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Photo and video overload is well-known to most computer users. With cameras on

mobile devices, it is all too easy to snap images and videos spontaneously, yet it remains

much less easy to organize or search through that content later. With increasingly portable

wearable and 360◦ computing platforms, the overload problem is only intensifying. Wear-

able and 360◦ cameras passively record everything they observe, unlike traditional cameras

that require active human attention to capture images or videos.

In my thesis, I explore the idea of automatically composing photos and videos from

unedited videos captured by “passive” cameras. Passive cameras (e.g., wearable cameras,

360◦ cameras) offer a more relaxing experience to record our visual world but they do

not always capture frames that look like intentional human-taken photos. In wearable

cameras, many frames will be blurry, contain poorly composed shots, and/or simply have

uninteresting content. In 360◦ cameras, a single omni-directional image captures the entire

visual world, and the photographer’s intention and attention in that moment are unknown.
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To this end, I consider the following problems in the context of passive cameras: 1) what

visual data to capture and store, 2) how to identify foreground objects, and 3) how to

enhance the viewing experience.

First, I explore the problem of finding the best moments in unedited videos. Not

everything observed in a wearable camera’s video stream is worthy of being captured and

stored. People can easily distinguish well-composed moments from accidental shots from

a wearable camera. This prompts the question: can a vision system predict the best mo-

ments in unedited video? I first study how to find the best moments in terms of short video

clips. My key insight is that video segments from shorter user-generated videos are more

likely to be highlights than those from longer videos, since users tend to be more selective

about the content when capturing shorter videos. Leveraging this insight, I introduce a

novel ranking framework to learn video highlight detection from unlabeled videos. Next, I

show how to predict “snap points” in unedited video—that is, those frames that look like

intentionally taken photos. I propose a framework to detect snap points that requires no

human annotations. The main idea is to construct a generative model of what human-taken

photos look like by sampling images posted on the Web. Snapshots that people upload to

share publicly online may vary vastly in their content, yet all share the key facet that they

were intentional snap point moments. This makes them an ideal source of positive exem-

plars for our target learning problem. In both settings, despite learning without any explicit

labels, my proposed models outperform discriminative baselines trained with labeled data.

Next, I introduce a novel approach to automatically segment foreground objects in

images and videos. Identifying key objects is an important intermediate step for automatic

photo composition. It is also a prerequisite in graphics applications like image retargeting,
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production video editing, and rotoscoping. Given an image or video frame, the goal is

to determine the likelihood that each pixel is part of a foreground object. I formulate the

task as a structured prediction problem of assigning an object/background label to each

pixel (pixel objectness), and I propose an end-to-end trainable model that draws on the

respective strengths of generic object appearance and motion in a unified framework. Since

large-scale video datasets with pixel level segmentations are problematic, I show how to

bootstrap weakly annotated videos together with existing image recognition datasets for

training. In addition, I demonstrate how the proposed approach benefits image retrieval

and image retargeting. Through experiments on multiple challenging image and video

segmentation benchmarks, our method offers consistently strong results and improves the

state-of-the-art results for fully automatic segmentation of foreground objects.

Building on the proposed foreground segmentation method, I finally explore how

to predict viewing angles to enhance photo composition after identifying those foreground

objects. Specifically, I introduce snap angle prediction for 360◦ panoramas, which are a

rich medium, yet notoriously difficult to visualize in the 2D image plane. I explore how

intelligent rotations of a spherical image may enable content-aware projection with fewer

perceptible distortions. Whereas existing approaches assume the viewpoint is fixed, in-

tuitively some viewing angles within the sphere preserve high-level objects better than

others. To discover the relationship between these optimal snap angles and the spher-

ical panorama’s content, I develop a reinforcement learning approach for the cubemap

projection model. Implemented as a deep recurrent neural network, our method selects a

sequence of rotation actions and receives reward for avoiding cube boundaries that overlap

with important foreground objects. Our proposed method offers a 5x speedup compared
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to exhaustive search.

Throughout, I validate the strength of the proposed frameworks on multiple chal-

lenging datasets against a variety of previously established state-of-the-art methods and

other pertinent baselines. Our experiments demonstrate the following: 1) our method

can automatically identify the best moments from unedited videos; 2) our segmentation

method substantially improves the state-of-the-art on foreground segmentation in images

and videos and also benefits automatic photo composition; 3) our viewing angle prediction

for 360◦ imagery can enhance the viewing experience. Although my thesis mainly focuses

on passive cameras, a portion of the proposed methods are also applicable to general user

generated images and videos.
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Chapter 1

Introduction

Photo overload is well-known to most computer users. With cameras on mobile

devices, it is all too easy to snap images and videos spontaneously, yet it remains much

less easy to organize or search through that content later. This is already the case when

the user actively decides which images are worth taking. What happens when that user’s

camera is always on, worn at eye-level, has the ability to capture the entire visual world

from its optical center, and has the potential to capture everything he sees throughout the

day? With increasingly portable wearable (like Google Glass, Looxcie, etc.) and 360◦

computing platforms, the photo overload problem is only intensifying. Wearable and 360◦

cameras passively record everything they observe, unlike traditional cameras that require

active human attention to capture images or videos.

For both wearable videos and 360◦ content, not everything captured by cameras or

observed in a video stream is worthy of being captured and stored. In the case of wearable

cameras, even though the camera follows the wearer’s activity and approximate gaze, rela-

tively few moments actually result in snapshots the user would have intentionally decided

to take, were he actively manipulating the camera. Many frames will be blurry, contain

poorly composed shots, and/or simply have uninteresting content. In 360◦ cameras, a

single omni-directional image captures the entire visual world, and the photographers in-
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tention and attention in that moment are unknown. It is impractical for people to manually

filter out irrelevant or badly-composed photos by re-watching the photo collections and the

video streams. With “always-on” cameras and 360◦ content, it is also impractical to only

rely on people to process days of videos. While the problem is particularly pronounced

for passive cameras, it also affects typical unedited user-collected videos (e.g., videos cap-

tured with mobile phones), where good content is often mixed in with less interesting

parts.

Although passive cameras offer a convenient way to record our daily activities, the

quality of the captured photos or video clips is far from professional quality. For profes-

sional photographers, capturing and carefully selecting well-composed photos is only the

beginning: they can also easily spend hours of hard work enhancing just one photograph.

The amount of effort spent on enhancing photos is an important factor that distinguishes

professional from amateur work. The enhancement operations include correcting expo-

sure and contrast, applying filters, and altering important objects. Enhancement operations

applied to foreground objects often differ from those applied to background. Therefore au-

tomatic and accurate separations between foreground objects and background can signif-

icantly improve the efficiency of photo enhancement. Object segmentation is already im-

plemented in popular photo editing software like Photoshop. However, that function relies

on low level image properties (e.g., color contrast) and therefore cannot always segment

objects accurately, especially for objects that have low contrast against the background.

There is clear need to develop more robust methods that can separate the foreground ob-

jects from the background to assist artists and photographers.

In my thesis, I explore the idea of automatically composing photos and videos

2



from large collections of unedited images and videos captured by “passive” cameras. Pas-

sive cameras (e.g., wearable cameras, 360◦ cameras) offer a more relaxing experience to

record our visual world but they do not always capture frames that look like intentional

human-taken photos. I propose data-driven methods that can automatically compose better

photographs and videos for both amateur and professional photographers. My goal is to

narrow the gap between the quality of visual data captured by “unintentional” photogra-

phers with passive cameras and by intentional human photographers. The automatic photo

composition problem that I explore in this thesis can be further divided into the following

three questions:

• What to capture and store? Photographers can easily use wearable cameras to

record their daily lives. It remains challenging to organize or search through a large

collection of visual data. A natural problem arising from this photo overload phe-

nomenon is to determine what is worthy of being captured and stored. My goal is

to design a framework that can automate the process of filtering out irrelevant or

badly-composed photos and videos. Not all captured moments are equally impor-

tant. I propose to study how to identify the best moments from unedited videos

captured with passive or traditional cameras. I first present how to find the best

moments in terms of short video clips from unedited user videos. Then I show

how to find keyframes in a video that look like they could have been intentionally

taken photos. The proposed framework can help photographers save effort in select-

ing well-composed photos or interesting video highlights. In both settings, despite

learning without any explicit labels, my proposed models outperform discriminative

baselines trained with labeled data.

3



• How to identify important objects? While the first question considers which mo-

ments in time constitute the best composed photos or clips, the second question

explores which regions in space are most central to a photo or video. In particular,

I next consider the foreground object segmentation problem for images and videos.

Foreground objects naturally deserve more attention than the background. Post-

processing for photos often treats foreground and background differently. Therefore

automatic and accurate separations between foreground objects and background can

significantly improve the efficiency of photo enhancement. Foreground segmenta-

tion is also a prerequisite in graphics applications like image retargeting, production

video editing, and rotoscoping. Given a image or video frame, the goal is to deter-

mine the likelihood that each pixel is part of a foreground object. I formulate the

task as a structured prediction problem of assigning an object/background label to

each pixel, and I propose an end-to-end trainable model. Through experiments on

multiple challenging image and video segmentation benchmarks, my method offers

consistently strong results and improves the state-of-the-art results for fully auto-

matic segmentation of foreground objects.

• How to enhance the viewing experience? Building on the second component of

my thesis, the third major component of my thesis explores how can systems en-

hance the viewing experience by knowing the spatial extent of foreground objects.

In particular, I consider 360◦ panoramas. 360◦ panoramas are notoriously difficult

to visualize in the 2D image plane. I explore how intelligent rotations of a spherical

image, together with foreground detection, enables content-aware projection with

fewer perceptible distortions. I develop a reinforcement learning approach for the
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cubemap projection model and my proposed method offers a 5x speedup compared

to exhaustive search.

In the following sections, I will briefly introduce each of the four components to-

wards my thesis idea of automatically composing photos from unedited images and videos.

In Section 1.1 and 1.2, I address the problem of what visual data are highlights. Then I

present my work on identifying important objects in Section 1.3. Finally, building on how

to identify important objects, I present my work on enhancing the viewing experience for

360◦ panoramas in Section 1.4.

1.1 Learning Highlight Detection from Video Duration

As an attempt to mitigate the video overload problem, video highlight detection

has attracted increasing attention in the research community. The video overload problem

motivates the first component of my thesis: can a vision system detect video highlights

in unedited user videos. The goal in highlight detection is to retrieve the moments—in

the form of short video clips—that capture a user’s primary attention or interest within an

unedited video. See Figure 1.1.

A well-selected highlight can accelerate browsing many videos (since a user quickly

previews the most important content), enhance social video sharing (since friends become

encouraged to watch further), and facilitate video recommendation (since systems can

relate unedited videos in a more focused way). Highlight detectors are typically domain-

specific [179, 215, 213, 150, 142, 126], meaning they are tailored to a category of video

or keywords/tags like skiing, surfing, etc. This accounts for the fact that the definition of
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An unedited video

Video highlights

Figure 1.1: The goal in highlight detection is to retrieve the moments—in the form of short
video clips—that capture a user’s primary attention or interest within an unedited video.
Please see Chapter 3 for the proposed approach for highlight detection and experimental
results.

what constitutes a highlight often depends on the domain, e.g., a barking dog might be of

interest in a dog show video, but not in a surfing video.

In the first major component of my thesis, I introduce a novel framework for

domain-specific highlight detection. Our key insight is that user-generated videos, such

as those uploaded to Instagram or YouTube, carry a latent supervision signal relevant for

highlight detection: their duration. I hypothesize shorter user-uploaded videos tend to have

a key focal point as the user is more selective about the content, whereas longer ones may

not have every second be as crisp or engaging. More effort is required to film only the sig-

nificant moments, or else manually edit them out later. Hence duration is an informative,

though implicit, training signal about the value of the video content. I leverage duration

as a new form of “weak” supervision to train highlight detectors with unedited videos.
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Unlike existing supervised methods, our training data requirements are scalable, relying

only on tagged video samples from the Web. Unlike existing weakly supervised methods,

our approach can be trained discriminatively to isolate highlights from non-highlight time

segments.

Given a category (domain) name, I first query Instagram to mine public videos

which contain the given category name as hashtags. I use a total of 10M Instagram videos.

Since the hashtag Instagram videos are very noisy, and since even longer videos will con-

tain some highlights, I propose a novel ranking model that is robust to label noise in the

training data. In particular, our model introduces a latent variable to indicate whether each

training pair is valid or noisy. I model the latent variable with a neural network, and train it

jointly with the ranking function for highlight detection. On two public challenging bench-

mark datasets (TVSum [171] and YouTube Highlights [179]), I demonstrate our approach

improves the state of the art for domain-specific unsupervised highlight detection.

Chapter 3 gives more details on my proposed approach and results. This work

originally was published in CVPR 2019 [208].

1.2 Detecting Snap Points in Egocentric Video with a Web Photo Prior

The first component of my thesis addresses the problem of finding video highlights—

in the form of short video clips— from unedited user videos. The second component of

my thesis considers the following problem: can a vision system predict “snap points” in

unedited egocentric video—that is, those frames that look like intentionally taken pho-

tos? See Figure 1.2. While the goal in the first component is to find the best moments in

terms of short video clips, the second component aims to find the best moments in terms
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Detect “snap points” from unedited egocentric videos

Figure 1.2: My goal is to detect frames that look like intentionally taken photos from
egocentric videos. The frame with the highest bar in the sequence would rate highest as a
snap point. Please see Chapter 4 for the proposed approach for snap point detection and
experimental results.

of keyframes in egocentric videos. Both the first and the second components address the

problem of what visual data to capture and store.

Egocentric video contains a wide variety of scene types, activities, and actors. This

is certainly true for human camera wearers going about daily life activities, and it will be

increasingly true for mobile robots that freely explore novel environments. Accordingly,

a snap point detector needs to be largely domain invariant and generalize across varied

subject matter. An optimal snap point is likely to differ in subtle ways from its less-good

temporal neighbors, i.e., two frames may be similar in content but distinct in terms of

snap point quality. That means that cues beyond the standard texture/color favorites may

be necessary. Finally, and most importantly, while it would be convenient to think of the

problem in discriminative terms (e.g., training a snap point vs. non-snap point classifier),

it is burdensome to obtain adequate and unbiased labeled data. Namely, we’d need people

to manually mark frames that appear intentional, and to do so at a scale to accommodate

arbitrary environments.

In the second major component of my thesis, I introduce an approach to detect
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snap points from egocentric video that requires no human annotations. The main idea is to

construct a generative model of what human-taken photos look like by sampling images

posted on the Web. Snapshots that people upload to share publicly online may vary vastly

in their content, yet all share the key facet that they were intentional snap point moments.

This makes them an ideal source of positive exemplars for our target learning problem.

Furthermore, with such a Web photo prior, I sidestep the issue of gathering negatively-

labeled instances to train a discriminative model, which could be susceptible to bias and

difficult to scale. In addition to this prior, my approach incorporates domain adaptation to

account for the distribution mismatch between Web photos and egocentric video frames.

Finally, I develop features suited to capturing the framing effects in snap points.

I propose two applications of snap point prediction. For the first, I show how snap

points can improve object detection reliability for egocentric cameras. It is striking how

today’s object detectors fail when applied to arbitrary egocentric data. Unsurprisingly,

their accuracy drops because detectors trained with human-taken photos (e.g., the Flickr

images gathered for the PASCAL VOC benchmark) do not generalize well to the arbitrary

views seen by an ego-camera. I show how snap point prediction can improve the precision

of an off-the-shelf detector, essentially by predicting those frames where the detector is

most trustworthy. For the second application, I use snap points to select keyframes for

egocentric video summaries.

I apply my method to 17.5 hours of videos from both human-worn and robot-worn

egocentric cameras. I demonstrate the absolute accuracy of snap point prediction com-

pared to a number of viable baselines and existing metrics. Furthermore, I show its poten-

tial for object detection and keyframe selection applications. The results are a promising
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step towards filtering the imminent deluge of wearable camera video streams.

Chapter 4 gives more details on my proposed approach and results.This work orig-

inally was published in ECCV 2014 [204] and a book chapter in MCVMC 2015 [205].

1.3 Pixel Objectness: Learning to Segment Generic Objects in Im-
ages and Videos

While the first two components of my thesis address the question of finding the best

moments in time in terms of either short clips or keyframes from unedited user videos, the

third component of my thesis explores which regions in space are most central to a photo

or video. Finding the best moments in time can quickly filter out irrelevant video content

while finding the most central regions in space can accelerate post-processing of editing

photos or videos. Next, I consider the generic foreground object segmentation problem for

images and videos.

While my focus is on foreground extraction for the sake of automatic photo com-

position, generic object segmentation in images and videos is also a fundamental vision

problem with several applications. For example, a visual search system can use generic

object segmentation to focus on the important objects in the query image, ignoring back-

ground clutter. It is also a prerequisite in graphics applications like image retargeting,

production video editing, and rotoscoping. Knowing the spatial extent of objects can also

benefit downstream vision tasks like scene understanding, caption generation, and sum-

marization. In any such setting, it is crucial to segment “generic” objects in a category-

independent manner. That is, the system must be able to identify object boundaries for

objects it has never encountered during training. This differentiates the problem from tra-
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Generic object segmentation in images

Generic object segmentation in videos

Figure 1.3: Given a novel image (top row), my method predicts an objectness map for
each pixel (2nd row) and a single foreground segmentation (3rd row). Given a novel
video, my end-to-end trainable model simultaneously draws on the strengths of generic
object appearance and motion (4th row, color-coded optical flow images) to extract generic
objects (last row). Please see Chapter 5 for the proposed approach for pixel objectness and
experimental results.

ditional recognition or “semantic segmentation” [127, 24], where the system is trained

specifically for predefined categories, and is not equipped to segment any others.

In the third main component of my thesis, I introduce pixel objectness, a new ap-

proach to generic object segmentation in images and video. Given a novel image or video

frame, the goal is to determine the likelihood that each pixel is part of a foreground ob-

ject (as opposed to background or “stuff” classes like grass, sky, sidewalks, etc.) Our
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definition of a generic object follows that commonly used in the object proposal litera-

ture [4, 17, 6, 34, 224, 191]. Pixel objectness quantifies how likely a pixel belongs to

an object of any class, and should be high even for objects unseen during training. See

Fig. 1.3 (top). For the image case, pixel objectness can be seen as a pixel-level extension of

window-level objectness [4], and hence the name for my method is a nod to that influential

work.

I propose an end-to-end trainable model that draws on the respective strengths

of generic (non-category-specific) object appearance and motion in a unified framework.

Specifically, I develop a novel two-stream fully convolutional deep segmentation network

where individual streams encode generic appearance and motion cues derived from a video

frame and its corresponding optical flow. These individual cues are fused in the network to

produce a final object versus background pixel-level binary segmentation for each video

frame (or image). See Fig. 1.3 (bottom). The proposed network segments both static

and moving objects without any human involvement. A second key contribution of my

work is to explore how weaker annotations can be adopted to train the models. First, I

show that, somewhat surprisingly, when training the appearance stream of our model with

explicit boundary-level annotations for few categories pooled together into a single generic

“object-like” class, pixel objectness generalizes well to thousands of unseen objects. This

generalization ability is facilitated by an implicit image-level notion of objectness built

into a pretrained classification network, which I transfer to my segmentation model during

initialization. Second, to allow training with few densely labeled video examples, I show

how to leverage readily available image segmentation annotations together with weakly

annotated video data to train the motion stream of our model.
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Through extensive experiments, I show that my model generalizes very well to

unseen objects. For images, my method obtains state-of-the-art performance on the chal-

lenging ImageNet [30] and MIT Object Discovery [157] datasets. I also show how to

leverage our segmentations to benefit object-centric image retrieval and content-aware

image resizing. For video segmentation, my method advances the state-of-the-art for

fully automatic video object segmentation on multiple challenging datasets, DAVIS [145],

YouTube-Objects [151, 75, 183], and Segtrack-v2 [111]. My results show the reward of

learning from both signals in a unified framework: a true synergy, often with substantially

stronger results than what I can obtain from either one alone—even if they are treated with

an equally sophisticated deep network.

Chapter 5 gives more details on my proposed approach and results. This work

originally was published in CVPR 2017 [76] and TPAMI 2018 [207].

1.4 Snap Angle Prediction for 360◦ Panoramas

Above, I propose a method for foreground segmentation. By applying the proposed

method to 360◦ panoramas, I now overview how to predict snap angles to enhance photo

composition after identifying those foreground objects.

The recent emergence of inexpensive and lightweight 360◦ cameras enables excit-

ing new ways to capture our visual surroundings. Unlike traditional cameras that capture

only a limited field of view, 360◦ cameras capture the entire visual world from their opti-

cal center. Advances in virtual reality (VR) technology and promotion from social media

platforms like Youtube and Facebook are further boosting the relevance of 360◦ images

and videos.

13



However, viewing 360◦ content presents its own challenges. Currently three main

directions are pursued: manual navigation, field-of-view (FOV) reduction, and content-

based projection. In manual navigation scenarios, a human viewer chooses which normal

field-of-view subwindow to observe, e.g., via continuous head movements in a VR head-

set, or mouse clicks on a screen viewing interface. In contrast, FOV reduction methods

generate normal FOV videos by learning to render the most interesting or capture-worthy

portions of the viewing sphere [175, 174, 69, 106]. While these methods relieve the

decision-making burden of manual navigation, they severely limit the information con-

veyed by discarding all unselected portions. Projection methods render a wide-angle view,

or the entire sphere, onto a single plane (e.g., equirectangular or Mercator) [170] or multi-

ple planes [50]. While they avoid discarding content, any projection inevitably introduces

distortions that can be unnatural for viewers. Content-based projection methods can help

reduce perceived distortions by prioritizing preservation of straight lines, conformality, or

other low-level cues [164, 97, 110], optionally using manual input to know what is worth

preserving [21, 184, 20, 101, 196].

However, all prior automatic content-based projection methods implicitly assume

that the viewpoint of the input 360◦ image is fixed. That is, the spherical image is processed

in some default coordinate system, e.g., as the equirectangular projection provided by the

camera manufacturer. This assumption limits the quality of the output image. Independent

of the content-aware projection eventually used, a fixed viewpoint means some arbitrary

portions of the original sphere will be relegated to places where distortions are greatest—

or at least where they will require most attention by the content-aware algorithm to “undo”.

In the last main component of my thesis, I propose to eliminate the fixed viewpoint
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Default cubemap

Snap angle prediction
  A                       B                        C                         D

  A                       B                        C                         D

Figure 1.4: Comparison of a cubemap before and after snap angle prediction (dotted lines
separate each face). Unlike prior work that assumes a fixed angle for projection, I propose
to predict the cube rotation that will best preserve foreground objects in the output. For
example, here my method better preserves the truck (third picture C in the second row).
I show four (front, right, left, and back) out of the six faces for visualization purposes.
Please see Chapter 6 for the proposed approach for snap angle prediction and experimental
results. Best viewed in color or pdf.

assumption. My key insight is that an intelligently chosen viewing angle can immediately

lessen distortions, even when followed by a conventional projection approach. In particu-

lar, I consider the widely used Cubemap projection [50, 1, 2]. A cubemap visualizes the

entire sphere by first mapping the sphere to a cube with rectilinear projection (where each

face captures a 90◦ FOV) and then unfolding the faces of the cube. Often, an important

object can be projected across two cube faces, destroying object integrity. In addition,

rectilinear projection distorts content near cube face boundaries more. See Figure 1.4, top.

However, intuitively, some viewing angles—some cube orientations—are less damaging

than others.
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I introduce an approach to automatically predict snap angles: the rotation of the

cube that will yield a set of cube faces that, among all possible rotations, most look

like nicely composed human-taken photos originating from the given 360◦ panoramic

image. While what comprises a “well-composed photo” is itself the subject of active

research [100, 71, 204, 54, 92], we concentrate on a high-level measure of good compo-

sition, where the goal is to consolidate each (automatically detected) foreground object

within the bounds of one cubemap face. See Figure 1.4, bottom.

Accordingly, I formalize the snap angle objective in terms of minimizing the spatial

mass of foreground objects near cube edges. I develop a reinforcement learning (RL)

approach to infer the optimal snap angle given a 360◦ panorama. I implement the approach

with a deep recurrent neural network that is trained end-to-end. The sequence of rotation

“actions” chosen by my RL network can be seen as a coarse-to-fine adjustment of the

camera viewpoint, in the same spirit as how people refine their camera’s orientation just

before snapping a photo.

I validate the approach on a variety of 360◦ panorama images. Compared to several

informative baselines, I demonstrate that 1) snap angles better preserve important objects,

2) my RL solution efficiently pinpoints the best snap angle, 3) cubemaps unwrapped after

snap angle rotation suffer less perceptual distortion than the status quo cubemap, and 4)

snap angles even have potential to impact recognition applications, by orienting 360◦ data

in ways that better match the statistics of normal FOV photos used for today’s pretrained

recognition networks.

Chapter 6 gives more details on my proposed approach and results. This work

originally was published in ECCV 2018 [206].
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In conclusion, this chapter has provided a brief overview of my thesis work on

automatically composing photos from unedited images and videos captured by passive

cameras. My proposed methods can narrow the gap between the quality of visual data

captured by “unintentional” photographers with passive cameras and by intentional human

photographers. The proposed methods in this thesis are also cost-efficient in terms of

human annotation requirement on training data by leveraging either weakly labeled data

or unlabeled data.

1.5 Roadmap

In this chapter, I have provided a brief overview of my thesis on learning to com-

pose photos from passive cameras and introduced each of the four components of my

thesis. In next chapter, I review prior work surrounding the topics of my thesis. After-

wards, in Chapters 3, 4, 5, and 6, I present the proposed methods and experimental results

for each of the four components of my thesis outlined above in Sections 1.1, 1.2, 1.3,

and 1.4 respectively. Finally, I discuss possible directions for future work in Chapter 7 and

summarize the key findings of my thesis in Chapter 8.
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Chapter 2

Related Work

In this chapter, I review prior work relevant to the research that will be presented

in Chapters 3, 4, 5, and 6. I review topics on video highlight detection and summariza-

tion, learning with noisy labels, egocentric videos, leveraging Web images, image seg-

mentation, video segmentation, viewing wide-angle images and panoramas and recurrent

networks for attention. In each topic, I discuss the problem statement and how prior tech-

niques attempt to address different aspects of the problem. I also compare and contrast

my proposed methods and prior work. The related work presented here serves to provide

readers with useful background and to understand the existing techniques related to the

research presented in this thesis.

2.1 Video Highlight Detection and Summarization

I first overview prior work in video highlight detection and summarization, and

discuss how it relates to my proposed method for video highlight detection that will be

presented in Chapter 3. In Section 2.2, I then discuss prior work on learning with noisy

labels. My proposed framework for video highlight detection is motivated by prior work

on learning with noisy labels.
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2.1.1 Video Highlight Detection

Many prior approaches focus on highlight detection for sports video [158, 210,

181, 194]. Recently, supervised video highlight detection has been proposed for Internet

videos [179] and first-person videos [215]. These methods all require human annotated

〈highlight, source video〉 pairs for each specific domain. The Video2GIF approach [57]

learns from GIF-video pairs, which are also manually created. All supervised highlight

detection methods require human edited/labeled ranking pairs. In contrast, the method

I present in Chapter 3 does not use manually labeled highlights. My work on highlight

detection offers a new way to take advantage of freely available videos from the Internet.

Unsupervised video highlight detection methods do not require video annotations

to train. They can be further divided into methods that are domain-agnostic or domain-

specific. Whereas a domain-agnostic approach like motion strength [136] operates uni-

formly on any video, domain-specific methods train on a collection of videos of the same

topic. They leverage concepts like visual co-occurrence [27], category-aware reconstruc-

tion loss [222, 213], or collaborative sparse selection within a category [143]. Another

approach is first train video category classifiers, then detect highlights based on the classi-

fier scores [150] or spatial-temporal gradients from the classifier [142]. Like the domain-

specific methods, my approach on highlight detection also tailors highlights to the topic

domain; I gather the relevant training videos per topic automatically using keyword search

on the Web. Unlike any existing methods, I leverage video duration as a weak supervision

signal.
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2.1.2 Video Summarization

Whereas highlight detection aims to score individual video segments for their wor-

thiness as highlights, video summarization aims to provide a complete synopsis of the

whole video, often in the form of a structured output, e.g., a storyline graph [96, 209],

a sequence of selected keyframes [108] or clips [55, 221]. Video summarization is of-

ten formalized as a structured subset selection problem considering not just importance

but also diversity [49, 129] and coherency [129]. Supervised summarization methods

focus on learning a visual interestingness/importance score [108, 55], submodular mix-

tures of objectives [56, 212], or temporal dependencies [220, 221]. Unsupervised sum-

marization methods often focus on low-level visual cues to locate important segments.

Recent unsupervised and semi-supervised methods use recurrent auto-encoders to enforce

that the summary sequence should be able to generate a sequence similar to the original

video [213, 132, 221]. Many rely on Web image priors [91, 171, 93, 96] or semantic Web

video priors [15]. While I also leverage Web data, my idea about duration is novel.

2.2 Learning with Noisy Labels

My work on learning to detect highlights from video duration is also related to

learning from noisy data, a topic of broad interest in machine learning [138, 124]. The

proportion SVM [217] handles noisy data for training SVMs where a fraction of the labels

per group are expected to be incorrect, with applications to activity recognition [105].

Various methods explore how to train neural networks with noisy data [176, 153, 116].

Recent work on attention-based Multiple Instance Learning (MIL) helps focus
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on reliable instances using a differentiable MIL pooling operation for bags of embed-

dings [70]. Inspired by this, I propose a novel attention-based loss to reliably identify

valid samples from noisy training data in Chapter 3, but unlike [70], 1) I have “bags” de-

fined in the space of ranking constraints, 2) the proposed attention is defined in the loss

space, not in the feature space, 3) my model predicts scores at the instance level, not the

“bag” level, and 4) my attention mechanism is extended with multiple heads to take into

account a prior for the expected label noise level.

2.3 Egocentric Videos

Next, I overview prior work in egocentric videos, and discuss how it relates to my

proposed method for snap point detection that will be presented in Chapter 4.

Egocentric video analysis, pioneered in the 90’s [133, 173], is experiencing a

surge of research activity thanks to today’s portable devices. The primary focus is on

object [155, 114] or activity recognition [172, 39, 98, 149, 41, 161, 114]. Compared with

well-posed photographs, egocentric videos contain more uninformative frames, which are

often poorly composed and illuminated [44]. Motions cues [155] in egocentric video are

useful to segment foreground objects and therefore improve object recognition. Gaze in-

formation [114] can also improve both object and activity recognition. No prior work

explores snap point detection, which I will introduce in detail in Chapter 4.

I consider object detection and keyframe selection as applications of snap points

for unconstrained wearable camera data. In contrast, prior work for detection in ego-

centric video focuses on controlled environments (e.g., a kitchen) and handheld objects

(e.g., the mixing bowl) [155, 114, 172, 39, 41]. Nearly all prior keyframe selection work
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assumes third-person static cameras (e.g., [120, 122]), where all frames are already in-

tentionally composed, and the goal is to determine which are representative for the entire

video. In contrast, snap points aim to discover intentional-looking frames, not maximize

diversity or representativeness. Some video summarization work tackles dynamic egocen-

tric video [107, 128]. Such methods could exploit snap points as a filter to limit the frames

they consider for summaries.

Methods in ubiquitous computing use manual intervention [133] or external non-

visual sensors [64, 65] (e.g., skin conductivity or audio) to trigger the camera. My image-

based approach for snap point detection in Chapter 4 is complementary; true snap points

are likely a superset of those moments where abrupt physiological or audio changes occur.

2.4 Leveraging Web Images

My proposed method for snap point detection in Chapter 4 is also related to work

on leveraging Web images. Photos that people upload to share publicly online may vary

vastly in their content, yet all share the key facet that they were intentional snap point mo-

ments. This makes them an ideal source of positive exemplars for our snap point detection

problem.

2.4.1 Predicting High-level Image Properties

A series of interesting work predicts properties from images like saliency [123],

professional photo quality [88], memorability [72], aesthetics, interestingness [32, 54], or

suitability as a candid portrait [43]. These methods train a discriminative model using var-

ious image descriptors, then apply it to label human-taken photos. In contrast, I develop a
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generative approach with (unlabeled) Web photos, and apply it to find human-taken photos.

Critically, a snap point need not be beautiful, memorable, etc., and it could even contain

mundane content. Snap points are thus a broader class of photos. This is exactly what

makes them relevant for the proposed object detection application; in contrast, an excel-

lent aesthetics detector (for example) would fire on a narrower set of photos, eliminating

non-aesthetic photos that could nonetheless be amenable to off-the-shelf object detectors.

2.4.2 Web Image Priors

The Web is a compelling resource for data-driven vision methods. Both the volume

of images as well as the accompanying noisy meta-data open up many possibilities. Most

relevant to my work are methods that exploit the biases of human photographers. This

includes work on discovering iconic images of landmarks [165, 112, 197] (e.g., the Statue

of Liberty) or other tourist favorites [60, 86, 23, 94] by exploiting the fact that people tend

to take similar photos of popular sites. Web images can also serve as a useful prior for

image super-resolution [178], scene completion [61] and image deblur [177]. Similarly,

the photos users upload when trying to sell a particular object (e.g., a used car) reveal that

object’s canonical viewpoints, which can help select keyframes to summarize short videos

of the same object [90]. Event video summarization [93] can also benefit from web image

collections of the same event. My snap point method also learns about human framing or

composition biases, but, critically, in a manner that transcends the specific content of the

scene. That is, rather than learn when a popular landmark or object is in view, we want to

know when a well-composed photo of any scene is in view. My proposed Web photo prior

represents the photos humans intentionally take, independent of subject matter.
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2.5 Image Segmentation

Next I overview prior work in image segmentation and explain the connections

with my proposed pixel objectness approach that will be presented in Chapter 5.

2.5.1 Category-independent Image Segmentation

Interactive image segmentation algorithms such as the popular GrabCut [156] let a hu-

man guide the algorithm using bounding boxes or scribbles. These methods are most

suitable when high precision segmentations are required such that some guidance from

humans is worthwhile. While some methods try to minimize human involvement [73, 53],

still typically a human is always in the loop to guide the algorithm. In contrast, my model

for segmentation is fully automatic and segments foreground objects without any human

guidance.

Object proposal methods, also discussed above, produce thousands of generic object

proposals either in the form of bounding boxes [34, 224, 191] or regions [17, 6, 148, 68].

Generating thousands of hypotheses ensures high recall, but often results in low precision.

Though effective for object detection, it is difficult to automatically filter out accurate

proposals from this large hypothesis set without class-specific knowledge. My method for

foreground extraction instead generates a single hypothesis of the foreground as my final

segmentation.

Saliency models have also been widely studied in the literature. The goal is to identify

regions that are likely to capture human attention. While some methods produce highly

localized regions [121, 141, 12], others segment complete objects [26, 81, 123, 115, 223,

113]. While saliency focuses on objects that “stand out”, my method is designed to seg-
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ment all foreground objects, irrespective of whether they stand out in terms of low-level

saliency. This is true even for the deep learning based saliency methods [141, 121, 223,

113] which like pixel objectness are end-to-end trained but prioritize objects that stand

out.

2.5.2 Category-specific Image Segmentation

Semantic segmentation refers to the task of jointly recognizing and segmenting objects,

classifying each pixel into one of k fixed categories. Recent advances in deep learning

have fostered increased attention to this task. Most deep semantic segmentation models

include fully convolutional networks that apply successive convolutions and pooling layers

followed by upsampling or deconvolution operations in the end to produce pixel-wise seg-

mentation maps [127, 24]. However, these methods are trained for a fixed number of cat-

egories. My method for foreground segmentation is the first to show that a fully convolu-

tional network can be trained to accurately segment arbitrary foreground objects. Though

relatively few categories are seen in training, my model for foreground segmentation gen-

eralizes very well to unseen categories (as I demonstrate for 3,624 classes from ImageNet,

only a fraction of which overlap with PASCAL, the source of my training masks).

Weakly supervised joint segmentation methods use weaker supervision than semantic

segmentation methods. Given a batch of images known to contain the same object cate-

gory, they segment the object in each one. The idea is to exploit the similarities within

the collection to discover the common foreground. The output is either a pixel-level

mask [192, 85, 95, 157, 25, 74] or bounding box [31, 182]. While joint segmentation is

useful, its performance is limited by the shared structure within the collection; intra-class
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viewpoint and shape variations pose a significant challenge. Moreover, in most practical

scenarios, such weak supervision is not available. A stand alone single-image segmenta-

tion model like ours is more widely applicable.

Propagation-based methods transfer information from exemplars with human-labeled

foreground masks [104, 52, 74]. They usually involve a matching stage between likely

foreground regions and the exemplars. The downside is the need to store a large amount

of exemplar data at test time and perform an expensive and potentially noisy matching

process for each test image. In contrast, my segmentation model, once trained end-to-end,

is very efficient to apply and does not need to retain any training data.

2.6 Video Segmentation

My proposed pixel objectness approach in Chapter 5 can also segment foreground

objects in videos. I next discuss related work in automatic methods and human-guided

methods for video segmentation and explain the connections with my work.

2.6.1 Automatic Video Segmentation Methods

Similar to image segmentation work, video segmentation has been explored un-

der varying degrees of supervision or human interaction. Fully automatic or unsupervised

video segmentation methods assume no human input on the video. However, unlike im-

age segmentation that only relies on appearance cues, video segmentation can also utilize

motion to segment generic objects. They can be grouped into two broad categories.

First we have the supervoxel methods [51, 211, 46] which oversegment the video

into space-time blobs with cohesive appearance and motion. Their goal is to generate
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mid-level video regions useful for downstream processing (e.g., action detection [214,

35]), whereas my goal is to produce space-time tubes which accurately delineate object

boundaries.

Second we have the fully automatic methods that generate thousands of “object-

like” space-time segments [199, 45, 140, 200]. While useful in accelerating object detec-

tion, it is not straightforward to automatically select the most accurate one when a single

hypothesis is desired. Methods that do produce a single hypothesis [109, 144, 37, 190,

180, 67, 11, 99] strongly rely on motion to identify the objects, either by seeding appear-

ance models with moving regions or directly reasoning about occlusion boundaries using

optical flow. This limits their capability to segment static objects in video. In compari-

son, my method for video segmentation is fully automatic, produces a single hypothesis,

and can segment both static and moving objects. Concurrent work [185] trains a deep

network with synthetic data to predict moving objects from motion. My work for video

segmentation differs in two ways: 1) I show how to bootstrap weakly annotated real videos

together with existing image recognition datasets for training whereas their work is trained

with synthetic data; 2) my framework for video segmentation learns from appearance and

motion jointly whereas their work is only trained with motion.

Deep learning for combining motion and appearance in videos has proven to be

useful in several other computer vision tasks such as video classification [139, 87], ac-

tion recognition [167, 80], object tracking [195, 130] and even computation of optical

flow [33]. While I take inspiration from these works, my work is the first deep framework

for segmenting objects in videos in a fully automatic manner.
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2.6.2 Human-guided Video Segmentation Methods

Related to the interactive methods for images discussed above, there are also ap-

proaches for semi-automatic video segmentation. Semi-supervised label propagation meth-

ods accept human input on a subset of frames, then propagate it to the remaining frames [154,

8, 38, 193, 75, 146, 134, 189, 14, 78, 89]. In a similar vein, interactive video seg-

mentation methods leverage a human in the loop to provide guidance or correct errors,

e.g., [9, 163, 152]. The deep learning-based human-guided video segmentation meth-

ods [14, 78, 89] typically focus more on learning object appearance from the manual

annotations since the human pinpoints the object of interest. Motion is primarily used

to propagate information or enforce temporal smoothness. In the proposed method for

segmentation, both motion and appearance play an equally important role, and I show

their synergistic combination results in a much better segmentation quality. Moreover,

my method for video segmentation is fully automatic and uses no human involvement to

segment a novel video.

2.7 Viewing Wide-angle Images and Panoramas

Finally, I overview prior work relevant to predicting snap angles, which will be

presented in Chapter 6. I first discuss prior work on projection methods for viewing wide-

angle images and panoramas in this section. In Section 2.8, I then discuss prior work for

recurrent models, which motivate my proposed method for snap angle prediction.
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2.7.1 Spherical Image Projection

Spherical image projection models project either a limited FOV [164, 22] or the

entire panorama [170, 218, 50]. The former group includes rectilinear and Pannini [164]

projection; the latter includes equirectangular, stereographic, and Mercator projections

(see [170] for a review). Rectilinear and Pannini prioritize preservation of lines in various

ways, but always independent of the specific input image. Since any projection of the

full sphere must incur distortion, multi-view projections can be perceptually stronger than

a single global projection [218]. Cubemap [50], the subject of my snap angle approach

in Chapter 6, is a multi-view projection method; current approaches simply consider a

cubemap in its default orientation.

2.7.2 Content-aware Projection

Built on spherical projection methods, content-based projections make image-specific

choices to reduce distortion. Recent work [97] optimizes the parameters in the Pannini

projection [164] to preserve regions with greater low-level saliency and straight lines. In-

teractive methods [21, 184, 20, 101] require a user to outline regions of interest that should

be preserved or require input from a user to determine projection orientation [196]. My

approach for snap angles is content-based and fully automatic. Whereas prior automatic

methods assume a fixed viewpoint for projection, I propose to actively predict snap angles

for rendering. Thus, my idea is orthogonal to 360◦ content-aware projection. Advances

in the projection method could be applied in concert with my algorithm, e.g., as post-

processing to enhance the rotated faces further. For example, when generating cubemaps,

one could replace rectilinear projection with others [164, 97, 21] and keep the rest of the
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learning framework unchanged. Furthermore, the proposed snap angles respect high-level

image content—detected foreground objects—as opposed to typical lower-level cues like

line straightness [20, 21] or low-level saliency metrics [97].

2.7.3 Viewing Panoramas

Since viewing 360◦ and wide-angle data is non-trivial, there are vision-based ef-

forts to facilitate. The system of [102] helps efficient exploration of gigapixel panoramas.

More recently, several systems automatically extract normal FOV videos from 360◦ video,

“piloting” a virtual camera by selecting the viewing angle and/or zoom level most likely

to interest a human viewer [175, 174, 69, 106].

2.8 Recurrent Networks for Attention

Though treating very different problems than ours, multiple recent methods incor-

porate deep recurrent neural networks (RNN) to make sequential decisions about where

to focus attention. The influential work of [137] learns a policy for visual attention in

image classification. Active perception systems use RNNs and reinforcement learning to

select places to look in a novel image [16, 135], environment [79], or video [216, 5, 169]

to detect certain objects or activities efficiently. Broadly construed, we share the general

goal of efficiently converging on a desired target “view”, but my problem domain of snap

angle prediction is entirely different.

Having reviewed relevant prior work in this chapter, I now move on to present the

technical details of the approach together with experimental results for each component

in the upcoming chapters. In the next chapter, I consider the problem of video highlight

detection from unedited user videos.
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Chapter 3

Learning Highlight Detection from Video Duration

1 In this chapter, I address the first component of my thesis: how to detect video

highlights from unedited user videos. The goal in highlight detection is to retrieve the

moments—in the form of short video clips—that capture a user’s primary attention or in-

terest within an unedited video. A well-selected highlight can accelerate browsing many

videos (since a user quickly previews the most important content), enhance social video

sharing (since friends become encouraged to watch further), and facilitate video recom-

mendation (since systems can relate unedited videos in a more focused way).

Existing methods largely follow one of two strategies. The first strategy poses

highlight detection as a supervised learning task [57, 179, 215]. Given unedited videos

together with manual annotations for their highlights, a ranker is trained to score highlight

segments higher than those elsewhere in the video [57, 179, 215]. While the resulting

detector has the advantage of good discriminative power, the approach suffers from heavy,

non-scalable supervision requirements. The second strategy instead considers highlight

learning as a weakly supervised recognition task. Given domain-specific videos, the sys-

1The work in this chapter was supervised by Prof. Kristen Grauman and originally published in: “Less
is More: Learning Highlight Detection from Video Duration ”. Bo Xiong, Yannis Kalantidis, Deepti Ghadi-
yaram and Kristen Grauman. In Proceedings of the IEEE International Conference on Computer Vision,
Long Beach, CA, June 2019.
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Short clips of surfing

A long video of surfing

Figure 3.1: Video frames from three shorter user-generated video clips (top row) and
one longer user-generated video (second row). Although all recordings capture the same
event (surfing), video segments from shorter user-generated videos are more likely to be
highlights than those from longer videos, since users tend to be more selective about their
content. The height of the red curve indicates highlight score over time. I leverage this
natural phenomenon as a free latent supervision signal in large-scale Web video.

tem discovers what appears commonly among the training samples, and learns to detect

such segments as highlights in novel videos for the same domain [213, 150, 142, 126].

While more scalable in supervision, this approach suffers from a lack of discriminative

power.

In the first major component of my thesis, I introduce a novel framework for
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domain-specific highlight detection that addresses both these shortcomings. My key in-

sight is that user-generated videos, such as those uploaded to Instagram or YouTube, carry

a latent supervision signal relevant for highlight detection: their duration. I hypothesize

shorter user-uploaded videos tend to have a key focal point as the user is more selec-

tive about the content, whereas longer ones may not have every second be as crisp or

engaging. See Figure 3.1. I leverage duration as a new form of “weak” supervision to

train highlight detectors with unedited videos. Unlike existing supervised methods, my

training data requirements are scalable, relying only on tagged video samples from the

Web. Unlike existing weakly supervised methods, my approach can be trained discrimina-

tively to isolate highlights from non-highlight time segments. On two public challenging

benchmark datasets (TVSum [171] and YouTube Highlights [179]), I demonstrate our ap-

proach improves the state of the art for domain-specific unsupervised highlight detection.

Throughout, I use the term unsupervised to indicate the method does not have access to

any manually created summaries for training. I use the term domain-specific to mean

that there is a domain/category of interest specified by keyword(s) like “skiing”, follow-

ing [150, 213, 142, 126].

I first describe my approach for video highlight detection in Section 3.1, and then

show results in Section 3.2. Please see Section 2.1 for prior work on detecting video

highlights and Section 2.2 on learning with noisy labels, which motivates our proposed

method for highlight detection.
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3.1 Approach

We explore domain-specific highlight detection trained with unlabeled videos. We

first describe how we automatically collect large-scale hashtag video data for a domain

(Sec. 3.1.1). Then we present our novel framework for learning highlights aided by dura-

tion as a training signal (Sec. 3.1.2). The results will show the impact of our method to

find highlights in standard public benchmarks (Sec. 3.2).

3.1.1 Large-scale Instagram Training Video

First we describe our data collection process. We choose Instagram as our source

to collect videos because it contains a large amount of public videos associated with hash-

tags. In addition, because Instagram users tend to upload frequently via mobile for social

sharing, there is a natural variety of duration and quality—some short and eye-catching

videos, others less focused. The duration of a video from Instagram can vary from less

than a second to 1 minute.

Our goal is to build domain-specific highlight detectors. Given a category name,

we query Instagram to mine for videos that contain the given category name among their

hashtags. For most categories, this returns at least 200, 000 videos. Since we validate

our approach to detect highlights in the public TVSum and YouTube Highlights bench-

marks [171, 179] (see Sec. 3.2), the full list of hashtags queried are dog, gymnastics,

parkour, skating, skiing, surfing, changing vehicle tire, getting vehicle unstuck, grooming

an animal, making sandwich, parade, flash mob gathering, beekeeping, attempting bike

tricks, and dog show. Thus the data spans a range of domains frequently captured for

sharing on social media or browsing for how-to’s online. Altogether we acquire more than
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Figure 3.2: Durations for the 10M Instagram training videos.

10M training videos.

Figure 3.2 shows the distribution of their durations, which vary from less than a

second to 1 minute. We see there is a nice variety of lengths, with two modes centered

around short (∼ 10 s) and “long” (∼ 60 s) clips.

Postprocessing hashtags, injecting word similarity models, or chaining to related

keywords could further refine the quality of the domain-specific data [131]. However,

our experiments suggest that even our direct hashtag mining is sufficient to gather data

relevant to the public video datasets we ultimately test on. Below we will present a method

to cope with the inherent noise in both the Instagram tags as well as the long/short video

hypothesis.
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3.1.2 Learning Highlights from Video Duration

Next we introduce our ranking model that utilizes large-scale hashtagged video

data and their durations for training video highlight detectors.

Recall that a video highlight is a short video segment within a longer video that

would capture a user’s attention and interest. Our goal is to learn a function f(x) that

infers the highlight score of a temporal video segment given its feature x (to be specified

below). Then, given a novel video, its highlights can be prioritized (ranked) based on each

segment’s predicted highlight score.

A supervised regression solution would attempt to learn f(x) from a video dataset

with manually annotated highlight scores. However, calibrating highlight scores collected

from multiple human annotators is itself challenging. Instead, highlight detection can be

formalized as a ranking problem by learning from human-labeled/edited video-highlight

pairs [57, 179, 215]: segments in the manually annotated highlight ought to score more

highly than those elsewhere in the original long video. However, such paired data is diffi-

cult and expensive to collect, especially for long and unconstrained videos at a large scale.

To circumvent the heavy supervision entailed by collecting video-highlight pairs,

we propose a framework to learn highlight detection directly from a large collection of

unlabeled video. As discussed above, we hypothesize that users tend to be more selective

about the content in the shorter videos they upload, whereas their longer videos may be

a mix of good and less interesting content. We therefore use the duration of videos as

supervision signal. In particular, we propose to learn a scoring function that ranks video

segments from shorter videos higher than video segments from longer videos. Since longer
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videos could also contain highlight moments, we devise the ranking model to effectively

handle noisy ranking data.

Training data and loss: Let D denote a set of videos sharing a tag (e.g., dog show).

We first partition D into three non-overlapping subsets D = {DS, DL, DR}, where DS

contains shorter videos, DL contains longer videos, and DR contains the rest. For exam-

ple, shorter videos may be less than 15 seconds, and longer ones more than 45 seconds

(cf. Sec 3.2). Each video, whether long or short, is broken into uniform length temporal

segments.2

Let si refer to a unique video segment from the dataset, and let v(si) denote the

video where video segment si comes from. The visual feature extracted from segment si

is xi. Since our goal is to rank video segments from shorter videos higher than those from

longer videos, we construct training pairs (si, sj) such that v(si) ∈ Ds and v(sj) ∈ DL.

We denote the collection of training pairs as P. Since our dataset is large, we sample

among all possible pairs, ensuring each video segment is included at least once in the

training set. The learning objective consists of the following ranking loss:

L(D) =
∑

(si,sj)∈P

max (0, 1− f(xi) + f(xj)) , (3.1)

which says we incur a loss every time the longer video’s segment scores higher. The

function f is a deep convolutional network, detailed below. Note that whereas supervised

highlight ranking methods [57, 179, 215] use rank constraints on segments from the same

video—comparing those inside and outside the true highlight region—our constraints span

segments from distinct short and long videos.

2We simply break them up uniformly into 2-second segments, though automated temporal segmentation
could also be employed [150, 171].
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Learning from noisy pairs: The formulation thus far assumes that no noise exists and

that Ds and DL only contain segments from highlights and non-highlights, respectively.

However, this is not the case when learning from unedited videos: some video segments

from long videos can also be highlights, and some short segments need not be highlights.

Furthermore, some videos are irrelevant to the hashtags. Therefore, only a subset of our

pairs in P have valid ranking constraints (si, sj), i.e., pairs where si corresponds to a

highlight and sj corresponds to a non-highlight. Ideally, a ranking model would only

learn from valid ranking constraints and ignore the rest. To achieve this without requiring

any annotation effort, we introduce binary latent variables wij , ∀(si, sj) ∈ P to indicate

whether a ranking constraint is valid. We rewrite the learning objective as follows:

L(D) =
∑

(si,sj)∈P

wij max (0, 1− f(xi) + f(xj))

s.t.
∑

(si,sj)∈P

wij = p|P|, wij ∈ [0, 1],

and wij = h(xi, xj)

(3.2)

where h is a neural network, |P| is total number of ranking constraints, and p is the an-

ticipated proportion of ranking constraints that are valid. In the spirit of learning with

a proportional loss [217], this cap on the total weights assigned to the rank constraints

represents a prior for the noise level expected in the labels. For example, training with

p = 0.8 tells the system that about 80% of the pairs are a priori expected to be valid. The

summation of the binary latent variable wij prevents the trivial solution of assigning 0 to

all the latent variables.

Rather than optimize binary latent selection variables with alternating minimiza-

tion, we instead use real-valued selection variables, and the function h(xi, xi) directly pre-
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Figure 3.3: Network architecture details of our approach. The batch size is b. We group
every n instances of training pairs and feed them to a softmax function. Each batch has t
such groups (b = nt).

dicts those latent variables wij . The advantages are threefold. First, we can simultaneously

optimize the ranking function f and the selected training pairs. Second, the latent variable

wij is conditioned on the input features so it can learn whether a ranking constraint is valid

as a function of the specific visual input. Third, by relaxing wij to a continuous variable

in the range from 0 to 1, we capture uncertainty about pair validity during training.

Finally, we parameterize the latent variables wij , which provide learned weights

for the training samples, and refine our objective to train over batches while enforcing the

noise level prior p. We split the training data into groups, each of which contains exactly
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n pairs. We then require that the latent variable wij for instances within a group sum up to

1. In particular, let P1, . . . ,Pm be a random split of the set of pairs P into m groups where

each group contains exactly n pairs, then the final loss becomes:

L(D) =
m∑
g=1

∑
(si,sj)∈Pg

w̃ij max (0, 1− f(xi) + f(xj))

s.t.
∑

(si,sj)∈Pg

w̃ij =
∑

(si,sj)∈Pg

σg(h(xi, xj)) = 1,

w̃ij ∈ [0, 1],

(3.3)

where σg denotes the softmax function defined over the set of pairs in group Pg. Note that

now the group size n, together with the softmax, serves to uphold the label noise prior p,

with p = 1
n

, while allowing a differentiable loss for the selection function h. Intuitively,

smaller values of nwill speed up training at the cost of mistakenly promoting some invalid

pairs, whereas larger values of n will be more selective for valid pairs at the cost of slower

training. In experiments, we fix n to 8 for all results and datasets.

As f learns from training data, the function h helps f to attend to training pairs that

are consistent. Starting with the prior that there are more valid than invalid pairs, it learns

to assign low (high) weights to training pairs that violate (satisfy) ranking constraints,

respectively.

Network structure: We model both f(x) and h(xi, xj) with neural networks. We use

a 3 hidden layer fully-connected model for f(x). The function h(xi, xj) consists of a 3

fully-connected layers, followed by a n-way softmax function, as shown in Eq.(3.3). See

Fig. 3.3 for network architecture details.

Video segment feature representation: To generate features xi for a segment si we use a

3D convolution network [58] with a ResNet-34 [62] backbone pretrained on Kinetics [19].
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We use the feature after the pooling of the final convolution layer. Each video segment is

thus represented by a feature of 512 dimensions.

Implementation details: We implement our model with PyTorch, and optimize with

stochastic gradient with momentum for 30 epochs. We use a batch size of 2048 and set the

base learning rate to 0.005. We use a weight decay of 0.00005 and a momentum of 0.9.

With a single Quadro GP100 gpu, the total feature extraction time for a one-minute-long

video is 0.50 s. After extracting video features, the total training time to train a model is

one hour for a dataset of 20,000 video clips of total duration 1600 hours. At test time, it

takes 0.0003 s to detect highlights in a new one-minute-long video after feature extraction.

3.2 Results

We validate our approach for highlight detection and compare to an array of previ-

ous methods, focusing especially on those that are unsupervised and domain-specific.

3.2.1 Experimental setup

Datasets and metrics: After training our model on the Instagram video, we evaluate it on

two challenging public video highlight detection datasets: YouTube Highlights [179] and

TVSum [171]. YouTube Highlights [179] contains six domain-specific categories: surfing,

skating, skiing, gymnastics, parkour, and dog. Each domain consists of around 100 videos

and the total accumulated time is 1430 minutes. TVSum [171] is collected from YouTube

using 10 queries and consists of 50 videos in total from domains including changing ve-

hicle tire, grooming an animal, making sandwich, parade, flash mob gathering, and oth-

ers. Since the ground truth annotations in TVSum [171] provide frame-level importance
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scores, we first average the frame-level importance scores to obtain the shot-level scores,

and then select the top 50% shots (segments) for each video as the human-created sum-

mary, following [143, 142]. Finally, the highlights selected by our method are compared

with 20 human-created summaries. We report mean average precision (mAP) for both

datasets.

Baselines: We compare with nine state-of-the-art methods as reported in the literature.

Here we organize them based on whether they require shot-level annotation (supervised)

or not (unsupervised). Recall that our method is unsupervised and domain-specific, since

we use no annotations and compose the pool of training video with tag-based queries.

• Unsupervised baselines: We compare with the following unsupervised methods:

RRAE [213], MBF [27], KVS [150], CVS [143], SG [132], DeSumNet(DSN) [142],

and VESD [15]. We also implement a baseline where we train classifiers (CLA) with

our hashtagged Instagram videos. The classifiers use the same network structures

(except the last layer is replaced with a K-way classification) and video features as

our method. We then use the classifier score for highlight detection. CLA can be

seen as a deep network variant of KVS [150]. We also implemented k-means and

spectral clustering baselines, but found them inferior to the more advanced cluster-

ing method [27] reported below.

• Supervised baselines: We compare with the latent-SVM approach [179], which

trains with human-edited video-highlight pairs, and the Video2GIF approach [57],

a domain-agnostic method that trains with human-edited video-GIF pairs. Though

these methods require annotations—and ours does not—they are of interest since

they also use ranking formulations.
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We present results for two variants of our method: Ours-A: Our method trained

with Instagram data in a domain-agnostic way, where we pool training videos from all

queried tags. We use a single model for all experiments; Ours-S: Our method trained

with domain-specific Instagram data, where we train a separate highlight detector for each

queried tag. For both variants, our method’s training data pool is generated entirely au-

tomatically and uses no highlight annotations. A training video is in DS if its duration

is between 8 and 15 s, and it is in DL if its duration is between 45 and 60 s. We discard

all other videos. Performance is stable as long as we keep a large gap for the two cut

off thresholds. Our networks typically converge after 20 epochs, and test performance is

stable (±0.5%) when we train multiple times with random initializations.

3.2.2 Highlight Detection Results

Results on YouTube Highlights dataset: Table 3.1 presents the results on YouTube

Highlights [179]. All the baseline results are as reported in the authors’ original papers.

Our domain specific method (Ours-S) performs the best—notably, it is even better than the

supervised ranking-based methods. Compared to the unsupervised RRAE approach [213],

our average gain in mAP is 18.1%. Our method benefits from discriminative training to

isolate highlights from non-highlight video segments. Our method also outperforms the

CLA approach that is trained on the same dataset as ours, indicating that our advantage

is not due to the training data alone. CLA can identify the most discriminative video

segments, which may not always be highlights. On average our method outperforms the

LSVM approach [179], which is trained with domain-specific manually annotated data.

While the supervised methods are good at leveraging high quality training data, they are
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RRAE GIFs LSVM CLA Ours-A Ours-S
(unsup) [213] (sup) [57] (sup) [179] (unsup) (unsup) (unsup)

dog 0.49 0.308 0.60 0.502 0.519 0.579
gymnast. 0.35 0.335 0.41 0.217 0.435 0.417
parkour 0.50 0.540 0.61 0.309 0.650 0.670
skating 0.25 0.554 0.62 0.505 0.484 0.578
skiing 0.22 0.328 0.36 0.379 0.410 0.486
surfing 0.49 0.541 0.61 0.584 0.531 0.651

Average 0.383 0.464 0.536 0.416 0.505 0.564

Table 3.1: Highlight detection results (mAP) on YouTube Highlights [179]. Our method
outperforms all the baselines, including the supervised ranking-based methods [179, 57].

also limited by the practical difficulty of securing such data at scale. In contrast, our

method leverages large-scale tagged Web video at scale, without manual highlight exam-

ples.

Our method trained with domain specific data (Ours-S) performs better than when

it is trained in a domain-agnostic way (Ours-A). This is expected since highlights of-

ten depend on the domain of interest. Still, our domain-agnostic variant outperforms the

domain-agnostic Video2GIF [57], again revealing the benefit of large-scale weakly super-

vised video for highlight learning.

Fig. 3.4 shows example highlights. Despite not having explicit supervision, our

method is able to detect highlight-worthy moments for a range of video types.

Results on TVSum dataset: Table 3.2 presents the results on TVSum [171].3 We focus

the comparisons on unsupervised and domain-specific highlight methods. TVSum is a

3Results for CVS [143], DeSumNet [142] and VESD [15] are from original papers. All others (MBF [27],
KVS [150] and SG [132]) are as reported in [15].
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MBF [27] KVS [150] CVS [143] SG [132] DSN [142] VESD [15] CLA Ours-A Ours-S
Vehicle tire 0.295 0.353 0.328 0.423 - - 0.294 0.449 0.559

Vehicle unstuck 0.357 0.441 0.413 0.472 - - 0.246 0.495 0.429
Grooming animal 0.325 0.402 0.379 0.475 - - 0.590 0.454 0.612
Making sandwich 0.412 0.417 0.398 0.489 - - 0.433 0.537 0.540

Parkour 0.318 0.382 0.354 0.456 - - 0.505 0.602 0.604
Parade 0.334 0.403 0.381 0.473 - - 0.491 0.530 0.475

Flash mob 0.365 0.397 0.365 0.464 - - 0.430 0.384 0.432
Beekeeping 0.313 0.342 0.326 0.417 - - 0.517 0.638 0.663
Bike tricks 0.365 0.419 0.402 0.483 - - 0.578 0.672 0.691
Dog show 0.357 0.394 0.378 0.466 - - 0.382 0.481 0.626
Average 0.345 0.398 0.372 0.462 0.424 0.423 0.447 0.524 0.563

Table 3.2: Highlight detection results (Top-5 mAP score) on TVSum [171]. All methods
listed are unsupervised. Our method outperforms all the baselines by a large margin.
Entries with “-” mean per-class results not available for that method.
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Figure 3.4: Example highlight detection results for the YouTube Highlights dataset [179].
We show our method’s predicted ranking from low (left) to high (right) and present one
frame for each video segment.

very challenging dataset with diverse videos. Our method outperforms all the baselines

by a large margin. In particular, we outperform the next best method SG [132] by 10.1

points, a relative gain of 22%. SG learns to minimize the distance between original videos
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and their summaries. The results reinforce the advantage of discriminatively selecting seg-

ments that are highlight-worthy versus those that are simply representative. For example,

while a close up of a bored dog might be more representative in the feature space for dog

show videos, a running dog is more likely to be a highlight. Our method trained with

domain specific data (Ours-S) again outperforms our method trained in a domain-agnostic

way (Ours-A).

Instagram vs. YouTube for training: Curious whether an existing large-scale collection

of Web video might serve equally well as training data for our approach, we also trained

our model on videos from YouTube8M [3]. Training on 6,000 to 26,000 videos per domain

from YouTube8M, we found that results were inferior to those obtained with the Instagram

data. We attribute this to two factors: 1) the YouTube-8M was explicitly curated to have

fairly uniform-length “longer” (120-500 s) clips [3], which severely mutes our key dura-

tion signal, and 2) users sharing videos on Instagram may do so to share “moments” with

family and friends, whereas YouTube seems to attract a wider variety of purposes (e.g.,

instructional videos, edited films, etc.) which may also weaken the duration signal.

3.2.3 Ablation Studies

Next we present an ablation study. All the methods are trained with domain-

specific data. We compare our full method (Ours-S) with two variants: 1) Ranking-D,

which treats all the ranking constraints as valid and trains the ranking function with-

out the latent variables. This is similar to existing supervised highlight detection meth-

ods [57, 215]. 2) Ranking-EM, which introduces a binary latent variable and optimizes

the ranking function and binary latent selection variable in an alternating manner with EM,
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Dataset Ranking-D Ranking-EM Ours-S
YouTube 0.425 0.458 0.564
TVSum 0.400 0.444 0.563

Table 3.3: Accuracy (mAP) in ablation study.

similar to [179]. Note that unlike our approach, here the binary latent variable is discrete

and it is not conditioned on the input.

Table 3.3 shows the results. Our full method outperforms the alternative variants.

In particular, our average gain in mAP over Ranking-D is 13.9% and 16.3% for Youtube

and TVSum, respectively. This supports our hypothesis that ranking constraints obtained

by sampling training pairs (si, sj) such that v(si) ∈ Ds and v(sj) ∈ DL are indeed noisy.

By modeling the noise and introducing the latent selection variable, our proposed method

improves performance significantly. Our method also significantly outperforms Ranking-

EM, which also models noise in the training samples. In contrast to Ranking-EM, our

method directly predicts the latent selection variable from input. In addition, we benefit

from joint optimization and relaxation of the latent selection variable, which accounts for

uncertainty.

Fig. 3.6 shows highlight detection accuracy as a function of training set size. We

report this ablation for YouTube Highlights only, since the videos sharing tags with some

TVSum categories max out at 24,000. As we increase the number of videos in each do-

main, accuracy also improves. The performance improves significantly (6.5% for Ours-S

and 3.7% for Ours-A) when the training data is increased from 1, 000 to 10, 000 in each

domain, then starts to plateau.
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Figure 3.5: Predicted latent values (before softmax) for video segment pairs from YouTube
Highlights. Higher latent value indicates higher likelihood to be a valid pair. The predicted
latent value is high if si (top row) is a highlight and sj (bottom row) is a non-highlight.

3.2.4 Understanding Learning from Duration

Finally, we investigate what each component of our model has learned from video

duration. First, we test whether our model can distinguish segments from shorter videos
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Figure 3.6: Accuracy vs. training set size on YouTube [179].

versus segments from longer videos. This is essentially a validation of the main training

objective, without the additional layer of highlight accuracy. We train our model and

reserve 20% novel videos for testing. Each test pair consists of a randomly sampled video

segment from a novel shorter video and one from a novel longer video. We use f(x) to

score each segment and report the percentage of successfully ranked pairs. Without the

proposed latent weight prediction, our model achieves a 58.2% successful ranking rate.

Since it is higher than chance (50%), this verifies our hypothesis that the distributions of

the two video sources are different. However, the relatively low rate also indicates that

the training data is very noisy. After we weight the test video pairs with h(xi, xj), we

achieve a 87.2% success rate. The accuracy improves significantly because our latent

value prediction function h(xi, xj) identifies discriminative pairs.

Second, we examine video segment pairs constructed from the YouTube Highlights

dataset alongside their predicted latent values (before softmax). See Fig. 3.5. Higher
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latent values indicate higher likelihood to be a valid pair. Video segments (si) from the

top row are supposed to be ranked higher than video segments (sj) from the second row.

When si corresponds to a highlight segment and sj a non-highlight segment, the predicted

latent value is high (last columns in each block). Conversely, the predicted latent value is

extremely low when si corresponds to a non-highlight segment and sj a highlight segment

(first column in each block). Note if we group all the examples in each block into a

softmax, all the training examples except the last will have negligible weights in the loss.

This demonstrates that the learned h(xi, xj) can indeed identify valid training pairs, and is

essential to handle noise in training.

3.3 Summary

In this chapter, I presented a novel framework for video highlight detection. The

key insight is that video segments from shorter user-generated videos are more likely to

be highlights than those from longer videos, since users tend to be more selective about

the content when capturing shorter videos. Leveraging this insight, I introduce a novel

ranking framework that prefers segments from shorter videos, while properly accounting

for the inherent noise in the (unlabeled) training data. In experiments on two challenging

public video highlight detection benchmarks, the proposed method substantially improves

the state-of-the-art for unsupervised highlight detection.

My proposed method learns to ignore invalid training samples from noisy training

data. However, the proposed method cannot effectively distinguish invalid training sam-

ples from valid but hard training samples. One possible solution is to introduce curriculum

learning to gradually recover hard training samples. Our current work also assumes train-
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ing videos and test videos are from the same category domain. Future work will explore

how to combine multiple pre-trained domain-specific highlight detectors for test videos

in novel domains. Since the proposed method is robust to label noise and only requires

weakly-labeled annotations like hashtags, it has the potential to scale to an unprecedented

number of domains, possibly utilizing predefined or learned taxonomies for reusing parts

of the model.

While the first component of my thesis addresses the question of finding video

highlights in the form of short video clips, the second component of my thesis explores

how to find the best moments in the form of keyframes. In the next chapter, I consider how

to detect “snap points” in unedited egocentric videos.
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Chapter 4

Detecting Snap Points in Egocentric Video with a Web
Photo Prior

1 In the previous chapter, I have presented how to find the best moments in unedited

videos in terms of short video clips. In this chapter, I consider the problem of finding

the best moments in videos in terms of keyframes. In particular, I address the following

question: can a vision system predict “snap points” in unedited egocentric video—that is,

those frames that look like intentionally taken photos?

To get some intuition for the task, consider the images in Figure 4.1. Can you guess

which row of photos was sampled from a wearable camera, and which was sampled from

photos posted on Flickr? Note that subject matter itself is not always the telling cue; in

fact, there is some overlap in content between the top and the bottom rows. Nonetheless,

we suspect it is easy for the reader to detect that a head-mounted camera grabbed the

shots in the first row, whereas a human photographer purposefully composed the shots in

the second row. These distinctions suggest that it may be possible to learn the generic

properties of an image that indicate it is well-composed, independent of the literal content.

1The work in this chapter was supervised by Prof. Kristen Grauman and originally published in: “De-
tecting Snap Points in Egocentric Video with a Web Photo Prior ”. Bo Xiong and Kristen Grauman. In
Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, September 2014. An ex-
panded article appeared in “Intentional Photos from an Unintentional Photographer: Detecting Snap Points
in Egocentric Video with a Web Photo Prior”. Bo Xiong and Kristen Grauman. In Mobile Cloud Visual
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Figure 4.1: Can you tell which row of photos came from an egocentric camera?

While this anecdotal sample suggests detecting snap points may be feasible, there

are several challenges. First, egocentric video contains a wide variety of scene types,

activities, and actors. This is certainly true for human camera wearers going about daily

life activities, and it will be increasingly true for mobile robots that freely explore novel

environments. Accordingly, a snap point detector needs to be largely domain invariant and

generalize across varied subject matter. Secondly, an optimal snap point is likely to differ

in subtle ways from its less-good temporal neighbors, i.e., two frames may be similar

in content but distinct in terms of snap point quality. That means that cues beyond the

standard texture and color favorites may be necessary. Finally, and most importantly, while

it would be convenient to think of the problem in discriminative terms (e.g., training a

snap point vs. non-snap point classifier), it is burdensome to obtain adequate and unbiased

labeled data.

To address the above challenges, I introduce an approach to detect snap points

from egocentric video that requires no human annotations. The main idea is to construct

a generative model of what human-taken photos look like by sampling images posted on

Media Computing, November 2015.
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the Web. I also propose two applications of snap point prediction.

I first describe my approach for detecting snap points in Section 4.1, and then show

results in Section 4.2. Please see Section 2.3 and 2.4 for prior work related to egocentric

videos and leveraging Web images.

4.1 Approach

Our goal is to detect snap points, which are those frames within a continuous ego-

centric video that appear as if they were composed with intention, as opposed to merely

observed by the person wearing the camera. In traditional camera-user relationships, this

“trigger” is left entirely to the human user. In the wearable camera-user relationship, how-

ever, the beauty of being hands-free and always-on should be that the user no longer has

to interrupt the flow of his activity to snap a photo. Notably, whether a moment in time is

photoworthy is only partially driven by the subject matter in view. The way the photo is

composed is similarly important, as is well-understood by professional photographers and

intuitively known by everyday camera users.

We take a non-parametric, data-driven approach to learn what snap points look like.

First, we gather unlabeled Web photos to build the prior (Sec. 4.1.1), and extract image

descriptors that capture cues for composition and intention (Sec. 4.1.2). Then, we estimate

a domain-invariant feature space connecting the Web and ego sources (Sec. 4.1.3). Finally,

given a novel egocentric video frame, we predict how well it agrees with the prior in the

adapted feature space (Sec. 4.1.4). To illustrate the utility of snap points, we also explore

applications for object detection and keyframe selection (Sec. 4.1.5).
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Figure 4.2: Example images from the SUN dataset [201].

Section 4.2.1 will discuss how we systematically gather ground truth labels for

snap points using human judgments, which is necessary to evaluate our method, but, criti-

cally, is not used to train it.

4.1.1 Building the Web Photo Prior

Faced with the task of predicting whether a video frame is a snap point or not,

an appealing solution might be to train a discriminative classifier using manually labeled

exemplars. Such an approach has proven successful for learning other high-level image

properties, like aesthetics and interestingness [32, 54], quality [88], canonical views [90],

or memorability [72]. This is thanks in part to the availability of relevant meta-data for

such problems: users on community photo albums manually score images for visual ap-

peal [32, 88], and users uploading ads online manually tag the object of interest [90].

However, this familiar paradigm is problematic for snap points. Photos that appear

human-taken exhibit vast variations in appearance, since they may have almost arbitrary

content. This suggests that large scale annotations would be necessary to cover the space.

Furthermore, snap points must be isolated within ongoing egocentric video. This means
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that labeling negatives is tedious—each frame must be viewed and judged in order to

obtain clean labels.

Instead, we devise an approach that leverages unlabeled images to learn snap

points. The idea is to build a prior distribution using a large-scale repository of Web

photos uploaded by human photographers. Such photos are by definition human-taken,

span a variety of contexts, and (by virtue of being chosen for upload) have an enhanced

element of intention. We use these photos as a generative model of snap points.

We select the SUN Database as our Web photo source [201], which originates

from Internet search for hundreds of scene category names. Our choice is motivated by

two main factors. First, the diversity of photos is high—899 categories in all drawn from

70K WordNet terms—and there are many of them (130K). Second, its scope is fairly well-

matched with wearable camera data. Human- or robot-worn cameras observe a variety of

daily life scenes and activities, as well as interactions with other people. SUN covers not

just locations, but settings that satisfy “I am in a place, let’s go to a place” [201], which

includes many scene-specific interactions, such as shopping at a pawnshop, visiting an

optician, driving in a car, etc. See Figure 4.2.

4.1.2 Image Descriptors for Intentional Cues

To represent each image, we designate descriptors to capture intentional composi-

tion effects.

Motion: Non-snap points will often occur when a camera wearer is moving

quickly, or turning his head abruptly. We therefore extract a descriptor to summarize
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motion blur, using the blurriness estimate of [29].2

Composition: Snap points also reflect intentional framing effects by the human

photographer. This leads to spatial regularity in the main line structures in the image—

e.g., the horizon in an outdoor photo, buildings in a city scene, the table surface in a

restaurant—which will tend to align with the image axes. Thus, we extract a line alignment

feature: we detect line segments using the method in [103], then record a histogram of

their orientations with 32 uniformly spaced bins. To capture framing via the 3D structure

layout, we employ the geometric class probability map [66]. We also extract GIST, HOG,

self-similarity (SSIM), and dense SIFT, all of which capture alignment of interior textures,

beyond the strong line segments. An accelerometer, when available, could also help gauge

coarse alignment; however, these descriptors offer a fine-grained visual measure helpful

for subtle snap point distinctions.

Feature combination: For all features but line alignment, we use code and default

parameters provided by [201]. We reduce the dimensionality of each feature using PCA

to compactly capture 90% of its total variance. We then standardize each dimension to

(µ = 0, σ = 1) and concatenate the reduced descriptors to form a single vector feature

space X , which we use in what follows.

Alternatively, we could use features from a deep neural network [168, 62] pre-

trained for ImageNet classification [159].

2We also explored flow-based motion features, but found their information to be subsumed by blur fea-
tures computable from individual frames.
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4.1.3 Adapting from the Web to the Egocentric Domain

While we expect egocentric video snap points to agree with the Web photo prior

along many of these factors, there is also an inherent mismatch between the statistics of

the two domains. Egocentric video is typically captured at low-resolution with modest

quality lenses, while online photos (e.g., on Flickr) are often uploaded at high resolution

from high quality cameras.

Therefore, we establish a domain-invariant feature space connecting the two sources.

Given unlabeled Web photos and egocentric frames, we first compute a subspace for each

using PCA. Then, we recover a series of intermediate subspaces that gradually transition

from the “source” Web subspace to the “target” egocentric subspace. We use the algorithm

of [48] since it requires no labeled target data and is kernel-based.

Let xi, xj ∈ X denote image descriptors for a Web image i and egocentric frame

j. The idea is to compute the projections of an input xi on a subspace φ(t), for all t ∈

[0, 1] along the geodesic path connecting the source and target subspaces in a Grassmann

manifold. Values of t closer to 0 correspond to subspaces closer to the Web photo prior;

values of t closer to 1 correspond to those more similar to egocentric video frames. The

infinite set of projections is achieved implicitly via the geodesic flow kernel [48] (GFK):

KGFK(xi, xj) = 〈z∞i , z∞j 〉 =

∫ 1

0

(φ(t)Txi)
T (φ(t)Txj)dt, (4.1)

where z∞i and z∞j denote the infinite-dimensional features concatenating all projections of

xi and xj along the geodesic path.

Intuitively, this representation lets the two slightly mismatched domains (Web

and ego) “meet in the middle” in a common feature space, letting us measure similarity
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between both kinds of data without being overly influenced by their superficial resolu-

tion/sensor differences.

4.1.4 Predicting Snap Points

With the Web prior, image features, and similarity measure in hand, we can now

estimate how well a novel egocentric video frame agrees with our prior. We take a simple

data-driven approach. We treat the pool of Web photos as a non-parametric distribution,

then estimate the likelihood of the novel ego frame under that distribution based on its

nearest neighbors’ distances.

Let W = {xw1 , . . . , xwN} denote the N Web photo descriptors, and let xe de-

note a novel egocentric video frame’s descriptor. We retrieve the k nearest examples

{xwn1
, . . . , xwnk

} ⊂ W , i.e., those k photos that have the highest GFK kernel values when

compared to xe.3 Then we predict the snap point confidence for xe:

S(xe) =
k∑
j=1

KGFK(xe, xwnj
), (4.2)

where higher values of S(xe) indicate the test frame is more likely to be human-taken. For

our dataset of N = 130K images, similarity search is fairly speedy (0.01 seconds per test

case in Matlab), and could easily be scaled for much larger N using hashing or kd-tree

techniques.

This model follows in the spirit of prior data-driven methods for alternative tasks,

e.g., [162, 187, 60, 118], the premise being to keep the learning simple and let the data

3We use k = 60 based on preliminary visual inspection, and found results were similar for other k values
of similar order (k ∈ [30, 120]).
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speak for itself. However, our approach is label-free, as all training examples are (implic-

itly) positives, whereas the past methods assume at least weak meta-data annotations.

While simple, our strategy is very effective in practice. In fact, we explored a

number of more complex alternatives—one-class SVMs, Gaussian mixture models, non-

linear manifold embeddings—but found them to be similar or inferior to the neighbor-

based approach. The relatively lightweight computation is a virtue given our eventual goal

to make snap point decisions onboard a wearable device.

4.1.5 Leveraging Snap Points for Egocentric Video Analysis

Filtering egocentric video down to a small number of probable snap points has

many potential applications. We are especially interested in how they can bolster object

detection and keyframe selection. We next devise strategies for each task that leverage the

above predictions S(xe).

Object detection: In the object recognition literature, it is already disheartening

how poorly detectors trained on one dataset tend to generalize to another [186]. Unfor-

tunately, things are only worse if one attempts to apply those same detectors on ego-

centric video. Why is there such a gap? Precisely because today’s object detectors are

learned from human-taken photos, whereas egocentric data on wearable cameras—or mo-

bile robots—consist of very few frames that match those statistics. For example, a person

detector on PASCAL VOC trained with Flickr photos expects to see people in similarly

composed photos, but only a fraction of egocentric video frames will be consistent and

thus detectable.

Our idea is to use snap points to predict those frames where a standard object
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detector (trained on human-taken images) will be most trustworthy. This way, we can

improve precision; the detector will avoid being misled by incidental patterns in non-

snap point frames. We implement the idea as follows, using the DPM as an off-the-shelf

detector.4 We score each test ego-frame by S(xe), then keep all object detections in those

frames scoring above a threshold τ . We set τ as 30% of the average distance between the

Web prior images and egocentric snap points. For the remaining frames, we eliminate any

detections (i.e., flatten the DPM confidence to 0) that fall below the confidence threshold

in the standard DPM pipeline [42]. In effect, we turn the object detector “on” only when

it has high chance of success.

Keyframe selection: As a second application, we use snap points to create

keyframe summaries of egocentric video. The goal is to take hours of wearable data

and automatically generate a visual storyboard that captures key events. We implement

a simple selection strategy. First, we identify temporal event segments using the color-

and time-based grouping method described in [107], which finds chunks of frames likely

to belong to the same physical location or scene. Then, for each such event, we select the

frame most confidently scored as a snap point.

Our intent is to see if snap points, by identifying frames that look intentional, can

help distill the main events in hours of uncontrolled wearable camera data. Our implemen-

tation is a proof of concept to demonstrate snap points’ utility. We are not claiming a new

keyframe selection strategy, a problem studied in depth in prior work [120, 122, 107, 128].

4http://www.cs.berkeley.edu/∼rbg/latent/
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4.2 Results
4.2.1 Datasets and Collecting Ground Truth Snap Points

Datasets: We use two egocentric datasets. The first is the publicly available UT

Egocentric Dataset (Ego)5, which consists of four videos of 3-5 hours each, captured with

a head-mounted camera by four people doing unscripted daily life activities (eating, work-

ing, shopping, driving, etc.). The second is a mobile robot dataset (Robot) newly collected

for this project. In collaboration with our robotics colleagues, we used a wheeled robot

to take a 25 minute video both indoors and outdoors on campus (coffee shops, buildings,

streets, pedestrians, etc.). Its camera moves constantly from left to right, pauses, then

rotates back in order to cover a wide range of viewpoints.

Both the human and robot datasets represent incidentally captured video from

always-on, dynamic cameras and unscripted activity. We found other existing ego col-

lections less suited to our goals, either due to their focus on a controlled environment with

limited activity (e.g., making food in a kitchen [41, 114])) or their use of chest-mounted

or fisheye lens cameras [149, 40], which do not share the point of view of intentional

hand-held photos.

Ground truth: Our method requires no labeled data for learning: it needs only to

populate the Web prior with human-taken photos. However, to evaluate our method, it is

necessary to have ground truth human judgments about which ego-frames are snap points.

The following describes our crowdsourced annotation strategy to get reliable ground truth.

We created a “magic camera” scenario to help MTurk annotators understand the

5http://vision.cs.utexas.edu/projects/egocentric data
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definition of snap points. Their instructions were as follows: Suppose you are creating a

visual diary out of photos. You have a portable camera that you carry all day long, in order to

capture everyday moments of your daily life. ... Unfortunately, your magic camera can also trigger

itself from time to time to take random pictures, even while you are holding the camera. At the end

of the day, all pictures, both the ones you took intentionally and the ones accidentally taken by the

camera, are mixed together. Your task is to distinguish the pictures that you took intentionally

from the rest of pictures that were accidentally taken by your camera.

Workers were required to rate each image into one of four categories: (a) very

confidently intentional, (b) somewhat confident intentional, (c) somewhat confident acci-

dental, and (d) very confident accidental. Since the task can be ambiguous and subjective,

we issued each image to 5 distinct workers. We obtained labels for 10,000 frames in the

Ego data and 2,000 frames in the Robot data, sampled at random.

We establish confidence-rated ground truth as follows. Every time a frame receives

a rating of category (a), (b), (c), or (d) from any of the 5 workers, it receives 5, 2, -1, -2

points, respectively. This lets us rank all ground truth examples by their true snap point

strength. To alternatively map them to binary ground truth, we threshold a frame’s total

score: more than 10 points is deemed intentional, otherwise it is accidental. Annotators

found 14% of the Ego frames and 23% of the Robot frames to be snap points, respectively.

The total MTurk cost was about $500.

We experiment on the 2 datasets described above, Ego and Robot, which together

comprise 17.5 hours of video. Since no existing methods perform snap point detection,

we define several baselines for comparison:
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• Saliency [123]: uses the CRF-based saliency method of [123] to score an image.

This baseline reflects that people tend to compose images with a salient object in the

center. We use the implementation of [32], and use the CRF’s log probability output

as the snap point confidence.

• Blurriness [29]: uses the blur estimates of [29] to score an image. It reflects that

intentionally taken images tend to lack motion blur. Note, blur is also used as a

feature by our method; here we isolate how much it would solve the task if used on

its own, with no Web prior.

• People likelihood: uses a person detector to rank each frame by how likely it is

to contain one or more people. We use the max output of the DPM [42] detector.

The intuition is people tend to take images of their family and friends to capture

meaningful moments, and as a result, many human-taken images contain people. In

fact, this baseline also implicitly captures how well-composed the image is, since

the DPM is biased to trigger when people are clear and unoccluded in a frame.

• Discriminative SVM: uses a RBF kernel SVM trained with the ground truth snap

points/non-snap points in the Ego data. We run it with a leave-one-camera-wearer-

out protocol, training on 3 of the Ego videos and testing on the 4th. This baseline

lets us analyze the power of the unlabeled Web prior compared to a standard dis-

criminative method. Note, it requires substantially more training effort than our

approach.
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Figure 4.3: Snap point detection precision/recall on the four Ego videos (left) and the
Robot video (right). Numbers in legend denote mAP. Best viewed in color.

4.2.2 Snap Point Accuracy

First, we quantify how accurately our method predicts snap points. Figure 4.3

shows the precision-recall curves for our method and the three unsupervised baselines

(saliency, blurriness, people likelihood). Table 4.1 shows the accuracy in terms of two stan-

dard rank quality metrics, Spearman’s correlation ρ and Kendall’s τ . While the precision-

recall plots compare predictions against the binarized ground truth, these metrics compare

the full orderings of the confidence-valued predictions against the raw MTurk annotators’

ground truth scores (cf. Sec. 4.2.1). They capture that even for two positive intentional

images, one might look better than the other to human judges. We show results for our

method with and without the domain adaptation (DA) step.

Overall, our method outperforms the baselines. Notably, the same prior succeeds

for both the human-worn and robot-worn cameras. Using both the Web prior and DA

gives best results, indicating the value of establishing a domain-invariant feature space to

connect the Web and ego data.

On Ego video 4 (v4), our method is especially strong, about a factor of 2 better
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Methods Ego v1 Ego v2 Ego v3 Ego v4 Robot
rank coefficient ρ τ ρ τ ρ τ ρ τ ρ τ

Blurriness 0.347 0.249 0.136 0.094 0.479 0.334 0.2342 0.162 0.508 0.352
People Likelihood 0.002 0 -0.015 -0.011 0.409 0.289 0.190 0.131 0.198 0.134

Saliency 0.027 0.019 0.008 0.005 0.016 0.011 -0.021 -0.014 -0.086 -0.058
Web Prior (Ours) 0.321 0.223 0.144 0.100 0.504 0.355 0.452 0.317 0.530 0.373

Web Prior+DA (Ours) 0.343 0.239 0.179 0.124 0.501 0.353 0.452 0.318 0.537 0.379

Table 4.1: Snap point ranking accuracy (higher rank correlations are better).

than the nearest competing baseline (Blur). On v2, mAP is very low for all methods, since

v2 has very few true positives (only 3% of its frames, compared to 14% on average for

Ego). Still, we see stronger ranking accuracy with our Web prior and DA. On v3, People

Likelihood fares much better than it does on all other videos, likely because v3 happens

to contain many frames with nice portraits. On the Robot data, however, it breaks down,

likely because of the increased viewpoint irregularity and infrequency of people.

While our method is nearly always better than the baselines, on v1 Blur is similar

in ranking metrics and achieves higher precision for higher recall rates. This is likely

due to v1’s emphasis on scenes with one big object, like a bowl or tablet, as the camera

wearer shops and cooks. The SUN Web prior has less close-up object-centric images; this

suggests we could improve our prior by increasing the coverage of object-centric photos,

e.g., with ImageNet-style photos.

Figure 4.4 shows examples of images among those our method ranks most confi-

dently (top) and least confidently (bottom) as snap points, for both datasets. We see that its

predictions capture the desired effects. Snap points, regardless of their content, do appear

intentional, whereas non-snap points look accidental.

Figure 4.6 (left) examines the effectiveness of each feature we employ, were we to
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Figure 4.4: Frames our method rates as likely (top) or unlikely (bottom) snap points.

take them individually. We see that each one has something to contribute, though they are

best in combination (Fig. 4.3). HOG on Ego is exceptionally strong. This is in spite of the

fact that the exact locations visited by the Ego camera wearers are almost certainly disjoint

from those that happen to be in the Web prior. This indicates the prior is broad enough to

capture the diversity in appearance of everyday environments.

All baselines so far required no labeled images, same as our approach. Next we

compare to a discriminative approach that uses manually labeled frames to train a snap

point classifier. Figure 4.5 shows the results, as a function of the amount of labeled data.

We give the SVM labeled frames from the held-out Ego videos. (We do not run it for

the Robot data, since the only available labels are scene-specific; it’s not possible to run

the leave-one-camera-wearer-out protocol.) Despite learning without any explicit labels,

our method generally outperforms the discriminative SVM. The discriminative approach
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Figure 4.5: Comparison to supervised baseline. SVM’s mAP (legend) uses all labeled
data.
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Figure 4.6: Left: Accuracy per feature if used in isolation. Right: Snap points boost
precision for an off-the-shelf object detector by focusing on frames that look human-taken.

requires thousands of hand-labeled frames to come close to our method’s accuracy in most

cases. This is a good sign: while expanding the Web prior is nearly free, expanding the

labeled data is expensive and tedious. In fact, if anything, Figure 4.5 is an optimistic por-

trayal of the SVM baseline. That’s because both the training and testing data are captured

on the very same camera; in general scenarios, one would not be able to count on this

benefit.

The results above are essential to validate our main idea of snap point detection

with a Web prior. Next we provide proof of concept results to illustrate the utility of snap

points for practical applications.
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4.2.3 Object Detection Application

Today’s object detection systems are trained thoroughly on human-taken images—

for example, using labeled data from PASCAL VOC or ImageNet. This naturally makes

them best suited to run on human-taken images at test time. Our data statistics suggest

only 10% to 15% of egocentric frames may fit this bill. Thus, using the method defined in

Sec. 4.1.5, we aim to use snap points to boost object detection precision.

We collected ground truth person and car bounding boxes for the Ego data via

DrawMe [202]. Since we could not afford to have all 17.5 hours of video labeled, we

sampled the labeled set to cover 50%-50% snap points and non-snap points. We obtained

labels for 1000 and 200 frames for people and cars, respectively (cars are more rare in the

videos).

Figure 4.6 (right) shows the results, using the PASCAL detection criterion. We

see that snap points improve the precision of the standard DPM detector, since they let us

ignore frames where the detector is not trustworthy. Of course, this comes at the cost of

some recall at the tails. This seems like a good trade-off for detection in video, particularly,

since one could anchor object tracks using these confident predictions to make up the

recall.

4.2.4 Keyframe Selection Application

Keyframe or “storyboard” summaries are an appealing way to peruse long ego-

centric video, to quickly get the gist of what was seen. Such summaries enable novel

interfaces to let a user “zoom-in” on time intervals that appear most relevant. As a final

proof-of-concept result, we apply snap points for keyframe selection, using the method
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Figure 4.7: Example keyframe selections for two 4-hour Ego videos. In each example, top
row shows snap point result, bottom shows result using only event segmentation.

defined in Sec. 4.1.5.

Figure 4.7 shows example results on Ego, where the average event length is 30 min.

Keyframe selection requires subjective evaluation; we have no ground truth for quantita-

tive evaluation. We present our results alongside a baseline that uses the exact same event

segmentation as [107] (cf. Sec. 4.1.5), but selects each event’s frame at random instead of

prioritizing snap points. We see the snap point-based summaries contain well-composed

images for each event. The baseline, while seeing the same events, uses haphazard shots

that do not look intentionally taken.

4.3 Summary

In this chapter, I showed how to predict frames that look like intentionally taken

photos from unedited egocentric videos. The main idea is to construct a generative model

of what human-taken photos look like by sampling images posted on the Web. Despite
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learning without any explicit labels, our proposed generative model outperforms discrim-

inative baselines trained with labeled data.

My proposed method does not consider features from a deep neural network [168,

62] pre-trained for ImageNet classification [159]. Augmenting the proposed method with

deep features could potential improve performance. In addition, feature extraction is cur-

rently a computation bottleneck for the proposed method.

While the second component of my thesis addresses the question of which mo-

ments in time constitute the best composed photos, the third component of my thesis ex-

plores which regions in space are most central to a photo or video. In the next chapter, I

consider generic foreground object segmentation problem for images and videos.
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Chapter 5

Pixel Objectness: Learning to Segment Generic Objects in
Images and Videos

1 In this chapter, I introduce a novel approach to automatically segment foreground

objects in images and videos. Identifying key objects is an important intermediate step for

automatic photo composition. It is also a prerequisite in graphics applications like image

retargeting, production video editing, and rotoscoping.

Today there are two main strategies for generic object segmentation in images:

saliency and object proposals. Saliency methods yield either highly localized attention

maps [121, 141, 12] or a complete segmentation of the prominent object [219, 26, 81, 123,

115, 223, 113]. Saliency focuses on regions that stand out, which is not the case for all

foreground objects. Alternatively, object proposal methods learn to localize all objects

in an image, regardless of their category [17, 6, 34, 224, 191, 148, 68]. The aim is to

obtain high recall at the cost of low precision, i.e., they must generate a large number

of proposals (typically 1000s) to cover all objects in an image. This usually involves a

1The work in this chapter was supervised by Prof. Kristen Grauman and originally published in: “Fusion-
Seg: Learning to Combine Motion and Appearance for Fully Automatic Segmentation of Generic Objects
in Video”. Suyog Dutt Jain*, Bo Xiong* and Kristen Grauman (*Both authors contributed equally to this
work). In Proceedings of the IEEE International Conference on Computer Vision, Honolulu, Hawaii, July
2017. An expanded article appeared in “Pixel Objectness: Learning to Segment Generic Objects Automati-
cally in Images and Videos”. Bo Xiong*, Suyog Dutt Jain* and Kristen Grauman (*Both authors contributed
equally to this work). In IEEE Transactions on Pattern Analysis and Machine Intelligence, August 2018.
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multi-stage process: first bottom-up segments are extracted, then they are scored by their

degree of “objectness”. Relying on bottom-up segments can be limiting, since low-level

cues may fail to pull out contiguous regions for complex objects. Furthermore, in practice,

the accompanying scores are not so reliable such that one can rely exclusively on the top

few proposals.

In video object segmentation, motion offers important additional cues for isolat-

ing foreground objects that may be difficult to find in an individual image. Yet existing

methods fall short of leveraging both appearance and motion in a unified manner. On the

one hand, interactive techniques strongly rely on appearance information stemming from

human-drawn outlines on frames in the video, using motion primarily to propagate infor-

mation or enforce temporal consistency [193, 75, 146]. On the other hand, fully automatic

methods strongly rely on motion to seed the segmentation process by locating possible

moving objects. Once a moving object is detected, appearance is primarily used to track

it across frames [109, 144, 37]. Such methods can fail if the object(s) are static or when

there is significant camera motion. In either paradigm, results can suffer because the two

essential cues are treated only in a sequential or disconnected way.

Motivated by these shortcomings, I introduce pixel objectness, a new approach to

generic foreground object segmentation in images and video. Given a novel image or

video frame, the goal is to determine the likelihood that each pixel is part of a foreground

object (as opposed to background or “stuff” classes like grass, sky, sidewalks, etc.)

I first describe my approach for pixel objectness in Section 5.1, and then show

results in Section 5.2. Please see Section 2.5 and 2.6 for prior work related to image

segmentation and video segmentation.
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5.1 Approach

Our goal is to predict the likelihood of each pixel being a generic object as op-

posed to background. As defined in the influential work of [4], a generic object should

have at least one of three properties: 1) a well-defined closed boundary; 2) a different ap-

pearance from their surroundings; 3) sometimes it is unique within the image and stands

out as salient. Examples of generic objects include object classes defined in PASCAL

categories and other object classes similar to PASCAL categories. Building on the termi-

nology from [4], we refer to our task as pixel objectness. We use this name to distinguish

our task from the related problems of salient object detection (which seeks only the most

attention-grabbing foreground object) and region proposals (which seeks a ranked list of

candidate object-like regions).

The proposed approach consists of a two-stream CNN architecture that infers pixel

objectness from appearance and motion. Below we first present the appearance stream

(Sec. 5.1.1), then the motion stream (Sec. 5.1.2), followed by a fusion layer that brings the

two together (Sec. 5.1.3). Pixel objectness is applicable to either images and video. For

images, we have only appearance to analyze, and the motion stream is bypassed.

5.1.1 Appearance Stream

Given an RGB image or video frame I of size m × n × c as input, we formulate

the task of generic object segmentation as densely labeling each pixel as either “object” or

“background”. Thus the output of pixel objectness is a binary map of size m× n.

For an individual image, the main idea is to train the system to predict pixel ob-

jectness using a mix of explicit boundary-level annotations and implicit image-level object

74



category annotations. From the former, the system will obtain direct information about

image cues indicative of generic foreground object boundaries. From the latter, it will

learn object-like features across a wide spectrum of object types—but without being told

where those objects’ boundaries are.

To this end, for the appearance stream we train a fully convolutional deep neural

network for the foreground-background object labeling task. We initialize the network

using a powerful generic image representation learned from millions of images labeled

by their object category, but lacking any foreground annotations. Then, we fine-tune the

network to produce dense binary segmentation maps, using relatively few images with

pixel-level annotations originating from a small number of object categories.

Since the pretrained network is trained to recognize thousands of objects, we hy-

pothesize that its image representation has a strong notion of objectness built inside it,

even though it never observes any segmentation annotations. Meanwhile, by subsequently

training with explicit dense foreground labels, we can steer the method to fine-grained cues

about boundaries that the standard object classification networks have no need to capture.

This way, even if our model is trained with a limited number of object categories hav-

ing pixel-level annotations, we expect it to learn generic representations helpful to pixel

objectness.

Specifically, we adopt a deep network structure [24] originally designed for multi-

class semantic segmentation (see Sec. 5.2 for more implementation details). We initialize

it with weights pre-trained on ImageNet, which provides a representation equipped to per-

form image-level classification for some 1,000 object categories. Next, we take a modestly

sized semantic segmentation dataset, and transform its dense semantic masks into binary
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Figure 5.1: Network structure for our segmentation model. Each convolutional layer ex-
cept the first 7× 7 convolutional layer and our fusion blocks is a residual block [63],
adapted from ResNet-101. We show reduction in resolution at top of each box and the
number of stacked convolutional layers in the bottom of each box. To apply our model to
images, only the appearance stream is used.

object vs. background masks, by fusing together all its 20 categories into a single supercat-

egory (“generic object”). We then train the deep network (initialized for ImageNet object

classification) to perform well on the dense foreground pixel labeling task. The loss is

the sum of cross-entropy terms over each pixel in the output layer. Our model supports

end-to-end training.

5.1.2 Motion Stream

For the case of video segmentation, we have both the frame’s appearance as well as

its motion within the image sequence. Our complete video segmentation architecture con-

sists of a two-stream network in which the appearance stream described thus far operates

in parallel with a motion stream that processes the optical flow image, then joins the two

in a fusion layer (see Fig. 5.1). We next discuss how to train a motion stream to densely

predict pixel objectness from optical flow images only. Sec. 5.1.3 will explain how the two

streams are merged.
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The direct parallel to appearance-based pixel objectness discussed above would

entail training the motion stream to map optical flow maps to video frame foreground

maps. However, an important practical catch to that solution is training data availabil-

ity. While ground truth foreground image segmentations are at least modestly available,

datasets for video object segmentation masks are small-scale in deep learning terms, and

primarily support evaluation. For example, Segtrack-v2 [111], a commonly used bench-

mark dataset for video segmentation, contains only 14 videos with 1066 labeled frames.

DAVIS [145] contains only 50 sequences with 3455 labeled frames. None contain enough

labeled frames to train a deep neural network. Semantic video segmentation datasets like

CamVid [13] or Cityscapes [28] are somewhat larger, yet limited in object diversity due to

a focus on street scenes and vehicles.

A good training source for our task would have ample frames with human-drawn

segmentations on a wide variety of foreground objects, and would show a good mix of

static and moving objects. No such large-scale dataset exists and creating one is non-

trivial.

We propose a solution that leverages readily available image segmentation annota-

tions together with weakly annotated video data to train our model. In brief, we temporar-

ily decouple the two streams of our model, and allow the appearance stream (Sec. 5.1.1)

to hypothesize likely foreground regions in frames of a large video dataset annotated only

by bounding boxes. Since appearance alone need not produce perfect segmentations, we

devise a series of filtering stages to generate high quality estimates of the true foreground.

These instances bootstrap pre-training of the optical flow stream, then the two streams are

joined to learn the best combination from minimal human labeled training videos.
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More specifically, given a video dataset with bounding boxes labeled for each ob-

ject,2 we ignore the category labels and map the boxes alone to each frame. Then, we ap-

ply the appearance stream, thus far trained only from images labeled by their foreground

masks, to compute a binary segmentation for each frame.

Next we deconflict the box and segmentation in each training frame. First, we

refine the binary segmentation by setting all the pixels outside the bounding box(es) as

background. Second, for each bounding box, we check if the the smallest rectangle that

encloses all the foreground pixels overlaps with the bounding box by at least 75%. Oth-

erwise we discard the segmentation. Third, we discard regions where the box contains

more than 95% pixels labeled as foreground, based on the prior that good segmentations

are rarely a rectangle, and thus probably the true foreground spills out beyond the box.

Finally, we eliminate segments where object and background lack distinct optical flow, so

our motion model can learn from the desired cues. Specifically, we compute the frame’s

optical flow using [119] and convert it to an RGB flow image [10]. If the 2-norm between

a) the average value (each color channel is averaged separately) within the bounding box

and b) the average value in a box (share the same center as the bounding box) whose height

and width are twice the original size (ignore the part beyond the flow image) exceeds 30,

the frame and filtered segmentation are added to the training set. See Fig. 5.2 for visual

illustration of these steps.

To recap, bootstrapping from the preliminary appearance model, followed by bound-

ing box pruning, bounding box tests, and the optical flow test, we can generate accurate

2We rely on ImageNet Video data, which contains 3862 videos and 30 diverse objects. See Sec. 5.2.
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Figure 5.2: Procedure to generate (pseudo)-ground truth segmentations. We first apply
the appearance model to obtain initial segmentations (second row, with object segment in
green) and then prune by setting pixels outside bounding boxes as background (third row).
Then we apply the bounding box test (fourth row, yellow bounding box is ground truth and
blue bounding box is the smallest bounding box enclosing the foreground segment) and
optical flow test (fifth row) to determine whether we add the segmentation to the motion
stream’s training set or discard it. Best viewed in color.

per-pixel foreground masks for thousands of diverse moving objects—for which no such

datasets exist to date. Note that by eliminating training samples with these filters, we aim
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to reduce label noise for training. However, at test time our system will be evaluated on

standard benchmarks for which each frame is manually annotated (see Sec. 5.2).

With this data, we now turn to training the motion stream. Analogous to our strong

generic appearance model, we also want to train a strong generic pixel objectness motion

model that can segment foreground objects purely based on motion. Our motion model

takes only optical flow as the input and is trained with automatically generated pixel level

ground truth segmentations. In particular, we convert the raw optical flow to a 3-channel

(RGB) color-coded optical flow image [10]. We use this color-coded optical flow image as

the input to the motion network. We again initialize our network with pre-trained weights

from ImageNet classification [159]. Representing optical flow using RGB flow images

allows us to leverage the strong pre-trained initializations as well as maintain symmetry in

the appearance and motion arms of the network.

An alternative solution might forgo handing the system optical flow, and instead

input two raw consecutive RGB frames. However, doing so would likely demand more

training instances in order to discover the necessary cues. Another alternative would di-

rectly train the joint model that combines both motion and appearance, whereas we first

“pre-train” each stream to make it discover convolutional features that rely on appear-

ance or motion alone, followed by a fusion layer (below). Our design choices are rooted in

avoiding bias in training our model. Since the (pseudo) ground truth comes from the initial

appearance network, training jointly from the onset is liable to bias the network to exploit

appearance at the expense of motion. By feeding the motion model with only optical flow,

we ensure our motion stream learns to segment objects from motion.
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5.1.3 Fusion Model

The final processing in our pipeline joins the outputs of the appearance and motion

streams, and aims to leverage a whole that is greater than the sum of its parts. We now

describe how to train the joint model using both streams.

An object segmentation prediction is reliable if 1) either appearance or motion

model alone predicts the object segmentation with very strong confidence or 2) their com-

bination together predicts the segmentation with high confidence. This motivates the struc-

ture of our joint model.

We implement the idea by creating three independent parallel branches: 1) We

apply a 3×3 convolution layer followed by a ReLU to the output of the appearance model.

2) We apply a 3×3 convolution layer followed by a ReLU to the output of the motion

model. 3) We concatenate the outputs of the appearance and motion models, and apply

a 3×3 convolution layer followed by a ReLU. We sum up the outputs from the three

branches and apply a 3×3 convolution layer to obtain the final prediction. See Fig. 5.1.

As discussed above, we do not fuse the two streams in an early stage because

we want them both to have strong independent predictions. We can then train the fusion

model with very limited annotated video data, without overfitting. In the absence of large

volumes of video segmentation training data, precluding a complete end-to-end training,

our strategy of decoupling the individual streams and training works very well in practice.
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5.2 Results

We first present pixel objectness results on image segmentation (Sec. 5.2.1) and

two applications that benefit from predicting pixel objectness (Sec. 5.2.2). Then we show

results on video segmentation (Sec. 5.2.3).

5.2.1 Results on Image Segmentation

We evaluate pixel objectness by comparing it to 16 recent methods in the literature,

and also examine its utility for the two applications: image retrieval and image retargeting.

Datasets: We use three datasets which are commonly used to evaluate foreground object

segmentation in images:

• MIT Object Discovery: This dataset consists of Airplanes, Cars, and Horses [157].

It is most commonly used to evaluate weakly supervised segmentation methods.

The images were primarily collected using internet search and the dataset comes

with per-pixel ground truth segmentation masks.

• ImageNet-Localization: We conduct a large-scale evaluation of our approach using

ImageNet [159] (∼1M images with bounding boxes, 3,624 classes). The diversity

of this dataset lets us test the generalization abilities of our method.

• ImageNet-Segmentation: This dataset contains 4,276 images from 445 ImageNet

classes with pixel-wise ground truth from [52].

Baselines: We compare to these state-of-the-art methods:
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• Saliency detection: We compare to four salient object detection methods [219, 81,

223, 113], selected for their efficiency and state-of-the-art performance. All these

methods are designed to produce a complete segmentation of the prominent object

(vs. fixation maps; see Sec. 5 of [219]) and output continuous saliency maps, which

are then thresholded by per image mean to obtain the segmentation.3

• Object proposals: We also compare with state-of-the-art region proposal algo-

rithms, multiscale combinatorial grouping (MCG) [6] and DeepMask [148]. These

methods output a ranked list of generic object segmentation proposals. The top

ranked proposal in each image is taken as the final foreground segmentation for

evaluation. We also compare with SalObj [115] which uses saliency to merge mul-

tiple object proposals from MCG into a single foreground.

• Weakly supervised joint-segmentation methods: These approaches rely on addi-

tional weak supervision in the form of prior knowledge that all images in a given

collection share a common object category [157, 25, 84, 85, 95, 182, 74]. Note that

our method lacks this additional supervision.

Evaluation metrics: Depending on the dataset, we use: 1) Jaccard Score: Standard

intersection-over-union (IoU) metric between predicted and ground truth segmentation

masks and 2) BBox-CorLoc Score: Percentage of objects correctly localized with a

bounding box according to PASCAL criterion (i.e IoU > 0.5) used in [182, 31].

For MIT and ImageNet-Segmentation, we use the segmentation masks and eval-

uate using the Jaccard score. For ImageNet-Localization we evaluate with the BBox-

3This thresholding strategy was chosen because it gave the best results.
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CorLoc metric, following the setup from [182, 31], which entails putting a tight bounding

box around our method’s output.

Training details: To generate the explicit boundary-level training data, we rely

on the 1,464 PASCAL 2012 segmentation training images [36] and the additional anno-

tations of [59], for 10,582 total training images. The 20 object labels are discarded and

mapped instead to the single generic “object-like” (foreground) label for training. We train

our model using the Caffe implementation of [24]. We optimize with stochastic gradient

with a mini-batch size of 10 images. A simple data augmentation through mirroring the

input images is also employed. A base learning rate of 0.001 with a 1/10th slow-down

every 2000 iterations is used. We train the network for a total of 10,000 iterations; total

training time was about 8 hours on a modern GPU. We adopt the VGG [168] network

structure for experiments on image segmentation in order to make fair comparison with

DeepSaliency [113], which also adopts the VGG [168] network structure.

MIT Object Discovery: First we present results on the MIT dataset [157]. We do sep-

arate evaluation on the complete dataset and also a subset defined in [157]. We compare

our method with 13 existing state-of-the-art methods including saliency detection [219, 81,

223, 113], object proposal generation [6, 148] plus merging [115] and joint-segmentation [157,

25, 84, 85, 95, 74]. We compare with author-reported results for the joint-segmentation

baselines, and use software provided by the authors for the saliency and object proposal

baselines.

Table 5.1 shows the results. Our proposed method outperforms several state-of-the-

art saliency and object proposal methods—including recent deep learning techniques [223,

113, 148] in three out of six cases, and is competitive with the best performing method in
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Methods MIT dataset (subset) MIT dataset (full)
Airplane Car Horse Airplane Car Horse

# Images 82 89 93 470 1208 810
Joint Segmentation

Joulin et al. [84] 15.36 37.15 30.16 n/a n/a n/a
Joulin et al. [85] 11.72 35.15 29.53 n/a n/a n/a
Kim et al. [95] 7.9 0.04 6.43 n/a n/a n/a

Rubinstein et al. [157] 55.81 64.42 51.65 55.62 63.35 53.88
Chen et al. [25] 54.62 69.2 44.46 60.87 62.74 60.23
Jain et al. [74] 58.65 66.47 53.57 62.27 65.3 55.41

Saliency
Jiang et al. [81] 37.22 55.22 47.02 41.52 54.34 49.67

Zhang et al. [219] 51.84 46.61 39.52 54.09 47.38 44.12
DeepMC [223] 41.75 59.16 39.34 42.84 58.13 41.85

DeepSaliency [113] 69.11 83.48 57.61 69.11 83.48 67.26
Object Proposals

MCG [6] 32.02 54.21 37.85 35.32 52.98 40.44
DeepMask [148] 71.81 67.01 58.80 68.89 65.4 62.61

SalObj [115] 53.91 58.03 47.42 55.31 55.83 49.13
Ours 66.43 85.07 60.85 66.18 84.80 64.90

Table 5.1: Quantitative results on MIT Object Discovery dataset. Our method outper-
forms several state-of-the-art methods for saliency detection, object proposals, and joint
segmentation. (Metric: Jaccard score).

the others.

Our gains over the joint segmentation methods are arguably even more impressive

because our model simply segments a single image at a time—no weak supervision!—and

still substantially outperforms all weakly supervised techniques. We stress that in addi-

tion to the weak supervision in the form of segmenting common object, the previous best

performing method [74] also makes use of a pre-trained deep network; we use strictly

less total supervision than [74] yet still perform better. Furthermore, most joint segmen-
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tation methods involve expensive steps such as dense correspondences [157] or region

matching [74] which can take up to hours even for a modest collection of 100 images. In

contrast, our method directly outputs the final segmentation in a single forward pass over

the network and takes only 0.6 seconds per image for complete processing.

ImageNet-Localization: Next we present results on the ImageNet-Localization dataset.

This involves testing our method on about 1 million images from 3,624 object categories.

This also lets us test how generalizable our method is to unseen categories, i.e., those for

which the method sees no foreground examples during training.

Table 5.2 (left) shows the results. When doing the evaluation over all categories,

we compare our method with five methods which report results on this dataset [4, 182,

74] or are scalable enough to be run at this large scale [81, 6]. We see that our method

significantly improves the state-of-the-art. The saliency and proposal methods [81, 4, 6]

result in much poorer segmentations. Our method also significantly outperforms the joint

segmentation approaches [182, 74], which are the current best performing methods on

this dataset. In terms of the actual number of images, our gains translate into correctly

segmenting 42,900 more images than [74] (which, like us, leverages ImageNet features)

and 83,800 more images than [182]. This reflects the overall magnitude of our gains over

state-of-the-art baselines.

Does our learned segmentation model only recognize foreground objects that it has

seen during training, or can it generalize to unseen object categories? Intuitively, ImageNet

has such a large number of diverse categories that this gain would not have been possible

if our method was only over-fitting to the 20 seen PASCAL categories. To empirically
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ImageNet-Localization dataset
All Non-Pascal

# Classes 3,624 3,149
# Images 939,516 810,219

Alexe et al. [4] 37.42 n/a
Tang et al. [182] 53.20 n/a
Jain et al. [74] 57.64 n/a

Jiang et al. [81] 41.28 39.35
MCG [6] 42.23 41.15

Ours 62.12 60.18

ImageNet-Segmentation dataset
Jiang et al. [81] 43.16

Zhang et al. [219] 45.07
DeepMC [223] 40.23

DeepSaliency [113] 62.12
MCG [6] 39.97

DeepMask [148] 58.69
SalObj [115] 41.35

Guillaumin et al. [52] 57.3
Ours 64.22

Table 5.2: Quantitative results on ImageNet localization and segmentation datasets. Re-
sults on ImageNet-Localization (left) show that the proposed model outperforms several
state-of-the-art methods and also generalizes very well to unseen object categories (Metric:
BBox-CorLoc). It also outperforms all methods on the ImageNet-Segmentation dataset
(right) showing that it produces high-quality object boundaries (Metric: Jaccard score).

verify this intuition, we next exclude those ImageNet categories which are directly related

to the PASCAL objects, by matching the two datasets’ synsets. This results in a total of

3,149 categories which are exclusive to ImageNet (“Non-PASCAL”). See Table 5.2 (left)

for the data statistics.

We see only a very marginal drop in performance; our method still significantly

outperforms both the saliency and object proposal baselines. This is an important re-

sult, because during training the segmentation model never saw any dense object masks

for images in these categories. Bootstrapping from the pretrained weights of the VGG-

classification network, our model is able to learn a transformation between its prior belief

on what looks like an object to complete dense foreground segmentations.

ImageNet-Segmentation: Finally, we measure the pixel-wise segmentation quality on
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ImageNet Examples from Pascal Categories

ImageNet Examples from Non-Pascal Categories (unseen)

Failure cases

Figure 5.3: Qualitative results: We show qualitative results on images belonging to PAS-
CAL (top) and Non-PASCAL (middle) categories. Our segmentation model generalizes
remarkably well even to those categories which were unseen in any foreground mask dur-
ing training (middle rows). Typical failure cases (bottom) involve scene-centric images
where it is not easy to clearly identify foreground objects (best viewed on pdf).

a large scale. For this we use the ground truth masks provided by [52] for 4,276 images

from 445 ImageNet categories. The current best reported results are from the segmentation

propagation approach of [52]. We found that DeepSaliency [113] and DeepMask [148]

further improve it. Note that like us, DeepSaliency [113] also trains with PASCAL [36].

DeepMask [148] is trained with a much larger COCO [117] dataset. Our method out-

performs all methods, significantly improving the state-of-the-art (see Table 5.2 (right)).

This shows that our method not only generalizes to thousands of object categories but also

produces high quality object segmentations.
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Qualitative results: Fig. 5.3 shows qualitative results for ImageNet from both PASCAL

and Non-PASCAL categories. Pixel objectness accurately segments foreground objects

from both sets. The examples from the Non-PASCAL categories highlight its strong gen-

eralization capabilities. We are able to segment objects across scales and appearance vari-

ations, including multiple objects in an image. It can segment even man-made objects,

which are especially distinct from the objects in PASCAL. The bottom row shows failure

cases. Our model has more difficulty in segmenting scene-centric images where it is more

difficult to clearly identify foreground objects.

5.2.2 Impact on Downstream Applications

Next we report results leveraging pixel objectness for two downstream tasks on

images. Dense pixel objectness has many applications. Here we explore how it can assist

in image retrieval and content-aware image retargeting, both of which demand a single,

high-quality estimate of the foreground object region.

Object-aware image retrieval: First, we consider how pixel objectness foregrounds can

assist in image retrieval. A retrieval system accepts a query image containing an object,

and then the system returns a ranked list of images that contain the same object. This is a

valuable application, for example, to allow object-based online product search. Typically

retrieval systems extract image features from the entire query image. This can be prob-

lematic, however, because it might retrieve images with similar background, especially

when the object of interest is small. We aim to use pixel objectness to restrict the system’s

attention to the foreground object(s) as opposed to the entire image.

To implement the idea, we first run pixel objectness. In order to reduce false pos-
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itive segmentations, we keep the largest connected foreground region if it is larger than

6% of the overall image area. Then we crop the smallest bounding box enclosing the fore-

ground segmentation and extract features from the entire bounding box. If no foreground

is found (which occurs in roughly 17% of all images), we extract image features from

the entire image. The method is applied to both the query and database images. To rank

database images, we explore two image representations. The first one uses only the image

features extracted from the bounding box, and the second concatenates the features from

the original image with those from the bounding box.

To test the retrieval task, we use the ILSVRC2012 [159] validation set, which

contains 50K images and 1, 000 object classes, with 50 images per class. As an evaluation

metric, we use mean average precision (mAP). We extract VGGNet [168] features and

use cosine distance to rank retrieved images. We compare with two baselines 1) Full

image, which ranks images based on features extracted from the entire image, and 2)

Top proposal (TP), which ranks images based on features extracted from the top ranked

MCG [6] proposal. For our method and the Top proposal baseline, we examine two image

representations. The first directly uses the features extracted from the region containing

the foreground or the top proposal (denoted FG). The second representation concatenates

the extracted features with the image features extracted from the entire image (denoted

FF).

Table 5.3 shows the results. Our method with FF yields the best results. Our

method outperforms both baselines for many ImageNet classes. We observe that our

method performs extremely well on object-centric classes such as animals, but has lim-

ited improvement upon the baseline on scene-centric classes (lakeshore, seashore etc.). To
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Method Ours(FF) Ours(FG) Full Img TP (FF) [6] TP (FG) [6]
All 0.3342 0.3173 0.3082 0.3102 0.2092

Obj-centric 0.4166 0.4106 0.3695 0.3734 0.2679

Table 5.3: Object-based image retrieval performance on ImageNet. We report average
precision on the entire validation set, and on the first 400 categories, which are mostly
object-centric classes.

verify our hypothesis, we isolate the results on the first 400 object classes of ImageNet,

which contain mostly object-centric classes, as opposed to scene-centric objects. On those

first 400 object classes, our method outperforms both baselines by a larger margin. This

demonstrates the value of our method at retrieving objects, which often contain diverse

background and so naturally benefit more from accurate pixel objectness.

Foreground-aware image retargeting: As a second application, we explore how pixel

objectness can enhance image retargeting. The goal is to adjust the aspect ratio or size

of an image without distorting its important visual concepts. We build on the popular

Seam Carving algorithm [7], which eliminates the optimal irregularly shaped path, called

a seam, from the image via dynamic programming. In [7], the energy is defined in terms

of the image gradient magnitude. However, the gradient is not always a sufficient energy

function, especially when important visual content is non-textured or the background is

textured.

Our idea is to protect semantically important visual content based on foreground

segmentation. To this end, we consider a simple adaption of Seam Carving. We define an

energy function based on high-level semantics rather than low-level image features alone.

Specifically, we first predict pixel objectness, and then we scale the gradient energy g
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Figure 5.4: Leveraging pixel objectness for foreground aware image retargeting. Best
viewed on pdf.

within the foreground segment(s) by (g + 1)× 2.

We use a random subset of 500 images from the 2014 Microsoft COCO Caption-

ing Challenge Testing Images [117] for experiments. Figure 5.4 shows example results.

For reference, we also compare with the original Seam Carving (SC) algorithm [7] that

uses image gradients as the energy function. Both methods are instructed to resize the

source image to various aspect ratios. Thanks to the proposed foreground segmentation,

our method successfully preserves the important visual content (e.g., train, bus, human and

dog) while reducing the content of the background. The baseline produces images with

important objects distorted, because gradient strength is an inadequate indicator for per-

ceived content, especially when background is textured. The rightmost column is a failure

case for our method on a scene-centric image that does not contain any salient objects.

To quantify the results over all 500 images, we perform a human study on Amazon

Mechanical Turk. Both methods are instructed to resize the source image to 2/3 of its
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original size. We present image pairs produced by our method and the baseline in arbitrary

order and ask workers to rank which image is more likely to have been manipulated by

a computer. Each image pair is evaluated by three different workers. Workers found

that 38.53% of the time images produced by our method are more likely to have been

manipulated by a computer, 48.87% for the baseline; both methods tie 12.60% of the time.

Thus, human evaluation with non-experts demonstrates that our method outperforms the

baseline. In addition, we also ask a vision expert familiar with image retargeting—but not

involved in this project—to score the 500 image pairs with the same interface as the crowd

workers. The vision expert found our method performs better for 78% of the images,

baseline is better for 13%, and both methods tie for 9% images. This further confirms that

our foreground prediction can enhance image retargeting by defining a more semantically

meaningful energy function.

5.2.3 Results on Video Segmentation

Pixel objectness can predict high quality object segmentations and generalize very

well to thousands of unseen object categories for image segmentation. We next show,

when jointly trained with motion, our method also improves the state-of-the-art results for

automatically segmenting generic objects in videos (please see our project home for video

results at: http://vision.cs.utexas.edu/projects/fusionseg/).

Datasets and metrics: We evaluate our method on three challenging video object segmen-

tation datasets: DAVIS [145], YouTube-Objects [151, 75, 183] and Segtrack-v2 [111]. To

measure accuracy we again use the standard Jaccard score. The three datasets are:
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• DAVIS [145]: the latest and most challenging video object segmentation benchmark

consisting of 50 high quality video sequences of diverse object categories with 3, 455

densely annotated, pixel-accurate frames. The videos are unconstrained in nature

and contain challenges such as occlusions, motion blur, and appearance changes.

Only the prominent moving objects are annotated in the ground-truth.

• YouTube-Objects [151, 75, 183]: consists of 126 challenging web videos from 10

object categories with more than 20,000 frames and is commonly used for evaluating

video object segmentation. We use the subset defined in [183] and the ground truth

provided by [75] for evaluation.

• SegTrack-v2 [111]: one of the most common benchmarks for video object segmen-

tation consisting of 14 videos with a total of 1, 066 frames with pixel-level annota-

tions. For videos with multiple objects with individual ground-truth segmentations,

we treat them as a single foreground for evaluation.

Semi-supervised methods: Semi-supervised methods bring a human in the loop. They

have some knowledge about the object of interest which is exploited to obtain the segmen-

tation (e.g., a manually annotated first frame). We compare with the following state-of-

the-art methods: HVS [51], HBT [47], FCP [146], IVID [163], HOP [75], and BVS [134].

The methods require different amounts of human annotation to operate, e.g. HOP, BVS,

and FCP make use of manual complete object segmentation in the first frame to seed the

method; HBT requests a bounding box around the object of interest in the first frame; HVS,

IVID require a human to constantly guide the algorithm whenever it fails. We also com-

pare with three semi-supervised video segmentation based on deep learning: VPN [78],
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MSK [89] and OSVOS [14].

Baselines: We compare with several state-of-the-art methods for each dataset as reported

in the literature. Here we group them together based on whether they can operate in a fully

automatic fashion (automatic) or require a human in the loop (semi-supervised) to do the

segmentation:

• Automatic methods: Automatic video segmentation methods do not require any

human involvement to segment new videos. Depending on the dataset, we com-

pare with the following state of the art methods: FST [144], KEY [109], NLC [37],

COSEG [190], MPN [185], and ARP [99]. All use some form of unsupervised mo-

tion or objectness cues to identify foreground objects followed by post-processing

to obtain space-time object segmentations.

• Semi-supervised methods: Semi-supervised methods bring a human in the loop.

They have some knowledge about the object of interest which is exploited to ob-

tain the segmentation (e.g., a manually annotated first frame). We compare with the

following state-of-the-art methods: HVS [51], HBT [47], FCP [146], IVID [163],

HOP [75], and BVS [134]. The methods require different amounts of human an-

notation to operate, e.g. HOP, BVS, and FCP make use of manual complete ob-

ject segmentation in the first frame to seed the method; HBT requests a bounding

box around the object of interest in the first frame; HVS, IVID require a human to

constantly guide the algorithm whenever it fails. We also compare with three semi-

supervised video segmentation based on deep learning: VPN [78], MSK [89] and

OSVOS [14].
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Note that our method requires human annotated data only during training. At test time it

operates in a fully automatic fashion. Thus, given a new video, we require equal effort as

the automatic methods, and less effort than the semi-supervised methods.

Apart from these comparisons, we also examine some natural baselines and vari-

ants of our method:

• Flow-thresholding (Flow-T): To examine the effectiveness of motion alone in seg-

menting objects, we adaptively threshold the optical flow in each frame using the

flow magnitude. Specifically, we compute the mean and standard deviation from the

L2 norm of flow magnitude and use “mean+unit std.” as the threshold.

• Flow-saliency (Flow-S): Optical flow magnitudes can have large variances, hence

we also try a variant which normalizes the flow by applying a saliency detection

method [82] to the flow image itself. We use average thresholding to obtain the

segmentation.

• Probabilistic model for flow (PM) [11]: We compare with a prior method that uses

a probabilistic model [11] to segment objects relying on motion cues only.

• Appearance model (Ours-A): To quantify the role of appearance in segmenting

objects, we obtain segmentations using only the appearance stream of our model.

• Motion model (Ours-M): To quantify the role of motion, we obtain segmentations

using only the motion stream of our model.

• Joint model (Ours-J): Our complete joint model that learns to combine both motion

and appearance together to obtain the final object segmentation.
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Implementation details: As weak bounding box video annotations, we use the ImageNet-

Video dataset [159]. This dataset comes with a total of 3,862 training videos from 30 object

categories with 866,870 labeled object bounding boxes from over a million frames. Post

refinement using our ground truth generation procedure (see Sec. 5.1.2), we are left with

84,929 frames with good pixel segmentations4 which are then used to train our motion

model. For training the joint model we use a held-out set for each dataset. We train

each stream for a total of 20,000 iterations, use “poly” learning rate policy (power = 0.9)

with momentum (0.9) and weight decay (0.0005). No post-processing is applied on the

segmentations obtained from our networks.

Quality of training data: To ascertain that the quality of training data we automatically

generate for training our motion stream is good, we first compare it with a small amount

of human annotated ground truth. We randomly select 100 frames that passed both the

bounding box and optical flow tests, and collect human-drawn segmentations on Amazon

MTurk. We first present crowd workers a frame with a bounding box labeled for each

object, and then ask them to draw the detailed segmentation for all objects within the

bounding boxes. Each frame is labeled by three crowd workers and the final segmentation

is obtained by majority vote on each pixel. The results indicate that our strategy to gather

pseudo-ground truth is effective. On the 100 labeled frames, Jaccard overlap with the

human-drawn ground truth is 77.8 (and 70.2 before pruning with bounding boxes).

Quantitative evaluation: We now present the quantitative comparisons of our method

with several state-of-the-art methods and baselines, for each of the three datasets in turn.

4Available for download on our project website.
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DAVIS dataset (50 videos)

Methods Human in the loop? Avg. IoU (%)
Flow-T No 42.95
Flow-S No 30.22
PM [11] No 43.4

FST [144] No 57.5
KEY [109] No 56.9
NLC [37] No 64.1

MPN [185] No 69.7
ARP [99] No 76.3

HVS [51] Yes 59.6
FCP [146] Yes 63.1
BVS [134] Yes 66.5
VPN [78] Yes 75
MSK [89] Yes 80.3

Ours-A No 64.69
Ours-M No 60.18
Ours-J No 72.82

Table 5.4: Video object segmentation results on DAVIS dataset. We show the average
accuracy over all 50 videos. Our method outperforms 5 of the 6 fully automatic state-of-
the-art methods. The best performing methods grouped by whether they require human-
in-the-loop or not during segmentation are highlighted in bold. Metric: Jaccard score,
higher is better.

DAVIS dataset: Table 5.4 shows the results, with baselines that are the best perform-

ing methods taken from the benchmark results [145]. Our method achieves the second

best performance among all the fully automatic methods. The best performing method

ARP [99], proposed concurrently with our method, segments objects with an iterative

augmentation and reduction process. Our method is significantly better than simple flow

baselines. This supports our claim that even though motion contains a strong signal about

foreground objects in videos, it is not straightforward to simply threshold optical flow and
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obtain those segmentations. A data-driven approach that learns to identify motion patterns

indicative of objects as opposed to backgrounds or camera motion is required.

The appearance and motion variants of our method themselves result in a very good

performance. The performance of the motion variant is particularly exciting, knowing that

it has no information about the object’s appearance and purely relies on the flow signal.

When combined together, the joint model results in a significant improvement, with an

absolute gain of up to 11% over the individual streams.

Our method is significantly better than 5 of the 6 fully automatic methods, which

typically rely on motion alone to identify foreground objects. This illustrates the bene-

fits of a unified combination of both motion and appearance. Our method also signifi-

cantly outperforms several semi-supervised techniques, which require substantial human

annotation on every video they process. The state-of-the-art human-in-the-loop algorithm

MSK [89] achieves better performance than ours. However, their method requires the first

frame of the video to be manually segmented, whereas our method uses no human input.
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YouTube-Objects dataset (126 videos)

Methods Flow-T Flow-S PM [11] FST [144] COSEG [190] HBT [47] HOP [75] IVID [163] OSVOS [14] Ours-A Ours-M Ours-J
Human? No No No No No Yes Yes Yes Yes No No No

airplane (6) 18.27 33.32 25.83 70.9 69.3 73.6 86.27 89 88.2 83.38 59.38 83.09
bird (6) 31.63 33.74 26.27 70.6 76 56.1 81.04 81.6 85.7 60.89 64.06 63.01

boat (15) 4.35 22.59 12.54 42.5 53.5 57.8 68.59 74.2 77.5 72.62 40.21 72.70
car (7) 21.93 48.63 37.90 65.2 70.4 33.9 69.36 70.9 79.6 74.50 61.32 75.49
cat (16) 19.9 32.33 30.01 52.1 66.8 30.5 58.89 67.7 70.8 67.99 49.16 67.75
cow (20) 16.56 29.11 35.31 44.5 49 41.8 68.56 79.1 77.8 69.63 39.38 70.30
dog (27) 17.8 25.43 36.4 65.3 47.5 36.8 61.78 70.3 81.3 69.10 54.79 67.64

horse (14) 12.23 24.17 28.09 53.5 55.7 44.3 53.96 67.8 72.8 62.79 39.96 65.05
mbike (10) 12.99 17.06 24.08 44.2 39.5 48.9 60.87 61.5 73.5 61.92 42.95 62.22

train (5) 18.16 24.21 23.62 29.6 53.4 39.2 66.33 78.2 75.7 62.82 43.13 62.30
Avg. IoU (%) 17.38 29.05 28.01 53.84 58.11 46.29 67.56 74.03 78.3 68.57 49.43 68.95

Table 5.5: Video object segmentation results on YouTube-Objects dataset. We show the average performance for each of the 10 categories from the
dataset. The final row shows an average over all the videos. Our method outperforms all other unsupervised methods, and half of those that require
human annotation during segmentation. The best performing methods grouped by whether they require human-in-the-loop or not during segmentation are
highlighted in bold. Metric: Jaccard score, higher is better.
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SegTrack-v2 dataset (14 videos)

Methods Human in the loop? Avg. IoU (%)

Flow-T No 37.77
Flow-S No 27.04
PM [11] No 33.5

FST [144] No 53.5
KEY [109] No 57.3
NLC [37] No 80*

HBT [47] Yes 41.3
HVS [51] Yes 50.8
MSK [89] Yes 67.4

Ours-A No 56.88
Ours-M No 53.04
Ours-J No 64.44

Table 5.6: Video object segmentation results on SegTrack-v2. We show the average accu-
racy over all 14 videos. Our method outperforms most state-of-the-art methods, including
the ones which actually require human annotation during segmentation. The best perform-
ing methods grouped by whether they require human-in-the-loop or not during segmenta-
tion are highlighted in bold. ∗For NLC results are averaged over 12 videos as reported in
their paper [37], whereas all other methods are tested on all 14 videos. Metric: Jaccard
score, higher is better.

YouTube-Objects dataset: In Table 5.5 we see a similarly strong result on the YouTube-
Objects dataset. Our method again outperforms the flow baselines and all the automatic
methods by a significant margin. The publicly available code for NLC [37] runs suc-
cessfully only on 9% of the YouTube dataset (1725 frames); on those, its Jaccard score
is 43.64%. Our proposed model outperforms it by a significant margin of 25%. Even
among human-in-the-loop methods, we outperform all methods except IVID [163] and
OSVOS [14]. However, both methods [163, 14] require manual annotations. In particu-
lar, IVID [163] requires a human to consistently track the segmentation performance and
correct whatever mistakes the algorithm makes. This can take up to minutes of annota-
tion time for each video. Our method uses zero human involvement but still performs
competitively.

Segtrack-v2 dataset: In Table 5.6, our method outperforms all automatic methods except
NLC [37] on Segtrack. While our approach significantly outperforms NLC [37] on the
DAVIS dataset, NLC is exceptionally strong on this dataset. Our relatively weaker perfor-
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Appearance model (Ours-A)

Motion model (Ours-M)

Joint model (Ours-J)

Optical Flow Image

Figure 5.5: We show examples from our appearance, motion, and joint models along with
the flow image which was used as an input to the motion network (best viewed on pdf and
see text for the discussion). Videos of our segmentation results are available on the project
website.

mance could be due to the low quality and resolution of the Segtrack-v2 videos, making
it hard for our network based model to process them. Nonetheless, our joint model still
provides a significant boost over both our appearance and motion models, showing it again
realizes the true synergy of motion and appearance.

Qualitative evaluation: Fig. 5.5 shows qualitative results. We show visual comparisons
between different components of our method including the appearance, motion, and joint
models. We also show the optical flow image that was used as an input to the motion
stream. These images help reveal the complexity of learned motion signals. In the bear
example, the flow is most salient only on the bear’s head, still our motion stream alone
is able to segment the bear completely. The boat, car, and sail examples show that even
when the flow is noisy—including strong flow on the background—our motion model is
able to learn about object shapes and successfully suppresses the background. The rhino
and train examples show cases where the appearance model fails but when combined with
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the motion stream, the joint model produces accurate segmentations.

5.3 Summary
In this chapter, I introduced a novel approach to automatically segment foreground

objects in both images and videos. Through experiments on multiple challenging im-
age and video segmentation benchmarks, the proposed method offers consistently strong
results and improves the state-of-the-art results for fully automatic segmentation of fore-
ground objects.

The proposed motion stream works well for segmenting salient moving objects.
However, the performance suffers if the optical flow estimation is inaccuracy. In addition,
my proposed solution for foreground segmentation in videos does not consider temporal
consistency, which could be potentially addressed with a memory-based network to further
improve performance.

In the next chapter, I address how to predict viewing angles to enhance photo
composition with the proposed foreground segmentation method.
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Chapter 6

Snap Angle Prediction for 360◦ Panoramas

1 Building on the proposed foreground segmentation method presented in Chap-

ter 5, I address how to predict snap angles to enhance photo composition after identifying

those foreground objects in this chapter. Specifically, I consider snap angle prediction for

360◦ panoramas, which are a rich medium, yet notoriously difficult to visualize in the 2D

image plane.

The goal of snap angle prediction is to find the best rotation angle of the cube

that will yield a set of cube faces that, among all possible rotations, most look like nicely

composed human-taken photos originating from the given 360◦ panoramic image. While

what comprises a “well-composed photo” is itself the subject of active research [100, 71,

204, 54, 92], I concentrate on a high-level measure of good composition, where the goal

is to consolidate each (automatically detected) foreground object within the bounds of one

cubemap face.

I concentrate on the cubemap projection [50]. Recall that a cubemap maps the

sphere to a cube with rectilinear projection (where each face captures a 90◦ FOV) and then

unfolds the six faces of the cube. The unwrapped cube can be visualized as an unfolded

1The work in this chapter was supervised by Prof. Kristen Grauman and originally published in: “Snap
angle prediction for 360 panoramas ”. Bo Xiong and Kristen Grauman. In Proceedings of the European
Conference on Computer Vision, Munich, Germany, September 2018.
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box, with the lateral strip of four faces being spatially contiguous in the scene (see Fig. 6.1,

bottom). We explore our idea with cubemaps for a couple reasons. First, a cubemap covers

the entire 360◦ content and does not discard any information. Secondly, each cube face

is very similar to a conventional FOV, and therefore relatively easy for a human to view

and/or edit.

I explore how intelligent rotations of a spherical image may enable content-aware

projection with fewer perceptible distortions. Whereas existing approaches assume the

viewpoint is fixed [97, 164, 21], intuitively some viewing angles within the sphere pre-

serve high-level objects better than others. To discover the relationship between these op-

timal snap angles and the spherical panorama’s content, I develop a reinforcement learning

approach for the cubemap projection model.

I first describe our approach for predicting snap angles in Section 6.1, and then

show results in Section 6.2. Please see Section 2.7 for prior work on viewing wide-angle

images and panoramas and Section 2.8 on recurrent networks for attention, which moti-

vates our proposed method for snap angle prediction.

6.1 Approach

I first formalize snap angle prediction as an optimization problem (Sec. 6.1.1).

Then I present the learning framework and network architecture for snap angle prediction

(Sec. 6.1.2).
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Default cubemap

Snap angle prediction
  A                       B                        C                         D

  A                       B                        C                         D

Figure 6.1: Comparison of a cubemap before and after snap angle prediction (dotted lines
separate each face). Unlike prior work that assumes a fixed angle for projection, I propose
to predict the cube rotation that will best preserve foreground objects in the output. For
example, here my method better preserves the truck (third picture C in the second row).
We show four (front, right, left, and back) out of the six faces for visualization purposes.
Best viewed in color or pdf.

6.1.1 Problem Formulation

We first formalize snap angle prediction as an optimization problem. Let P (I, θ)

denote a projection function that takes a panorama image I and a projection angle θ as

input and outputs a cubemap after rotating the sphere (or equivalently the cube) by θ. Let

function F be an objective function that takes a cubemap as input and outputs a score

to measure the quality of the cubemap. Given a novel panorama image I , our goal is to

minimize F by predicting the snap angle θ∗:

θ∗ =θ F (P (I, θ)). (6.1)

The projection function P first transforms the coordinates of each point in the panorama

based on the snap angle θ and then produces a cubemap in the standard manner.
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Views from a horizontal camera position (elevation 0◦) are more informative than

others due to human recording bias. The bottom and top cube faces often align with the

sky (above) and ground (below); “stuff” regions like sky, ceiling, and floor are thus com-

mon in these faces and foreground objects are minimal. Therefore, rotations in azimuth

tend to have greater influence on the disruption caused by cubemap edges. Hence, with-

out loss of generality, we focus on snap angles in azimuth only, and jointly optimize the

front/left/right/back faces of the cube.

The coordinates for each point in a panorama can be represented by a pair of lati-

tude and longitude (λ, ϕ). Let L denote a coordinate transformation function that takes the

snap angle θ and a pair of coordinates as input. We define the coordinate transformation

function L as:

L((λ, ϕ), θ) = (λ, ϕ− θ). (6.2)

Note when the snap angle is 90◦, the orientation of the cube is the same as the default cube

except the order of front, back, right, and left is changed. We therefore restrict θ ∈ [0, π/2].

We discretize the space of candidate angles for θ into a uniform N = 20 azimuths grid,

which we found offers fine enough camera control.

We next discuss our choice of the objective function F . A cubemap in its default

orientation has two disadvantages: 1) It does not guarantee to project each important ob-

ject onto the same cube face; 2) Due to the nature of the perspective projection, objects

projected onto cube boundaries will be distorted more than objects in the center. Motivated

by these shortcomings, our goal is to produce cubemaps that place each important object

in a single face and avoid placing objects at the cube boundaries/edges.
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Figure 6.2: We show the rotator (left), our model (middle), and a series of cubemaps
produced by our sequential predictions (right). Our method iteratively refines the best
snap angle, targeting a given budget of allowed computation.

In particular, we propose to minimize the area of foreground objects near or on

cube boundaries. Supposing each pixel in a cube face is labeled as either object or back-

ground, our objective F measures the fraction of pixels that are labeled as foreground near

cube boundaries. A pixel is near cube boundaries if it is less than A% of the cube length

away from the left, right, or top boundary. We do not penalize objects near the bottom

boundary since it is common to place objects near the bottom boundary in photography

(e.g., potraits).

To infer which pixels belong to the foreground, we use “pixel objectness”, pre-

sented in Chapter 5. While other foreground methods are feasible (e.g., [225, 18, 83, 147,

125]), we choose pixel objectness due to its accuracy in detecting foreground objects of

any category, as well as its ability to produce a single pixel-wise foreground map which

can contain multiple objects. Figure 6.3 shows example pixel objectness foreground maps
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 Cubemap

Pixel objectness map

Pixel objectness map

 Cubemap

Figure 6.3: Pixel objectness (see Chapter 5) foreground map examples. White pixels
in the pixel objectness map indicate foreground. Our approach learns to find cubemap
orientations where the foreground objects are not disrupted by cube edges, i.e., each object
falls largely within one face.

on cube faces. We apply pixel objectness to a given projected cubemap to obtain its pixel

objectness score. In conjunction, other measurements for photo quality, such as interest-

ingness [54], memorability [71], or aesthetics [32], could be employed within F .

6.1.2 Learning to Predict Snap Angles

On the one hand, a direct regression solution would attempt to infer θ∗ directly

from I . However, this is problematic because good snap angles can be multi-modal, avail-

able at multiple directions in the sphere, and thus poorly suited for regression. On the other

hand, a brute force solution would require projecting the panorama to a cubemap and then

evaluating F for every possible projection angle θ, which is costly.
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We instead address snap angle prediction with reinforcement learning. The task

is a time-budgeted sequential decision process—an iterative adjustment of the (virtual)

camera rotation that homes in on the least distorting viewpoint for cubemap projection.

Actions are cube rotations and rewards are improvements to the pixel objectness score

F . Loosely speaking, this is reminiscent of how people take photos with a coarse-to-

fine refinement towards the desired composition. However, unlike a naive coarse-to-fine

search, our approach learns to trigger different search strategies depending on what is

observed, as we will demonstrate in results.

Specifically, let T represent the budget given to our system, indicating the number

of rotations it may attempt. We maintain a history of the model’s previous predictions. At

each time step t, our framework takes a relative snap prediction st (for example, st could

signal to update the azimuth by 45◦) and updates its previous snap angle θt = θt−1 + st.

Then, based on its current observation, our system makes a prediction pt, which is used

to update the snap angle in the next time step. That is, we have st+1 = pt. Finally, we

choose the snap angle with the lowest pixel objectness objective score from the history as

our final prediction θ̂:

θ̂ =θt=θ1,...,θT F (P (I, θt)). (6.3)

To further improve efficiency, one could compute pixel objectness once on a cylin-

drical panorama rather than recompute it for every cubemap rotation, and then proceed

with the iterative rotation predictions above unchanged. However, learned foreground de-

tectors [77, 83, 18, 147, 125] are trained on Web images in rectilinear projection, and
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so their accuracy can degrade with different distortions. Thus we simply recompute the

foreground for each cubemap reprojection. See Sec. 6.2.1 for run-times.

Network We implement our reinforcement learning task within deep recurrent and con-

volutional neural networks. Our framework consists of four modules: a rotator, a feature

extractor, an aggregator, and a snap angle predictor. At each time step, it processes the

data and produces a cubemap (rotator), extracts learned features (feature extractor), inte-

grates information over time (aggregator), and predicts the next snap angle (snap angle

predictor).

At each time step t, the rotator takes as input a panorama I in equirectangular

projection and a relative snap angle prediction st = pt−1, which is the prediction from

the previous time step. The rotator updates its current snap angle prediction with θt =

θt−1 + st. We set θ1 = 0 initially. Then the rotator applies the projection function P to I

based on θt with Eq 6.2 to produce a cubemap. Since our objective is to minimize the total

amount of foreground straddling cube face boundaries, it is more efficient for our model

to learn directly from the pixel objectness map than from raw pixels. Therefore, we apply

pixel objectness [77] to each of the four lateral cube faces to obtain a binary objectness

map per face. The rotator has the form: IW×H×3 × Θ → BWc×Wc×4, where W and H are

the width and height of the input panorama in equirectangular projection and Wc denotes

the side length of a cube face. The rotator does not have any learnable parameters since it

is used to preprocess the input data.

At each time step t, the feature extractor then applies a sequence of convolutions

to the output of the rotator to produce a feature vector ft, which is then fed into the aggre-
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gator to produce an aggregate feature vector at = A(f1, ..., ft) over time. Our aggregator

is a recurrent neural network (RNN), which also maintains its own hidden state.

Finally, the snap angle predictor takes the aggregate feature vector as input, and

produces a relative snap angle prediction pt. In the next time step t + 1, the relative

snap angle prediction is fed into the rotator to produce a new cubemap. The snap angle

predictor contains two fully connected layers, each followed by a ReLU, and then the

output is fed into a softmax function for the N azimuth candidates. The N candidates here

are relative, and range from decreasing azimuth by N
2

to increasing azimuth by N
2

. The

snap angle predictor first produces a multinomial probability density function π(pt) over

all candidate relative snap angles, then it samples one snap angle prediction proportional

to the probability density function. See Figure 6.2 for an overview of the network. for all

architecture details.

Training The parameters of our model consist of parameters of the feature extractor,

aggregator, and snap angle predictor: w = {wf , wa, wp}. We learn them to maximize

the total reward (defined below) our model can expect when predicting snap angles. The

snap angle predictor contains stochastic units and therefore cannot be trained with the

standard backpropagation method. We therefore use REINFORCE [198]. Let π(pt|I, w)

denote the parameterized policy, which is a pdf over all possible snap angle predictions.

REINFORCE iteratively increases weights in the pdf π(pt|I, w) on those snap angles that

have received higher rewards. Formally, given a batch of training data {Ii : i = 1, . . . ,M},
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we can approximate the gradient as following:
M∑
i=1

T∑
t=1

∇w log π(pit|Ii, w)Ri
t (6.4)

where Ri
t denotes the reward at time t for instance i.

Reward At each time step t, we compute the objective. Let θ̂t =θ=θ1,...θt F (P (I, θ)) de-

note the snap angle with the lowest pixel objectness until time step t. LetOt = F (P (I, θ̂t))

denote its corresponding objective value. The reward for time step t is

R̂t = min(Ot − F (P (I, θt + pt)), 0). (6.5)

Thus, the model receives a reward proportional to the decrease in edge-straddling fore-

ground pixels whenever the model updates the snap angle. To speed up training, we use

a variance-reduced version of the reward Rt = R̂t − bt where bt is the average amount of

decrease in pixel objectness coverage with a random policy at time t.

6.2 Results

Our results address four main questions: 1) How efficiently can our approach

identify the best snap angle? (Sec. 6.2.1); 2) To what extent does the foreground “pixel

objectness” objective properly capture objects important to human viewers? (Sec. 6.2.2);

3) To what extent do human viewers favor snap-angle cubemaps over the default orienta-

tion? (Sec. 6.2.3); and 4) Might snap angles aid image recognition? (Sec. 6.2.4).

Dataset We collect a dataset of 360◦ images to evaluate our approach; existing 360◦

datasets are topically narrow [203, 175, 69], restricting their use for our goal. We use
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YouTube with the 360◦ filter to gather videos from four activity categories—Disney, Ski,

Parade, and Concert. After manually filtering out frames with only text or blackness, we

have 150 videos and 14,076 total frames sampled at 1 FPS. The dataset can be found at

http://vision.cs.utexas.edu/projects/snapangle/.

Implementation details We implement our model with Torch, and optimize with stochas-

tic gradient and REINFORCE. We set the base learning rate to 0.01 and use momentum.

We fix A = 6.25% for all results after visual inspection of a few human-taken cubemaps

(not in the test set).

6.2.1 Efficient Snap Angle Prediction

We first evaluate our snap angle prediction framework. We use all 14,076 frames,

75% for training and 25% for testing. We ensure testing and training data do not come

from the same video. We define the following baselines:

• RANDOM ROTATE: Given a budget T , predict T snap angles randomly (with no

repetition).

• UNIFORM ROTATE: Given a budget T , predict T snap angles uniformly sampled

from all candidates. When T = 1, UNIFORM receives the CANONICAL view. This

is a strong baseline since it exploits the human recording bias in the starting view.

Despite the 360◦ range of the camera, photographers still tend to direct the “front”

of the camera towards interesting content, in which case CANONICAL has some

manual intelligence built-in.
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• COARSE-TO-FINE SEARCH: Divide the search space into two uniform intervals and

search the center snap angle in each interval. Then recursively search the better

interval, until the budget is exhausted.

• PANO2VID(P2V) [175]-ADAPTED: We implement a snap angle variant inspired

by the pipeline of Pano2Vid [175]. We replace C3D [188] features (which require

video) used in [175] with F7 features from VGG [166] and train a logistic classi-

fier to learn “capture-worthiness” [175] with Web images and randomly sampled

panorama subviews. For a budget T , we evaluate T “glimpses” and choose the

snap angle with the highest encountered capture-worthiness score. We stress that

Pano2Vid addresses a different task: it creates a normal field-of-view video (discard-

ing the rest) whereas we create a well-oriented omnidirectional image. Nonetheless,

we include this baseline to test their general approach of learning a framing prior

from human-captured data.

• SALIENCY: Select the angle that centers a cube face around the maximal saliency

region. Specifically, we compute the panorama’s saliency map [125] in equirectan-

gular form and blur it with a Gaussian kernel. We then identify the P × P pixel

square with the highest total saliency value, and predict the snap angle as the center

of the square. Unlike the other methods, this baseline is not iterative, since the max-

imal saliency region does not change with rotations. We use a window size P = 30.

Performance is not sensitive to P for 20 ≤ P ≤ 200.

We train our approach for a spectrum of budgets T , and report results in terms of

the amount of foreground disruption as a function of the budget. Each unit of the budget
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Figure 6.4: Predicting snap angles in a timely manner. Left: Given a budget, our method
predicts snap angles with the least foreground disruption on cube edges. Gains are larger
for smaller budgets, demonstrating our method’s efficiency. Right: Our gain over the
baselines (for a budget T = 4) as a function of the test cases’ decreasing “difficulty”, i.e.,
the variance in ground truth quality for candidate angles. See text.

corresponds to one round of rotating, re-rendering, and predicting foregrounds. We score

foreground disruption as the average F (P (I, θ∗t )) across all four faces.

Figure 6.4 (left) shows the results. Our method achieves the least disruptions to

foreground regions among all the competing methods. UNIFORM ROTATE and COARSE-

TO-FINE SEARCH perform better than RANDOM because they benefit from hand-designed

search heuristics. Unlike UNIFORM ROTATE and COARSE-TO-FINE SEARCH, our ap-

proach is content-based and learns to trigger different search strategies depending on what

it observes. When T = 1, SALIENCY is better than RANDOM but it underperforms our

method and UNIFORM. SALIENCY likely has difficulty capturing important objects in

panoramas, since the saliency model is trained with standard field-of-view images. Di-
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rectly adapting PANO2VID [175] for our problem results in unsatisfactory results. A

capture-worthiness classifier [175] is relatively insensitive to the placement of important

objects/people and therefore less suitable for the snap angle prediction task, which requires

detailed modeling of object placement on all faces of the cube.

Figure 6.4 (right) plots our gains sorted by the test images’ decreasing “difficulty”

for a budget T = 4. In some test images, there is a high variance, meaning certain snap

angles are better than others. However, for others, all candidate rotations look similarly

good, in which case all methods will perform similarly. The righthand plot sorts the test

images by their variance (in descending order) in quality across all possible angles, and

reports our method’s gain as a function of that difficulty. Our method outperforms P2V-

ADAPTED, SALIENCY, COARSE-TO-FINE SEARCH, RANDOM and UNIFORM by up to

56%, 31%, 17%, 14% and 10% (absolute), respectively. Overall Figure 6.4 demonstrates

that our method predicts the snap angle more efficiently than the baselines.

We have thus far reported efficiency in terms of abstract budget usage. One unit

of budget entails the following: projecting a typical panorama of size 960 × 1920 pixels

in equirectangular form to a cubemap (8.67 seconds with our Matlab implementation) and

then computing pixel objectness (0.57 seconds). Our prediction method is very efficient

and takes 0.003 seconds to execute for a budget T = 4 with a GeForce GTX 1080 GPU.

Thus, for a budget T = 4, the savings achieved by our method is approximately 2.4

minutes (5x speedup) per image compared to exhaustive search. Note that due to our

method’s efficiency, even if the Matlab projections were 1000x faster for all methods, our

5x speedup over the baseline would remain the same. Our method achieves a good tradeoff

between speed and accuracy.
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6.2.2 Justification for Foreground Object Objective

Next we justify empirically the pixel objectness cube-edge objective. To this end,

we have human viewers identify important objects in the source panoramas, then evaluate

to what extent our objective preserves them.

Specifically, we randomly select 340 frames among those where: 1) Each frame is

at least 10-seconds apart from the rest in order to ensure diversity in the dataset; 2) The

difference in terms of overall pixel objectness between our method and the canonical view

method is non-neglible. We collect annotations via Amazon Mechanical Turk. Following

the interface of [69], we present crowdworkers the panorama and instruct them to label

any “important objects” with a bounding box—as many as they wish.2

Here we consider PANO2VID(P2V) [175]-ADAPTED and SALIENCY as defined

in Sec. 6.2.1 and two additional baselines: 1) CANONICAL VIEW: produces a cubemap

using the camera-provided orientation; 2) RANDOM VIEW: rotates the input panorama

by an arbitrary angle and then generates the cubemap. Note that the other baselines in

Sec. 6.2.1 are not applicable here, since they are search mechanisms.

Consider the cube face X that contains the largest number of foreground pixels

from a given bounding box after projection. We evaluate the cubemaps of our method and

the baselines based on the overlap score (IoU) between the foreground region from the

cube face X and the corresponding human-labeled important object, for each bounding

box. This metric is maximized when all pixels for the same object project to the same

cube face; higher overlap indicates better preservation of important objects.

2The 360◦ sports data [69] annotates only a single point on where annotators think a human should look,
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CANONICAL RANDOM SALIENCY P2V-ADAPTED OURS UPPERBOUND

Concert 77.6% 73.9% 76.2% 71.6% 81.5% 86.3%

Ski 64.1% 72.5% 68.1% 70.1% 78.6% 83.5%

Parade 84.0% 81.2% 86.3% 85.7% 87.6% 96.8%

Disney 58.3% 57.7% 60.8% 60.8% 65.5% 77.4%

All 74.4% 74.2% 76.0% 75.0% 81.1% 88.3%

Table 6.1: Performance on preserving the integrity of objects explicitly identified as im-
portant by human observers. Higher overlap scores are better. Our method outperforms
both baselines.

Table 6.1 shows the results. Our method outperforms all baselines by a large mar-

gin. This supports our hypothesis that avoiding foreground objects along the cube edges

helps preserve objects of interest to a viewer. Snap angles achieve this goal much better

than the baseline cubemaps. The UPPERBOUND corresponds to the maximum possible

overlap achieved if exhaustively evaluating all candidate angles, and helps gauge the dif-

ficulty of each category. Parade and Disney have the highest and lowest upper bounds,

respectively. In Disney images, the camera is often carried by the recorders, so important

objects/persons appear relatively large in the panorama and cannot fit in a single cube face,

hence a lower upper bound score. On the contrary, in Parade images the camera is often

placed in the crowd and far away from important objects, so each can be confined to a

single face. The latter also explains why the baselines do best (though still weaker than

ours) on Parade images.
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Prefer OURS Tie Prefer CANONICAL Prefer OURS Tie Prefer RANDOM

Parade 54.8% 16.5% 28.7% 70.4% 9.6% 20.0%
Concert 48.7% 16.2% 35.1% 52.7% 16.2% 31.1%
Disney 44.8% 17.9% 37.3% 72.9% 8.5% 18.6%

Ski 64.3% 8.3% 27.4% 62.9% 16.1% 21.0%
All 53.8% 14.7% 31.5% 65.3% 12.3% 22.4%

Table 6.2: User study result comparing cubemaps outputs for perceived quality. Left:
Comparison between our method and CANONICAL. Right: Comparison between our
method and RANDOM.

6.2.3 User Study: Perceived Quality

Having justified the perceptual relevance of the cube-edge foreground objective

(Sec. 6.2.2), next we perform a user study to gauge perceptual quality of our results. Do

snap angles produce cube faces that look like human-taken photos? We evaluate on the

same image set used in Sec. 6.2.2.

We present cube faces produced by our method and one of the baselines at a time in

arbitrary order and inform subjects the two sets are photos from the same scene but taken

by different photographers. We instruct them to consider composition and viewpoint in

order to decide which set of photos is more pleasing. To account for the subjectivity of

the task, we issue each sample to 5 distinct workers and aggregate responses with majority

vote. 98 unique MTurk crowdworkers participated in the study.

Table 6.2 shows the results. Our method outperforms the CANONICAL baseline

by more than 22% and the RANDOM baseline by 42.9%. This result supports our claim

but we need to know the spatial extent of the objects.
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Figure 6.5: Qualitative examples of default CANONICAL cubemaps and our snap angle
cubemaps. Our method produces cubemaps that place important objects/persons in the
same cube face to preserve the foreground integrity. Bottom two rows show failure cases.
In the bottom left, pixel objectness [77] does not recognize the round stage as foreground,
and therefore our method splits the stage onto two different cube faces, creating a distorted
heart-shaped stage.
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Concert Ski Parade Disney All (normalized)

Image Memorability [92]

CANONICAL 71.58 69.49 67.08 70.53 46.8%

RANDOM 71.30 69.54 67.27 70.65 48.1%

SALIENCY 71.40 69.60 67.35 70.58 49.9%

P2V-ADAPTED 71.34 69.85 67.44 70.54 52.1%

OURS 71.45 70.03 67.68 70.87 59.8%

UPPER 72.70 71.19 68.68 72.15 –

Image Aesthetics [100]

CANONICAL 33.74 41.95 30.24 32.85 44.3%

RANDOM 32.46 41.90 30.65 32.79 42.4%

SALIENCY 34.52 41.87 30.81 32.54 47.9%

P2V-ADAPTED 34.48 41.97 30.86 33.09 48.8%

OURS 35.05 42.08 31.19 32.97 52.9%

UPPER 38.45 45.76 34.74 36.81 –

Table 6.3: Memorability and aesthetics scores.

that by preserving object integrity, our method produces cubemaps that align better with

human perception of quality photo composition. Figure 6.5 shows qualitative examples.

As shown in the first two examples (top two rows), our method is able to place an important

person in the same cube face whereas the baseline splits each person and projects a person

onto two cube faces. We also present two failure cases in the last two rows. In the bottom

left, pixel objectness does not recognize the stage as foreground, and therefore our method

places the stage on two different cube faces, creating a distorted heart-shaped stage.

So far, Table 6.1 confirms empirically that our foreground-based objective does

preserve those objects human viewers deem important, and Table 6.2 shows that human

viewers have an absolute preference for snap angle cubemaps over other projections. As
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CANONICAL RANDOM OURS

Single 68.5 69.4 70.1
Pano 66.5 67.0 68.1

Table 6.4: Image recognition accuracy (%). Snap angles help align the 360◦ data’s statis-
tics with that of normal FOV Web photos, enabling easier transfer from conventional pre-
trained networks.

a final test of snap angle cubemaps’ perceptual quality, we score them using state-of-the-

art metrics for aesthetics [100] and memorability [92]. Since both models are trained on

images annotated by people (for their aesthetics and memorability, respectively), higher

scores indicate higher correlation with these perceived properties (though of course no one

learned metric can perfectly represent human opinion).

Table 6.3 shows the results. We report the raw scores s per class as well as the

score over all classes, normalized as s−smin

smax−smin
, where smin and smax denote the lower and

upper bound, respectively. Because the metrics are fairly tolerant to local rotations, there

is a limit to how well they can capture subtle differences in cubemaps. Nonetheless, our

method outperforms the baselines overall.

6.2.4 Cubemap Recognition from Pretrained Nets

Since snap angles provide projections that better mimic human-taken photo com-

position, we hypothesize that they also align better with conventional FOV images, com-

pared to cubemaps in their canonical orientation. This suggests that snap angles may better

align with Web photos (typically used to train today’s recognition systems), which in turn

could help standard recognition models perform well on 360◦ panoramas. We present a
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preliminary proof-of-concept experiment to test this hypothesis.

We train a multi-class CNN classifier to distinguish the four activity categories in

our 360◦ dataset (Disney, Parade, etc.). The classifier uses ResNet-101 [62] pretrained on

ImageNet [160] and fine-tuned on 300 training images per class downloaded from Google

Image Search. Note that in all experiments until now, the category labels on the 360◦

dataset were invisible to our algorithm. We randomly select 250 panoramas per activity as

a test set. Each panorama is projected to a cubemap with the different projection methods,

and we compare the resulting recognition rates.

Table 6.4 shows the results. We report recognition accuracy in two forms: Single,

which treats each individual cube face as a test instance, and Pano, which classifies the

entire panorama by multiplying the predicted posteriors from all cube faces. For both

cases, snap angles produce cubemaps that achieve the best recognition rate. That said,

the margin is slim, and the full impact of snap angles for recognition warrants further

exploration. Still, this result hints at the potential for snap angles to be a bridge between

pretrained normal FOV networks on the one hand and 360◦ images on the other hand.

6.3 Summary

In this chapter, I showed how to predict viewing angles to enhance the viewing

experience for 360◦ panoramas. In contrast to previous work that assumes either a fixed or

manually supplied projection angle, I propose to automatically predict the angle that will

best preserve detected foreground objects.

My solution only considers snap angles for 360◦ images. Future work will explore
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ways to generalize snap angles to video data. In addition, my solution relies on the cube-

map projection model and therefore cannot effectively handle the case when a foreground

object is too large to fit in a single cube face. Future work will explore ways to address

how to handle large objects.

Now I have presented all four components of my thesis. In the next chapter, I will

outline some possible directions for future research and conclude my thesis.
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Chapter 7

Future Work

Passive cameras (e.g., wearable cameras, 360◦ cameras) offer a more relaxing ex-

perience to record our visual world but they do not always capture frames that look like

intentional human-taken photos. My thesis aims to narrow the gap between the quality

of visual data captured by passive cameras and by intentional human photographers. In

the previous chapters, I have described my thesis research which develops a framework to

compose photos and videos automatically from passive cameras. In this chapter, I discuss

possible directions for future research.

Leveraging multi-modality data In my thesis, all the proposed frameworks only con-

sider visual cues to compose photos or videos from passive cameras. However, other forms

of auxiliary data could also provide valuable cues to enhance photo and video composition.

I discuss two types of auxiliary data for possible future research.

In the recording stage, most passive cameras can also record auxiliary data such

as audio, GPS coordinates, and IMU data. Audio data could provide useful cues to un-

derstand user activities and user intention. The proposed framework in Chapter 3 only

considers visual cues for video highlight detection. However, visual cues alone are not

always enough to find the best moments in unedited videos. In a recording of casual con-

versation or public speech, visual cues often remain similar throughout but audio data can
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indicate the best moments. In sports games, the noise from the audience could also in-

dicate the best moments in the games. Audio data provides a complementary source of

information to understand videos. I believe understanding audio data and other auxiliary

data is a promising direction for future research.

Furthermore, when users share videos in the social media platforms, the videos

often come with user generated descriptions such as tags, captions and comments. The

descriptions could be utilized to understand the content of the user videos. This opens

up possibilities for new frameworks that can leverage both visual data and natural lan-

guages. I believe jointly understanding visual data with user generated description is also

a promising future direction.

Moving from passive cameras to active cameras: Majority of the work in my the-

sis has employed a “passive online capture followed by an active offline processing”

paradigm. The proposed frameworks in this thesis always rely on passive cameras to

first capture visual data, and then intelligently compose photos and videos from passively

captured data. Much of the effort in my thesis has been focused on how to design intel-

ligent machine systems for offline visual data processing. My proposed frameworks can

narrow the gap between the quality of visual data captured by “unintentional” photogra-

phers with passive cameras and by intentional human photographers. However, the quality

of the visual data after offline processing is still upper bounded by the best quality among

all the passively captured data. The first and second components of my thesis presented

in Chapter 3 and Chapter 4 aim to find the best moments—in terms of either short video

clips or keyframes— from passive cameras. We implicitly assume that passively captured
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data should contain some well-composed moments. If the assumption does not hold, my

proposed methods become much less effective.

However, the next-generation camera systems do not necessarily need to follow

a “passive online capture” paradigm. In the recording stage, passive cameras can be re-

placed with active cameras, which can automatically capture well-composed photos and

videos in the recording stage. I believe future research on active cameras will revolution-

ize the photography experience. Active cameras will provide users with a hands-free way

of recording while produce photos of professional quality. Compared to passive cameras,

active cameras would automatically composes photos in the recording stage and therefore

have several advantages. First, the quality of the photos is no longer limited by the pas-

sively captured data. Instead, we directly design intelligent imaging systems and optimize

the captured photo quality in the recording stage. Furthermore, active cameras can decide

what data to capture and store in the recording stage and therefore do not need extra stor-

age to keep everything they observe. Active cameras can also support other applications.

In the case of surveillance videos, active cameras could automatically track abnormal be-

haviors.
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Chapter 8

Conclusion

In the previous chapters, I have presented all four components of my thesis on

learning to compose photos and videos from passive cameras and possible research direc-

tions for future work. In particular, I have presented:

• Learning highlight detection from video duration, in Chapter 3

• Detecting snap points in egocentric video with a Web photo prior, in Chapter 4

• Learning to segment generic objects in images and videos, in Chapter 5

• Snap angle prediction for 360◦ panoramas, in Chapter 6

Wearable and 360◦ cameras have already revolutionized the photography experi-

ence, yet it is still challenging to directly produce professional quality photos from these

passive cameras. The main contribution of my thesis is to develop a framework that aims

to narrow the gap between the quality of visual data captured by “unintentional” photogra-

phers with passive cameras and by intentional human photographers. My thesis provides

solutions to the the following problems in the context of passive cameras: 1) what visual

data to capture and store, 2) how to identify foreground objects, and 3) how to enhance the

viewing experience.

129



Throughout, I validate the strength of the proposed frameworks on multiple chal-

lenging datasets against a variety of previously established state-of-the-art methods and

other pertinent baselines. Our experiments demonstrate the following: 1) our method

can automatically identify the best moments from unedited videos; 2) our segmentation

method substantially improves the state-of-the-art on foreground segmentation in images

and videos and also benefits automatic photo composition; 3) our viewing angle prediction

for 360◦ imagery can enhance the viewing experience. Although my thesis mainly focuses

on passive cameras, a portion of the proposed methods are also applicable to general user

generated videos.

I believe the next-generation cameras will remain light-weight while having the

ability to automatically compose photos and videos with quality that can match or even

exceed professional human photographer level.
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