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Foreground Focus: Finding Meaningful Features in
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We present a method to automatically discover meaningful features in

unlabeled image collections. Each image is decomposed into semi-local fea-

tures that describe neighborhood appearance and geometry. The goal is to

determine for each image which of these parts are most relevant, given the im-

age content in the remainder of the collection. Our method first computes an

initial image-level grouping based on feature correspondences, and then iter-

atively refines cluster assignments based on the evolving intra-cluster pattern

of local matches. As a result, the significance attributed to each feature influ-

ences an image’s cluster membership, while related images in a cluster affect

the estimated significance of their features. We show that this mutual rein-

forcement of object-level and feature-level similarity improves unsupervised

image clustering, and apply the technique to automatically discover categories

and foreground regions in images from benchmark datasets.
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Chapter 1

Introduction

Learning to describe and recognize visual objects is a fundamental prob-

lem in computer vision that serves as a building block to many potential appli-

cations. Recent years have shown encouraging progress, particularly in terms

of generic visual category learning [5, 21, 22, 38, 40] and robust local feature

representations [2, 18, 25]. A widespread strategy is to determine the com-

monalities in appearance and shape amongst a group of labeled images, and

then search for similar instances in new images based on those patterns. Typi-

cally one assumes that categories may be learned in a supervised setting, where

the recognition method is trained with manually prepared exemplars of each

class of interest. This format of the problem continues to yield good results,

as evidenced by steady accuracy improvements on benchmark datasets [3, 11].

However, carefully labeled exemplars are expensive to obtain in the

large numbers needed to fully represent a category’s variability, and meth-

ods trained in this manner can suffer from unintentional biases imparted by

dataset creators. Recognition methods stand to gain from stores of unstruc-

tured, unlabeled images and videos, if they can infer which basic visual pat-

terns are meaningful. While recent work has begun to address the need for
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looser supervision requirements [13, 16, 35, 38, 40], learning from completely

unlabeled images remains difficult. Unsupervised learners face the same issues

that plague supervised methods—clutter, viewpoint, intra-class appearance

variation, occlusions—but must handle them without any explicit annotation

guidance.

So how can we learn object categories from unlabeled image datasets?

Without knowing the category label of an image, there will be many features

that are part of the background (clutter) in addition to those that lie on the

foreground. How do we know which features in each image are relevant for

producing optimal clusters that partition the data without knowing the images’

class labels? The selected features will dictate the clusters formed, while the

clustering of the data will influence which features are important. Therefore,

it is unclear which should be learned first, since one influences the outcome of

the other. This “chicken-and-egg” type problem means that feature selection

and data clustering must be learned simultaneously.

We are interested in automatically identifying the foreground object(s)

of interest among an unlabeled pool of images. To qualify as foreground, we say

that the visual pattern must have observable support within the collection—

that is, it must re-occur repeatedly, albeit with some variation in appearance

across the instances. Isolating “important” features that are responsible for

generating natural image clusters would be useful to construct models to detect

discovered objects in novel images, or to generate compact summaries of visual

content. Thus the task is essentially unsupervised feature subset selection: to
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(a) Image clusters are updated based
on weighted semi-local feature matches.

(b) Feature weights are up-
dated based on current clus-
ters.

Figure 1.1: Illustration of the proposed method. The images are grouped based on
weighted semi-local feature matchings (a), and then image-specific feature weights
are adjusted based on their contribution in the match relative to all other intra-
cluster images (b). These two processes are iterated (as denoted by the block arrows
in the center) to simultaneously determine foreground features while improving clus-
ter quality. As the foreground features on repeated objects receive greater weight,
the cluster memberships change, and the groups discovered more accurately reflect
the objects present. In this example, the dotted arrows between clusters in (a) de-
note that updates to the feature weights cause the dalmatian and face examples to
swap group memberships, whereas the okapi leaves the face cluster in favor of the
other okapis.

determine which portion of the features present can be used to form high

quality clusters under a chosen clustering objective.

We propose a solution to this problem that seeks the mutual support

between discovered objects and their defining features. Given a collection of

examples, we extract semi-local descriptors throughout each image. An initial

image-level grouping is computed based on the correspondences between any
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two images’ features. Within each initial group, the pattern of the matches is

analyzed to determine the extent to which each part was responsible for plac-

ing its parent image into its current cluster. From this, we compute a weight

on each feature representing its significance. The groups and feature weights

are then iteratively refined by alternately computing 1) the cluster member-

ship given the re-weighted features and 2) the feature weights given the newly

refined memberships (see Figure 1.1). Due to the reciprocal reinforcement

between the consistent matches and cluster assignments, the iterative process

yields both a partition of the unlabeled inputs as well as their detected fore-

ground, i.e., the regions for which the grouping is most consistent. As part

of this work, we also define a new semi-local region descriptor to provide a

flexible encoding of local appearance and geometry.

Our results support the notion that unsupervised foreground feature

detection aids in grouping similar objects, while important features are better

found on objects of interest (foreground) when given partitions of partially

re-occurring patterns. We compare our approach with existing unsupervised

learning algorithms and show improvements on benchmark datasets.
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Chapter 2

Related Work

In this section we review relevant work in supervised image feature

selection, weakly supervised and unsupervised category learning, and semi-

local descriptors.

Various recognition methods can learn categories from labeled images

with segmented foreground and then detect them within cluttered images;

in [21, 26], the authors show how to weight features matched to a novel test

image based on their agreement with known object geometry, thereby down-

playing background and better segmenting the object. The paradigm of “weak

supervision” suggested in [38] explored the idea of simultaneous learning of fea-

ture selection and data clustering, and has since been pursued by a number

of methods (e.g. [5, 40]). In this model, categories are learned from cluttered,

unsegmented class-labeled images; one seeks the parts in each image that best

fit all examples sharing the same label. The model parameters and feature

selection for each image are learned iteratively using the Expectation Maxi-

mization (EM) algorithm [7]. Discriminative feature selection strategies have

also been explored to detect features that occur frequently in in-class examples

but rarely on the background [8, 30]. Our approach shares the goal of identi-
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fying consistent features in cluttered images, but unlike the above methods it

does not employ any labeled examples to do so.

Recent work in unsupervised category learning has considered ways to

discover latent visual themes in images using topic models developed for text,

such as probabilistic Latent Semantic Analysis (pLSA) or Latent Dirichlet Al-

location [12, 13, 24, 31, 33, 35]. The main idea is to use feature co-occurrence

patterns in images to recover the underlying distributions (topics) that best

account for the data. Having discovered the topics, one can express an im-

age based on the mixture of topics it contains. Early models transferred the

notion of text documents containing unordered words to images composed of

“visual words” [12, 31, 35]. Recent extensions show how to incorporate spatial

constraints [13, 24], or use segmentation to reduce the spatial extent of each

“document” [33]. However, a visual vocabulary must be constructed, which

raises computational complexity issues. Furthermore, the size of the vocabu-

lary directly influences performance, but it is unclear how the size should be

chosen. Our method also discovers feature co-occurrence patterns in images,

however, unlike these methods, it does not require features to be quantized to

form a visual word vocabulary. In addition, there is a difference in the way

a feature’s confidence of belonging to the category (topic) discovered is com-

puted. In the latent topic models, the topics to be discovered are considered

for the entire dataset, and each image is explained as a mixture of the discov-

ered topics. Thus, a feature’s confidence is influenced by the distribution of

the visual words in all of the images in the dataset. In contrast, our method
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discovers the re-occurring visual patterns, i.e., the most confident features,

after we partition the dataset into highly matching disjoint groups. There-

fore, a feature’s confidence depends only on its image’s intra-cluster matches.

We show that this leads to better feature confidences in terms of foreground

discovery.

Other approaches treat the unsupervised visual category learning task

as an image clustering problem. In [16], affinities computed from local feature

matches are used with spectral clustering to find object clusters and proto-

types, and in [9] a message-passing algorithm propagates non-metric affinities

and identifies good exemplars. Our method also begins by computing pair-

wise affinities between images. In contrast to these techniques, however, the

proposed approach allows common feature matches to reinforce and refine the

discovered groups; as a result it provides both the groupings as well as the

predicted foreground-background separation.

The problem of unsupervised feature selection has received limited at-

tention in the machine learning community (see [10] and references therein),

but existing methods presume a vector input space, many assume the data

to be generated by certain parametric distributions, and/or are specifically

tailored to a particular clustering method—any of which can be ill-suited for

the visual learning scenario.

Local features are a favored representation of images due to their re-

silience under common transformations, occlusion, and clutter. However, in

some cases too much locality can also be problematic: features with minimal
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spatial extent may be too generic and easily matched, and comparing un-

ordered sets of local patches enforces little geometry. Researchers have there-

fore proposed “semi-local” feature descriptors that capture information about

local neighborhoods surrounding an interest point [2, 18, 30, 37]. The general

idea is to build more specific features that reflect some geometry and aggregate

nearby features into a single descriptor. Various aggregation strategies have

been proposed: in [18], groups are formed from regions that remain affinely

rigid across multiple views of an object, while in [2] neighborhoods are col-

lected hierarchically in space, in [30] a tiled region is centered on each interest

point to bin nearby visual words, and in [37] the k-nearest points to the base

point are included but without any spatial ordering. These methods aggregate

information in a semi-local neighborhood surrounding each interest point, but

fail to capture either the neighboring features’ spatial configuration, spatial

ordering, or spatial count. In order to compute more reliable correspondences

between images, we design a new descriptor that counts the co-occurrence of

each visual word type relative to an interest point, accumulating the counts

at increasingly distant spatial regions and in distinct relative configurations.

This descriptor is inspired by [22], where a kernel is developed to compare

correlogram-like distributions of visual words. In [22], each image is described

by the distribution of its visual words, whereas our descriptor describes each

feature’s semi-local neighborhood. Thus, our method is able to localize an

object as well as allow for multiple regions to be represented in an image.

Our main contribution is a new approach to perform unsupervised
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foreground feature selection from collections of unlabeled images. Whereas

previous feature selection methods could detect foreground or discriminative

features in labeled images, our method discovers them in unlabeled images.

In practice, we show that this allows more accurate unsupervised category

learning with benchmark recognition datasets.
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Chapter 3

Approach

The goal is to predict which regions in unlabeled images correspond

to foreground, and in doing so to improve accuracy in unsupervised visual

pattern discovery. Given a set of unlabeled images, our method groups similar

examples based on the correspondence between their semi-local features. After

an initial grouping, we weight each feature according to its contribution to the

match between the image that contains it and every other intra-cluster image.

Then, the groupings and weights for the whole image collection are iteratively

re-computed, in the end producing both a partition of the image collection

as well as weights that reflect the degree to which a feature is believed to be

foreground. In the following, we first describe the grouping process in detail,

and then overview our semi-local descriptor.

3.1 Simultaneous Image Grouping and
Foreground Detection

Given an unlabeled data set of N images, U = {I1, ..., IN}, we represent

each image Ii as a set of weighted features, Xi = {(f1, w1), (f2, w2), ..., (f|Xi|, w|Xi|)},

where each fj ∈ ℜd is a local image descriptor weighted with some wj ≥ 0,

where wj ∈ ℜ. The weight on a feature vector determines its importance
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(a) Clusters formed from full image
matches.

(b) Clusters formed from foreground
matches.

Figure 3.1: For (a) and (b), images in each row belong to the same cluster.
These images are hand-selected to illustrate our goal. (a) When all features in
an image are given equal weight and many of them belong to the background,
full image matches can result in clusters that are based on similar background
appearances. (b) By weighting the foreground features higher than back-
ground features, clusters can be formed based on the objects’ (foreground)
appearances. The problem we address in this work is how to discover which
features are foreground among unlabeled images, based on the re-occurring
visual patterns in the intra-cluster images.

within the image, and will affect any matching computed for the set in which

it is contained. Initially, all feature weights are set to a uniform value: wj = 1,

for all features j = 1, . . . , |Xi| in all sets i = 1, . . . , N . Subsequently, every

time we cluster the images, the support (or lack of support) computed for a

feature within a group will result in an increase (or decrease) of its weight.

Those weight updates in turn influence the image groups found at the next

iteration.

3.1.1 Clustering Weighted Feature Sets

A good clustering should group together images that have a consistent

repeated appearance pattern. However, given that the images will likely be

cluttered and may contain multiple objects, the pattern need not encompass
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Figure 3.2: An example of the EMD between two feature sets, X and Y. In
this example, X has three features and Y has two features, each of varying
weight (which is indicated by the size of the features). The EMD measures
the minimum amount of work required to transport enough weight from the
larger weighted feature set (X) to match the total weight of the lower weighted
feature set (Y) [32]. The distance is computed by taking into account both the
weight of the individual features as well as the distances between the features
of the two feature sets.

the entire image. Therefore, we want to compute clusters based on the ap-

pearance agreement of some portion of each example—that is, based on a

match between subsets of the local features. Further, the weight on a feature

should dictate how much attention an image-to-image comparison pays to it,

so that features with high weight have more influence on the measured cost of

a match, and features with low weight have little effect. Figure 3.1 illustrates

these points.

To accomplish such a grouping, we perform spectral clustering with an
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affinity matrix that reflects the least-cost partial matching between weighted

point sets. Also known as the Earth Mover’s Distance (EMD) [32], this optimal

match cost M(X, Y ) reflects how much effort is required to transform weighted

point set X into weighted point set Y :

M(X, Y ) =

∑

i

∑

j Fi,j D(f
(X)
i , f

(Y )
j )

∑

i

∑

j Fi,j

, (3.1)

where f (X) and f (Y ) denote features from sets X and Y , respectively, and

D(f
(X)
i , f

(Y )
j ) denotes the distance (typically Euclidean) between points f

(X)
i

and f
(Y )
j . The values Fi,j are scalars giving the flow, or amount of weight

that is mapped from point f
(X)
i to point f

(Y )
j . Note that this takes into ac-

count the distance between matched points as well as the amount of weight

(mass or “dirt”) attached to each one. Figure 3.2 illustrates how the EMD

is computed between two feature sets. The EMD has previously been used

in supervised tasks to compare textures and shapes described by local feature

distributions [14, 17].

In our case, we use the weights to encode priority in the matching:

assuming an image’s foreground features are relatively highly weighted, a sec-

ond image cannot produce a low matching cost against it unless it has similar

point(s) to the foreground with similar total weight(s). Likewise, a feature

with low weight cannot contribute much cost to any match, so its influence

is negligible. At each clustering iteration, we compute affinities using the

N × N matrix C of matching scores between all pairs of unlabeled images:

Cm,n = exp(−(M(Xm, Xn))
2/2σ2), for m, n = 1, . . . , N . Here the EMD dis-

tances are mapped to affinities by the exp(·) operator. These affinities are
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input to a spectral clustering algorithm that partitions the N examples into

k groups, where k is selected by the user. In our implementation we use the

normalized cuts criterion [34], which finds the optimal partitioning of the data

by “cutting” the edges (similarity values) between the nodes (images) to form

disjoint clusters in which the intra-cluster similarity and the inter-cluster dis-

similarity are maximized. The objective criterion is formulated such that the

edges between the least similar nodes are removed without favoring a few iso-

lated nodes (outliers). In our case, this means that we favor a broad range

of similar images to be selected as a cluster in place of a few exceptionally

high matching images. Although we have chosen the normalized cuts criterion

due both to its efficiency and the fact that it prefers farther-reaching clusters,

alternate spectral methods are plausible.

3.1.2 Refining Foreground Feature Weights from Current Clusters

Given a k-way partition of the images, we update the weights attached

to each feature by leveraging any current regions of agreement among the im-

ages in a single partition. Even when all pairs of examples within a cluster have

high matching similarity, because each matching can draw from different com-

binations of features, heterogenous clusters are possible (see Figure 3.3). To

overcome this, we look to the pattern of the flow fields computed by Eqn. 3.1.

The idea is to use information among the “good” matches (images amongst

which all pairs have similar matching points) to re-interpret the “bad” matches

(images amongst which similar matching points exist, but are not consistent

14



Figure 3.3: An example of a heterogeneous cluster due to inconsistent matching
between image features. The thickness of the lines indicate the strength of the
match, i.e. thicker lines indicate higher matches. The Okapi image has been
grouped with the four Face images due to its high pair-wise matching similarity
with each Face image. However, an okapi feature that matches highly with
one face image does not necessarily match highly with another face image—the
high matching features across images are inconsistent. Although not shown
here, the Face images would have high matching features that are consistently
on the face regions (the foreground).

across all intra-cluster pairs).

The flow field specifies which features in two images best match which,

and using what amount of weight. Given a cluster containing C images

{X1, . . . , XC}, for each example Xi, i = 1, . . . , C, we define (C − 1) |Xi|-

dimensional weight vectors denoted wij, with j = {{1, . . . , C} \ i}. That is,

we compute a vector of feature weights for the i-th example against every other

image within the cluster. Each of the weight entries in wij specifies how much

15



its feature from Xi contributed to the match with set Xj. We define the d-th

element as wij(d) =
∑|Xj |

p=1
Fd,p

D

(

f
(Xi)

d
,f

(Xj )
p

) , for d = 1, . . . , |Xi|. Each weight is

the sum of all the flow amounts from that particular feature in Xi to any other

feature in the other set Xj , normalized by the inter-feature distance between

the matches (we use L2). We compute the final weights {w1, . . . , w|Xi|} as

the element-wise median of these (C − 1) vectors, normalized to maintain the

original total weight. The final weights give a robust estimate of how much

each feature consistently matched with other features in intra-cluster images.

High weighted features in an image will indicate that they have good consis-

tent matches throughout the intra-cluster images, while low weighted features

will indicate that they have inconsistent matches throughout the intra-cluster

images—there may be a few good matches, but the matches are not consistent

enough to produce high weights. Specifically, for a feature to obtain a high

weight, it must have high matches to features belonging to at least half of

the intra-cluster images. We normalize the final weights to maintain constant

total weight per image, such that
∑|Xi|

p=1 wp = |Xi|. This prevents weights

attached to an irrelevant example from wasting away to nothing and getting

stuck in their initial cluster. For example, if a Face image has been incorrectly

assigned to a cluster comprised mostly of Okapis, its final features might all

have very low weights. By normalizing the final weights to maintain constant

total weight, the features in the Face image have a chance to match with other

Face images’ features in the ensuing iteration.

In general, if a clump of images in a cluster contains instances of the
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same category, high weights will be attributed to their consistently re-occurring

parts—the foreground. Note that depending on the current cluster member-

ship, the updated feature weights can be quite different from the weights that

were used to compute the clusters. To begin the next iteration, we re-compute

the flows and affinities between all pairs of all N examples using the new

weights, and re-cluster. As the weight distributions shift, subsequent least-

cost matches are biased towards matching those features more likely to be

foreground. We iterate between the matching, clustering, and re-weighting,

until there is no change in the cluster assignments or until the average percent

change in weight is below a threshold. In practice, we observe the most impact

from the first several iterations (see Chapter 4). Essentially, our method up-

dates the weights on the features of each image to produce tighter clusters in

the next iteration. This is possible because our feature updates guarantee that

the matching cost between two images decreases when compared to the match-

ing cost obtained prior to the weight updates. Our algorithm then chooses the

weights (by the median) for each image such that the overall matching cost

between the intra-cluster images decreases. Therefore, subsequent iterations

produce tighter clusters.

Due to the complexity of computing the optimal matching on weighted

point sets, which is greater than O(n3) where n is the number of features,

in practice we compute the matrix C with a variant of the pyramid match

kernel (PMK) algorithm [15]. The PMK approximates the least cost match

for unweighted sets in linear time in the number of points in a set by inter-
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secting multi-resolution histograms computed in the feature space (see [15]).

Though defined for unweighted point sets, we can apply weights by scaling

every histogram bin increment by the weight attached to that point. Given

two multi-resolution histograms computed from two feature sets, for every in-

tersecting bin, we compute the optimal matching between the features from

both sets that share the bin. We record the flow and cost that each point at

the current resolution level contributes to the match; any remaining weight is

propagated to the next coarser pyramid level and can be used in future match-

ings. Zero-weighted features at any level do not contribute to the match. In

the end, when all bins have been intersected, we have accumulated the ap-

proximate flow and match cost. Each per-bin flow computation is super-linear

in the intersection value, but feature space partitions given by the pyramid

result in small and gradually increasing intersection counts.

While the authors of [16] suggest using weights to affect PMK match-

ing cost, they do not compute flow fields that are influenced by the weights.

More importantly, their clustering method is a one-shot process that does not

benefit from the mutual updating between clusters and feature weights. In-

stead, they rank the images according to intra-cluster similarity to identify the

prototypical examples for each object category (cluster), which are then used

to learn a classifier to label novel instances.
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3.2 Semi-Local Proximity Distribution Descriptors

Our algorithm description thus far implies an orderless set-of-features

representation. We propose a novel semi-local region descriptor that encodes

the appearance and relative locations of other features in a spatial neighbor-

hood. Our descriptor is inspired by the proximity distribution kernel [22],

which compares images described by cumulative histograms of nearby visual

word pairs. However, while their approach summarizes an entire image with

one histogram, we design a proximity distribution feature for each interest

point, which makes it possible to use rich local configuration cues within an

explicit, weighted matching (and thus calculate the flow as described above).

As mentioned in Chapter 2, previous methods that encoded the semi-local

neighborhood information failed to either capture the spatial configuration,

spatial ordering, or spatial count of the features in the semi-local neighbor-

hood. Our descriptor is built with the motivation to capture all of the above

information, and we show in our experiments that it can lead to better object

localization and classification performance.

We extract local patch features at all interest points. Then we construct

a standard n-word visual vocabulary by clustering a random pool of descriptors

(we use SIFT [25]) extracted from the unlabeled image dataset, U , and record

each feature’s word type. We use the k-means algorithm for clustering. For

each patch in an image, for each of four directions (quadrants) relative to

its center, we compute a cumulative distribution that counts the number of

each type of visual word that occurs within that feature’s r spatially nearest

19



Figure 3.4: Schematic of the proposed semi-local descriptor. The base feature
is p. The ellipses denote the features, their patterns indicate their corre-
sponding visual word types, the numbers indicate their rank order of spatial
proximity to the base feature, and the qi’s denote the four quadrants (direc-
tions) relative to p. Here the nearest neighboring feature to p is the feature
in q1 corresponding to the vertically textured word type, and so its bin in
H1 is incremented. For H2, the bins corresponding to the word types of the
two nearest neighboring features to p are incremented—the vertically textured
word type feature in q1 and the clear word type feature in q4. The process
is repeated until all R spatially nearest features to p are observed. In this
example, R = 6. (Best viewed in color.)

neighbor features, incremented over increasing values of r (see Figure 3.4).

More precisely, consider an image with patches {p1, . . . , pm} and their

associated word types {v1, . . . , vm}. For each pi, we construct R total 4n-

dimensional histogram vectors Hr(pi), for r = 1, . . . , R. In each, the first n

bins represent quadrant 1, the next n bins represent quadrant 2, and so on.

Each n-length chunk is a histogram counting the number of occurrences of

each word type vj within pi’s r spatially nearest feature points, divided into
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quadrants relative to pi. Note that higher values of r produce a vector Hr(pi)

covering a spatially larger region. Finally, our semi-local descriptor for pi is

the concatenation of these R histograms: f(pi) = [H1(pi), . . . , HR(pi)].

Every patch’s R × 4n-length vector is a translation-invariant encoding

of neighborhood appearance and coarse geometry. (We can add rotation in-

variance by setting quadrants based on a feature’s dominant gradient; we have

not yet explored this variant.) Due to the high-dimensionality and correlation

among dimensions, we compute compact descriptors using Principal Compo-

nents Analysis (PCA). Matching sets of our descriptors does not explicitly

enforce spatially contiguous regions to be discovered. However, due to their

spatial extent and overlap, individual point matches are in fact dependent.

Recent work on sampling strategies shows that the single most impor-

tant criterion for recognition performance tends to be the number of patches

detected in each image [28]. Hence, dense sampling is shown to often yield

better recognition accuracy than interest-point detectors, because it provides

more coverage of the image.

The region that our semi-local descriptor encapsulates can be quite

different depending on the sampling method for the base features. Dense sam-

pling on uniform grid points will produce semi-local regions that are consistent

in area (in terms of image coordinates) for each feature (except those that lie

near edges or corners) independent of the image it belongs to, which could

assist in better matching if the objects occupy similar sized regions across

images. However, if the foreground objects in different images do not have
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the same scale, the foreground coverage of the semi-local descriptor in each

image will be different—even if the base feature covers the same part of the

object in the images. To make the descriptor scale invariant for densely sam-

pled features, multi-scale sampling can be used where the sampling points are

adjusted with respect to the size of the patches, i.e., finer sampling for smaller

sized patches. Matching can then proceed between cross-scale descriptors.

Sparse sampling with interest point detectors will produce scale invari-

ant semi-local descriptors that are independent of the spatial area in terms of

image coordinates. An exception can occur for images containing objects at

very different resolutions, since different sparse points will be detected (i.e.,

a high resolution view of an object may result in more detections with inter-

est point detectors than a low resolution view of the same object). In this

case, scale invariance can be approximated by using scale-invariant feature

detectors and considering only similarly sized features in the base feature’s

neighborhood. This way, the semi-local neighborhoods in different images

would capture similarly sized regions with respect to the scale of the objects,

independent of the image resolution. The tradeoff with dense sampling is that

sparse sampling produces less coverage of the image, and not all parts of the

foreground object may be captured by the descriptor.

Related methods for encoding the appearance of semi-local neighbor-

hoods have been previously proposed. Quack et al. [30] employ a neighborhood-

based image description of visual words in which the scale of the neighborhood

is determined by the size of the region of interest (detected feature). Multiple
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instances of the same visual word are not counted, and the neighborhood de-

scriptions are not used explicitly for matching. Instead, the object category is

determined by the set of words in a region using data mining tools. Similarly,

Sivic and Zisserman [37] represent the neighborhood of each region of interest

by encoding the set of the R spatially nearest words to a base feature as a

n-d vector, where n is the size the of vocabulary. Agarwal and Triggs [2] con-

struct hyperfeatures—descriptors collected hierarchically in increasing neigh-

borhoods of the image space. The difference between these methods and our

descriptor is that our descriptor considers the order of spatial proximity as

well as the spatial direction in which the neighboring features are located with

respect to the patch center. This is a richer description of the semi-local

neighborhood of a feature; in order for two descriptors to have a high match,

having similar features in their semi-local neighborhoods is not enough—the

neighboring features must also have similar geometric configurations.

Lazebnik et al. [19] proposed to represent an image as a spatial pyramid.

An image is repeatedly subdivided and histograms of features are computed

over the sub-regions, thereby capturing both the appearance information as

well as the spatial layout information of the features. However, their rep-

resentation is global—the partitioning of the regions is based on the image

coordinates, and the image as a whole is represented. In contrast, our semi-

local descriptor captures information specific to each feature’s neighborhood.

This suggests that the local representation would fare better in terms of object

localization and be more robust to clutter and occlusion for image classification
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tasks.

3.3 Discussion

What are the assumptions of our approach? For a pattern to be discov-

ered, it must have support among multiple examples in the collection. Further,

only visual patterns that share some configuration of similar semi-local regions

can ever be found (e.g., using standard gradient-based region descriptors, our

method will not discover a single cluster consisting of both soccer balls and

volleyballs, but it can discover a group comprised of different people’s faces).

Finally, some support for a pattern must be detected in the initial iteration for

progress towards refining that pattern to be made in the remaining iterations.

Note that features that are strictly speaking “background” can also earn

high weights, if they happen to consistently re-occur with the same foreground

class. So, what is learned depends on what the collection U contains: for

example, if bikes are typically against a bike rack, then we can expect the

pattern to be found as a single entity. The same holds for images with multiple

objects that repeatedly co-occur—for example, if computer monitors always

exist on desks. This is a natural outcome for unsupervised learning from static

images (e.g., nothing can indicate that the bike and rack are not one composite

object unless they often occur separately), and satisfies the problem definition.

This also means that the discovered patterns will not always correspond

to the foreground objects, i.e., the dataset will not necessarily be partitioned

in concurrence with object class labels. This is because the feature weight
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updates depend strictly on the intra-cluster matches. For two objects that

typically occur in the same setting, e.g., cows and sheep, our method may

find the co-occurring visual pattern to be part of the background, e.g., grass.

The dataset will be partitioned accordingly, in which case we may not end up

with a cow-cluster and/or sheep-cluster. This is still a perfectly reasonable

outcome, since our method will have found the most consistently co-occurring

visual patterns. Semi-supervision can be added to guide the algorithm to

learn objects under a certain criterion. For the cows and sheep example, we

could take a few images from each category, and remove all features on the

grass (the background) by setting their weights to 0. This way, our algorithm

would be biased towards finding the re-occurring patterns that fall on the

foreground. We could also enforce high (low) affinity in the kernel matrix

between some examples that are constrained to be similar (dissimilar). This

would be especially helpful for examples with a lot of background clutter that

are often misclassified.
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Chapter 4

Results

In this chapter we present experiments both to analyze the mutual

reinforcement of foreground and clusters, and to compare against existing un-

supervised methods. We work with images from the Caltech-101 [3] and Mi-

crosoft Research Cambridge v1 (MSRC-v1) [39] datasets, both because they

provide object segmentations that we need as ground truth to evaluate our

foreground detection, and because previous related unsupervised techniques

were tested with this data. Unless otherwise specified below, we sample SIFT

features at regular image intervals.

4.1 Implementation Details

To determine when to stop iterating, we measure the percent change in

the average feature weight change in all images from one iteration to the next,

and stop once it slows to 15% or less (a threshold we set arbitrarily). When

clustering, we set k as the number of classes present in the dataset in order

to evaluate how well the true objects are discovered. Note that k can be set

higher to allow sub-categories, e.g., rear-view, side-view of the car category, to

be discovered. The number of clusters can be automatically determined by the

26



self-tuning spectral clustering method [41], which was demonstrated in [20] to

find different aspects/views of tourist attractions. However, on the datasets

that we work with, the self-tuning method does not produce enough clusters

(usually much less than the number of categories). In practice, we have found

that setting the number of k to be equal to the number of categories produces

the best clusters (consistent with the images’ class labels).

We fix the neighborhood parameter at R = 64, following [22], which

means that each descriptor covers about 1
4
th to 1

5
th of the image in width and

height. The vocabulary size n as well as the final dimensionality d (corre-

sponding to the eigenvectors with the d largest eigenvalues after PCA) of the

spatial descriptors are varied depending on the number of input images in an

attempt to get good coverage. For a dataset that has many object categories

(each having distinct appearances and shape), we expect to need a larger vo-

cabulary to capture the variability of the data. On the other hand, too many

visual words could also produce very distinct descriptions of neighborhoods in

which there are few good matches. The final dimensionality of the descriptor

determines how much of the original information of the neighborhood region

is retained, so having more dimensions will produce more specific descriptors.

However, if the dimensionality is too high, then we will not get good match-

ing with the descriptors due to the “curse of dimensionality”—in very high

dimensions, most of the feature space consists of the corners of the hypercube.

Therefore, n and d are chosen with the above taken into consideration. The

specific numbers will be stated in the appropriate sections below.
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To construct the pyramid tree for the modified PMK algorithm, which

is used to approximate the EMD, we randomly sample features from the data

to represent the feature space, and partition the feature space with hierarchi-

cal k-means clustering (with Euclidean distance). The number of levels, L,

and branches, B, of the tree are user-defined parameters—we typically use 10

branches with four or five levels.

4.2 Analyzing the Effects of Mutual

Foreground/Clustering Reinforcement

While some classes in the Caltech-101 are fairly clutter-free, we pur-

posely select categories with the highest clutter in order to demonstrate our

method’s impact. To do this, we first built supervised classifiers on all 101

categories: one trained with all image features, and one trained using only

foreground features. Then we ranked the classes for which segmentation most

helped the supervised classifier, since these directed us to the classes with

the most variable and confusing backgrounds. In this way, we formed a four-

class (Faces, Dalmatians, Hedgehogs, and Okapi) and 10-class (previous four

plus Leopards, Car Side, Cougar Face, Guitar, Sunflower, and Wheelchair)

set. Figure 4.1 shows example images of the two sets. For each class, we

use the first 50 images. We set n and d to 200 and 100, respectively, for the

four-class set, and 400 and 130, respectively, for the 10-class set. The numbers

are chosen arbitrarily (they are not exhaustively tuned), with the intent that

they provide good coverage of the datasets. For this experiment, we discard

28



any contrast-free regions.

If our algorithm correctly identifies the important features, we expect

those features to lie on the foreground objects, since that is what primarily

re-occurs in these datasets. To evaluate this, we compare the feature weights

computed by our method with the ground truth list of foreground features. We

quantify accuracy by the percentage of total feature weight in an image that

our method attributes to true foreground (fg) features. To make values com-

parable across images and classes, we compute fg

fg+bg
, where fg and bg denote

the sums of all foreground (background) weights normalized by the number

of all foreground (background) features, respectively. If all weights were on

foreground, the score would be 1, while if all weights were on background, the

score would be 0.

Figure 4.2(a) evaluates our method’s unsupervised foreground selection

for the two datasets across iterations. All features start with uniform weights,

which yields a base score of 0.5. Then each image’s weights continually shift to

the foreground, with significant gains for most classes as the clusters continue

to be refined. In the 10-class set, the Hedgehog class improves more slowly.

Upon examination, we found that this was due to many hedgehog images

dispersed across the initial clusters, resulting in more gradual convergence and

cluster swaps.

As our method weights foreground features more highly, we also expect

a positive effect on cluster quality. Since we know the true labels of each image,

we can use the F-measure to measure cluster homogeneity. The F-measure
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Figure 4.1: Examples of images belonging to the four-class and 10-class sets
of the Caltech-101 dataset. The first four rows belong to the four-class set.
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Figure 4.2: Evaluation of feature selection and category discovery on the Cal-
tech dataset. (a) The average foreground scores over iterations for all images
from the 4-class (top) and 10-class (bottom) sets from the Caltech-101. (b)
The cluster quality for those sets. The black dotted lines indicate the best
possible quality that could be obtained if the ground truth segmentation were
known (see text).
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measures the degree to which each cluster contains only and all objects of a

particular class: F =
∑

i
ni

n
maxj F ′(i, j), where F ′(i, j) = 2×R(i,j)×P(i,j)

R(i,j)+P(i,j)
, and

P and R denote precision and recall, respectively, and i indexes the classes

and j indexes the clusters. High values indicate better quality. Figure 4.2(b)

shows the impact of foreground detection on cluster quality. To provide an

upper bound on what quality level would result if we were to have perfect

foreground segmentation, we also evaluate clusters obtained using only the

foreground features (black dotted lines). Note that without any supervision

or foreground/backgrouind annotation, our approach clusters almost as well

as the ideal upper bound. Also, as we iterate, the better foreground weights

incrementally improve the clusters, until quality levels out.

Figure 4.3 illustrates example results in which our method finds good

support on the foreground. Note that we show the central base features to

our semi-local descriptors. These examples have the highest foreground scores

in each category and are always associated with the correct cluster, e.g., the

guitar image belonging to a cluster almost entirely comprised of guitars. Fig-

ure 4.4 illustrates example results where our method weights foreground fea-

tures highly, but also mistakenly finds good support for some background.

Again, we show the base features to our semi-local descriptors. These exam-

ples have the lowest foreground scores in each category and are almost always

associated with the incorrect cluster, e.g., the guitar image belonging to a

cluster almost entirely comprised of leopards. These results confirm what is

expected, since the majority-class images in a cluster will have the highest
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Figure 4.3: Examples showing the highest weighted features per image. In
these examples, our method attributes weight almost only to foreground fea-
tures. Note that we show the base features to our semi-local descriptors.

Figure 4.4: Examples our method does most poorly on: it weights foreground
features highly, but also (mistakenly) finds good support for some background.
Note that we show the base features to our semi-local descriptors.
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weighted features on the foreground, while the outlier images will have the

highest weighted features on regions other than (or possibly in addition to)

the foreground.

Note that our algorithm finds meaningful features—by definition, re-

occurring visual patterns in the cluster images. Therefore, this does not imply

that all foreground features are meaningful. Only those that re-occur across

images in a cluster are meaningful. Furthermore, even some background fea-

tures may be meaningful, e.g., features that capture parts of the street in car

images, since cars are commonly found on the street. (If this were a super-

vised feature selection task, it may even be favorable to include background

features if we knew that those features were part of regions that were visually

re-occurring patterns across the foreground images.) Our assumption for this

experiment is that the backgrounds are uncorrelated, and therefore the fore-

ground features are the only meaningful features. This property usually does

not hold in real images, but we can still expect to get better clusters with our

method as long as the re-occurring patterns are weighted highly.

Figure 4.5 shows an example of the refinement of clusters and weights

over iterations on the four-class set. The highest weighted features are shown

in yellow, and are features that have weight greater than 1.75—a high value

given the distribution of weights in the data. The first row of clusters shown

for each iteration are those that are comprised mainly of the Dalmatian im-

ages. We focus our illustration on the Dalmatian cluster images. In the first

iteration, after pairwise image matching and clustering has been performed,
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Iteration 1 Iteration 2 Iteration 3

[0 36 12 13] [0 46 9 11] [0 45 9 5][0 36 12 13] [0 46 9 11] [0 45 9 5]

[0 14 6 26] [0 4 7 28] [0 5 7 34]

[50 0 0 0] [50 0 0 0] [50 0 0 0]

[0 0 32 0] [0 0 34 0] [0 0 34 0]

Figure 4.5: Example cluster and weight refinement on the 4-class set. The
highest weighted features are shown in yellow. The actual number of images
in a cluster for [faces, dalmatians, hedgehog, okapi] is shown below. Images
displayed are sampled proportionally to the actual number of images per class
in each cluster. Note that as the cluster quality improves, our method weights
features on the foreground more highly.
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about 60% of the cluster images belong to the Dalmatian class, as a result of

their common foreground support leading to good matches. The rest belong

to the Okapi and Hedgehog classes, due in part to some of their features (both

from foreground and background) having good support with other intra-cluster

images (including Dalmatian images). Note that high matches for these “out-

lier” images are still possible, but it is likely that each matching draws from

different combinations of features. Similar results are found in each of the

other three clusters, comprised mainly of Face, Okapi, and Hedgehog images,

respectively.

The ensuing feature weight updates lead to the highly weighted fore-

ground features for the Dalmatian images. The outlier images will have

weights distributed fairly evenly across foreground and background features—

the highly matching features for an outlier image are inconsistent over pairwise

matches to intra-cluster matches. While some outlier images may still have

consistent foreground support among each other, e.g., the three Okapi images,

the final updated weights will not reflect those agreements since the median

values are taken among all intra-cluster matching features’ weights.

The combination of highly weighted foreground features on the Dal-

matian images, and (approximately) evenly distributed weights on the outlier

images produces a better quality cluster in the following iteration; at iteration

2, about 70% of the cluster are comprised of Dalmatian images. Finally, at it-

eration 3, 77% of the cluster images belong to the Dalmatian class. In general,

it is hard to expect perfect clusters to be formed based on class labels. The
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semi-local features capturing the appearance in semi-local neighborhoods of

an Okapi image could happen to appear more similar to that of a Dalmatian

image than to that of other Okapi images. However, in most cases, consis-

tent visual patterns can be expected from images belonging to the same class,

and thus, with good foreground support in the first iteration, improvements

in cluster quality will result over iterations.

We also evaluate our method’s unsupervised foreground discovery and

category learning on the MSRC-v1 dataset. The dataset is comprised of 240

images belonging to 9 object classes, and has more clutter and variability in the

objects’ appearances than the Caltech-101 dataset. The object categories are

Horse, Sheep, Tree, Building, Airplane, Cow, Face, Car, Bicycle. The dataset

creators state that there are not enough training regions to learn reasonable

models of horses and sheep—we remove the first 30 images of the dataset which

correspond largely to these classes. Therefore, our revised dataset consists of

seven classes with 30 images each. Examples of images in this dataset are

shown in Figure 4.6. For this experiment, we set n to 400 and d to 130.

Figure 4.7(a) evaluates our method’s unsupervised foreground selection

for the dataset across iterations. Again, improvements in foreground discov-

ery over iterations is evident. Categories which have slower improvement, e.g.,

Tree, are those that are more likely to be confused with background, e.g.,

grass. We also evaluate overall cluster quality using the F-measure, which

is shown in Figure 4.7(b). The black dotted lines indicate the upper bound

on the quality level which is found by evaluating clusters obtained using only
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Figure 4.6: Examples of images belonging to the MSRC-v1 dataset.
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Figure 4.7: Evaluation of feature selection and category discovery on the
MSRC dataset. (a) The average foreground scores over iterations for all im-
ages from the seven classes of the MSRC dataset. (b) The cluster quality for
those sets. The black dotted lines indicate the best possible quality that could
be obtained if the ground truth segmentation were known (see text).

foreground features. As our method weights foreground features more highly,

we see improvement in cluster quality. However, the increase is not as sig-

nificant compared to that seen on the Caltech-101 dataset. This is because

the MSRC-v1 has a lot of correlated background—many objects are situated

on grass—and therefore the meaningful features found are often on the back-

ground. This resulted in some of the initial clusters being grouped based on

the background features and improvement on those clusters (in terms of class

labels) could not be made over iterations. (If we were to label the images

in which the background features were given the highest weight with “grass”

or “sky” (instead of cow, airplane, etc.), then we would see an improvement

in cluster quality since the background is the most consistently re-occurring

visual pattern in those images.) In [6], the authors suggest an approach that
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is robust to perceptual aliasing by modeling the correlation of features in the

dataset images. Similarly, standard ‘term frequency-inverse document fre-

quency’, tf-idf, down-weights features that are very common across images in

the database [36]. These methods could be used to remove the background

features if most of the images have similar backgrounds (even among differ-

ent object categories). However, without prior knowledge of the distribution

of foreground and background features in the images, we cannot prevent their

method from removing foreground features (along with background features) if

they are the most commonly re-occurring features in the images. To overcome

the problem of correlated image backgrounds, we could add semi-supervision

by removing the background features on some images to bias our algorithm to

capture the foregrounds, or adjusting the kernel matrix based on some paired

constraints to enforce grouping or separation of some images. We would like

to explore these areas in future work.

4.3 Comparison with Existing Unsupervised Methods

Next we empirically compare our approach against published results

from alternative unsupervised visual learning methods [9, 16, 23, 24].

The authors of [9] propose a clustering algorithm called affinity prop-

agation, where messages between data points are exchanged to find a good

partition. The method considers all data points as candidate exemplars and

iteratively finds the best set of exemplars that partitions the data. They

chose two subsets of the Caltech-101: a 20-class subset composed of: Faces,
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[9] FF-Dense FF-Sparse FF-SIFT

Purity (7-class) (%) 59.41 78.91 77.51 70.75
Purity (20-class) (%) 36.91 65.61 41.79 38.94

Table 4.1: Comparison with affinity propagation [9] for the seven-class and 20-
class subsets of the Caltech 101 dataset in terms of the purity cluster quality
measure. We test our method (abbreviated here as “FF” for Foreground Focus)
with three different features: 1) FF-Dense, in which our semi-local descriptor
uses densely sampled SIFT descriptors as base features, 2) FF-Sparse, in which
our semi-local descriptor uses the SIFT descriptors detected with DoG as base
features (the same features as in [9]), and 3) FF-SIFT, in which the DoG
SIFT features are used without our semi-local descriptor. Overall, our method
performs much better than affinity propagation.

Leopards, Motorbikes, Binocular, Brain, Camera, Car Side, Dollar Bill, Ferry,

Garfield, Hedgehog, Pagoda, Rhino, Snoopy, Stapler, Stop Sign, Water Lilly,

Windsor Chair, Wrench, Yin Yang, and a seven-class subset composed of:

Faces, Motorbikes, Dollar Bill, Garfield, Snoopy, Stop Sign, Windsor Chair.

Examples of images belonging to the two subsets are shown in Figure 4.8.

The first 100 images are taken from each class, and n and d are set to 200 and

100, respectively, for both subsets.

In Table 4.1 we compare our method with the same data, using the

“purity” cluster quality measure used in [9]. Purity measures the extent

to which a cluster contains images of a single dominant class, Purity =
∑

j

nj

n
maxi P(i, j), where i indexes the classes and j indexes the clusters, and

again P is precision. We first produce results using our algorithm with two base

feature types for our semi-local descriptor: 1) densely sampled SIFT descrip-
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Figure 4.8: Examples of images belonging to the seven-class and 20-class sub-
sets of the Caltech-101 dataset defined in [9]. The first seven rows (on the left)
belong to the seven-class subset.
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tors, and 2) SIFT descriptors detected using Lowe’s Difference of Gaussians

(DoG) scale space selection (the same setting as in [9]). A strength of the

affinity propagation method is that non-metric affinities are allowed, and so

the authors compare images with SIFT features and a voting-based match,

which is insensitive to clutter [25]. Still, the clusters found by our method

are significantly more accurate, indicating the strength of both our refinement

process and semi-local descriptor. Our method using dense base features per-

forms much better than when using sparse (DoG) base features. Since most

of the objects in the seven-class and 20-class subsets are of similar size, dense

sampling produces consistently sized regions described by our semi-local de-

scriptor throughout the images. More importantly, dense sampling provides

better coverage of the objects (foreground) than sparse sampling.

We also measure purity for the two subsets using only the DoG SIFT

features (without the semi-local descriptor). This is to observe the gain that

our semi-local descriptor provides over the local base descriptors. Results are

shown in Table 4.1, fourth column. The clusters found using only the DoG

SIFT features still produce higher accuracy than that obtained by [9], but

lower accuracy than when the semi-local descriptors are built on top of the

base features. On the seven-class set, the visual patterns captured in the first

iteration corresponded mostly to the foreground objects such that the clusters

were of high quality. This improved the foreground detection and cluster qual-

ity over iterations. However, on the 20-class set, the cluster quality after the

first iteration was not as good—the visual patterns found did not entirely cor-
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[16] FF-Dense FF-Sparse

Purity (%) 85.00 ± 4.72 88.82 ± 0.86 91.10 ± 1.10
Prediction Accuracy (%) 84.10 ± 5.07 87.13 ± 0.37 92.29 ± 1.07

Table 4.2: Comparison with [16] for unsupervised category learning and recog-
nition performance on novel images for the Caltech-4 dataset. Unsupervised
category learning is measured in terms of overall cluster purity, and recognition
on unseen images is measured in terms of the mean diagonal of the confusion
matrix. Results are mean values with standard deviations, averaged over 10
runs with randomly selected training/testing pools. We test our method (ab-
breviated here as “FF” for Foreground Focus) with two different features: 1)
FF-Dense, in which our semi-local descriptor uses densely sampled SIFT de-
scriptors as base features, and 2) FF-Sparse, in which our semi-local descriptor
uses the SIFT descriptors detected with the shape-adapted and maximally sta-
ble region detectors as base features. Our method performs better than [16]
for both base feature types. Note the robustness of our method shown by the
small standard deviations.

respond to the foreground. Because the features did not capture any spatial

and/or geometrical information, many were erroneously matched, i.e., fore-

ground feature to background feature. This produced weak clusters such that

less improvement could be made over iterations. These results show the value

of the proposed semi-local descriptor, since they confirm that capturing both

appearance as well as semi-local structure improves matching quality.

In Table 4.2 we compare against the method of [16], which also forms

groups with partial-match spectral clustering, but does not attempt to mutu-

ally improve foreground feature weights and clusters as our method does. We

use two feature types for base features to our semi-local descriptor: 1) densely

sampled 128-dimensional SIFT descriptors (denoted as FF-Dense), and 2) 72-
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Figure 4.9: Examples of images belonging to the Caltech-4 dataset.

dimensional SIFT features detected with shape-adapted and maximally stable

region detectors (denoted as FF-Sparse). Base feature type one will produce

many more semi-local descriptors on average per image, than base feature type

two. It also allows the semi-local descriptors to cover similarly sized regions

across images, which could be useful if the foreground object is consistent in

size across images. Base feature type two is more sparse—there is less coverage

of foreground, but also of background which could potentially eliminate spu-

rious matches—yet distinctive. We perform the same unsupervised category

learning and classification experiments as prescribed in [16].

In the object category learning experiment, four categories are learned

from the Caltech-4 database comprised of 1155 rear views of cars, 800 images of

airplanes, 435 images of frontal faces, and 798 images of motorbikes. Example
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images of this dataset are shown in Figure 4.9. We set n and d to 800 and 130,

respectively, to account for the large number of images. We achieve better

cluster purity with both feature types than [16] (where sparse 10-dimensional

Harris-affine SIFT features were used). Results are averaged over 10 runs with

randomly selected learning pools of 100 images per class.

In the classification experiment, we use the learned categories to pre-

dict labels for novel images. We train Support Vector Machines with the PMK

using the labels produced by the unsupervised category learning. We classify

the remaining images of the dataset (2788 images, ranging from 300 to 1000

per class), where recognition performance is computed as the mean diagonal

of the resulting confusion matrix, and average results over 10 runs with the

randomly selected pools of training images from the object category learning

experiment. Our method gives better prediction for novel examples than [16].

Our algorithm’s very small standard deviations in accuracy for both exper-

iments indicate that it is less sensitive to the composition of the unlabeled

data, and provides significantly more reliable groupings. This is mainly due to

the distinctiveness of our semi-local descriptors, which resulted in more robust

feature matches and higher quality clusters.

In these experiments, our method performed better using sparse base

features rather than dense base features for the semi-local descriptors. Most

of the error for either feature type occurred for the airplanes being confused

as cars or motorbikes. Upon further examination, we found that the confused

images had more background clutter than other Airplane images, and their
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(a) (b) (c)

Figure 4.10: (a) an airplane image. (b) With dense sampling, 720 features are
detected, of which 119 belong on the foreground object (16.53%). (c) With
sparse sampling using interest point detectors, 253 features are detected, of
which 125 belong on the foreground object (49.41%).

background features were similar to those found on the Motorbike and Car

images. We also noticed that the Airplane images on average had the least

number of foreground features among the four classes in the dataset, which

could have resulted in semi-local descriptions occupied by a lot of background

features (see Figure 4.10). Thus, it makes sense that the sparse base features

perform better, as the dense sampling detects many more background features.

In addition to the semi-local descriptor features, we also evaluate our

method using only the 72-dimensional SIFT features detected with shape-

adapted and maximally stable region detectors. In Table 4.3, we compare

our method using these features as base features to our semi-local descriptor,

and our method using only these features (without semi-local information).

The interest point detected SIFT features (Sparse) performs much worse than

the semi-local descriptors (Semi-Local-Sparse). This again shows the value of

our semi-local descriptors—that capturing both appearance and geometry in

a local neighborhood can produce more informative and descriptive features

that are less likely to spuriously match. The initial clusters produced from
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Semi-Local-Sparse Sparse

Purity (%) 91.10 ± 1.10 67.48 ± 3.50
Prediction Accuracy (%) 92.29 ± 1.07 71.35 ± 3.12

Table 4.3: Comparison between semi-local descriptors and SIFT descriptors
for unsupervised category learning and recognition performance on novel im-
ages for the Caltech-4 dataset. Unsupervised category learning is measured in
terms of overall cluster purity, and recognition on unseen images is measured
in terms of the mean diagonal of the confusion matrix. Results are mean val-
ues with standard deviations, averaged over 10 runs with randomly selected
training/testing pools. We test our method with two different features: 1)
Semi-Local-Sparse, in which our semi-local descriptor uses the SIFT descrip-
tors detected with the shape-adapted and maximally stable region detectors
as base features, and 2) Sparse, in which the same shape-adapted and max-
imally stable region detected SIFT features are used without our semi-local
descriptor. Our method performs better with semi-local descriptors.

the sparse features had low overall cluster purity, and not much improvement

could be made over iterations.

Finally, Figure 4.11 compares the accuracy of our method’s foreground

discovery to that of several latent topic models for the Caltech motorbike

class, as reported in [24]. Foreground features are determined by ground-truth

bounding box segmentations. In [24], two probabilistic Latent Semantic Anal-

ysis (pLSA) topic models are learned from a combined dataset of the Caltech

motorbike class (826 images) and the Caltech background class (900 images).

Similarly, we learn two object categories (clusters). The foreground detection

rate is computed by varying the threshold among the top 20% most confident

features as prescribed in [24]. Interest points are detected using the Hessian-
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Figure 4.11: Comparison with several latent topic models for foreground dis-
covery for the Caltech motorbike class. For each method, the foreground
detection rate is computed by varying the threshold among the top 20% most
confident features in each image. We compare our method with a standard
pLSA model, pLSA with spatial information [23], and a correspondence-based
pLSA variant [24]. We test our method (abbreviated as FF for ”Foreground
Focus”) with two different features: 1) FF, with Hessian-affine SIFT features
(same feature setting as in [24]), without our semi-local descriptor, 2) FF semi-
local, in which our semi-local descriptor uses the Hessian-affine SIFT features
as base features.

affine detector [27], and described by SIFT descriptors. The descriptors are

projected down by PCA to 30 dimensions, and n is set to 500. These features

and parameters are consistent with those used in [24].

The pLSA model was developed in the statistical text literature, and

uses the “bag-of-words” model in which each document is represented as an

orderless bag of words. It discovers topics by examining the co-occurring words

across documents in the dataset. In the computer vision domain, an image is

treated as a “document”, its features are treated as “visual words”, and object
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categories are the “topics” to be discovered. While the idea of discovering

categories in an unsupervised fashion is similar to our approach, the pLSA

model requires that the features in the data be quantized to form a visual

vocabulary. Our method does not require this step (although descriptors that

require a vocabulary can certainly be used; e.g., our semi-local descriptor).

The main difference between the pLSA models and our method is that for our

method, visual patterns discovered in each image are determined solely by the

intra-cluster image matchings. In contrast, for the pLSA model, the topics

discovered in an image are determined by all the images in the dataset. The

impact of this difference is shown below.

We compare our method with a standard pLSA model, pLSA with spa-

tial information [23] that hypothesizes the location and scale of the object, and

a correspondence-based pLSA variant [24] that considers the configuration of

patches belonging to the object. The pLSA models compute foreground con-

fidence based on the probability of the topic given the patch. We test our

method with two feature types: 1) Hessian-affine SIFT, as described above,

and 2) semi-local descriptors with Hessian-affine SIFT as base features. We

set d to 130 for both feature types. Our approach outperforms the others for

most points on the detection curve, providing much better precision for low

false positive rates. Using the semi-local descriptors performs overall slightly

better than using the local descriptors, showing that performance gain can

be achieved when semi-local appearance and geometric information are aggre-

gated.
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We believe that the pLSA models do not perform as well as our method

because two topic models are learned for each image on the entire dataset. This

means that each image where the true class label is Motorbike will still have

a probability (albeit very small) of belonging to the background topic. The

probability that a word (feature) belongs to the object, e.g., motorbike, de-

pends both on whether the word occurs repeatedly on the object throughout

the dataset, and on the probability of the image belonging to the Motorbike

topic model. If an image has a high probability of belonging to the back-

ground topic, the words associated with the background topic will have a low

probability of belonging to the Motorbike topic—possibly incorrectly so. As

the confidence of the background topic increases for an image, the probability

that foreground features (those on the motorbike) will be incorrectly associ-

ated with the background model also increases (and thus their confidences of

belonging to foreground decreases). Since many of the Motorbike images have

backgrounds that are similar to regions in images belonging to the Background

class, the likelihood of this occurring is quite high.

While our method may also mistakenly give high weights to background

features, the chances are lower as long as the clustering at each iteration par-

titions the data well. To see why, remember that our method updates the

weights after clustering—after the dataset is partitioned into two groups, i.e.

the “Motorbike” cluster and the “Background” cluster. Feature weight up-

dates will then be made dependent only on intra-cluster images, with features

belonging to similar visual patterns being weighted higher. Thus, for the Mo-
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torbike images belonging to the “Motorbike” cluster, the highest weighted

features will belong to the foreground.

4.4 Evaluation of our Semi-Local Proximity Distribu-
tion Descriptor

In previous sections, we have analyzed the classification and foreground

discovery of our unsupervised Foreground Focus method on various datasets.

In this section, we analyze the performance of our semi-local descriptor by

making a direct comparison to the neighborhood-based image descriptor of

Quack et al. [30] and to a local alternative, a simple bag-of-words descrip-

tion. The goal of these experiments is to determine how well our semi-local

descriptor discovers the same visual patterns (foreground objects) in novel im-

ages that occur in the training images. We tie this in with a modified version

of our Foreground Focus method for determining the feature weights. The

difference with our original method is that, unlike previous experiments, the

following are supervised tasks and hence no clustering is involved.

We perform the same experiment as in [30], where a bounding box hit

rate (BBHR) is measured over the positive test sets. A bounding box hit

(BBH) is counted if more than h of the selected features lie on the object

(i.e., inside the bounding box) and the BBHR is the total BBH normalized by

the total number of object instances in the positive test set. The BBHs are

measured by using the ground truth bounding box annotations. The BBHR is

measured with respect to the False Positive Rate (FPR) which is the number
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of selected features lying outside of the bounding box divided by the number

of selected features, averaged over the entire test set. The selected features

are determined by varying the selection threshold over the feature confidences.

The idea behind the BBHR is that there should be at least a certain number

of features selected for later processes (such as an object recognition system)

to operate effectively. Therefore, the metric (i.e., BBHR vs FPR) compares

the tradeoff of the number of selected foreground features at the expense of

false positives (background features that are mistakenly thought to be on the

foreground).

The experiment is conducted on three object categories: Bikes, Motor-

bikes, and Cars Rear. We use the same images from the publicly available

datasets and set h to five, as in [30]. We use densely sampled SIFT base fea-

tures for our semi-local descriptor, and set n to 200 and d to 130. The positive

training images use only regions of the image that correspond to the object

(inside the bounding box), except for the Motorbikes where full images are

used since no ground truth annotation is available.

More detail on the datasets corresponding to the object categories are

as follows:

Bikes. This dataset has 250 positive training, 250 negative training, and 125

testing images of bikes taken from the GRAZ-01 (100 positive training, 100

negative training, and 50 testing) and GRAZ-02 (150 positive training, 150

negative training, and 75 testing) datasets [29], respectively.

Motorbikes. This dataset has 826 positive training images taken from the
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Figure 4.12: Examples of positive training and testing images belonging to the
Bikes, Motorbikes, and Cars Rear datasets.

Caltech-4 Motorbikes database and 200 images randomly taken from the Caltech-

256 [4] background class. There are 115 testing images taken from the TUD

Motorbikes [1] dataset.

Cars Rear. This dataset has 126 positive training images and 526 testing

images of rear-views of cars from the Caltech-4 dataset. The negative training

images are 1155 images of street scenes without cars.

Examples of positive training and testing images in these datasets are

shown in Figure 4.12.

We compare our method with [30], in which a tiled region is centered on
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each interest point to bin nearby visual words. The scale of the neighborhood

is determined by the size of the region of interest (detected feature). The

confidence of a feature in a test image is measured by counting how often it is

part of a neighborhood that matches to mined configurations of the training

images. The more matched configurations the feature is part of, the higher

its confidence. We also compare our method with the baseline bag-of-words

scheme (as defined in [30]), where each visual word is given a weight based on

how often it appears in the training images of the given category. Then, each

feature in a test image is given a confidence that corresponds to the weight of

its matching visual word.

In order to make a fair comparison to [30], we modify our unsupervised

Foreground Focus method to work with labeled data, and devise a method to

set weights on our features discriminatively. Because we are only working with

a single dataset at a time, no clustering is involved (and hence no iterations).

We compute the weights on our descriptors in the test images as follows.

First, each test image is matched to all images in the positive training

set. The feature weights for a test image are computed in exactly the same

way as in our original Foreground Focus method; we take the median over the

weights (which take into account both the mass of the matching features as

well as their distances) obtained from the pair-wise matches between the test

image and all positive training images. We only select features that have weight

greater than one—essentially, we are only keeping the features that our method

determines to be on the foreground. The remaining feature weights are set to
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zero. Then, the process is repeated, but with the test images matched to the

negative training images. Again, we select features that have weight greater

than one, which are those that our method determines to be on the background

(since this time the test images are matched to the negative training examples).

Finally, among the features that our method had determined to be on the

foreground, we discard the features that are also determined to be on the

background.

We are left with a set of features that have high confidence of belonging

to the foreground, while at the same time have low confidence of belonging

to the background. This procedure is analogous to the way the confidences

for the features of [30] are determined, where both the positive and negative

training examples are used to find the most distinctive and frequent foreground

features that are unlikely to be part of the background. Results on the three

datasets are shown in Figure 4.13. The results of [30] are shown as curves

with square markings, the baseline bag-of-words scheme results are shown as

curves with diamond markings, and our method’s results are shown as curves

with triangles.

Our semi-local descriptor significantly outperforms the baseline bag-of-

words scheme on all datasets, which confirms that adding geometric and spatial

layout information to local appearance descriptors results in better foreground

discovery. When comparing to [30], our method performs better on the Cars

Rear dataset, comparably on the Motorbikes dataset, and worse on the Bikes

dataset. We achieve the best results on the Cars Rear dataset, because the
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Figure 4.13: Bounding box hit rates vs. mean false positive rates for Bikes,
Motorbikes, and Cars Rear. Lower curves are better. Overall, our method
significantly outperforms the baseline bag-of-words scheme and performs com-
parably to [30].

negative training images specifically match the backgrounds of the positive

training images. Hence, any background feature that may (incorrectly) have

high weight of belonging to the foreground (when matching to the positive

training images) would have high weight of belonging also to the background

(when matching to the negative training images) and would be discarded by

our modified Foreground Focus method. This method only considers those

features that have high weight of belonging to the foreground and low weight

of belonging to the background.

The negative training images help less on the Motorbikes and Bikes
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datasets, because they are not specifically chosen to be similar in appearance

to the backgrounds that appear in the positive training images. These datasets

also have severe clutter in many images, and large object scale and appearance

variations. Still, our semi-local descriptor performs well, as can be seen by the

low mean FPR even as the BBHR increases.

The main difference between our method and [30] is that we do not

explicitly train our descriptors to find the most discriminative features. In

contrast, the discriminative features in [30] are found by mining the most

frequently occurring features in the training images, and then matching the

features in the test images to those training images’ features. Their method

is much more selective, as can be seen by the lower maximum BBHR that is

obtained on all datasets compared with our method. While a more discrimina-

tive approach may reduce false positives, it can also hurt performance for the

ensuing object recognition system if there are too few features to work with

(even if all of them lie on the foreground). Our semi-local descriptor is able to

find many foreground features and still achieve low FPR even at high BBHRs.

Hence, our method can be considered to be better than “comparable” to [30]

on the Motorbikes dataset.

In terms of the differences in neighborhood-descriptions, we use ranked

nearest neighbor (in image space) feature descriptions while [30] uses a tiled

grid. The tiled neighborhood description does not count the number of occur-

rences of the same visual word that falls in a tile—it is a set description rather

than a bag description. This means that the same descriptions are produced
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for a tile that has many occurrences of the same visual word and a tile that has

just a single occurrence of that same visual word. In contrast, our descriptor

counts multiple occurrences of the same visual word, regardless of the regions

in which they actually fall with respect to the base feature. Therefore, our

method can be more specific.

The features extracted from street scenes (the negative training im-

ages of the Cars Rear dataset) often have very similar appearances. (Let’s

assume that those features are of the same visual word.) Suppose we have a

neighborhood description of a Cars Rear test image, in which the wheel occu-

pies a small region and the rest is occupied by the background (street scene).

Our descriptor would have in its neighborhood description, a few foreground

features and many background features, while the neighborhood description

of [30] might have a similar number of foreground and background features

(since the same background word is considered only once in each tile). In this

case, our descriptor would be less likely to match with another descriptor that

describes only the foreground region (e.g., the wheel and bumper), whereas

the tiled region of [30] would have a higher chance of a good match. This could

lead to more background features being mistaken as foreground features since

the impact of the background features in the neighborhood description is less

compared to our descriptor.

In terms of orientation, however, our descriptor has a coarser descrip-

tion of where each neighboring feature lies (we only determine the spatial order

and in which quadrant the feature lies with respect to the base feature), while
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the tiled neighborhood description of [30] is more rigid since it depends on the

actual tile in which a feature falls. Therefore, our descriptor can be more flex-

ible, which can be more robust to deformable objects, e.g., people or animals,

or when there are in-plane and/or out-of-plane rotations of the object.

Finally, our descriptor encodes all R neighbors of a base feature’s neigh-

borhood in its description, while [30] selects the most discriminative features

in each tiled neighborhood. While our descriptor can be considered to be

more specific (since all nearest neighboring features in a base feature’s neigh-

borhood are considered), it can also lead to more clutter features being part

of the description (for base features that fall near the edge of the object).

This can potentially hurt our descriptor and may have been the reason for its

worse performance than [30] on the Bikes dataset. In this dataset, there are

many bike images that occupy small and narrow regions of the image. A lot

of background clutter may have been considered for each base feature in these

regions, which could have led to incorrect high matches between descriptors

of the foreground and background regions, and incorrect low matches between

descriptors of the foreground and foreground regions. When the objects do

not occupy a small region of the image, however, there are many more base

features that do not fall on the edges of the objects. In these situations, our

descriptors can be very discriminative (and almost clutter free) and can lead to

very precise foreground matching. This is confirmed by the good performance

of our descriptor on the Cars Rear dataset.

Figure 4.14 illustrates example results in which our method finds good
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Figure 4.14: Examples showing the highest weighted features per image found
by our modified (supervised) Foreground Focus method. In these examples,
our method attributes weight almost only to foreground features. Note that
shown here are the base features to our semi-local descriptors.

Figure 4.15: Examples our modified (supervised) Foreground Focus method
does most poorly on: it weights foreground features highly, but also (mistak-
enly) finds good support for some background. Note that shown here are the
base features to our semi-local descriptors.
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support on the foreground. Figure 4.15 illustrates example results where our

method weights foreground features highly, but also mistakenly finds good

support for some background. In these examples, we show the highest (top

10%) weighted base features to our semi-local descriptors. Images in which our

method does not perform well on are those that have high clutter, or large scale

and appearance variations. Nonetheless, the high maximum BBHRs achieved

by our method indicates that our method finds good foreground support on

most images, at relatively low cost of the FPRs.

4.5 Summary of Results

We have analyzed the mutual reinforcement of foreground and clusters,

and have made comparisons against existing unsupervised methods on images

from the Caltech-101 and Microsoft Research Cambridge v1 datasets. Our

results show that foreground discovery can lead to better cluster quality, and

vice versa. We have also made comparisons with different types of base fea-

tures to our semi-local descriptors—specifically, we have compared the densely

sampled SIFT features to the interest point detected SIFT features—and have

shown that the performance of the sampling type is dependent on the specific

distribution of the features and images of the dataset. We have shown good

performance compared to the latent topic models for foreground segmenta-

tion tasks on the Caltech-4 Motorbikes dataset. Finally, we have evaluated

our semi-local descriptor on the Bikes, Motorbikes, and Cars Rear datasets,

by comparing with the frequent configurations descriptor of [30] and a local
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bag-of-words scheme, and have shown good results.

The strengths of our Foreground Focus method are that it can discover

re-occurring patterns in images and use the discovered patterns to group im-

ages which have similar object appearances and vice versa, without human

intervention. Because our algorithm reinforces the discovered patterns and

groups over iterations, it is able to rectify most of the initially misplaced im-

ages in ensuing stages. One of the potential weaknesses of our method is that

because there is no human guidance on which patterns to discover, less “mean-

ingful” features may be discovered such as those of the background (e.g., sky

or grass). This is one of the main difficulties of unsupervised learning—that

there is no specific guidance on what to learn. Unless there is some kind of

prior evidence of what comprises of being meaningful, the unsupervised learner

may or may not discover what is perceived to be meaningful by the human

user. In our case, we could add semi-supervision by adding some ground-truth

annotated images (per category) to guide the algorithm to focus on specific

foreground features. We would like to explore this in future work.
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Chapter 5

Conclusion

We have introduced a novel unsupervised method for discovering fore-

ground features in images. Clusters are determined by matching weighted

feature sets, and weights are iteratively adjusted based on contributions to

intra-cluster image matches. We show that this mutual reinforcement improves

both cluster quality and foreground detection, with datasets containing four

to twenty categories.

In future work, we will investigate how our algorithm could accept

incremental updates to the unlabeled pool. Feature weights and image clusters

will be updated incrementally, specific to each added instance. This approach

is appealing because it does not attempt to fix clusters, but rather let the

discovered visual patterns adjust to the new data. We would also like to

extend our method to multiple-label cluster assignments. A soft assignment

to clusters could be made to allow multiple patterns in a single image influence

the feature weight updates and resulting clusters.

We plan to consider sparser affinity matrices to improve the spectral

clustering’s computational complexity for dealing with very large datasets. Fi-

nally, while we have focused on category discovery here, it would be interesting
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to see how our unsupervised feature selection could be used to automatically

construct summaries of unstructured image collections.
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