image-based location estimation generally at-

tempt to recognize every photo independently, and their resulting reliance on

strong visual feature matches makes them most suited for distinctive landmark

scenes. We observe that when touring a city, people tend to follow common

travel patterns—for example, a stroll down Wall Street might be followed by

a ferry ride, then a visit to the Statue of Liberty or Ellis Island museum. We

propose an approach that learns these trends directly from online image data,

and then leverages them within a Hidden Markov Model to robustly estimate

locations for novel sequences of tourist photos. We further devise a set-to-set

matching-based likelihood that treats each “burst” of photos from the same

camera as a single observation, thereby better accommodating images that

may not contain particularly distinctive scenes. Our experiments with two
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large datasets of major tourist cities clearly demonstrate the approach’s ad-

vantages over traditional methods that recognize each photo individually, as

well as a naive HMM baseline that lacks the proposed burst-based observation

model.
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Chapter 1

Introduction

People often look at their pictures and think about where they were

taken. Tourists frequently post their collections online to share stories of their

travels with friends and family. Today, it is a cumbersome manual process

to organize vacation photos and make them easily searchable: users must

tag photos with relevant keywords and manually split batches into meaning-

ful albums. When available, geo-reference data from GPS sensors can help

automate some aspects of this organization; however, GPS falls short for im-

ages taken indoors, and a mere 3% of the billions of existing consumer photos

online actually have a GPS record [1]. Even with precise positioning, world

coordinates alone are insufficient to determine the site tags most meaningful

to a person, which can vary substantially in spatial scope depending on the

content (e.g., photos within the Roman ruins, vs. photos at the Mona Lisa).

Thus, there is a clear need for image-based location recognition algo-

rithms that can automatically assign geographic and keyword meta-data to

photos based on their visual content. The wide availability of online con-

sumer photo collections in recent years has spurred much research in the

field [4, 6–9, 12–16, 18, 21]. In particular, approaches based on matching sparse
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local invariant features can reliably identify distinctive “landmark” buildings

or monuments [12, 14, 15, 18, 21], while methods using image-level descriptors

together with classifiers offer a coarser localization into probable geographic

regions [4, 6, 7, 9, 22].

Despite impressive progress, there are several limitations to previous

methods. First, techniques that rely on precise local feature matches and

strong geometric verification are restricted in practice to recognizing distinc-

tive landmarks/facades, which account for only a fraction of the photos tourists

actually take. Second, methods that use global image feature matches com-

bined with nearest neighbor matching make strong assumptions about the

density (completeness) of the labeled database available, and are generally

validated with error measures that may be too coarse for some users’ goals

(e.g., a single location label has a granularity of 200-400 km [6, 7]). Finally,

almost all existing techniques attempt to recognize a single image at a time,

disregarding the context in which it was taken.

We propose an approach for location estimation that addresses these

limitations. Rather than consider each snapshot in isolation, we will estimate

locations across the time-stamped sequences of photos within a user’s collec-

tion. What does the sequence reveal that each photo alone does not? Poten-

tially, two very useful pieces of information: 1) People generally take photos

in “bursts” surrounding some site or event of interest occurring within a single

location (e.g., one snaps a flurry of photos outside the Pantheon quickly fol-

lowed by a flurry within it), which means we have a powerful label smoothness
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Figure 1.1: We propose to exploit the travel patterns among tourists within a city to
improve location recognition for new sequences of photos. Our HMM-based model treats
each temporal cluster (“burst”) of photos from the same camera as a single observation,
and computes a set-to-set matching likelihood function to determine visual agreement with
each geospatial location. Both the learned transition probabilities between locations and
this grouping into bursts yield more accurate location estimates, even when faced with non-
distinct snapshots. For example, the model benefits from knowing that people travel from
L1 to L2 more often than L3 or L4, and can accurately label all the photos within Burst 2
even though only one (the Statue of Liberty) may match well with some labeled instance.

constraint from the timestamps themselves, and 2) Tourists often visit certain

sites within a city in a similar order, which means we have useful transition

priors between the locations in a sequence. The common transitions may stem

not only from the proximity of prime attractions, but also external factors

like walking tours recommended by guidebooks, or the routes and schedules

of public transportation. For example, in New York, a stroll down Wall Street
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might be followed by a ferry ride, then a visit to the Statue of Liberty or Ellis

Island museum (see Figure 1.1).

Thus, our key new idea is to learn the “beaten paths” that people tend

to traverse, and then use those patterns when predicting the location labels

for new sequences of photos. During training, we use geo-tagged data from

the Web to discover the set of locations of interest within a city, as well as

the statistics of transitions between any pair of locations. This data is used

to construct a Hidden Markov Model (HMM). Given a novel test sequence,

we first automatically segment it into “bursts” of photos based on temporal

(timestamp) similarity. We then treat each burst as an observation, and define

a likelihood function based on set-to-set matching between that burst’s photos

and those within the training set for each location. Compared to a naive single-

image observation, this likelihood is more robust to test photos unlike any in

the training set, and can latch on to any informative matches within a burst

that suggest the true location (e.g., see Burst 2 in Fig. 1.1, in which the Statue

of Liberty is distinctive, but the shots of people posing would not be). This is

an important advantage of the system, since it means the GPS-labeled training

data need not cover all aspects of the entire city to be viable.

While a few previous methods incorporate some form of temporal con-

text, unlike our approach they are intended for video inputs and learn transi-

tions between well-defined areas (rooms) within a building [19, 20], are inter-

ested in coarse world region labels (each location = 400 km) [7], or use a short

fixed-size temporal window as context and do not model the site-to-site travel

4



trends of tourists [9].

We validate our approach with two large datasets of major tourist cities

downloaded from Flickr. The results clearly demonstrate its advantages over

traditional methods that recognize each photo individually, as well as a naive

HMM baseline that lacks the proposed burst-based observation model. The

system’s performance suggests exciting possibilities not only for auto-tagging

of consumer photos, but also for tour recommendation applications or visual-

ization of flow of travelers in urban settings.

The remainder of the paper is organized as follows: in Chapter 2, we

review related work in location estimation. Chapter 3 overviews our approach,

and is followed by details of the system and comparative results in Chapter 4.
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Chapter 2

Related Work

Many location recognition algorithms use repeatable scale-invariant fea-

ture detectors combined with multi-view spatial verification methods to match

scenes with distinctive appearance (e.g., [12, 14, 15, 21]). To cope with the mas-

sive amount of local features that must be indexed, such methods often require

novel retrieval strategies, including hierarchical vocabularies and informative

feature selection [12, 15]. Access to many users’ online collections together

with such effective local feature matching methods have led to compelling new

ways to browse community photo collections [17, 18], and to discover iconic

sites [4, 8, 13, 16]. In particular, the authors of [17] show how to discover view-

point clusters around a landmark photographed by many people, so as to

automatically compute navigation controls for image-based rendering when

later interactively perusing the photos in 3D.

Recent work shows that with databases containing millions of geo-

tagged images, one can employ simpler global image descriptors (e.g., Gist,

bag-of-words histograms) and still retrieve relevant scenes for a novel photo [6,

7, 9, 22]. While some are tested with landmark-scale metrics [9, 22], others aim

to predict locations spanning hundreds of kilometers [6, 7]. While an intriguing
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use of “big data”, such measures are likely too coarse to be useful for auto-

tagging applications. (For example, with a geo-tagged database of 6 million

images, nearest neighbors labels 16% of a test set correctly, and only within

200 km of the true location [6].)

For either type of approach, an important challenge is that many im-

ages simply don’t capture distinctive things. In realistic situations, many

traveling photos do not contain visually localizable landmarks—such as group

photos, vehicles, or a snapshot in a McDonald’s. Thus far, most techniques

sidestep the issue by manually removing such instances during dataset cre-

ation. Some attempt to prune them automatically by building classifiers [13]

or manually-defined tag rules for the image crawler (i.e., exclude images tagged

with ‘wedding’ [6, 7]), or else bolster the features with textual tags [9]. In-

stead, we explore how estimating locations for sequences—using both bursts

and within-city travel patterns—can overcome this common failure mode in

a streamlined way. As a result, the approach can correctly tag more diverse

photos, without requiring an expansion to the underlying labeled dataset.

While timestamps have long been used to organize photos into clus-

ters or “temporal events” [2, 3, 10], much less work considers how temporal

cues might improve location estimation itself. Perhaps most related to our

work, the authors of [7] develop an HMM-model parameterized by time in-

tervals to predict locations for photo sequences taken along transcontinental

trips. Their work also exploits human travel patterns, but at a much coarser

scale: the world is binned into 3,186 400 km2 bins, and transitions and test-
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time predictions are made among only these locations. Whereas that approach

leverages physical travel constraints and common flight patterns (i.e., one can-

not be in Madrid one hour and Brazil the next), our method learns patterns in

how tourists visit sites within a popular city, and predicts labels at the gran-

ularity of interest for auto-tagging (i.e., it will tag an image as ‘Colosseum’

rather than simply ‘Italy’). A further distinction is our proposed set-to-set

observation likelihood, which we show outperforms an image-based likelihood

as used in [7].

The authors of [9] consider location recognition as a multi-class recogni-

tion task, and the five images before and after the test image serve as temporal

context within a structured SVM model. This strategy is likely to have sim-

ilar label smoothing effects as our method’s initial burst grouping stage, but

does not leverage statistics of travel patterns. Further, because that approach

targets cross-city recognition, the smoothing likely occurs at a higher granu-

larity, i.e., to keep a sequence of predictions within the same city. Outside

of the tourist photo-tagging domain, previous work with wearable cameras

has shown that the temporal context is useful for video-based room recogni-

tion [19, 20]; in contrast to our widely variable consumer photos, such data

has the advantage of both dense sampling in time and restricted well-defined

locations.
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Chapter 3

Approach

We present the proposed algorithm divided into its training and testing

stages. During training, we use geo-tags on labeled images to quantize a city

into its locations of interest, record the priors and transition probabilities be-

tween these locations using the training sequences, and extract visual features

from each image. During testing, we are given a novel photo sequence, divide

it into a series of burst observations using the timestamps, extract visual fea-

tures, and then estimate the location for each burst via inference on the HMM.

This section explains these steps in detail.

3.1 Training Stage

The training images for a given city originate from online photo col-

lections, and each has a timestamp, GPS geo-tag, and user ID code. In our

experiments, we download about 75K-100K training images per city, from over

1000 photographers each. Note that the user IDs allow us to extract sequences

of photos from the same photographer.
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Figure 3.1: Locations discovered for our two datasets(to be described in Chapter 4).

3.1.1 Discovering a City’s Locations

Rather than define the true locations of interest with a fixed grid—

which could artificially divide important sites—we use a data-driven approach

to discover the regions visited by tourists. Specifically, we apply mean shift

clustering to the GPS coordinates of the training images. Then, each location

that emerges is a hidden state in our model. Figure 3.1 depicts the locations

for our datasets. At test time, we will estimate to which of the discovered

locations the novel images belong.

3.1.2 Visual Feature Extraction

For every image, we extract three visual features: Gist, a color his-

togram, and a bag of visual words. Gist captures the global scene layout and

texture [11], while the color histogram characterizes certain scene regions well
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(e.g., green plants in a park, colorful lights downtown). The bag-of-words de-

scriptor summarizes the frequency with which prototypical local SIFT patches

occur; it captures the appearance of component objects, without the spatial

rigidity of Gist. For images taken in an identical location, this descriptor will

typically provide a good match. Note, however, that we forgo the geometric

verification on local features typically done by pure landmark-matching sys-

tems (e.g., [12]). While it would certainly refine matching results for distinctive

buildings or monuments, we also care about inexact matches for non-distinctive

scenes (e.g., a view of the bay, or a bus stop), in order to get a distribution

over possible locations that can be exploited well during HMM inference.

3.1.3 Location Summarization

Since the data consists of users’ uploaded images, certain popular lo-

cations contain many more images than others. The higher density of images

has potential to both help and hurt performance. On the one hand, more ex-

amples means more coverage, or less chance to miss a corresponding scene at

test time. On the other hand, more examples usually also means more “noisy”

non-distinct images (portraits, pictures of food) that can bias the observation

likelihood if the locations are imbalanced. For example, if 5% of the training

images contain a car, then the most popular locations will likely contain quite

a few images of cars. At test time, any image containing a car could have a

strong match to them, even though it may not truly be a characteristic of the

location.
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Thus, we consider an optional location summarization procedure to

focus the training images used to compute our set-based likelihood function

(which is defined in Section 3.2). The idea is to automatically select the most

important aspects of the location with minimal redundancy. We apply the

efficient spherical k-centroids algorithm [5] to each location’s training images.

These centroids then serve as the representative instances to which we attempt

to match novel photos. However, we use all training images when computing

transition and prior probabilities. We show results both with and without

summarization below.

3.1.4 Learning the Hidden Markov Model

We represent the learned tourist travel patterns with a Hidden Markov

Model. An HMM is defined by three components: the initial state priors, the

state transition probabilities, and the observation likelihood. We define the

first two here and defer the likelihood to our description of the testing stage

below.

The location prior is derived from the distributions of images in the

training set. Suppose we have N locations defined via mean shift for the cur-

rent city. Let Ni denote the number of images taken within the i-th location.

The prior for the location state at any time t is then simply:

P (Lt = i) =
Ni + λL
∑

Ni + λL

, 1 ≤ i ≤ N, (3.1)

where λL is a regularization constant to make it possible to begin in locations

that may not have been present in the training set.
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Figure 3.2: Transition matrices discovered for our two datasets(to be described in Chap-
ter 4). Diagonal entries are suppressed for visualization.

The transition probabilities reveal the pattern of typical human move-

ment between locations in the city. The transition probability between two

photo bursts t− 1 and t is:

P (Lt−1 = i|Lt = j) =
Nij + λt
∑

Nij + λt

, 1 ≤ i, j ≤ N, (3.2)

where Nij is the number of transitions from location i to j among the training

sequences, and λt is a regularization constant to avoid treating any transition

as impossible. Figure 3.2 depicts the locations for our datasets.

3.2 Testing Stage

Given a novel sequence of a single tourist’s timestamped images, we

divide it into a series of bursts, and then estimate their locations by running

inference on the HMM.
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3.2.1 Grouping Photos into Bursts

A burst is meant to capture a small event during traveling, such as a

visit to some landmark, a dinner in a restaurant, entering a museum, or taking

a ferry. When inferring the labels for a novel sequence, we will assume that

all photos in a single burst have the same location label. The ideal method

should make the bursts large enough to substantially benefit from the label

smoothing effects, but small enough to ensure only a single location is covered.

We use mean shift on the timestamps to compute the bursts, which is

fairly flexible with respect to the frequency with which people take photos.

We have also explored alternatives such as an adaptive bandwidth mean shift

and grouping using both temporal and visual cues, but we found each variant

to produce similar final results, and thus choose the timestamp method for its

simplicity.

3.2.2 Location Estimation via HMM Inference

Let S = [B1, . . . , BT ] denote the series of T bursts in a novel test

sequence, where each Bt = {It1 , . . . , ItG} is a group of photos in an individual

burst, for t = 1, . . . , T . For example, the whole sequence S might span several

days of touring, while each burst Bt would typically consist of photos taken

within ∼30 minutes. For convenience, below we will simply use G to denote

|Bt|, the cardinality of the t-th burst, though it varies per burst.

Our goal is to estimate the most likely series of locations: {L∗
1
, . . . , L∗

T},

where each L∗
t denotes the location label attributed to each image in the t-th

14



burst. To estimate these labels, we need to define the observation likelihood

distribution, P (It1, . . . , ItG |Lt = i), for i = 1, . . . , N . Our definition must

reflect the fact that some images within a burst may not have a strong match

available in the training set, even for those taken at the same true location (e.g.,

imagine a close-up facial portrait taken while waiting in line at the Statue of

Liberty). Thus, we treat the photos within a burst as a single observation, and

define a set-to-set likelihood model to robustly measure the visual similarity

between the burst and any given location.

For each image in the burst, we gather its K most similar images across

the entire training set using the visual features defined in Section 3.1 and a

Euclidean distance weighted per feature type. (If we are using the optional

summarization stage, these neighbors are chosen among only the representative

training image exemplars.) Note that while retrieving these nearest neighbor

images, we ignore which state each neighbor comes from. This yields a set of

M = K ×G neighbor training images {In1
, In2

, . . . , InM
}.

Next we divide the M images according to their true locations, yielding

one set per location, M1,M2, . . . ,MN , some of which may be empty. Now we

define the probability that the location is i given burst t:

P (Lt = i|It1 , . . . , ItG) ∝

(

∑

m∈Mi

ω(Im)

)

+ λc, (3.3)

where Mi denotes the set of retrieved images coming from location i, and λc is

a regularization constant to ensure that each location has nonzero probability.

For every retrieved image Im in Mi, its contribution to the location likelihood

15



Figure 3.3: Illustration of Eqns. 3.3 and 3.4. Given a burst Bt that contains G im-
ages, say we retrieve K = 3 neighbors for each test image, giving 3 × G retrieved
training images. Among them, image 1, 3, 6, and M are from L1, which means that,
M1 = {In1

, In3
, In6

, InM
}. Thus, the numerator in Equation 3.4 is affected by the four

D(It∗ , Im) pairs circled in the figure.

above is given by:

ω(Im) =
exp(−γD(It∗ , Im))

∑M

l=1
exp(−γD(It∗ , Inl

))
, (3.4)

where It∗ denotes the burst’s image that was nearest to Im when doing the

initial neighbor retrieval, and γ is a standard scaling parameter. The distance

D(It∗ , Im) defines the visual feature similarity between the two images, and is

the same weighted Euclidean distance over the Gist, color, and bag-of-word

descriptions used to retrieve the neighbors. The denominator of Eqn. 3.4

normalizes according to the extent to which It∗ is similar to retrieved images

in all locations. Please see Figure 3.3 for an illustration.

Finally, we can use the above to compute the image burst Bt’s likelihood

16



via Bayes Rule:

P (Bt|Lt = i) =
P (Lt = i|It1 , . . . , ItG)P (It1 , . . . , ItG)

P (Lt = i)
,

∝
(
∑

m∈Mi
ω(Im)) + λc

Ni + λL

, (3.5)

where P (It1 , . . . , ItG) is constant. Bayes Rule is also used in this reverse fashion

in [7], although in that model the likelihood is computed for a single image.

Having already defined the location prior and location transition prob-

abilities during the training stage, we can use this burst likelihood to predict

novel sequences of locations. We use the Forward Backward algorithm, and

estimate the locations based on the hidden state with the maximum marginal

at each burst.

A simpler alternative HMM would consider each image in the sequence

as a individual observation, and estimate the likelihood term according to the

nearest neighbor for that image [7] or using some parametric distribution [20].

The advantage of our burst-based likelihood over such an “image-based” HMM

is that strong matches for some portion of the burst can influence the probabil-

ity, while the noisy or non-distinct views are discounted. Furthermore, images

that do not provide good cues for determining location—yet do appear in most

locations (e.g., human, car)—will not strongly influence the probabilities due

to the normalization in Eqn. 3.4. We directly validate the impact of the burst

design in the experiments.

Note that our approach is intended to auto-tag sites within a given

city; in our experiments we treat the city itself as given (i.e., we know a batch

17



of snapshots are taken from New York). This is a reasonable assumption,

given that people typically put photos in an album or folder with at least

this specificity very easily. However, one could potentially automate the city

label as well based on identifying a match for even one distinctive image, and

thereby automatically choose which model to apply.
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Chapter 4

Results

Our experiments demonstrate the approach with real user-supplied pho-

tos downloaded from the Web. We make direct comparisons with three key

baselines, and analyze the impact of various components.

4.1 Datasets and Implementation Details

The implementation of our method reveals latent traveling pattern of

dataset and improves the accuracy of location estimation. The qualitative

result illustrates the benefits of our burst based system. The quantitative result

shows better performance compare to current location estimation methods.

4.1.1 Data Collection

Existing datasets lack some aspects necessary to test our method: sev-

eral collections [6, 7, 9] are broader than city-scale, whereas we are interested

in within-city location tagging; others are limited to street-side images taken

from a vehicle rather than a tourist [15]. Therefore, we collect two new datasets

from Flickr images, maintaining the user IDs, timestamps, and ground truth

GPS for each one.
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Dataset Rome New York
# Train\Test Images 32942\22660 28950\28250
# Train\Test Users 604\470 665\877
Avg # photos per test seq 52 (std 119) 37 (std 71)
StDev. Testing Seq. Length 119 71
Avg time period of test seq 3.77 days 3.33 days

Table 4.1: Properties of the two datasets.
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Figure 4.1: Number of images per location for the two datasets.

We consider two major tourist cities, New York and Rome. We obtain

the data by querying Flickr for images tagged with “New York City” or “NYC”

or “Rome” within the past two years. Images with geo-tags outside of the

urban areas are removed1, and locations discovered in the training set with

fewer than 100 images are discarded. We link images taken by the same user

within 30 days to form traveling sequences. To ensure no overlap in the train

and test sets, we take images from 2009 to form the training set, and those

from 2010 to form the test set. See Table 4.1 for more stats on the collection.

We will share the image links, tags, and our image features if the paper is

accepted.

1NY lng -74.03 - -73.86, lat 40.66-40.87; Rome lng 12-13, lat 40-42.
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4.1.2 Image Features and Distance

For each image, we extract a 960-dimensional GIST descriptor, 35-bin

color histogram (15 bins for hue and saturation, 5 bins for the lightness),

and a DoG+SIFT bag-of-words histogram (1500 words for Rome and 1000

for New York, which we choose based on the size of dataset). We normalize

each descriptor type by the average nearest feature distance, and then combine

them when computing inter-image distances with a weighted Euclidean metric.

Specifically, we use a weight ratio of 1 : 2 : 7 for Gist:color:SIFT, respectively,

based on our intuition of the relative strength of each feature, and brief manual

inspection of a few initial image neighbors.

4.1.3 Parameters

The HMM has several regularization parameters necessary to maintain

nonzero probabilities for each location (see Sec. 3.1). We set λL = 200, based

on the median location cluster’s diameter, and λt = 1500, based on the median

of diagonal entries in the transition matrix. We set λc = 10−4, and γ = 2.0,

based on the distribution of inter-image distances. We use K = 10 neighbors

per image for the burst-based likelihood; we have not experimented with other

values. The bandwidths for mean shift clustering of the geo-tags and images

for bursts are set to 0.17/0.6(Rome/NewYork) mi and 1.2 hour, respectively,

based on the scale of district within the city and typical human behavior.
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4.1.4 City Location Definitions

Mean shift on the training data discovers 26 locations of interest for

Rome, and 25 for New York (see Figure 3.1 and 4.1). The average location

size is 0.2 mi2 in Rome, and 3 mi2 in New York. The ground truth location

for each test image is determined by the training image it is nearest to in geo-

coordinates. As shown in Figure 4.2 and 4.3, people not only take pictures of

landmark, but also objects that don’t contain information for location such as

cars, faces, signs, or even fence around building. However, since the majority

of images in the dataset are useful for our purpose, our set-to-set likelihood

model in Chapter 3 is still robust to a few noisy images.

4.1.5 Baseline Definitions

To verify the advantages of our approach, we compare it to three base-

lines: (1) Nearest Neighbor (NN) classification using the image features

(as in [6]), (2) an image-to-image HMM we refer to as Img-HMM, where each

image is treated as an observation, but transitions and priors are the same as

in our model (this is similar to the HMM in [7], only without the parame-

terization by time intervals), and (3) a Burst Only baseline, which uses the

same bursts as computed for our method, but lacks the travel transitions and

priors (i.e., this baseline uses the burst-likelihood alone to classify a burst at

a time).

The NN baseline uses no temporal information, whereas the Burst Only

only uses the timestamps to cluster the images, but no transition priors. The
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Figure 4.2: Example images from location 3, 6 and 10 in Rome dataset.
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Figure 4.3: Example images from location 2, 4, and 7 in New York datasets.

24



NN Img-HMM Burst Only Burst-HMM (Ours)
Avg/seq 0.1502 0.1608 0.1764 0.2036

Overall 0.1592 0.1660 0.2617 0.2782

(a) Rome dataset

NN Img-HMM Burst Only Burst-HMM (Ours)
Avg/seq 0.2323 0.2124 0.2099 0.3021

Overall 0.2302 0.2070 0.2055 0.3143

(b) New York City dataset

Figure 4.4: Location estimation accuracy on Rome (a) and New York (b).
First row in each table gives the average rate of correct predictions over all
test sequences; second row gives the correct prediction rate over all individual
images. No summarization is used for these results.

Img-HMM is equivalent to our system when each burst is restricted to be a

single photo. We use the same visual features for all methods to ensure the

fairest comparison. These are the most important baselines to show the impact

of our algorithm design, since they cover both alternate choices one could make

in an HMM design for this problem, as well as state-of-the-art methods for

location recognition.

4.2 Location Estimation Accuracy

Figure 4.4 compares the different methods’ performance. We report

both the average rate of correct predictions across the test sequences, as well

as the overall correct rate across all test images. Our Burst-HMM achieves

the best accuracy under both metrics, by a substantial margin in most cases.

Our method’s improvements relative to the Burst Only baseline show

the clear advantage of modeling the “beaten path” hints, while our gains

over the Img-HMM show that the burst-based likelihood has the intended
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robustness.

The NN baseline fares much better on the New York dataset than it

does on Rome; upon inspection, we found that this is due to the highly imbal-

anced distribution of images per location within the New York dataset (e.g.,

32% of the data comes from Times Square). The NN approach matches many

test images to some image belonging to those popular/well-covered locations,

which happens to be an advantage in this case. For Rome, where locations are

more balanced in coverage, we see how NN suffers from the lack of temporal

context relative to all other methods.

Figure 4.5 and 4.6 show two example test sequences from either dataset,

along with our predictions and those of the Img-HMM baseline. The result

illustrates the expected tradeoffs of the two approaches.

4.3 Impact of Burst Density

On average, each burst in the test set has 7.7 images for Rome, and 6.1

for New York. Since our method assigns all images within a burst with the

same label, the precision of these automatically computed bursts will influence

our final results. Using a fixed bandwidth for mean shift, the percentage of

images within a burst that are from the same location is 79% and 91% for

either dataset. Thus, we do give up a small number of correct labels from

the start; however, as seen in the Img-HMM and Burst-HMM comparisons,

this loss is outweighed by the accompanying stronger likelihood function. One

might be able to generalize our approach to use a “soft” assignment into bursts,
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Figure 4.5: 2 example results comparing predictions by our Burst-HMM
(“Our”) and the Img-HMM baseline (“Base”) in New York dataset. Images
located in the same grid cell come from the same burst. A check means cor-
rect prediction, an ’x’ means incorrect prediction. Top: Images with distinct
features (such as Images 2-5, and 16-17) are predicted correctly by both meth-
ods. Whereas the baseline fails for several less distinctive scenes (e.g., Image
9-14), however, our method estimates them correctly, likely by exploiting both
some informative matches to another view within the burst (e.g., the landmark
building in Image 8 or 13), as well as the transitions from burst to burst. Our
method can also fail if the burst consists of only non-distinctive images within
a burst (Image 1). Bottom: we correctly estimate the third burst’s images
due to the strong hints in Images 12 and 14 for the famous location, while
the baseline fails on Image 9-11 due to the lack of strong temporal constraints
and distinctive features..Our method can also fail if the burst consists of only
non-distinctive images within a burst (Image 15).

27



Figure 4.6: 2 example results comparing predictions by our Burst-HMM
(“Our”) and the Img-HMM baseline (“Base”) in Rome dataset. Images lo-
cated in the same grid cell come from the same burst. A check means correct
prediction, an ’x’ means incorrect prediction. Top: Similar to Figure 4.5, we
correctly estimate the second burst’s images due to the strong hints in Im-
ages 3,4 and 17 for the famous location(Colosseum), while the baseline fails
on Image 6-16 due to the lack of distinctive features. Bottom: Images within
third burst are estimated correctly by our method while images lack distinct
features such as image 8-9 fails by baseline.
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Figure 4.7: The Img-HMM is a special case of our algorithm where the band-
width is fixed at 0 (i.e., single image bursts).

but we leave this as future work.

As the size of the bursts decreases, our model approaches the Img-

HMM model. We illustrate this in Figure 4.7, plotting our test performance

as a function of the mean-shift bandwidth. Indeed, we see that accuracy

converges to the Img-HMM baseline once the bandwidth is 0, i.e., each burst

is a single image (leftmost points). We also see that our accuracy is fairly

insensitive to a range of values for this parameter. This indicates the range

of typical photo-taking frequencies among the hundreds of Flickr users in our

data is well-handled by the density-based mean shift clustering.
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4.4 Impact of Location Summarization

We found that the extreme imbalance among locations in the New York

data caused some bias that was beneficial to the NN baseline, but detrimental

to the HMM methods. The imbalance rewards methods that always return

the same popular location label, and NN tends to do this because it finds

its best match among the better-covered areas. The imbalance also affects

our approach, both through the likelihood, and also due to a high transition

probability toward the popular locations.

Thus, we explored an optional location summarization stage to make

the training images considered for retrieval more balanced (see Sec. 3.1). Ta-

ble 4.2 shows the results for New York data. The representative images se-

lected per location do indeed resolve this issue, improving results for both our

method and the Img-HMM baseline, and decreasing accuracy for NN, since it

is no longer favorably biased to predict the most popular locations. Summa-

rization had no significant impact on the Rome data, since the distribution of

location images is more balanced (see Fig. 4.1).

Figure 4.8 shows that filtered out images contain less location hints than

remaining images.Therefore, after apply image summarization to these popular

location, the k-nearest neighbor couldn’t get benefit by guessing from data

distribution but the HMM based method could get better result by reducing

random matching.
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Figure 4.8: Filtered out images in location 2 from New York dataset.

NN Img-HMM Burst-HMM (Ours)
Summarize? No Yes No Yes No Yes
Avg/seq 0.2323 0.1502 0.2124 0.2674 0.3021 0.3108

Overall 0.2302 0.1592 0.2070 0.2797 0.3143 0.3475

Table 4.2: Effect of summarization for the imbalanced New York dataset.

4.5 Discovering Travel Guides’ Beaten Paths

Travel guides often suggest popular itineraries for exploring a city. Does

anyone actually use them? We can find out with our model! If the data is

representative and our model is working well, we expect the suggested travel

patterns to be assigned high probability by our Burst-HMM. Thus, we obtain

7 itineraries for spending “3 days in NYC” from 7 popular travel guides with

postings online (e.g., Frommers). Then, we compare their path probability

to that of a random walk, where the probability of a route is defined as:

P (L1)P (L2|L1) . . . P (Lt|Lt−1). We consider two forms of random walks: one

with a random initial state sampled from the prior, and one specifically starting

from the popular Times Square (TS) location. We generate 10,000 random

paths for each baseline.
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Figure 4.9: Maps for two suggested 3-day trips from Frommer’s.

Rand. Walk Rand. Walk(TS) Guidebook
Route Prob. 6.3 · 10−12 4.2 · 10−11 2.0 · 10−4

Table 4.3: Probability of recommended vs. random routes under our model.

Table 4.3 shows the results. The mean of the 7 guidebook itineraries is

indeed higher than the random walks, and all individual guidebook paths

are significantly more probable. Figure 4.9 depicts two of the guidebook

itineraries, each containing 8 locations. The probability of itineraries on the

left and right are 1.2 · 10−3 and 5.0 · 10−10, respectively. Both are much more

probable than a random walk of sites in NYC, even if starting in the popular

Times Square.

4.6 Discussion and Future Work

Our results demonstrate that our burst-based method can successfully

take advantage of human traveling behavior to solve the location recognition

problem. However, for locations that are unpopular and contain only a few im-
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ages, we find that neither the HMM-based nor nearest neighbor-based method

yields good results. Even when normalizing more to account for the number

of images, in the extreme cases, all methods tend to assign images to more

popular locations. This issue could potentially be solved in two ways: (1)

by defining the locations based on human knowledge(such as park, harbor,

or known district), which may make the images be more evenly distributed

between locations and consistent within each location, or (2) by performing

image-level feature selection to extract the distinguishing characteristics of ev-

ery location, and thereby balancing the amount of information per location.

We leave these directions as future work.

In addition, we could apply our technique to categorize tourist pho-

tos or develop a travel planning system by considering the learned beaten

paths. Finally, we can also consider how the locations of images may serve as

additional context to solve current computer vision problems such as object

recognition or scene understanding.
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Chapter 5

Conclusion

We presented a novel approach that learns and exploits the behavior

of typical tourist photographers. We are the first to show how travel pat-

terns can strengthen within-city recognition, and to explore how photo burst

events serve as a powerful labeling constraint. Our results show that even

with relatively limited labeled training data, the Burst-HMM is more accurate

than traditional nearest neighbor matching and a simpler image-based HMM.

While there are many image in the training set, the image level summariza-

tion filters out the noisy images and increase the accuracy of our system. Our

findings also hint at novel future applications beyond auto-tagging, such as

collaborative filtering of vacation itineraries.
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