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Understanding human actions and poses in images or videoshalleng-
ing problem in computer vision. There are different topelated to this problem
such as action recognition, pose estimation, human-oljestaction, and activity
detection. Knowledge of actions and poses could benefit mpplycations, includ-
ing video search, surveillance, auto-tagging, event tietecand human-computer

interfaces.

To understand humans’ actions and poses, we need to addvesalshal-
lenges. First, humans are able to perform an enormous arobpaoses. For exam-
ple, simply to move forward, we can do crawling, walking, murg, and sprinting.
These poses all look different and require examples to dinese variations. Sec-
ond, the appearance of a person’s pose changes when looaimglifferent view-
ing angles. The learned action model needs to cover thetizarsafrom different

views. Third, many actions involve interactions betweeogbe and other objects,
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so we need to consider the appearance change correspoodiag dbject as well.
Fourth, collecting such data for learning is difficult anghersive. Last, even if we
can learn a good model for an action, to localize when andevieraction happens

in a long video remains a difficult problem due to the larged®apace.

My key idea to alleviate these obstacles in learning humangbns and
poses is to discover the underlying patterns that conneantbrmation from dif-
ferent data sources. Why will there be underlying patterib@ intuition is that
all people share the same articulated physical structdreudgh we can change our
pose, there are common regulations that limit how our poséeaand how it can
move over time. Therefore, all types of human data will felkbiese rules and they
can serve as prior knowledge or regularization in our legyfiamework. If we can
exploit these tendencies, we are able to extract additiofaimation from data and
use them to improve learning of humans’ actions and poseparticular, we are
able to find patterns for how our pose could vary over time, loowappearance
looks in a specific view, how our pose is when we are interggatiith objects with
certain properties, and how part of our body configuratioshigred across differ-
ent poses. If we could learn these patterns, they can be asatetconnect and

extrapolate the knowledge between different data sources.

To this end, | propose several new ways to connect humanitsatiata.
First, I show how to connect snapshot images and videos bgrxg the patterns
of how our pose could change over time. Building on this idesplore how to
connect humans’ poses across multiple views by discovenagorrelations be-

tween different poses and the latent factors that affecviggpoint variations. In
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addition, | consider if there are also patterns connectungposes and nearby ob-
jects when we are interacting with them. Furthermore, | @ghow we can utilize
the predicted interaction as a cue to better address exigtaognition problems in-
cluding image re-targeting and image description ger@rattinally, after learning
models effectively incorporating these patterns, | prepmsobust approach to effi-
ciently localize when and where a complex action happensiiden sequence. The
variants of my proposed approaches offer a good trade-bifds:n computational

cost and detection accuracy.

My thesis exploits various types of underlying patternsumian data. The
discovered structure is used to enhance the understanfimgrmans’ actions and
poses. By my proposed methods, we are able to 1) learn amawtilo very few
shapshots by connecting them to a pool of label-free vid2pmfer the pose for
some views even without any examples by connecting thetléetors between
different views, 3) predict the location of an object thatagon is interacting with
independent of the type and appearance of that object, theethe inferred inter-
action as a cue to improve recognition, and 4) localize aiw@aab a complex long
video. These approaches improve existing frameworks fdergtanding humans’
actions and poses without extra data collection cost anademthe problems that

we can tackle.
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Chapter 1

Introduction

In our daily life, we observe and participate in differemidts of poses, ac-
tions and interactions such as walking, sitting, or reagiagers. Learning and
understanding humans’ actions and poses has receive@snugeattention in re-
cent years in computer vision [3, 97, 164, 178, 52, 102, 132).1 It involves
recognizing human actions, multi-view pose and actiongattmn, human-object
interaction modeling, human image description, and huneéinity detection. For
each of the topics, today’s methods typically learn theoa¢iose/interaction model
from labeled image or video data and use the model to inferafa¢ed knowledge

in novel images or videos.

While we are seeing good progress in analyzing people’s@xand poses,
particularly with learning based methods, there are $tik¢ main obstacles to be

solved:

1. The variation in appearance. There can be large variations in appearance
for poses that belong to the same action category, not toiomeimstances
from different action categories. For example, differeebple can have dif-
ferent ways of walking, and the pose of walking is differemn the pose

of sitting. To learn a robust model for each action or poseyweld need a



large amount of data [92, 47]. Another factor that changesfipearance of
pose is viewpoint variation [52, 53, 102]. Itis clear thats@ may look quite
different between two different views since we are livingiB8D world. An
intuitive solution is to learn a model for each view indepemidy. However,
this would require examples for each of the views and sigamtiy increase

the cost for data collection.

. Increased complexity due to interaction. Many actions are defined as an
interaction between a person and an object [36, 132, 177, R8learn the
interaction, we need to consider the appearance of thepensose and the
appearance of the object together. We can utilize one asthiee’©context
such as their spatial relationship to further improve thstey. However,
the complexity of the model also increases by incorporating additional
information, and we will need examples to learn the inteoast between

different poses and objects.

. Difficulty in data collection. It is hard to get sufficient data to learn and
analyze human actions and poses. Collecting action retittdis more ex-
pensive than collecting data for object recognition taSkere are two major
reasons: (a) video data typically requires more labellimg than data in im-
age format, and (b) the definition of some actions can be vdgnreexample,
it's hard to define the boundary between the transition betwe/o actions
and there can be overlap between different action categjofieese two as-

pects make it harder to have good quality data for actiongeition tasks



than typical object recognition tasks. Therefore, mangtexy datasets only
provide examples for a limited number of actions [47, 179,87are biased

toward one popular (frontal) viewing angle [110, 96, 97].

Intuitively, the first two obstacles can be eased by havirgugh examples
to cover the variation in appearance and learn complex rso#wever, the third
obstacle makes this solution difficult or expensive. In otdebreak through these
obstacles together and provide a realistic solution, myi@teg is to exploit some
specific properties of human data which provide underlytngcsures that allow us
to connect data in different aspects and extract additioi@tmation from them.
These structures are all based on the fact that humans shareaulated physical
architecture. Though we can control our torso, limbs, aratihthey have to follow
certain rules limited by our body’s physical structure. iBes, there are also regu-
lations and patterns for how we can move our body. For exartgpjemp, we need
to first bend our knees and then make them straight. All thejogrelated actions

will follow this rule. Furthermore, our pose can only chamgatinuously in time.

These structures exist ubiquitously in all human related.dsVe can use
them to improve the way we learn and understand human aatp@ase in differ-
ent fronts. In particular, | explorthe latent structure that connects the examples
between snapshots and video clips, examples from differews, and examples
from various interactionsThe key to achieve these connections and extrapolation
between different data is the discovered pattern of how osegan vary over time,
how our pose is affected by viewpoint changes, and how weaatavith objects

with similar size in similar location.



Example for learning | Learning with few snapshots |
pose/action/interaction

Snapshot to
videos

View to other

Efficient
localization

Figure 1.1: Overview of my dissertation. | explore differerays to use articulated
human pose patterns to connect limited examples to otHeresources to improve
the learning and understanding of humans’ actions and pGsesn an example for
learning humans’ pose/action/interaction, as depictadprright, we can connect
the a few snapshots to the unlabeled video pool to learn tieng€hapter 3), and
as depicted in middle right, we can enlarge the available pasa by inferring itin

different views (Chapter 4). Furthermore, as depicted ittdno right, we can use
the person’s pose to predict where the object he is int&igetith by connecting

the pose to interactee (Chapter 5), and as depicted in béeforwe can efficiently

localize when and where this action happened in the videaf@h 6).

In my dissertation, | explore how to utilize the underlyinafferns that en-
able us to analyze human action and pose efficiently by camgedata in different

aspects. First, | connect the labeled snapshots to the dégsimnpunlabeled video

pools. These linked examples from the video pool can helgasinew action



models with very few examples [22]. Second, | explore theratactors that con-
nect the properties of pose across different views. Thenameuse the discovered
latent factors to infer how a pose would look in an unseen Y&3j Third, | exploit
the pattern between body pose and certain properties ofdjleetove are interact-
ing with. By the learned model, we are able to predict thetiooaand the size of
the object independent of its appearance and category B&Ejdes, | also explore
four different applications by utilizing the inferred imgetion localization as a cue
for where to focus in the image. Finally, | propose a new fraom& to localize
when and where the action happens in a long video sequencarisfdrming the
localization problem into a maximum weighted subgraphaeag problem. With
this framework, we are able to localize the action much faate in a more flexible

scope [20]. See Figure 1.1 for the outline of these four psedapproaches.

In the following sections of this chapter, | will overviewaraof four major
components (learning human actions from few labelled dnatpsinferring human
pose in unseen views, predicting location of interacteesitnapplications, de-
tecting activity with max-subgraph search) of my dissetatChapter 2 discusses
related work. Chapter 3 through 6 will then give technicaids on these ideas

and present my results. Chapter 7 will describe future waskired by this thesis.

1.1 Learning Human Actions from Few Labelled Snapshots

Existing methods require large amount of examples to hahdlgariations
between different instances. In particular, recent rettmgnapproaches [91, 79,

99] get significant progress by using deep convolutionalalenetworks to learn



an object/action model. To learn the network parameteesge lamount of labeled
training data is required. Furthermore, people are ablederstand a human action
with just a few static snapshots. Presumably, the reasorahsiiare able to do this
is that we have strong prior knowledge of how human poses oagy time. The
limited information from these snapshots is connected topoevious experience
of human pose changes and that knowledge is used to expandaenstanding of

the action without seeing more examples.

Building on this intuition, | propose an approach to leartiaccategories
from a small number of static images by leveragomgr observations of generic
human motiorto augment the training process. Given unlabelled vide® sifs-
tem first learns how body pose changes over time. We assuseidieio has some
human activity in it, and that humans are often detectablenngresent, but other-
wise make no assumptions abaettichactions are present in the data. Then, given
a small set of labelled images for an action category, theesysises the generic
knowledge obtained from watching the video to extrapolaieoid those exemplars
during training. In particular, it augments its labelletiwéh “synthetic” examples,
which depict poses that could immediately precede or fotloewgiven examples in
time. In this way, we expand the training set without reequgradditional manually

labelled examples.

In my dissertation, | propose two ways to implement this idéee first uses
an example-based representation of pose dynamics; we thattbelled training
images to unlabelled video frames based on their pose sitpjland then augment

the training set with the poses appearing before and akemtitched frames. The



second technique uses a manifold-based representatideamea nonlinear mani-
fold over body poses, relying on the temporal nearness ofittem frames to estab-
lish which should maintain proximity. Then, we map the stétaining instances
to the manifold, and explore their neighborhoods on the folthto augment the

training set. In both cases, we adopt a part-based repaetsenof pose, and use
domain adaptation to account for the mismatch between thesamages and the
unlabelled video. We show that our synthetic expansionkedriaining set yield

more accurate predictions, especially when labeled dajaite sparse. Notably,
the gains come at no additional labelling cost, since we mak&ssumptions about

which actions appear in the unlabelled video.

| demonstrate the proposed approach to recognize actidrathnstatic im-
ages and videos from multiple challenging datasets. Thatseshow that by letting
the system first “watch” generic video, it can successfulfgi additional plausi-
ble poses that bolster training. For our target scenariaevtraining examples are
very few, my approach outperforms both a method limited éodhginal static ex-
emplars, as well as alternative methods to pad the data tdunting appearance

variation.

1.2 Inferring Human Pose in Unseen Views

While my idea for connecting snapshots to video (above)mstgypatterns to
extrapolate to nearby poses over time, the next major panteathesis studies how
to connect multiple views and image sources to extrapatatearby viewpoints in

space.



After alleviating the requirement for a large number of epéen to learn
an action, another obstacle comes from the viewpoint vanaf he appearance of
people’s pose varies between views. If we want to fully uatiéerd an action, we
would need to collect examples from all different views. Hoer, most available
examples are collected from certazanonicalviews, such as facing toward the
camera, making it hard to find examples to cover the remawiggs. On the other
hand, the data that does have pose examples observed ffenewlifviews tend to

come from artificial lab environments.

To overcome this data dilemma, | propose an approach towstoe latent
factors that correlate poses across different views. Thpgaed method takes as
input images of person organized by their approximate vamip We construct
a 3D tensor indexed by the image examples, their viewpaoamd,the spatial im-
age positions. Each entry in the tensor records the appmacbserved at those
coordinates. Notably, many entries are unobserved in {ha idata. | show that a
probabilistic tensor factorization technique can discte latent factors governing
how all three observed dimensions jointly determine apgreag. Intuitively, those
factors might correspond to things like the type of clothingdy weight, lighting,
or partial pose fragments. Using them, we impute missingeanin the tensor,
thereby inferring the image descriptors for unobservedsief people that, during

learning, may have been observed from just one camera vietvpo

In the experiment result, | show that the inferred views arth visually and
quantitatively accurate, which lets us expand existingsis to fuller viewpoint

coverage. | demonstrate the impact for two practical appbos. First, | show that



the inferred virtual views let the system learn an actioegaty in a viewpoint for
which it has never seen any real exemplars, yielding rethdtsare competitive with
recent cross-view recognition methods. Second, | showlipatsing the virtual

views to augment real training images, we can predict a p&rssientation more
accurately in novel images. In both cases, the inferred vieglp make statistical
appearance-based methods robust to viewpoint. Whileimgistethods are often
forced to choose between data that is either realistic oti+viel, our virtual views

offer both, thereby allowing greater robustness to viewpioi novel images.

1.3 Predicting Locations of Interactees

As the two approaches devised above extrapolate and int@cbhuman
actions across viewpoints and over time, next | exploretsraspect of how hu-
man actions relate to each othenteraction A large portion of human actions
involve interactionsbetween a person and an object, or scene, or another pgrson(s
For example, a persomadingreads a book or paper; a persdiscussingchats
with other people nearby; a perseatinguses utensils to eat food from a plate. In
any such case, the person and the “interactee” objectl{oek, other person, food
and utensils, etc.) are closely intertwined; together thefine the story portrayed

in the image or video.

Existing research in human action recognition aims to @k close con-
nection [127, 65, 36, 177, 176, 76, 132, 32]. Their goal istpriove recognition
by leveraging human action in concert with the object beiranipulated by the

human. However, these prior methods assume that durimgrigait is possible to



learn patterns between a particular action and the paati@biject category it in-
volves, and thus it is assumed that the data can cover allpp@sstions and object

categories.

In my thesis, | seek to relax these assumptions in order temeddictions
about novel, unseen human-object interactions. In padaticuconsider the follow-
ing question:Given a person in a novel image, can we predict the locaticiaif
person’s “interactee”—the object or person with which héesiracts—even without
knowing the particular action being performed or the catggaf the interactee it-
self? Why should the goal be possible? We can do so because we haveeh of
certain pose, gaze, and scene layout patterns that exist pduple interact with a
person/object in a similar relative position and size. T&idone without knowing
the category of the object, and even without (necessaréy)gable to name the

particular action being performed.

Based on this intuition, my proposed idea is to learn frona tatv the prop-
erties of a person relate to the interactee localizatioarpaters. Given instances
labeled with both the person and interactee outlines—frorargety of activities
and objects—we train a probabilistic model that can map meskfeatures of the
person to a distribution over the interactee’s position scale. Then, at test time,
given a novel image and a detected person, we predict the likelt places the

interactee will be found.

The proposed approach addresses a number of challengey.inthele
designing a reliable data collection procedure to handéesthbmewhat unusual an-

notation task; developing a bank of descriptors to captoee‘tneta-cues” about
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human appearance that signal localized interactions; essgpting applications to

exploit the interactee predictions.

Whereas the methods devised above explore how to extrapetal inter-
connect human actions across viewpoints and over time,ctnigponent of my
thesis explores how to interconnect human poses acrosaigdrteracting objects

in a category-independent manner.

For applications, | explore different ways to utilize theeiractee localiza-
tion as a cue to guide the system for focusing on importargafarea(s) in the
scene. By focusing attention on regions in the image thatpaseninently in-
volved in a human interaction, my method can be used to ingotyect detection
speed/accuracy, image retargeting, and image descripti@l such cases, | show

how to utilize interactee localization as person-centigewof importance.

1.4 Detecting Activity with Max-Subgraph Search

The three proposed methods above improve the understaoidingnan ac-
tion, pose, and interaction by connecting the knowledge®en different aspects.
After we learn these models, we can apply them to new datatecdehen and
where these activities happened. In the final main comparfeny thesis, | focus

on the detection strategy itself.

The activity detection problem entails ba#tcognizingandlocalizing cat-
egories of activity in an ongoing (meaning “untrimmed”) @asequence. In other

words, a system must not only be able to recognize a learn@dtyaén a new
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clip; it must also be able to isolate the (potentially smptytion of a long input
sequence that contains the activity. Reliable activityedgbn would have major
practical value for applications such as video indexingysillance and security,

and video-based human computer interaction.

While the recognition portion of the problem has receivecteéasing at-
tention in recent years, state-of-the-art methods largetpme that the space-time
region of interest to be classified has already been identifiéowever, for most
realistic settings, a system must not only name what it deésalso partition out
the temporal or spatio-temporal extent within which thevagtoccurs. The dis-
tinction is non-trivial; in order to properly recognize actian, the spatio-temporal

extent usually must be knowsimultaneously

To meet this challenge, existing methods tend to separétetyadetection
into two distinct stages: the first generates space-timdidate regions of interest
from the test video, and the second scores each candidaisdang to how well
it matches a given activity model (often a classifier). Masieonly, candidates
are generated either using person-centered tracks [146,1¥3, 87] or using ex-
haustive sliding window search through all frames in thewi{B4, 43, 143]. Both
face potential pitfalls. On the one hand, a method reliantracks is sensitive to
tracking failures, and by focusing on individual humansha video, it overlooks
surrounding objects that may be discriminative for an @gt{e.g., the car a person
is approaching). On the other hand, sliding window seardheiarly a substantial
computational burden, and its frame-level candidates neaob coarse, causing

clutter features to mislead the subsequent classifier. th bases, the scope of
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space-time regions even considered by the classifier feegtly restricted, e.g., to

person bounding boxes or a cubic subvolume.

| propose an efficient approach that unifies activity categtion with space-
time localization. The main idea is to pose activity detmtts a maximum-weight
connected subgraph problem over a learned space-time goastructed on the
test sequence. | show this permits an efficient branch-abdetution for the best-
scoring and possibly non-cubically shaped portion of tliewifor a given activity
classifier. The upshot is a fast method that can evaluate adéraspace of can-
didates than was previously practical, which | find oftendee#& more accurate

detection.

The proposed approach has several important properties, foir the spe-
cific case where our space-time nodes are individual videmds, the detection
solution is equivalent to that of exhaustive sliding windesarch, yet costs orders
of magnitude less search time due to the branch-and-cugérsddecond, we show
how to create more general forms of the graph that permit-tudsc” detection
regions, and even allow hops across irrelevant frames i tivat otherwise might
mislead the classifier (e.g., due to a temporary occludingotp This effectively
widens the scope of candidate video regions considerednideyat allowed by
any prior methods; the upshot is improved accuracy. Thiglexplore a two-stage
search extension that increases the speed of the propdsgidgh search for long
videos, and show its generality for detecting multiple\agtiinstances in a single
input sequence. Finally, the method accommodates a faidg family of features

and classifiers, making it flexible as a general activity ck&e tool. To illustrate
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this flexibility, we devise a novel high-level descriptoramable to subgraph search

that reflects human poses and objects as well as their eelatmporal ordering.

Having summarized the main technical threads of my thesw]l Inext

overview related work.
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Chapter 2

Related Work

In this chapter, | will review related work to the researclkganted in my
dissertation. First I will review existing work related tergeral human action recog-
nition, including learning from static images and videoed2.1). For the second
topic, | am going to review the work relates to a specific difitig in action and pose
recognition: multi-view problems (Sec. 2.2). Next, in &dzh to learning the action
and pose model only from human examples, | will go over thekwloat models the
interaction between humans and objects or treats eachadteemtext information
(Sec. 2.3). As interactions play an important rule in how wsalibe the content in
an image, | will review existing methods for image descapti(Sec. 2.4). Next, |
will review the existing techniques for using syntheticadahd matrix completion
(Sec. 2.5)—two of the important building blocks of portiafsny proposed meth-
ods. As some of my proposed methods can be seen as a way te datadabeling
costs, | will also discuss the difference between my appgresand existing transfer
learning methods (Sec. 2.6). Finally, | provide an overvigwxisting methods for

activity detection in video clips (Sec. 2.7).

After each subsection, | briefly highlight the most impottdifferences be-

tween the prior work and my own.
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2.1 Human Action Recognition

Activity recognition and human motion analysis have a ritérature [3].
To learn activities from video, earlier work emphasizedkrag and explicit body-
part models (e.g., [116, 135, 134]). In parallel, many md&to estimate body
pose have been developed, including techniques usingnaamlmanifolds to rep-
resent the complex space of joint configurations [62, 165108, 152, 153]. Such
methods assume silhouette (background-subtracted)sirgmd/or derive models
from mocap data, and are often intended for motion synttasptications. More
recently, researchers have considered how activity dasse be learned directly
from lower-level spatio-temporal appearance and motiaufes—for example,
based on bag-of-words models for video (e.g., [97, 164])siBgstepping tracking
and pose, this general strategy offers robustness andwaadge strong learning al-
gorithms; on the other hand, the lack of top-down cues suggasre data is critical

to learn the needed invariance.

In addition to learning human activities from video, recestrk considers
action recognition irstaticimages, where image data is much easier to collect and
can benefit from existing image-based object recognitiohrigjues. During both
training and testing, these algorithms use only static §mags of the actions of in-
terest. Most current methods rely on a combination of posé-appearance-based
descriptors [173, 110, 33,179, 178]. In particular, “pet&l[16]—Ilocal part-based
features mined for their consistency with fragments of bpdye—have proven to
be a promising representation [173, 110, 33], as well as-legdl descriptors that

also incorporate interactions with objects [36, 177, 33]17
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Discussion: The work described above largely focuses on providing bétte

tures to model human action. They assume there are enowgtodaarn the action
of interest. However, this constraint limits the number cfi@ens we could learn,
and some methods require labeled video data, which is muck m@ensive to
collect. In contrast, | propose a novel approach in Chapti#aBis able to learn
a action model with only a few labeled snapshots by intereoting the pose in

snapshots to a pool of unlabeled videos.

2.2 Multi-View Human Pose Analysis

The work discussed in Sec. 2.1 aims at providing pose refatadres that
are discriminative across different human actions andisterg within each action
category, yet people who perform similar pose/action cdwade quite different
appearance when observed from different viewpoints. timgly, if we can have
enough examples to cover all possible views for all posesdimethods in Sec 2.1
could learn the action model well. However, this would irase the requirement of

data and limit the number of actions that we are able to learn.

To handle this problem, some existing works adapt viewpioweriant mod-
els to avoid the need of examples from all views. The vievaiiant methods de-
velop features that remain stable across camera views [(2§, 136, 178, 107]),
but they require reliable body joint detection. When mulaw data is available,
3D reconstruction can be used to form 3D exemplars [166] @wvanvariant fea-
tures [171], though their view assumptions and computatidemands may be too

high for many applications. Multiple action recognition tmedstransferfeatures
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between viewpoints, learning the “domain shift” betweeirgaf views [52, 70,
102, 106, 185]. These methods construct the features to thake invariant to

viewpoint changes.

Discussion: The view-invariant methods require synchronized mukévwidata
during training, which restricts the type of data that canused. Furthermore,
none of these methods are able to hallucinate unseen viaals,as visualization
(e.g., helping an artist sketch an actor from a new viewpointChapter 4, | pro-
pose a new learning based approach that implicitly capeesnetry through its
knowledge about discrete viewpoints. The proposed apprisaable to leverage

any available views and infer the pose in unseen views.

2.3 Human-Object Interaction

Many human activities are related to the interaction betw@emans and
other objects/humans. When we are interacting with othgrotdy to capture the
characteristic of this action, the model has to incorpotfaégfeatures from the per-
sonand the interactee. Besides, the information provided fromititeractee can

serve as a cue to recognize this interaction or for othernegipns.

A great deal of recent work aims to jointly model the human thredobjects
with which he or she interacts [127, 65, 36,177,176, 76, 33R, The ideais to use
the person’s appearance (body pose, hand shape, etc.)easdrtbunding objects
as mutual context—knowing the action helps predict thecipyehile knowing the

object helps predict the action or pose. For example, thee®ay model in [65]
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integrates object and action recognition to resolve casesenappearance alone is
insufficient, e.g., to distinguish a spray bottle from a waiettle based on the way
the human uses it. Similarly, structured models are deeeldp recognize manip-
ulation actions [85] or sports activities [177, 36] in thentext of objects. Novel
representations to capture subtle interactions, likeiptpys. holding a musical
instrument, have also been developed [176]. Object retiogniself can benefit
from a rich model of how human activity [127] or pose [32] tekto the object cat-
egories. While most such methods require object outlindgoaipose annotations,

some work lightens the labeling effort via weakly supergiksarning [76, 132].

To utilize the interactee as context information, the iatéee (object or per-
son) needs to be reasonably localized. For localizing édjécere is work focus-
ing on carried object detection [67, 30]. They assume acstateo camera, which
permits good background subtraction and use of human stte®ghapes to find
outliers. These approaches are specialized for a singlena@arrying) only. As
for the case where the interactee is another person, threraethods for analyzing
social interactions that estimate who is interacting witiom [118, 112, 54], or cat-
egorize the type of physical interaction [174]. These danigraction works can
leverage rules from sociology [118] or perform geometrieisection of mutual

gaze lines [112, 54].

One can also use the knowledge of interactees to help usvafie action
recognition task. For example, methods to predict objdord@nces consider an
object [89, 35] or scene [66] as input, and predict whichaadiare possible as

output. They are especially relevant for robot vision tagkiting the system pre-
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dict, for example, which surfaces are sittable or graspablgile these approaches
utilize interactees to help them solve a problem, in my dtasien, | consider the
inverse task: given a human pose as input, | want to prededbitalization param-

eters of the object defining the interaction as output.

Discussion: The existing methods model the interaction between humashsia-
jects based on the type of interactee and type of action, ascpicking up the
phone” or “reading book”. Picking and reading are types d¢ifoas, while phone
and book are types of interactees. One limitation of theiengs is that they need
to learn different models for interactions of different pand interactee types. In
Chapter 5, | propose a new approach thaaagson- andobject-independentThe
cues our method learns cross activity boundaries, suchwaaian predict where
a likely interactee will appear even if we have not seen théiquéar activity (or
object) before. This is valuable because it could make teéxl model generalize

to various data and reduce the labeling cost.

2.4 Describing Images

In Chapter 5 of my dissertation, | use interaction as a cueitteghe system
for image description tasks. Recent work explores ways talywe a sentence
describing an image [50, 93, 181, 122, 40, 49, 83] or vidgn[6i8]. Such methods
often smooth the outputs of visual detectors, making thettebagree with text
statistics [93, 63, 129] or a semantic ontology [181]. Oneegal approach is to

produce a sentence by retrieving manually captioned imtdggsappear to match
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the content of the novel query [50, 122, 37]. Another is to Eypmnguage models

to generate novel sentences [93, 49, 94].

Other methods explore various criteria gmlectivelycomposing textual de-
scriptions for images. In [140], the system composes a ggor that best dis-
criminates one image from others in a set, thereby focusmthe “unexpected”.
In [129], a language model is used to help infer a person’svain, i.e., the pur-
pose of their actions. In [121], a mapping is learned frontsmeobject categories

to natural sounding entry-level category names (e.g.,idolgs. grampus griseus).

Most related to the part of my work of using interaction todgithe system
to focus on a part of image are methods that madpbrtancg150, 71, 151]. They
attempt to isolate those objects within a scene that a hunoaidvibe most likely to
notice and mention. Using compositional cues like objent sind position [150]
as well as semantic cues about object categories, attsibanel scenes [151], one
can learn a function that ranks objects by their importancéheir probability of

being mentioned by a human.

Discussion: The key difference between existing methods and my propostiod
in helping image description is that we consider the novel ¢he interactee’s lo-
calization. While a few existing methods employ human agtvetectors [122, 63,

129], they do not represent human-object interactionspaggdose.

My contribution in Chapter 5 is not a new way to infer sentendeather,
it is a new way to infer importance, which can be valuable tecdption methods.

The existing sentence generation methods are primarilgezoed with generating

21



a factually correct sentence; the question of “what to noeritis treated only im-
plicitly via text statistics. While we show the impact of addea for retrieval-based

sentence generation, it has potential to benefit other iggiser algorithms too.

As compared to the methods focused on selecting the impatgects for
description, we propose a novel basis for doing so—the itapoe signals of-
fered by a human-object interaction. In addition, unlikemoes that exploit object
category-specific cues [151, 71, 150], we learn a categatgpendent metric to

localize a probable important object, relative to a detkprson.

2.5 Incorporating Synthetic Data

As | will discuss in Chapters 3, 4 and 3, to understand a huncéiora
pose, or interaction efficiently without collecting a la@®ount of data, we aim to

increase the size of training set with realistic but syntadly generated data.

A standard way to expand training data in object recognitdoy mirroring
the images along the vertical axis (e.g., [123] and manyrejh&his trick has even
been employed to produce flipped versions of video sequdacastivity recogni-
tion [164]. The availability of humanoid models in graphscstware, together with
mocap data, make it possible to generate synthetic imagésl éisr training action
recognition [114] and pose estimation methods [148, 62]. M8b images noisily

labeled by tags can also serve as a “free” source of datationadassification [75].

Another aspect to expand data synthetically is to infer @ dor differ-

ent views. Existing view synthesis methods originate fronage-based render-
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ing [82], where, rather than explicitly construct a 3D modedw views are syn-
thesized directly from multiple 2D views. Typically poinbicespondences are es-
timated between views, and then intermediate views arehegited by warping
the pixels appropriately, leveraging insights from prajecor multi-view geome-
try (e.g., [146, 6]). The resulting virtual views can be usedugment training data
for object recognition [25], or to reposition the viewpoatttest time [147, 144].
Image-based models of pedestrians using calibrated, symizled cameras are ex-
plored in [147, 62]. These view synthesis methods rely omgoy and warping.
They make strong assumptions about calibrated camerasr@naultaneous multi-
view capture and require information of point correspor@sn which is difficult

to estimate reliably.

To infer missing data from the structure of observed datdrimmeomple-
tion methods have been studied extensively [113, 90, 142, 140] often for
applications in collaborative filtering. While the standi@ompletion problem can
be treated in 2D, there are also approaches developed tol thed@D structure,
e.g. to represent trends over time [170]. However, therengdd work exploring
matrix or tensor completion for visual data. Existing methanfer missing pixels
in a single source image/video, e.g., for in-painting [105], or infeawn3D face
meshes captured with a structured light scanner for vidgpeuy [159]. By ex-
ploring linear factors across classes, [128] learns low t@lnear discriminative
classifiers for matrix or tensor visual data. The factorireablels have also been

used for bilinear models for separating style and contemisofal data [60].
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Discussion: In Chapter 4, | propose a novel way to infer and incorporaigisstic
data using the properties in human action and pose relatad ddemonstrate we
can improve existing frameworks by adding the synthetia tiagether with original
data. Rather than infer new view using traditional geomeased methods, | show
how we canlearn the latent factors that connect the poses across differemsv

and use them to infer the pose in unseen views.

2.6 Transfer Learning

Related to my works on augment training data in Chapters 3latrdnsfer
learning technique can reduce the need for a large amouabeldd training data.
It has been explored for object recognition [55, 9, 172, 182, 154, 103, 7], where
the goal is to learn a new object category with few labelethimses by exploiting its
similarity to previously learned class(es). While oftea Hource and target classes
must be manually specified [9, 162, 7], some techniques aitoally determine

which classes will benefit from transfer [154, 103, 78].

Discussion: Both transfer learning and my proposed method can reduckathe
belling cost of data. However, compared to existing formgransfer learning,
where they focus on exploring the correspondence betwdienaiit object classes,
my proposed methods in Chapters 3 and 4 connect the infamiitiough different
data sources. Existing transfer learning techniques gatpahe knowledge from
a source class to a target class. On the other hand, my ppettods do not re-

quire knowledge of class labels, but instead explore thetyidg pattern existing

24



in all types of human related data sources. For examplesadsbf “transferring”
a learned model of an action from a particular viewpoint tothar viewpoint, my
proposed method in Chapter 4 generates synthetic pose &safop an unseen

viewpoint with knowledge from available pose examples b¥igwpoints.

2.7 Human Activity Detection

Whereas the work in Sec. 2.1 above largely focuses on thatgatcogni-
tion problem, we are also interesteddetection Detecting human activity means
localizing when and where a specific action is in a video segele One class
of methods tackles detection by explicitly tracking peopleeir body parts, and
nearby objects (e.g., [116, 134, 87]). Tracking “movergiasticularly relevant for
surveillance data where one can assume a static cameraciQonsf the diffi-
culty of relying on tracks, another class of methods has getkthat instead treats
activity classes as learned space-time appearance andmpaiiterns. The bag of
space-time interest point features model is a good exarfB@lel§5]. In this case,
at detection time the classifier is applied to featuresrighvithin candidate subvol-
umes within the sequence. Typically the search is done wstldang window over

the entire sequence [84, 43, 143], or in combination witlspertracks [87].

Given the enormous expense of such an exhaustive searcle, rement
work explores branch-and-bound solutions to efficientgniafy the subvolume that
maximizes an additive classifier’'s output [184, 183, 17]isTdpproach offers fast
detection and can localize activities in both space and,timereas sliding win-

dows localize only in the temporal dimension.
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An alternative way to avoid exhaustive search is througmgatlgorithms.
Recent work explores ways to combine person-centric trackse-classified se-
guences with a Hough voting stage to refine the localizatlgib] 115], or to use
voting to generate candidate frames for merging [168]. lakg voting method,
such approaches risk being sensitive to noisy backgrousctigéors that also cast
votes, and in particular will have ambiguity for actions hwgeriodicity. Further-
more, in contrast to our algorithm, they cannot guaranteetirn the maximum

scoring space-time region for a classifier.

Discussion: Relying on tracks to detect action can be limiting; it makes de-

tector sensitive to tracking errors, which are expecteddewwith large variations
in backgrounds or rapidly changing viewpoints (e.g., mewe YouTube video).
As for existing branch-and-bound methods, they are résttio searching oveu-

bic subvolumes in the video; that limits detections to casegevtie subject of the
activity does not change its spatial position much over tim&€hapter 6 of my dis-
sertation, | propose an efficient approach that is able teigedlexible non-cubical
detection subvolume and reduce the computational costai@ls®ver long video

sequences.
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Chapter 3

Learning Human Actions from Few Labeled
Snapshots

!People can understand a human action by looking at just atégig snap-
shots. If we are able to develop a system that is capable ofifgpan activity
model with a few images, it would be quite easy to collect #wuired data to train
the system. However, today’s systems typically requiredneats, if not thousand
of such exemplars to learn an action category well. Humawetie have an im-
portant advantage, however: prior knowledge of how humaepdend to vary in
time. This undoubtedly helps “fill the gaps” between a spagtef snapshots, and

thereby improves generalization. See Figure 3.1.

Recent existing methods [91, 79, 99] get significant pragbgsusing deep
convolutional neural networks (CNN) to learn object andactnodel. Whether
training a CNN or other model, to learn the model parametetise training stage,
a large amount of labeled data is required. However, as weeasldn Chapter 1,
it is expensive to get sufficient data to learn and analyzedmactions and poses.

In addition, there is also the “long tails” problem in thealawhere the number of

1The work in this chapter was supervised by Dr. Grauman arginaily published in: Watch-
ing Unlabeled Video Helps Learn New Human Actions from VegnwH.abeled Snapshots. C.-Y.
Chen and K. Grauman. In Proceedings of the IEEE Conferendgoomputer Vision and Pattern
Recognition (CVPR), Portland, OR, June 2013.
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Few training Synthesized
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Unlabeled
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Figure 3.1. The proposed approach learns about human posendys from un-
labeled video, and then leverages that knowledge to tranelrection categories
from very few static snapshots. The snapshots and vide 8ed used together
to extrapolate “synthetic” poses relevant to that categoeynter), augmenting the
training set. This leads to better generalization at test firight), especially when
test poses vary from the given snapshots.

training examples is highly imbalanced between differetégories. For some ac-
tions or poses in a given viewpoint, we may not be able to gaheugh examples

for learning an accurate model.

In this chapter, | will present a novel method that learns &airaction with
very few labelled snapshots incorporating a pool of unlablelideos. As described
in Chapter 1, the intuition is to let the system connect a feapshots to the unla-

belled video pool. Then, it expands the understanding ohttien by utilizing the
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temporal dependency of pose changes for poses in the videos.

3.1 Approach for Learning Human Actions from Few Labeled

Snapshots

Our approach augments a small set of static snapshots bgiring realis-
tic but synthetically generated body pose examples. Thinelio examples extend
the real ones locally in time, so that we can train actionsifeess on a wider set
of poses that are (likely) relevant for the actions of inser&Ve first define the rep-
resentation we use for pose. Then, after describing ouowiid¢a requirements, |
present two methods to infer synthetic pose examples; oaeraisiple-based, the
other is manifold-based. Finally, | explain how we use a nfixeal and synthetic

data to train a classifier that can predict actions in noaicsimages.

3.1.1 Representing Body Pose

We use a part-based representation of pose cajped@let activation vector
(PAV), adopted from [110]. A poselet [16] is an SVM classifimined to fire on
image patches that look like some consistent fragment ofamubody pose. For
example, one poselet might capture arms crossed againshést, or a left leg
bent at the knee, or even the whole body of a seated person.PAWeecords
the “activation strength” of all poselets appearing withiperson bounding box.
Specifically, after running a bank éf poselet classifiers on an image, we take those
poselet detections that overlap with a person bounding aod, record a vector

p = [p1,...,pp| Wherep; is the sum of the-th classifier's probability outputs.
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Person with Detected poselets Distribution of
bbox in image Poselet types

Figure 3.2: The PAV representation summarizes those @etgaiselets in the im-
age that overlap with the person bounding box.

Figure 3.2 shows this process, and the blurry images in EigL8 depict example
poselets in terms of the averaged image patches used tatheaim We use the

P = 1200 poselets provided by [110].

We use this descriptor because it captures human body padagtt level,
and it is robust to occlusion and cluttered backgrounds.|&\his quite simple—
essentially a histogram of local pose estimates—it is atsoepful. The poselets
themselves offer a rich encoding of diverse poses, and tieegietectable in spite
of differences in appearance (e.g., clothing, race). leursince they are specific
to body configurations, the PAV implicitly captures spal#lout. Since 2D HOG
descriptors underly the poselet classifiers, they are alffusensitive to substan-
tial 3D viewpoint changes. This is fine for our data-driveprach, which will

synthesize poses that expand exemplars as viewed from lasumeiwpoint.

3.1.2 Unlabeled Video Data

My method requires access to unlabeled videos containimgahuactiv-

ity. The video has no action category labels associated wyi#ind the activity
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IS not segmented in any way. In particular, we mat assume that the activities
present belong to the same categories as we will observe ist#itic training im-
ages. The category-independence of the video data is trd#awould like the
system to build a model of human motion dynamics—typicahges of body pose
over time—without knowing in advance what novel actionsilt lae asked to learn
from snapshots. Intuitively, this suggests that a largedinerse set of clips would
be ideal, as we cannot hope to extrapolate poses for inpattaté unlike anything
the system has seen before. In our current implementatieuse video from the

Hollywood dataset [97] to form the unlabeled pool.

We assume that the humans appearing in the video can oftentbeted
and tracked, i.e., using state-of-the-art human deteatmtdracking algorithms, so
that we can extract pose descriptors from human boundingshd¥/e also expect
that the video and snapshots come from roughly similar segpes, meaning that
we would not attempt to use dynamics learned from overheadl agdeo (where
people are blobs of tens of pixels) to help recognition witashots taken on the
ground (where people have substantially greater resolaina body parts are visi-
ble). This is a very mild requirement, since plenty of grourteo is available to us
via YouTube, Hollywood movies, and so on. In fact, our metbaglicitly builds
in some flexibility to data source mismatches due to its us#goafiain adaptation,

as we will discuss later.

To pre-process the unlabeled video, we 1) detect peoplexdrateperson
tracks, 2) compute a PAV pose descriptor for each personomirfdund, and 3)

either simply index those examples for our exemplar-bassttiod or else compute
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a pose manifold for our manifold-based method (both are défin Sec. 3.1.3).
Note that because this video is unlabeled, our method whlaane the training set

with no additional manual effort.

3.1.3 Generating Synthetic Pose Examples

Our key idea is to expand limited training data by explorintabeled video,
which implicitly provides rules governing how human posarmfes over time for
various activities. Thus, the heart of our method is to geteesynthetic pose ex-

amples. We investigate two strategies: example-based andatd-based.

LetS = {(pi,v1),- .., (PY,y~)} denote theV training snapshots our sys-
tem receives as input, where the superscrggnotesmage and eaclp§- cRPisa
PAV descriptor with an associated action class labet {1, ..., C} (e.g., running,
answering phone, etc). Lét,, ..., tx } denote thek person tracks from the unla-
beled video, and let each tratkbe represented by a sequence of PAV descriptors,
t. = (P, -, Pk, ), Where superscript denotessideq andk,, is the number of

frames in the:-th track.

3.1.3.1 Example-based Strategy

Our example-based method treats the video as a non-paramegtresen-
tation of pose dynamics. For each training snapshot p@;swe find its nearest
neighbor pose in any of the video tracks, according to Eaaliddistance in PAV
space. Denote that neighbpt.. Then, we simply sample temporally adjacent

poses tg?. to form synthetic examples that will “pad” the training set €lassy;.
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Original image Matched frame || Synthetic poses

Before

Figure 3.3: For each labeled training snapshot (top le)uge its pose description
(depicted in bottom left) to find a neighbor in the unlabelédkew (center panel).
Then we synthesize additional training poses based onntpdeal neighbors or
nearby instances on a pose manifold (right panel). Bestlor.co

Specifically, we takg?. , andp}.  r, the posed” frames before and@ frames af-

ter the match (accounting for boundary cases if the neigbtaots or ends a track).

See Figure 3.3.

We repeat this process for all training snapshots, yieldmgxpanded train-
ing set8* with two new synthetic examples for each original snapskéot: =
{8U{(®Y_1,u5), (PY 1, y5)} 721} In our experiments, we s&t = 10 in order to
get frames showing poses that would occur just before or tifeematched pose,

without being too visually redundant. In preliminary teste found the method
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IS not very sensitive to this parameter within the rafige- 5, . . ., 20, and simply

fixed it at10.

3.1.3.2 Manifold-based Strategy

We also explore a method to extrapolate poses using a nanlpose man-
ifold. Whereas the example-based method extrapolatessobsly in the temporal
dimension—and solely using one sequence at a time—the aldnériant unifies
connections in both appearance and dynamics, and it e#&cgamples synthetic

examples from a mix of sequences at once.

To construct the manifold, we use the locally linear embeddLLE) algo-
rithm [139]. LLE constructs a neighborhood-preserving edding function that
maps high-dimensional inputs IR” to a low-dimensional nonlinear manifold in
R<. The manifold is represented as a set of globally consistesdr subspaces,
and the solution to minimize its reconstruction error 1l@ an eigenvalue prob-
lem. The algorithm takes as input a set of data points andrixgpectives nearest

neighbors, and returns as output all points’ low-dimensicoordinates.

We use the PAVs from the unlabeled video to build the manifdkecall
thatp,, denotes the PAV for the-th frame within thek-th track in the unlabeled
video (dropping the superscriptfor clarity). We determine neighbors for LLE

using a similarity function capturing both temporal neasiand pose similarity:

A(pk’qapjr) =

X oxp (— [P, — 23 [| /) + (1= N exp (g —rll /o).
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where|lq — r|| = oo if k # j, that is, if the two inputs are from different tracks.
Hereo, ando; are scaling parameters, set to the average distance beiV/&#évs
and frame numbers, respectively, and the weigbontrols the influence of the two
terms. Note that an example’s neighbors undectan span poses from both the
same and different tracks. After applying the LLE embeddewsgrh original PAV

p’ € R? has a low-dimensional counterpgrt € R,

Next, for each training snapshot, we find nearby poses on #refald to
generate synthetic examples. Specifically, for snapppmith nearest neighbor
pj. in PAV space, we take the associagd manifold coordinate, and compute
its closest two embedded points from the vide¢We choose two simply to be
consistent with the example-based method above.) Finad\augment the training
set similarly to above, putting the original PAVs for thog®tnstances labeled with

the snapshot’s category infd.

Discussion Whether example- or manifold-based, we stress that thésiiatex-
amples exist irposespace—not raw image space. Thus, we are padding our train-
ing set with plausible poses that could immediately preagdellow the observed
static snapshot poses, and ignoring surrounding contbpdcts, etc. Furthermore,

it is entirely possible that the action the person in the eid@as performing when
taking on that pose wamtthe action labeled in the static snapshot. Our idea is that

the generic human motion dynamics gleaned from the unldhetk=o allow us to

20ne could alternatively use an out-of-sample extensiorL6 [10] when collecting the mani-
fold neighbors.
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extrapolate the poses observed in novel static imagesasitt@ very near instants
in time. This allows, for example, the system to infer thaticking action could
take on more diverse poses than the few available in thargaset (compare left

and right panels in Figure 3.1).

The proposed approach can be seen as a novel form of transéeno-
supervised learning in that my proposed method incorpsratéabeled data. The
synthetic examples are technically unlabeled data, butapproach refers their
label with underlying pose dynamic patterns existing inreadlata. While transfer
learning adapts a learned model to a new category with a fesldd examples from
that category, my method synthetically picks the imageesscvarious categories

as additional labeled data to improve training.

3.1.4 Training with a Mix of Real and Synthetic Poses

Finally, we use the augmented training 8étto train SVM action classi-
fiers to predict the labels of novel images. Rather than thyrese the data as-is,
we specifically account for the uncertainty in the synthekamples in two ways.
First, we employ domain adaptation to account for the paientismatch in fea-
ture distributions between the labeled snapshots andatacelideo. Second, we
use penalty terms in the SVM objective that put more emplasisatisfying the

label constraints for the real data examples compared teythietic ones.

Domain adaptation (DA) techniques are useful when therslnsfebetween
the data distributions in a “source” and “target” domain.eyypically transform

the data in some way that accounts for this discrepancy—famele, by mapping
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to an intermediate space that shares characteristicslotiootains. In our case, we
can think of the static snapshots (whether training orrig$tas the target domain,

and the unlabeled video as the source domain.

We use the “frustratingly simple” DA approach of [31]. It nsagriginal data
in R” to a new feature space of dimensik#’, as follows. Every synthetic (source)
pose exampl@® is mapped t@" = [p*, p*, 0], where0 = [0,...,0] € R”. Every
real (target) pose example is mappedpto = [p’, 0, p’]. This augmentation ex-
pands the feature space into a combination of three versiaohsa general version,
a source-specific version, and a target-specific versioa.cldssifier benefits from

having access to all versions to find the most discriminate@sion function.

Given the domain-adapted features, we train one-vs.-aM S\assifiers.
During training, we want to reflect our lower confidence in flyathetic training
examples, as well as account for the fact that they will ootiber the real examples.
Thus, we use two separate constants for the slack pefialtythe standard SVM
objective, in order to penalize violating label constraioh real data more heavily.
Specifically, the cost for label errors on the real examgleg is setto 1, while the
cost for synthetic examples,,,;;, < 1 (set via cross-validation). This weighting,
combined with the soft-margin SVM, will give some resilierto off-base synthetic
pose examples wrongly hypothesized by our method. This camrpfor example,
if the nearest PAV or manifold neighbor is quite distant amastserves as a weak

proxy for the training snapshot’s pose.
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3.2 Experimental Results

| demonstrate my approach on three datasets for recogremtigties in

both images and videos.

3.2.1 Datasets

For the unlabeled video data, we use the training and teslipg from the
Hollywood Human Actions dataset [97]. We stress that nonthefactivity labels
are used from these clips. In fact, only one label in Hollyd@werlaps with any
of the data belowghoningis in both PASCAL and Hollywood). To get person
tracks, we use the annotation tool provided by [161]. Thisved us to focus our
evaluation on the impact of our method, as opposed to thesimélel of a particular

person tracking method.

For the recognition task with static testimages, we testath the 9 actions
in the PASCAL VOC 2010 dataset [4{ff}honing, playing instrument, reading, rid-
ing bike, riding horse, running, taking photo, using congutvalking)as well as 10
selected verbs from the Stanford 40 Actions dataset [(G®hbing, fishing, jump-
ing, playing guitar, riding a bike, riding a horse, rowing aét, running, throwing
frisbee, walking the dog)While the latter has 40 total verbs, we limit our exper-
iments to those 10 where the baseline has reasonable preasing a body pose
descriptor alone; many of the others are strongly chaiaetiby the objects that
appear in the scene. We call it Stanford 10. For PASCAL, we(nsximally) the
301 persons from the training set to train, and the 307 persotine validation set

to test. For Stanford 10, we randomly select (maximally) 260 1672 persons
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w sy

Figure 3.4: Examples of PASCAL, Stanford 40 Actions, andi#ebod Human
Action datasets.
for training and testing, respectively, based on the trest/split suggested by the

authors. See Figure 3.4 for example images of these thraseatat

For the video recognition task, we compile a test set fromtiplel video
sources, since no existing video dataset has both imagesi@®aads for a set of
action labels. We gather 78 test videos from the HMDB51 [#2}jon Similarity
Labeling Challenge [92], and UCF Sports [138] datasetsdbiatain activities also
appearing in PASCALphoning riding bike, riding horse running, andwalking

Note that the unlabeled video source remains the Hollywadal fibr this task; in all
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cases, the only labels our method gets are those on thesstapshots in PASCAL.

We fix the dimensionality for LLE! = 10, and the affinity weighf = 0.7.
We usey?-kernels for the SVMs, and set the SVM penalty,,., = 0.1 for image
recognition and’y,,,, = 0.5 for video recognition, based on validation with the

PASCAL training data.

3.2.2 Recognizing Activity in Novel Images

The primary comparison of interest is to see whether retmgnimproves
when adding our synthetic training data, versus a basdiatadoes everything else
the same (i.e., PAV representation, SVM, etc.), but useg trd original training
snapshots. This baseline corresponds to the state-arthmethod of [110], and
we denote itOriginal throughout. In addition, we provide two more baselines to
help isolate the reason for our method’s advantage. Thedirgfinal+random, re-
places our method’s nearest neighbor selection with a ratydeelected video pose.
The secondQriginal+synthetic-current-frame, uses only the matched neighbor
to synthesize an example (i.e., it |éfs= 0). This baseline is useful to see the
extent to which we need to extrapolate poses adiosgdynamics), versus merely

padding the data with variationsappearancégsimilar instances of the same pose).

Figure 3.5 shows the mean average precision (mAP) testamcas a func-
tion of the number of training images, for both static imagéadets. To robustly
estimate accuracy with few training samples, we run the @x@at five times with
different randomly sampled training images (when using tean all the data) and

report the average. Our approach substantially boostsamcwhen few training
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Figure 3.5: Accuracy on static action recognition dataasts function of the num-
ber of training images. Our method shows dramatic gains wetly few labeled
shapshots, and maintains similar accuracy to the baseliea Wwaining exemplars
are plentiful.

shapshots are available. As expected, having only few ebe@maccentuates our
method’s ability to “fill in” the related poses. On the othenkl, when training
examples are plentiful (hundreds), there is less to be dasiece more variation is
already visible in the originals; in fact, our results arenparable to the baseline’s
in the rightmost part of the plofs.Adding poses from random frames degrades
accuracy across the board, confirming that our method’sigaiot due to having
more pose examples; rather, it synthesizsefulones relevant to the recognition
task. Adding a pose from the neighbor frame itself (“curfeimcreases the base-
line’s accuracy by synthesizing more varied appearanceeegioses in the training

set, but it is inferior to using the pose dynamics as proposed

Figure 3.6 shows examples of images responsible for syatheses added

to the original training set for PASCAL. We see how usefulgmosan be found

3And our numbers roughly replicate those reported in [110PI@SCAL—we obtain 57.94 vs.
59.8 mAP when using all training data.
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Synthetic training
features-after

Synthetic training
features-previous

e =

Figure 3.6: Six real examples showing the frames our metbodd in unlabeled
video (left and right panels) and used to expand the origraaling poses in snap-
shots (center panel). Each pose in the center panel findglbweiin the unlabeled
videop!., which generates a synthetic example for what could comeeidnately
before p}. ;, left) and after p¢.  r, right) that pose. Red/yellow/green boxes de-
note person bounding boxes, and smaller cyan boxes denstdepaletections.
Dotted arrows connect to corresponding synthetic frames.

acrossactivity categories. For example, the bottom image of a mammg has
synthetic poses generated from a man who is not phoning—batnenetheless
takes on poses and facial expressions that could have besae {ine objects in
the scene different). In the special case that a familiaoaetctually appears in the
unlabeled video, it too can help, as we see in the horsegratial walking examples.
In all examples, notice how the synthetic examples simwdbdgét variations over

time. This is how our approach fleshes out the training set.
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Note that our improvements are in spite of the fact that onky label over-
laps between PASCAL and Hollywood, and zero overlap betv&tanford 10 and
Hollywood. We find that for the largest training set size orSBRL (N = 301), 23
PASCAL images match to a Hollywood clip that shows the verbrphg. Among
those 23, only two of them are themselypé®ning Hence, our results clearly show
the category-independent nature of our approach. Posesdigtinct actions are

relevant to connect the dots between sparse exemplars.

Next we compare our example- and manifold-based stratéwigathering
pose neighbors. The mAP averaged over all classes (Figis3f&iyly similar for
both. Figure 3.7 shows the AP gain of our two methods (congpr©riginal) for
each individual class in PASCAL when training with = 20 examples (ignore the
x dimension for now). Indeed, for many classes their gaiessanilar. However,
manifold-based has a noted advantage over example-bastx factiongunning
andusing computer On Stanford 10, it is stronger feunning andclimbing (not
shown). What these actions seem to have in common that thay ssme repeated
motion. We hypothesize the manifold does better in thesescamice it captures

both temporally nearby poses and appearance variations.

Figure 3.7 also shows that there is a correlation betweesetblasses most
benefited by our method and their lack of diversity. We measiiversity by the
average inter-PAV distance among training examples. Letadce means low di-
versity. Just as a training set that is too small needs ouraddb fill in intermediate
poses, So too a class whose examples are too tightly cldstepose space (e.qg.,

due to a dataset creator’s unintentional bias towards ‘lti@abposes”) may benefit
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Figure 3.7: Per class accuracy gains by our methods as adoraftthe diversity

of the original PASCAL data. See text.

Dataset

PASCAL

Stanford 10

Domain-adaptation?

]

No Yes

No Yes

Example-based

0.4243| 0.4320

0.3308| 0.3378

Manifold-based

0.4271| 0.4327

0.3328| 0.3404

Table 3.1: Impact on mAP of domain adaptation on the stati@sgds.

most from our method.

Table 3.1 isolates the impact of domain adaptation on ouwltsesvhen the
number of training exampled = 30. (The impact is very similar no matter the
training set size.) We see that DA gives a modest but notieeggtin in accuracy for
both variants of our method, showing it is worthwhile to mioitie potential data
mismatch between the unlabeled video and training snapsWat suspect the PAV
pose descriptors are also playing a role in accounting ferditmain shift, since

they abstract away some nuisance factors that could difievden the two sources

(e.g., lighting, scale).
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Original | Original+synthetic| Original+synthetic
example-based manifold-based
Without DA | 0.3846 0.5128 0.4872
With DA N/A 0.5382 0.5128

Table 3.2: Accuracy of video activity recognition on 78 teisieos from HMDB51,
ASLAN, and UCF data.

3.2.3 Recognizing Activity in Novel Video

Next, we apply our method to predict activities in noveleq still using
the same static image training set idea (see dataset det&iéc. 3.2.1). We use a
simple voting approach to predict the label for the entidewl. First, we classify
each frame independently, generating a probability fohg@assible label, . . ., C.
Then, we sum the probabilities across all frames to get tla firediction. Note
that this test should allow our method to shine, since theehadeos will exhibit
many intermediate poses that the original snapshots dicaowar—>but that our
method will (ideally) synthesize. For this experiment, wansform the domain
adapted features using’ = [p", 0, 0], since the train, test, and synthetic data are

all from different domains.

Table 3.2 shows the results. We compare our method to then@rigase-
line, and also show the impact of domain adaptation. Our otethakes a substan-
tial improvement in accuracy. Its synthetic padding of théadnakes the training
set less sparse, yielding more reliable predictions on tdeovframes. Domain

adaptation again boosts the accuracy further.

45



3.3 Conclusions

In this chapter, | propose a framework to augment trainirtg @ learning
human actions without additional labeling cost. My applol@verages knowledge
of human pose patterns over time, as represented by an ledabédeo repository.
To implement our idea, we explore simple but effective exi@mand manifold-
based representations of pose dynamics, and combine thina womain adapta-

tion feature mapping that can connect the real and genesatadples.

Our results classifying activities in three datasets shuoat the synthetic
poses have significant impact when the labeled training piesrare sparse. We
demonstrate the benefits with a state-of-the-art local pesesentation; however,
our idea is not coupled specifically with that method, andag potential to boost

alternative descriptors in similar ways.

| have shown how to interconnect the patterns of pose chamgastime
in unlabelled video pools to expand our knowledge of humdioevith very few

shapshots. Next, | study how to relate human poses acrdesedif views.
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Chapter 4

Inferring Human Pose in Unseen Views

lIn Chapter 3, my proposed approach connects static snapghanla-
belled video sequences for better coverage of pose vargatlith the help of the
proposed approach, we are able to learn a new human actionerefy with very
few examples. In this chapter, | am going to further explarether obstacle in

understanding human poses: viewpoint variation.

Since we are living in 3D space, the appearance of our posédviook
quite different in different views. To learn an action moél each of multiple
views, we would seemingly require examples collected fr@oheof the views.
Currently, internet images and movies offer abundantsgakexamples of humans
performing various actions, but they are naturally biasegtds certain viewpoints
(see Figure 4.1(a)). This is to be expected, since humaiisttetake photos of
other humans as they face the camera. As a result, nice “mwithéexamples are
sparse for many other viewpoints, and today’'s challengaséts (e.g., PASCAL
Actions [47]) are restricted to canonical viewpoints. Oe tther hand, efforts

to collect data specifically from multiple views are pronestoipted behavior and

1The work in this chapter was supervised by Dr. Grauman amginaily published in: Inferring
Unseen Views of People. C.-Y. Chen and K. Grauman. In Pracgsaf the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Columkd, June 2014.
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0
(b) Multi-view imagery, but artificial lab conditions

Figure 4.1: The data dilemma for human images. (a) Singl® \rigages are often
realistic and “unstaged”, but populate only a sparse seawfeta viewing angles.
(b) Multi-view data give full view coverage, but are morefatial in terms of acted
poses and simplistic backgrounds. Our method makes usey@varable images
to envision seen poses in unseen viewpoints.

artificial lab environments (see Figure 4.1(b)). This i®dls be expected, since

the actors must be instructed to do certain actions whilkarspecial synchronized

multi-camera rig.

How can we overcome this dilemma? How can we obtain realstroan
image data from varied viewpoints? Rather than physicdligg more cameras
around subjects, my goal is to use whatever viewpointddaé@ave to generate
virtual views in those we do not. To this end, | propose a vigntlsesis approach

based on tensor completion. The key idea is to recover thatlédctors that relate
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Viewpoint

Figure 4.2: The proposed approach discovers the latemir&ittat relate viewpoint
and body pose, and uses them to infer unseen views. For eeadedpite never
seeing a kicking pose from any view but frontal (top right gag it hallucinates
what it will look like from the side (bottom right). The key t® learn connec-

tions between similar looking parts in different poses ¢h@iarked with lines for
illustration only).

viewpoint and body poseithoutobserving the two neatly varying together—that
is, without observing each pose in all views during trainivge observe that from
the same viewpoint, people look similar in certain portiohthe image, even when

they are performing different actions or poses (see Figi¥e Wsing a latent factor

model, | aim to discover these relationships and use themfés appearance in

unseen views.
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4.1 Approach for Inferring Unseen Views

| pose unseen view inference as a tensor completion problanoughout,
we consider a set of discrete viewpoints consisting/fobrientations of the person
with respect to the camera (facing front, front-left, eté&$ input, our method takes
cropped images of people organized by their discrete viewpd/ = 5 or 8 in our
datasets). As output, our method returns image descripapisiring the appearance

of those same people in each viewpoint from which they wet@hserved.

| consider two scenariossynchronizedand unsynchronized For the syn-
chronized case, the input images include (at least soma)@ra of people ob-
served simultaneously by multiple cameras. Any subsetefithviews might be
present for a given instance, atine poses in the examples are not annotated in any
way (i.e., no stick figures are given). See Figure 4.3(a). Fortey/nchronized
case, the input images are single-view snapshots, suclses time might typically
find in online photo collections. See Figure 4.3(b). In trase, we assume each
training image is annotated with body pose (joint positjofs either case, we as-
sume the inputs contain a variety of body poses, though thayebe an imbalanced

representation of certain poses and viewpoints.

4.1.1 Discovering the Latent Factors

Our model represents human appearance as a function of\peapoint,
and position in the image. The goal is to fit a low-dimensidaetor model to the
observed data, such that the spatially varying appearaant®e approximated as

a combination of some latent pose and viewpoint factors. issudsed above, the
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€)) Synchronlzed (b) Unsynchronized

Figure 4.3: Visualizing the 3D tens&t in the synchronized (left) and unsynchro-
nized (right) cases. (We display a whole image for visuéibrepurposes, though
really its descriptor extends out in the third dimensionhef tensor.)

fact that some local appearance patterns re-occur betwieredt poses suggests
that such latent factors exist. Intuitively, they mightraspond to things like local

body configurations (arm outstretched, knee bent, etghtiiig conditions, or body

types.

For each inputimage, we first extract ksdimensional appearance descrip-
tor. We use Histograms of Oriented Gradients (HOG) [29],chfoffer robustness
to small shifts and rotations. HOG pools the gradients withigrid of cells, and
histograms the pixels per cell into orientation bins; ealdtlhof HOG descriptor
dimensions originates from a particular spatial regionhi@ image, and adjacent

blocks originate from adjacent regions (except for boundatls).

Different from Chapter 3, where | use poselet to represerdqrés pose,
here | choose HOG because each feature dimension of HOGspords to the
content of a spatial region in the image. In contrast, rabalfl poselet descriptors

discard the spatial information and only keep the histograont of detected body
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parts. As shown in Figure 4.2, the spatial correlation betwdifferent parts is
also a key to our proposed method. For poselet feature, eathré dimension
corresponds to the histogram count of a type of poselet andgatial information

is less preserved in the descriptor.

Then, we assign each image to one of Meviewpoints. We currently use
ground truth orientation data for this step, as it is avadahith multiple public

datasets [166, 16]; however, automatic methods are alsilpp@se.g., [110].

Let: =1,..., N index the input data, where eachorresponds to a unique
moment in time—that is, a single snapshot, or a set of midtivwmages taken si-
multaneously. For each of theé inputs, we thus have a descriptor for some number
betweenl and M of the total possible viewpoints. Eacltaptures a distinct pose,
whatever pose the human is doing. Thus, we stress that wiils=fer to theV
inputs as “poses”, if at least some inputs are multi-view,d@enot require pose

annotationdor the input data.

Using this data, we construct a 3D tengore R"*M*X, where entry:;
corresponds to the image descriptor value initiiepose, thg-th view, and thek-
th feature dimension (which reflects image position). Pet R?*V, V ¢ RP*M|
andS € RP*X denote matrices whose columns are iheimensional latent fea-
ture vectors for each pose, view, and spatial position,eesgely. We suppose
thatxfj can be expressed as an inner product of latent fach’grs; (P, Vj, Sk),
where a subscript denotes a column of the matrix. In matnrmfahis means
X =~ Zle P;.oV,.08,., where a subscript, : denotes thé-th row in the matrix,

ando is the outer product.
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To recover the latent factors, we use the Bayesian prob#bitensor fac-
torization approach of [170], which extends probabilistiatrix factorization [141,
142] to accommodate time-evolving consumer data for mosemmendation
tasks. To account for uncertainty, we represent the likelihdistribution for the

observed descriptors by

p(X|P, V.5, a) - Hz‘]\ilnjj\/ilnle [N(xZ|<Rv Vjv Sk)? O‘_lﬂ Ii.’

whereN(z|u, o) denotes a Gaussian with mearand precisiony, and/;;
is an indicator variable equal to 1 if posappears in viewj, and 0 otherwise. We
use Gaussian priors for each of the latent fact@rsy;, S,. For pose and view-
point we use independent Gaussians, while for the spattfawe use the prior
Sk~ N(Sy_1,%s), for k = 2,..., K, which reflects that descriptor values are
likely to vary smoothly in spatially close regioAsLet © denote a set of random
variables comprised of the mean and covariance of all tlaeterfs, including_s.
For all Gaussian prior hyper-parametersand the variables i®), we use conju-

gate distributions as priors to facilitate subsequent $iawnteps.

Following [142, 170], we integrate out all the model paraenetaind hyper-
parameters to obtain a predictive distribution for an unseew given all observed

input images:

2Accounting separately for the boundary cells (which neeidbeosmooth a priori) would add
complexity to the model, and we find it is sufficient in praetiwt to.
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p(#]X) = / p(# PV, 51, a)p(P.V, S, 0, 0X) d{P,V,S.a,0}.

Compared to solving for a single point estimate for the MAEtdes P*,
V*, S*, this helps prevent overfitting to poorly tuned hyper-pagters. It is ap-

proximated using Markov chain Monte Carlo (MCMC) sampling:

L
p(akIX) = > p@k| PV, v s, o), (4.1)

=1
whereL denotes the number of samples. The samﬂé@, Vj(”, S,il), a1} are gen-
erated with Gibbs sampling on a Markov chain whose statiodestribution is the
posterior over the model parameters and hyper-paramgier¥’, S, a, ©}. Sam-
pling is initialized using the MAP estimates of the threetéaaenatrices. See [170]

for details.

With this tensor formulation, we capture the global influenbat image
position has on all the poses and viewpoints, which is vefigrmative for cropped
person images. For example, the model can learn that thermoesf strong -
45 degree gradients in cells in the bottom right of the petsmmding box when
viewed from the front (due to an extended left leg) suggdwtdikely presence of
45 degree gradients within the associated bottom left ddlls were viewed from

behind.

We choose to infer descriptors, rather than raw pixels. Tadignt-based
HOGs offer robustness to low-level appearance differeffeas, clothing), such

that we can expect to learn latent factors with less input thein would be needed
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for raw pixels. Inferring pixel intensities, though in peciple possible with the same
approach, would likely waste modeling effort on unneedaditiéa typical person
bounding box in our datasets contains 6,000 pixels, but Bd8/HOG dimensions).
In addition, as we demonstrate below, we can use the infesieds directly in
later learning tasks, since most vision methods operatégatare space other than
pixels. Plus, to visualize the results, we can “invert” HO&scriptors back into

image space with [160].

4.1.2 Learning with Unsynchronized Single-View Images

Next we generalize our approach to handle the challengisg where only
unsynchronized single-view data is available. Doing sd allbw us to exploit
existing realistic data sources, such as photos on FlickesuPably humans can
infer unseen views because they have seen many individuakious poses and
viewpoints, not because they have seen carefully orchiedtraulti-view examples
for individual people. They understand the pose assoag@aross individuals. In
a similar vein, our idea is to link snapshots that consamilar 3D body poses, but
differentviewpoints. In this way, a pose “instance” in the tensor carcdmprised

of different individual people (as depicted in Figure 4)3(b

This variant requires pose-labeled training data, usitigeemanual or au-
tomatic annotations. Good tools are available to semiraate pose labeling [16],

making this requirement manageable.

Let p, € R3/ denote the normalized body pose configuration for image

q. Its 3J elements are the 3D positions #fbody joints, normalized to a common
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coordinate system where they can be meaningfully comp&ieekifically, we shift
the raw skeleton to place the center of the hips at the orrgiate it to align the
plane connecting the hips and neck to be orthogonal ta ties, and scale it to
the average head-to-toe height. We estimate the pose ckstatween two images
asd(q,r) = ||p; — pr|l2- Then we sort all training pairs by(¢, ), and take any
pairs whose pose distance is less than 0.2 times the avasigead. Each such pair
provides twoK -dimensional HOG entries for the tensor, placed at the apjai
two columns based on their viewpoirft©nce the linked pairs are entered into the

tensor, we perform inference as described above.

With this extension, even if an “in the wild” snapshot waserved from just
a single viewpoint, we can infer its appearance in novel sieés such, our method
provides downstream estimation tasks (e.g., action ratoghwith data that is
both more completand realistic. Furthermore, while our current implementation
focuses on the multi-view and single-view cases separatetyapproach naturally
supports a mix of both types of data. In that case, the algonill learn the multi-
view constraints from synchronized instances and propaijem to single-view

instances during inference.

4.2 Experimental Results

We validate our approach on two public datasets. The firdRIANXmas

Motion Acquisition Sequences (IXMAS) [166], contains niitew synchronized

3Preliminary tests in which we link beyond pairs of exampligsribt show a noticeable differ-
ence in results.
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IXMAS multi-view

Keypoint Annotations 3D Pose Region Labels

Figure 4.4: Examples of IXMAS and H3D datasets.

data fromM = 5 cameras, with 11 actions (check watch, cross arms, kick), etc
performed by 10 actors, for 16,800 total images. The secbiuans in 3D
(H3D) [16], contains 2,378 single-view Flickr images, wihople doing various
unscripted poses (reaching, walking, riding a bike, etmyd has 3D pose anno-
tations forJ = 33 joints done by MTurkers. We use the viewpoint annotations

of [110]. See Figure 4.4 for example images of these two d&tas

We extract HOG with 9 cells and 12 bin histograms per cell|dyng a
K = 108 dimensional descriptor per image. We use the factorizaiale of [170],

and fix the latent factor dimensionality t0 = 500 and the number of samples
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L = 500, based on cross-validation on training data, ane: 2 as default. We
clip inferred outputs td0, 1], the valid HOG range. With these parameters, and
with N = 2,200 instances, learning the latent factors takes about 6 htnfesring

feature values requires only two inner products, whichdaké& ms.

We evaluate how well our inferred views match the (withheidyund truth
images. In addition, we compare to a variety of state-ofatieview-invariant
recognition methods as well as two baseline techniquesifaral view creation:
1) MEMORY, a memory-based tensor completion approach anc®vCa method
that copies observed images from nearby views. FamidRyY, we adapt a neigh-
borhood approach in collaborative filtering [90] to our peoh setting. For ©PY,
we find the observed image in the training diaathe very same pose instanitet
Is nearest in viewpoint to the desired unseen view, and dspy®G descriptor. For
example, if the needed vieyvwere frontal, and the view 45 degrees off of frontal
appears in the training set, that would be the estimate. thatea traditional warp-
ing approach is inapplicable for these tests, since it deisarulti-view calibrated

data, and can warp only to fairly nearby views (i.e., not gibto overhead).

In the following, we first evaluate the inferred views’ acacy (Sec. 4.2.1).
Then we use the virtual views for two applications: actiocogmnition (Sec. 4.2.2)

and viewpoint estimation (Sec. 4.2.3).

4.2.1 Accuracy of Inferred Views

Figure 4.5 visualizes inferred views using the “HOG gogyleserted-

HOG (iIHOG) technique, which inverts a HOG descriptor backatoatural im-
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age [160]. Here we use HOG descriptors with higher dimengdincells<12
bins =2970) to provide detailed visualization. We comp&e \tiew inferred by
our method to the iIHOG for the real ground truth (GT) imageiolwhs the upper
bound on quality. The two often look quite similar, which ms@ur method infers
the true appearance well. Whileo@Y’s results can look realistic—after all, they
originate from HOGs on real images—they are not as accugtaigs. This un-
derscores the value in modeling the latent factors for adleolations, rather than
simply matching to the nearest available view. Our advantagnost striking in
the most difficult cases, such as inferring the overhead ¢mesdle row, right side
of (a)). For poses that appear similar between views (bottvm left side of (a)),
CopPy is competitive, as expected. The H3D visualizations (b)ramsier due to
fewer observed features and cluttered backgrounds, yetilveapture the shape
of the person and some articulated details of the pose gzg.the bent arm in far
right). (Note, on H3D ©PY simply returns the given iHOG for all other views.)

See Supp. for more examples.

Figure 4.6 quantifies these observations. We randomly sag{f images
for each action in IXMAS, for a total of 2,200 images. Then &ach action in
turn, we withhold all images for that action in a given vieypdy factorization,
and compare the inferred unseen views to the withheld grouwtid. We plot the
Summed Square Difference (SSD) error between inferred emndlaviews, for each
view in IXMAS. (H3D lacks the ground truth to make this evdloa possible.)
Our factorization method outperforms both baselines. Aset@xpected, view 5,

the overhead view, is most difficult for all methods; noné&ths, our inferred views
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Image Ours Copy Memory Image GT Ours Copy Memory
(a) IXMAS dataset. Image and its GT iHOG are not seen in tnginiwe infer it.

i -
Ours Ours Image Given Ours Ours

Image Given . 1 r Ours
Image and given iHOG’s HOG are seen in trgiiwe infer other

(b) H3D dataset.
unseen views.

Figure 4.5: Visualization of inferred views using invertd@®Gs. Best viewed on
pdf.

remain 74% better than@Y and 6% better than EMORY.

These results validate the main goal of our approach: tarataly map seen
poses to unseen views, even when training examples aresiigyl, asynchronous,
and captured in complex environments. In the remaininglteswe will further
demonstrate that having estimated the unseen views weklyebetter positioned

to train viewpoint-sensitive models for recognition tasks
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Figure 4.6: Error in inferred views.

4.2.2 Recognizing Actions in Unseen Views

Next, we use our inferred views to train a system to recoga®ns from
a viewpoint it never observed in the training images. As abder each IXMAS
action label in turn, we hold out all its images in a given yi@iwnt, and then infer
the unseen views. We use those inferred HOGs to train a viedvppecific one-
vs.-rest SVM action classifier for that action category;fbsitive exemplars are all
synthetic, while the negative exemplars are real images &lbother action labels.
We evaluate accuracy on a test set of single-view static @magnsisting of 200

real positives and 2000 real negatives.

Table 4.1 shows the results. Our method significantly otbpess the base-
lines. Compared to EIMORY, our recognition advantage is much greater than our
SSD advantage in Figure 4.6, which suggests the perceptadityqdifferences
are greater than what SSD captures. We also show an upped-bdha accuracy
that would be obtained if theeal images had been available, rather than inferred

(“Ground truth”). Naturally, the accuracy is higher usimgktraining images; still,

61



CoPrPYy MEMORY Ours Ground truth
15.08 (2.45)| 20.39 (2.49)| 34.32 (3.47)|| 60.36 (2.51)

Table 4.1: Action recognition accuracy (mAP) in an unseewpioint on IXMAS.
Numbers in parens are standard errors.

we more than double the accuracy of a method that uses theshearilable real

view (CoPY).

Figure 4.7 evaluates the impact of input data sparsity. \fWeatthe recog-
nition task above, but now with an increasingly sparse setalf input views for
training. To increase sparsity, we remove views at randouar.n@ethod’s accuracy
is fairly stable up until about 40% (i.e., when 60% of the tenis unobserved),
showing the power of the latent factors with rather incontgolgata. While our
accuracy starts to decline when the observed features csempss than half of
the tensor entries, it is still substantially better thaa llaselines. With only 20%
observed data, all methods do similarly, indicating insidfit information about
the feature correlations between the viewoPQ's standard error increases with

sparsity; it suffers once fewer nearby views are available.

Next, we demonstrate how our method can infer missing viawsd face of
partial occlusions. Table 4.2 shows the results, for acgongnition on the first five
IXMAS actions. The columns compare our method’s accuradiriee scenarios:
1) with no occlusions, 2) when training examples are pdytiatcluded, and 3)
when test examples are partially visible. To generate thieitrg set occlusions,
we randomly remove 20% of the HOG cells; to generate the &tsbeclusions,

we omit the lower body region. Comparing columns 1 and 2, veecge method
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Figure 4.7: Accuracy in unseen views as a function of tengarssty.

No occlusions| Occluded training| Partially visible testing
37.7 (3.06) 36.9 (3.03) 52.6 (2.07)

Table 4.2: Testing the impact of occlusions (average mAP)

maintains its accuracy in spite of occluded training exaspshowing the latent
factors have a similar effect for missing data within an ieagot just within the
viewpoints. Comparing columns 1 and 3, we see that if the s@ied views are

partially visible, our method can even more precisely catgthem.

Finally, we use our inferred views to compare to severaltexganethods
for cross-view action recognition. We follow the standaedve-one-action-out
IXMAS protocol [52]. We train an action class using the HOGtfees from all
frames, and predict the action label of a test clip by votifaple 4.3 shows the re-
sults. They are quite encouraging. Despite using a rathglsiframe-based HOG
classifier, our inferred views lead to recognition accuraeiter than four existing
methods that devise sophisticated features or learninyitiighs specifically for

this recognition task. This shows that explicitly estimgtmissing views can offer
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View O | View 1 | View 2 | View 3 | View 4

Farhadi 08 [52] 61 67 61 63 40

Junejo 08 [81] 63.0 64.3 64.5 58.9 46.6
Farhadi 09 [53] 74 77 76 73 72

Liu 11 [106] 79.0 74.7 75.2 76.4 71.2
Li 12 [102] 83.4 79.9 82.0 85.3 75.5
Zhang 13 [185]|| 88.3 83.0 87.7 88.3 81.9
Copy 59.9 56.5 53.4 59.8 41.2
MEMORY 67.7 63.0 58.6 65.0 48.9
Ours 79.9 80.8 79.0 80.2 74.2

Table 4.3: Cross-view action recognition accuracy on IXMAS

advantages over using view-invariant descriptors. Thiaf s& do underperform
two of the methods. We suspect our static frame HOG reprasents a handicap,
as the other methods use temporal features. It will be istieg future work to

generalize our idea to the temporal domain.

On top of its good performance on this specific task, our needifers func-
tionality the prior work does not: 1) it can translate seeages to images in new
viewpoints, whereas the prior methods produce invariaatufes, which cannot be
used in support of other prediction tasks, and 2) it can lEyerany available views
during learning, whereas the prior methods focus on legroamnections only be-

tween pairs of views.

4.2.3 Estimating Body Orientation

Next we test our unsynchronized method (Sec. 4.1.2) on H3®gudntize
the torso orientations intd/ = 8 discrete views. We use views inferred by our

method to augment a training set of real images, then leawmpoint classifiers.

64



(a) Average mAP, compared to view synthesis baselines
Orig | Orig+CopPyY | Orig+tMEMORY | Orig+Ours
17.29 14.77 19.94 20.30

(b) Classification accuracy vs. state-of-art
Poselet activations+SVM [110] Ours
48.4% 49.9%

Table 4.4: Viewpoint estimation accuracy on H3D when we aeigimeal training
images with inferred views, compared to alternative vienitsgsis methods (a) and
a state-of-the-art technique (b).

We form a 75%-25% train-test split, and balance the traimmapes per view, since
highly imbalanced training images would favor our approatk train SVMs with
x? kernels for all methods. Given a novel test image, we neeéd¢ald which way
the person is facing. Table 4.4(a) shows the mAP resultsingdtie view-specific
training instances created by our method, accuracy isritége training with the
real images alone. Furthermore, our factorization appraa@gain stronger than

both baselines.

Next, we compare our viewpoint estimation to an existinghmdtbased
on poselets [110]. We use the same features, classifier, xetimental setup
described in that paper. We train one classifier with the H2D images, and
another with those same images plus our inferred views. eTéld(b) shows the
classification accuracy resuftd/Ve see our virtual views boost the accuracy of this

state-of-the-art approach for viewpoint estimation.

Both these H3D results are encouraging. Not only can we hdera person

“Note that the numbers in (a) and (b) are not comparable to ethelr due to differences in
features and experimental setup.

65



will appear in other viewpoints having seen him in only a gngew, but doing so

improves robustness for appearance-based viewpointasim

4.3 Conclusions

In this chapter, | proposed a novel approach for inferringhan appearance
in unseen viewpoints. Whereas existing methods tackle ribielggm using geom-
etry and image warping, my method offers a new perspectigedan learning. |
show how to cast the problem in terms of tensor completiod aatapt a factoriza-
tion approach to accommodate both synchronized and unsymezkd single-view
images. Our results on two challenging datasets show thatmy can we infer

unseen views, but that doing so is useful for practical huaralysis tasks.

So far | have demonstrated two approaches that expandrexiaiiman ac-
tion recognition frameworks to deal with learning from fevadable instances and
learning from few available views. Next, | study the humaticars that involvan-
teractionwith other objects or another person. Existing work un@deds human-
object interaction by treating the person and the objectasext for each other.
This framework increases the complexity of the model andldvoequire a large
amount of examples for learning. To solve this problem, ixtmdapter, | aim to
develop an approach that connects the person’s pose antjde’'®property in a
category independent way. Thus the proposed approach ehnvile broader or

more general cases in modelling interactions.
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Chapter 5

Predicting the Location of “Interactees”

In the previous chapters, | connect observed human dataéo available
data with underlying patterns such as temporal dependengewpoint correla-
tions, and partially overlapping poses. In this chaptehiftso another type of
connection: the interaction between a human and anothectoty another person

(in this work, we call it arinteracteeas described in Chapter 1).

Here my goal is to discover the patterns that link our posecanigin prop-
erties of the interactee such as its size and location. iBgistork models the inter-
action between a person and an interactee with dependeitice parson’s pose and
interactee’s category. In this chapter, | propose to mdueiriteraction between a
person and that person’s interactee inadegory independenvay. For any kind
of interaction, our system can predict the location and ibe af the interactee by

observing the cues from the person’s pose, orientationse@ie layout.

In particular, | consider the following questiofsiven a person in a novel
image, can we predict the location of that person’s “intese’—the object or

person with which he interacts—even without knowing théi@aar action being

The work in this chapter was supervised by Dr. Grauman amghaily published in: Predicting
the location of “interactees” in novel human-object intdiens. C.-Y. Chen and K. Grauman. In
Proceedings of Asian Conference on Computer Vision (ACG¥f)jgapore, November, 2014,
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performed or the category of the interactee itseliftically, by posing the question
in this manner, our solution cannot simply exploit learnetios-specific poses and
objects. Instead, | aim to handle the open-world settinglaadh generic patterns
about human-object interactions. In addition, | widen ttaelitional definition of

an interactee to include not only directly manipulated otgjebut also untouched
objects that are nonetheless central to the interactian, (e poster on the wall

the person is reading).

Why should the goal be possible? Are there properties ofantmns that
transcend the specific interactee’s category? Figure Hydests that, at least for
humans, it is plausible. In these examples, without obegrihe interactee object
or knowing its type, one can still infer the interactee’s mpomate position and
size. For example, in image A, we may guess the person isctteg with a small
object in the bottom left. We can do so because we have a médeltain pose,
gaze, and scene layout patterns that exist when peopladhigith a person/object
in a similar relative position and size. This is done withkmbwing the category of
the object, and even without (necessarily) being able toendra particular action

being performed.

After building a system for predicting the location of argrectee, | explore
how the inferred interactee localization can be used as dacgeide the system
for focusing on important object/area(s) in the scene aodiges four different
applications as following. In the first task, | use interadi@calization to improve
the accuracy or speed of an existing object detection frarewy guiding the

detector to only focus on areas that are involved in the acteyn. Next, | use the
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Figure 5.1: Despite the fact we have hidden the remaindenettene, can you
infer where is the object with which each person is intereg?i Our goal is to
predict the position and size of such “interactee” object@dategory-independent
manner, without assuming prior knowledge of the specifimabject types.

interactee prediction to assistimage retargeting. Intdsk, the image is resized by
removing the unimportant content and preserving the paldsad to the person and
interactee. Furthermore, | use inferred interactee lonas importance prediction
for person-centric view of what to mention in an image. Foaraple, given a
novel image containing one or more people, can we predictiwbbjects in the
scene are essential to generating an informative desmiptOur key hypothesis
is that a person'steractionsgive vital cues. As shown in Figure 5.2, each image
contains a dozen or more recognizable objects, but a hurearevhas bias towards
noticing the object with which each person interati& baby is eating caker the
boy is reaching for the frisbeeNotably, not only do we focus on people and their
activity—what they are doing, we also focus on the direceobpf that activity—
what they are doing it with/to. By applying my proposed agio we can leverage
these interactees to rank detected objects by their impaetar perform retrieval-

based image captioning.
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L]

r eating a cake.

A small boy is reaching up for a frisbee.

Figure 5.2: When describing an image, people usually merttie object with
which the person is interacting, even if it may be small oregsmon-salient to
traditional metrics. For example, here the “interactegéots are the cake and the
frisbee.

5.1 Approach of Predicting the Location of Interactees

To predict the location of an interactee, | explore two défg methods: a
interaction embedding based non-parametric approach aetixrk based prob-
abilistic model. In the following, I first precisely define athqualifies as an inter-
actee and interaction and describe our data collectiomteficobtain annotations
for training and evaluation. Then, | explain the two prombkEarning and predic-
tion procedures. Finally, | overview the four applicatidhat exploit my method’s

interactee predictions.
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5.1.1 Definition of Human-Interactee Interactions

First we must define precisely what a human-inter&dteeraction is. This
Is important both to scope the problem and to ensure maxioradistency in the

human-provided annotations we collect.

Our definition considers two main issues: (1) the interactiare not tied
to any particular set of activity categories, and (2) anrat8on may or may not
involve physical contact. The former simply means that aagencontaining a
human-object interaction of any sort qualifies as a truetpesit need not depict
one of a predefined list of actions (in contrast to prior wdrkg, 47, 65, 36, 177, 76,
132]). By the latter, we intend to capture interactions tjabeyond basic object
manipulation activities, while also being precise abouatkind of contact does
qualify as an interaction. For example, if we were to defirteractions strictly
by cases where physical contact occurs between a persorbgead, athen walking
aimlessly in the street would be an interaction (interaatead), while reading a
whiteboard would not. Thus, for some object/person to bateractee, the person
(“interactor”) must be paying attention to it/him and penfothe interaction with a

purpose.

Specifically, we say that an image displays a human-inteeaoteraction if

either of the following holds:

1. The person is watching a specific object or person and gayacific atten-

2An interactee refers to the thing a particular person initege is interacting with; an interactee
could be an object, a composition of objects, or anothergpers
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tion to it. This includes cases where the gaze is purposefilifacused on
some object/person within 5 meters. It excludes cases wherperson is

aimlessly looking around.

2. The person is physically touching another object/pevgitim a specific pur-
pose. This includes contact for an intended activity (sidhading a camera
to take a picture), but excludes incidental contact withsitene objects (such

as standing on the floor, or carrying a camera bag on the séQuld

An image can contain multiple human-interactee relatigpgsh/Ne assume
each person in an image has up to one interactee. At testaimenethod predicts

the likely interactee location for each individual detelcperson in turn.

5.1.2 Interactee Dataset Collection

Our method requires images of a variety of poses and inesagpes for
training. We found existing datasets that contain humgeebbnteractions, like
the Stanford-40 and PASCAL Actions [179, 47], were somewinaited to suit
the category-independent goals of our approach. Namegettatasets focus on a
small number of specific action categories, and within eatio@class the human
and interactee often have a regular spatial relationshipmeSclasses entail no
interaction (e.g.running, walking jumping while others have a low variance in
layout and pose (e.griding horseconsists of people in fairly uniform poses with
the horse always just below). While our approach would leard benefit from
such consistencies, doing so would essentially be ovaitiie., it would fall short

of demonstrating action-independent interactee prexticti
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Therefore, we curated our own dataset and gathered thesaegesnota-
tions. We use selected images from three existing dateSety,[169], PASCAL
2012 [47], and Microsoft COCO dataset [104]. SUN is a largalesimage dataset
containing a wide variety of indoor and outdoor scenes. fyalhavailable person
annotation$ we selected those images containing more than one perserS N
images do not have action labels; we estimate these seletdges contain 50-100
unique activities (e.gtalking, holding cutting digging andstaring. PASCAL
IS an action recognition image dataset. We took all imagas fthose actions that
exhibit the most variety in human pose and interactee Ipaatin—using computer
andreading We pool these images together; our method does not use #og ac
labels. This yields a large number (¢,100) of unique aatisiincluding skiing,
skateboarding, throwing, batting, holding, etc. For CO@@,consider the subset
of COCO training images that contain at least one personaveh>5,000 pixels

and more than 4 out of 5 annotators report there is an interact

We use Amazon Mechanical Turk (MTurk) to get bounding boxaations
for the people and interactees in each image. Figure 5.3sstimnnstructions col-
lecting the interactee localization in the form of boundbuxes. We again define
what interaction means in our task, and we show examplesauf pzalizations in

the instruction. Figure 5.4 shows an example annotatida tas

We get each image annotated by 7 unique workers (due to tpe danount

of image in COCO, we have 5 unique workers for this datasei), keep only

Shttp://groups.csail.mt.edu/vision/ SUN
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We are investigating how humans interact with surrounding objects and other people. In this
experiment, an interaction is defined as being one of two types:

a.Physically touching an object or another person with a specific purpose.

o The touching should reveal a specific purpose.

o The person should be paying attention to the object or other person.

o For example, holding a camera to take a picture => yes; walking forward and carrying a bag =>
no; standing on the floor =>no.
-=-OR---

b. Watching a specific object/person and paying attention to it.

o Ifthe gaze is purposeful and focused on an object or person within 5 meters, it is an interaction
=>yes.
o If the person is aimlessly looking around, it is not an interaction => no.

In the qualification task, you should be familiar with the definition of the interaction and tight bounding
box. For each task, you will be shown one image. One person will be outlined with a green box. Tha
person is interacting with another person or object.

Your job is to draw a box around the "interactee" -that is, the object or person with which the
person shown is interacting.

Be sure to draw a tight bounding box, meaning that the box you draw is exactly as big as the
interactee object and touches its outer boundaries.

In the example below, the "interactee" is the hole that the person outlined in green is looking at. So, the
task would be to draw a tight pink bounding box around that hole, as shown here.

iing Operaion: Dslete Selscied Restangle Mode: Drawing Ediing Operation: Deete Selected Restangle

Mode: Drawing Fing Operation: Delete Selested Restangle

1.Click drawing. 2.Clickon top left of the object. 3.Click on the battol
To modify or redraw the bounding box, click Editing or Delete button.

m right of object.

In the following examples, the pink boxes illustrate what we mean by a good or bad "tight"
bounding box.

Figure 5.3: Instruction for localizing interactee in image

those images for which at least 4 workers said it containadtanaction. This left

355/754/10,147 images from SUN/PASCAL/COCO respectively

The precise location and scale of the various annotatdesantee bounding
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Task start:

Click and draw a tight, precise bounding box on the object or person that the person in the given
yellow bounding box is interacting with.

Mode: Drawing Editing Operation: Delete Selected Rectangle

§ L)

Figure 5.4: Example task for localizing interactee in ingge

boxes will vary. Thus, we obtain a single ground truth intéza bounding box via
an automatic consensus procedure. First, we apply meangttike coordinates of

all annotators’ bounding boxes. Then, we take the largasteil, and select the box

within it that has the largest mean overlap with the rest.

The interactee annotation task is not as routine as othech, @s tagging

images by the objects they contain. Here the annotators givestareful thought
to which objects may qualify as an interactee, referringhe quidelines we pro-
vide them. In some cases, there is inherent ambiguity, wimak lead to some
degree of subjectivity in an individual annotator’s labgli Furthermore, there is

some variability in the precision of the bounding boxes tdurkers draw (their
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notion of “tight” can vary). This is why we enlist 7 unique vkers on each training
example, then apply the consensus algorithm to decide drovuth. Overall, we

observe quite good consistency among annotators. Thegevstandard deviation
for the center position of bounding boxes in the consensiseal is 8 pixels. See

Figure 5.9, columns 1 and 3, for examples.

5.1.3 Localizing Interactees in Novel Images

| explore two different methods for interactee localizatiql) a interac-
tion embedding based non-parametric regression approact2aa network based

probabilistic model. | will go over the details of both apaobes in the following.

In both methods, to capture the properties of the interacteecategory-
independent manner, we represent its layout with respebetmteracting person.
In particular, an interactee’s localization parameterssei ofy = [z, y, a], where
(z,y) denotes the displacement from the person’s center to tleeattee box’s
center, and is the interactee’s area. Both the displacement and arewaralized
by the scale of the person, so that near and far instancesmflardnteraction are
encoded similarly. Given a novel image with a detected perae aim to predict

y, that person’s interactee, as | explain next.

5.1.3.1 Non-parametric Regression with Interaction-guied Embedding

My first method for this task predicts the interactee in a howage using
a learnednteraction-guided embeddinggether with non-parametric regression.

Our goal is to estimate the approximate position and ardaedhteractee based on
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any relevant visual cues in the image.

To learn the relationship between the interactee’s lonajiand the image

content, we extract three types of features.

First, we learrinteraction-guided deep person featurésspired by the idea
that lower layer neurons in a CNN tend to capture gdbeeralrepresentation and
the higher layer neurons tend to capture the representsfieaificto the target
task [182], we fine-tune a deep CNN for interactee localkatiln particular, as
shown in Figure 5.6, we quantize the space of interactedizatian parameters,
then fine-tune a pre-trained object recognition network {®Jproduce the proper
discretized parameters when given a detected person (bmunaix). The last layer
provides the learned feature map,,,,. This embedding discovers features infor-
mative for an interaction, which may include body pose cuegcating where an
interactee is situated (e.g., whether the arms are owtisg@}the legs close together,
the torso upright or leaning, etc.), as well as attentionabdrom the person’s head
orientation, eye gaze, or body position. As shown in Figuse &iven a query pose,
our z.,,—, feature is able to precisely retrieve training examples$ imaolve in
similar interactions as the query example (e.qg., riding laoiding bat) while HOG

feature could be misleading in some cases.

In a similar manner, we also leamteraction-guided deep scene features
As shown in Figure 5.6 we fine-tune a scene recognition nétyl@6] to discover
features about the entire scene that are useful for pradittie interaction, yielding
an interaction-guided scene descripigy,, . Intuitively, this embedding learns

cues surrounding the person that are relevant to his ine&acplacement, such
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Figure 5.5: Example of nearest pose neighbors byagyy_, feature versus HOG
feature.

as context for the activities that might be taking place.sltiso free to capture
the appearance of the interactee itself (though due to tesaategory nature of

interactions discussed above, this may or not be learnesedsl|y)

Finally, we augment the learned features with several st@hdescriptors
possibly indicative of interactees. For pose, we take thetdgram of Oriented
Gradients (HOG),, computed in the person bounding box, plus the box’s aspect
ratio (x, = g) (e.g., the aspect ratio will be large for a standing persorgller for
a sitting person). For additional features about the scga¢ake a GIST descriptor,
x4, and the person’s normalized position within the imagg, The latter captures
how the person is situated within the scene, and thus where ik “room” for
an interactee. For attention, we use poselets [110] to attithe head and torso
orientation;,, andé;, to capture the direction of attention, whether physicalan-
physical. The head orientation offers coarse eye gaze winlg, the torso tells us

which objects the person’s body is facing.
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Figure 5.6: Interaction-guided fine-tuning and network héecture of our
interaction-guided embedding.

Combining these features, we have the feature vector

€T = [‘gha 0t7 Lh, La, Ly, Lp, Lenn—p :L'c'rm—s]‘ (51)

We compute and store this descriptor for each interacteetated train-
ing image, yielding a set a¥ training pairs{(z;, y;)},. To infer the interactee
parametergj, = [z,,Y,, 4, for a novel query image,, we use non-parametric
locally weighted regression. The idea is to retrieve tragnimages most simi-
lar to ,, then combine their localization parameters. Rather tivaplg average
them, we attribute a weight to each neighbor that is a funabioits similarity to
the query. In particular, we retrieve thi€ nearest neighbors,,, , ..., x,, from

the training set based on their Euclidean distance toWe normalize distances
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per feature by the standard deviation of thenorms between training features of

that type. Then, the estimated interactee parameterg,ate Zfi L WiYn,, Where
).

Note that while interactees are a function of the action dpgiarformed,

w; = exp(—||lz, — Ty,

there is not a one-to-one correspondence. That is, the sefiom @an lead to
different interactees (e.g., climbteee vs. climb aladder), and vice versa (e.g.,
climbatree vstrim a tree). This supports our use of a category-independetidkspa
representation of the interactee. Our method can benefit &oy such sharing
across verbs; we may retrieve neighbor images that conéaiple doing activities
describable with distinct verbs, yet that are still reldévian interactee estimation.
For example, a person cutting paper or writing on paper maybeéxoth similar
poses and interactee locations, regardless of the digtoin meanings. Thus,

there is value here in not collapsing the dataset to verbHspenodels.

A natural question is whether one could simply learn thelleagon param-
eters “end-to-end” from the image rather than using theqméssene embeddings
as an intermediary to a non-parametric learning approachprdctice, we found
such an approach inferior to ours. This indicates there lisevan 1) separating
the person and scene during feature learning (more datadvikaly be needed if
one wanted to treat the person as a latent variable) and B)entqg the learned

features with semantically rich features like gaze.
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5.1.3.2 Probabilistic Model with Mixture Density Network

We expect the non-parametric method described above td&sewhen
there is ample labeled data for learning. Since this is neayd the case, we also
consider a parametric model to represent interactee katadn. As an alternative to
the above proposed non-parametric method, | also explatanway to localize
interactees using the Mixture Density Network (MDN) [13]koild a predictive
distribution for the interactee localization parameté@is MDN is a neural network
that takes as input the observed features, their asso@atadeters, and as output
produces a network able to predict the appropriate Gaussinre model (GMM)

parameters for a novel set of observed features.

To build a predictive distribution for the interactee Iazation parameters,
we want to represent a conditional probability dengityy|x). Here we model

density as a mixture of Gaussians withmodes:

P(ylz) =Y aN(x; pi, i), (5.2)
=1
wherea; denotes the prior mixing proportion for componént is its mean, an&;

is its covariance matrix. We use thélabeled training examplggx®, y'), ..., (2, y™)}

to train the MDN.

In testing, given a novel test image, we extract the deswspirom the
person bounding box in the image. Then, we use the learned MDd¢nerate
the GMM P(y'|z") representing the most likely positions and scales for thgeta

interactee.
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In this way, we can assign a probability to any candidatetjprsand scale
in the novel image. To estimate the single most likely patansewe use the center
of the mixture component with the highest priar;);, following [13]. The output
interactee box is positioned by adding the predidted)) vector to the person’s

center, and it has side lengthsgf.

5.1.4 Applications of Interactee Prediction

Our method is essentially an object saliency metric thatoggocues from
observed human-interactions. Therefore, it has fairlyegarapplicability. To make
its impact concrete, aside from analyzing how accuratergdiptions are against
human-provided ground truth, we also study four specifidiegipons that can ben-

efit from such a metric.

In the first task, | use the interactee localization to imrthve accuracy or
speed of existing object detection framework by guidingdactor to only focus
on areas that involved in the interaction. In the second, tagke the interactee
prediction to assist image retargeting. In this task, thegens resized by removing
the unimportant content and preserving the parts relatedetgperson and inter-
actee. In the third and fourth tasks, | explore how to leveraderred interactees
to detect important objects and generate image descrgtidhese tasks aim to
mimic human-generated image descriptions by focusing @ptbminent object(s)
involved in an interaction. Well-focused descriptions ¢emefit image retrieval
applications, where it is useful to judge similarity not @lyron how many objects

two images share, but rather on how mamportantobjects they share.
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5.1.4.1 Task 1: Interactee-aware Contextual Priming for Olpect Detection

First, we consider how interactee localization can primeobject detec-
tor. The idea is to use our method to predict the most likejce(s) for an in-
teractee, then focus an off-the-shelf object detector itrigze its search around
that area. This has potential to improve both object detectcuracy and speed,
since one can avoid sliding windows and ignore places tfeualikely to have
objects involved in the interaction. It is a twist on the wiallown GIST contextual
priming [155], where the scene appearance helps focustiatteon likely object
positions; here, instead, the cues we read from the perstheiscene help focus
attention. Importantly, in this task, our method will lookthe person, but wilhot
be told which action is being performed; this distinguistiestask from the meth-
ods discussed in related work, which use mutual object-posgext to improve

object detection for a particular action category.

To implement this idea, we run the Deformable Part Model (DIBV] ob-
ject detector on the entire image, then we apply our methdastard the detections
that are outside the 150% enlarged predicted interactedil@oxscoring them as
—o0). To alternatively save run-time, one could apply DPM toyahlbse windows

near the interactee.

5.1.4.2 Task 2: Interactee-aware Image Retargeting

As a second application, we explore how interactee predfictiay assist in
image retargeting. The goal is to adjust the aspect rati@zeras an image without

distorting its perceived content. This is a valuable agpian, for example, to allow

83



dynamic resizing for web page images, or to translate a regbtution image to a
small form factor device like a cell phone. Typically retatigg methods try to
avoid destroying key gradients in the image, or aim to prestre people or other
foreground objects. Our idea is to protect not only the peaplthe image from
distortion, but also their predicted interactees. Thergtie is that both the person
and the focus of their interaction are important to preséneestory conveyed by

the image.

To this end, we consider a simple adaption of the Seam Camigg-
rithm [5]. Using a dynamic programming approach, this mdtetminates the
optimal irregularly shaped “seams” from the image that hiaeeleast “energy”.
The energy is defined in terms of the strength of the gradtit,possible add-ons
like the presence of people (see [5] for details). To alsegmee interactees, we aug-
ment the objective to increase the energy of those pixatglwithin our method’s
predicted interactee box. Specifically, we scale the gradiaergyg within both

person and interactee boxes([gy+ 5) * 5.

5.1.4.3 Task 3: Interactees as Important Objects

The third application uses interactees to gauge oliegortancewithin a
scene. Following prior work [150, 151], we define “importanbjects as those
mentioned by a human describing an image. Our intuitiongkaple tend to men-
tion interactees is supported by data; in COCO, 80% of trtexactees appear in

the human descriptions.

We use predicted interactees to generate important obyguitheses, as
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follows. Given a detected person, we project the prediciegtactee bounding box
(square box with the predicted area) into the query images iBhessentially a
saliency map of where, given the scene context and body p@sexpect to see an
object key to the person’s interaction. Then, we sort albgeized objects in the
scene by their normalized overlap with the interactee regidlhe first object in

this list is returned as an important object.

Whereas past work [150, 71, 151] focuses on composition (tikessize or
position) and semantic cues (like the type of object orlaitg), the novelty of our

approach is to inject human-object interaction cues ineégtfedictions.

5.1.4.4 Task 4: Interactees in Sentence Generation

In the fourth task, we generate sentences for the query ithegeccount
for its interactee. While the importance task above focesésly on the question
of whether an object is important enough to mention, theesea task entails also

describing the activity and scene.

We take a retrieval-based approach, inspired by [122, 3ghiRwe use a
non-parametric model. Intuitively, if the content of a quienage closely resembles

a database image, then people will describe them with siséiatences.

Given a novel query, we computeand its estimated interactee spatial pa-
rametersy, and use them together to retrieve thig nearest images in a database
annotated with human-generated sentences. In particwayse Euclidean dis-
tance to sort the neighbors, normalizing distancesdf@ndg. Then, we simply

adopt the sentence(s) for the query that are associatedhetle nearest examples.
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PASCAL-Action MS-COCO

Figure 5.7: Examples of SUN, PASCAL-Action, and MS-COCCQedats.

5.2 Experimental Results

We evaluate three things: (1) how accurately do we predietactees, com-
pared to several baselines? (Sec. 5.2.2), (2) how well carahs perform this task?

(Sec. 5.2.3), (3) the four applications of interactee liaedion (Sec. 5.2.4).

5.2.1 Datasets and Implementation Details

We experiment with images containing people from threesddta PAS-
CAL Actions 2012 [48], SUN [169], and COCO [104]. All threerwast of natural,
real-world snapshots with a wide variety of human activigee Figure 5.7 for

example images of these three datasets.

For PASCAL and SUN, we use the subsets collated for humaraitiens,
containing 754 and 355 images, respectively, and the gulaiailable interactee
annotations. As PASCAL Actions and SUN do not have senteats de use them
solely to evaluate interactee localization accuracy. FOCO, we use the 10,147

total images for which we obtained interactee bounding lmmogations on MTurk
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(see Sec. 5.1.2). COCO contains 5 human-written senterecaesipge, as well as
object boundaries for 80 common object categories, whiclexpboit below. See

Figure 5.7 for example images of these three datasets.

For the feature embeddings, we fine-train AlexNet [91] arat@$-CNN [186]
with the Caffe deep learning toolbox [79], using SGD solvéhw 0,000 iterations
and a learning rate of 0.001. To form the target labels, watgmthe interactee’s
displacement and area into 10 and 4 bins, respectively,esndtwork provides 40
outputs in the last layer. We extract the features from thdagter (fc7) asc.,,,—,
andzx,,,_, from each network. For HOG, each box is resize&dox 80 and we

use cell size 8.

We localize interactee regions of interest automaticaliywur two pro-
posed methods. The inferred interactee localization guidewhere to focus in
the image for our four applications. In particular, for fésun the importance
and sentence tasks, we refer to the ground truth person laoxkebject outlines
when deciding what word to use for a predicted region of gger This lets us
focus evaluation on the “what to mention” task, indepenadnhe quality of the
visual detectors. We sdt = 20 and K, = 5 when retrieving the near neighbor
interactions and images, respectively. We fix€dafter initial validation showed
values between 5-50 to perform similarly. For PASCAL and SkiNuse a random

75%-25% train-test split and for COCO we use a random 80%-2aWt-test split.
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5.2.2 Accuracy of Interactee Localization

First we evaluate the accuracy of our interactee predisti@iven an im-
age, our system predicts the bounding box where it expefitsddhe object that is
interacting with the person. We quantify error in the sizd aosition of the box.
In particular, we report the difference in position/areénsen the predicted and
ground truth boxes, normalized by the person’s size. We @lstuate the accu-
racy of our method and baselines by the interaction overrufioU) between the

inferred and ground truth interactee bounding boxes.

We compare to three baselines: (1) the Objectness (Obj) ¢hoal, which
is a category-independent salient object detector; (2) @afNPerson” baseline,
which simply assumes the interactee is close to the p&rsoml (3) a Random
baseline that randomly generates a position and size. \@hilenethods exploit
cues about the person, the Objectness method is completegrig and does not.

We score each method’s most confident estimate.

Table 5.1 shows the result. On three datasets, both of olradgbffer sig-
nificant improvement in position and size error over the liase. The margins are
largest on the most diverse COCO dataset, where our datandaipproach (Ours-
embedding) benefits from the large training set (COCO hasrtiman 10 times
the labeled instances than PASCAL or SUN). Our interactimbedding method
provides 12% lower errors over our MDN method on averages Tridicates the

strength of our learned features and data-driven estimagpproach. Our error re-

41t predicts a box centered on the person, with a seal@.74 of its area (a parameter set by
validation on the training data).
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Metric | Dataset || Ours-embedding Ours-MDN [ Obj [4] | Near Persorf Random|

COCO 0.2256 0.3058 0.3569 0.2909 0.5760
Position error| PASCAL 0.1632 0.1926 0.2982 0.2034 0.5038
SUN 0.2524 0.2331 0.4072 0.2456 0.6113
COCO 38.17 47.16 263.57 65.12 140.13
Size error PASCAL 27.04 34.39 206.59 31.97 100.31
SUN 33.15 33.19 257.25 39.51 126.64
COCO 0.1989 0.1153 0.0824 0.1564 0.0532
IOU PASCAL 0.2177 0.1369 0.0967 0.1415 0.0552
SUN 0.1710 0.1145 0.0661 0.1504 0.0523

Table 5.1: Average interactee prediction error as meashyeposition/size and
average 10U between prediction and ground truth interamtead| three datasets.

ductions relative to Near Person average 16% overall, artid 8p% on COCO for
object size. However, on the SUN dataset, our MDN methodgéty better than

our embedding method for interactee position; with only 88&ges in SUN, our
data-driven approach may suffer. Our gain over Near Persofirms that this is
a non-trivial prediction task, particularly when the pearss not touching the in-
teractee (see the bottom example in third column in Figusg 5As for the IOU

metric, our embedding method provides significantly highecuracy than other
methods especially in COCO and PASCAL dataets with the Hdirger data size.
Our MDN method provides lower average 10U than the Near Pebsseline due

the low score cases from incorrect interactee localization

Figure 5.8 shows example predictions by the embedding mMadé our
method. We see that our method can often zero in on regionsevthe interac-
tion is likely to be focused, even when the object may not Haaen seen in the
training examples. On the other hand, we also find failuregas.g., when a per-

son’s pose is too rare (upside down in the middle of fourtluewl) or the unusual
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Low Possible interactee location High

Figure 5.8: Example interactee localizations. We displagamap for our embed-
ding method’s predictions by overlaying the retrievedrag examples, such that
they vote on likely areas of interest (white = high confidgncenhe yellow dotted
boxes indicate the main person in the image. The blue boxates the ground
truth interactee location. Our method can infer interaxteespite of varying inter-
actions and object types. The fourth column shows failusesavhere there is less
confidence in the prediction (see the upside down skateryorsan unusual cases
with multiple interactees (see the guy using the cell phonigewiding a bike). Best
viewed in color.

cases with multiple interactees (using cell phone whiléngbike in the top of

fourth column).
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Annotated-test Annoated—GT Annotated-test

~Annotated-GT

Figure 5.9: We remove the background from the original image ask human

subjects to infer where the interactee might be. Red boxestdeheir predictions,

green box denotes consensus. Annotated-GT shows the fadjertwhich is the

format seen for ground truth collection, cf. Sec. 5.1.2).ndtated-test shows the
human subject results. Naturally, annotators can morahigliocalize the inter-

actee when it is visible.

5.2.3 Human Subject Experiment

Next we establish an “upper bound” on accuracy by asking msoéjects
on MTurk to solve the same task. Our MDN method localizes taractee without
observing the background content (outside of the persopdrakwithout knowing
what category the interactee belongs to. Thus, we construaterface forcing
humans to predict an interactee’s location with a similak laf information. Fig-
ure 5.9, columns 2 and 4, illustrate what the human subjess & well as the

responses we received from 10 people.

Table 5.2 shows the human subjects’ results alongside fmrrthe subset
of images in either dataset where the interactee is notlgisiithin the person
bounding box (since those cases are trivial for the humashsamjuire no inference).
The humans’ guess is the consensus box found by aggreghtiiyasponses with

mean shift as before. The humans have a harder time on SUNPKRBGAL, due
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Human subject Ours-MDN
Position error| Size error| Position error| Size error
SUN w/o visible 0.1573 28.92 0.2736 36.58
PASCAL w/o visible 0.0952 40.84 0.2961 43.27

Table 5.2: Results of the human subject test.

to its higher diversity of interaction types. This studyatiates the difficulty of the
task. It also establishes an (approximate) upper boundliat wmay be achievable

for this new prediction problem.

5.2.4 Results for Applications of Interactee Prediction

Finally, we evaluate our idea in the context of the four tadd®ned above.

5.2.4.1 Task 1: Interactee-aware object detector contex&l priming

We first demonstrate the utility of our approach for contekfuriming for
an object detector, as discussed in Sec. 5.1.4.1, Task 1séwnhe PASCAL train-
ing images to train DPMs to find computers and reading masetizen apply our

methods and the baselines to do priming.

Figure 5.10 shows the results. We see our methods outpetfierbaselines,
exploiting its inference about the person’s attention ttidsdocalize the objects.
Note that both of our methods don’t use the action categdgisaduring training.
Again, our interaction embedding method outperforms ouMBethod. We also
see that Near person fares well for tleadinginstances, since the book or paper is

nearly always centered by the person’s lap.
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Figure 5.10: Interactee context helps focus the objectctimte Numbers denote
MAP.

5.2.4.2 Task 2: Interactee-aware image retargeting

Next, we inject our interactee predictions into the Seanvi@grretargeting
algorithm, as discussed in Sec. 5.1.4.2, Task 2. Figuredhaws example results.
For reference, we also show results where we adapt the efwgrglyon using @-
JECTNESSs top object region prediction. Both methods are instrddtepreserve
the provided person bounding box. We retarget the sobd6ex 500 images to

300 x 300.

We see that our method preserves the content related to hetpetrson
and his interactee, while removing some unrelated backgrobjects. In contrast,
OBJECTNESS[4], unaware of which among the prominent-looking objecighh
qualify as an interactee, often discards the interacteermtelad highlights content

in the background less important to the image’s main agtivit
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Figure 5.11: Interactee-aware image retargeting exanegli@ts. Our method suc-
cessfully preserves the content of both the interactee @Bf) kit, book, painting
of horse, laptop) and person, while reducing the contenhefiackground. -
JECTNESscannot distinguish salient objects that are and are notvadoin the
activity, and so may remove the informative interacteesawof of background
objects. The bottom right example is a failure case for outhiwe where our em-
phasis on the interactee laptop looks less pleasing thababeine’s focus on the
people.

5.2.4.3 Task 3: Interactees as important objects

Next, we use the interactee region of interest to predict@bmportance
(cf. Sec. 5.1.4.3, Task 3). Following [150, 151], we are gige image plus a list of
objects and their categories/locations. Ground truth mgmee is judged by how

often humans mention the object in a caption.

For this task we compare to the existi@gject Predictionmportance method

of [151] (Sec. 4.1 in that paper). It trains a logistic regien classifier with fea-
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tures based on object size, location, and category. To erfigusircomparison, we
use the COCO data to train it to predict the object most oftentianed in the im-
age. We again compare to the Near Person baseline, and twmaddbaselines:
Prior, which looks at all objects present in the image an#ptbe one most fre-
quently mentioned across all training images, and Majowtyich predicts people

will mention the object that happens most frequently in e image.

All methods ignore the persons in the images, since all imagee a per-
son. For this result, we discard images with only a persoreasidgle object since

all methods can only output that same object, leaving 1,647images.

Table 5.3 shows the result of 10 train/test splits. We mesaaacuracy by
the hit rate—the average percentage of ground truth sesgenentioning the ob-
ject deemed most important, per image. If each of the 5 grawrtt captions
include the predicted object, the score is 100% for that endgrst, we see that
interactees are correlated with important objects; thempidruth interactee leads
to a hit rate of78.4. Furthermore, our embedding method predictions outperfor
the baselines. The nearest competing method is Near PdEsen.though the re-
gion of interest it predicts is substantially less prece® We saw above), it does
reasonably well because the step of identifying the anedt@OCO object nearest
to that region is forgiving. Nonetheless, the ground trypper bound reinforces

that better precision does translate to better performana®lving this task.

The state-of-the-art importance method [151] is less ateuhan our interactee-

based method on this data. We think this is because in the C@AT&€) an object

of the same category, size, and location is sometimes nm&atjcsometimes not,
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Method Mention rate (%)
Ground truth interactee 78.4(0.6)
Ours-embedding 70.5(0.4)
Importance [151] 65.4(0.4)
Ours-MDN 65.2(0.5)
Near Person 67.5(0.5)
Prior 64.6(0.6)
Majority 51.7(0.6)

Table 5.3: Average hit rates (higher is better) for predicteportant objects. Num-
bers in parens are standard errors.

making the compositional and semantic cues used by thatowétisufficient. In
contrast, our method exploits interactions to learn if ajecnvould be mentioned,
independent of its position and category. This result da¢smean the properties
used in [151] are not valuable; rather, in the case of anady#znages of people

involved in interaction, they appear insufficient if takdaoree.

5.2.4.4 Task 4: Interactees in sentence generation

Finally, we study how interactee detection can benefiteettibased sen-
tence generation (cf. Sec. 5.1.4.4, task 4). For each testanwe retrieve 5 images
from the training set, then compute the average similagtyveen the ground truth
query and training sentences. We use the standard BLEU EcAg for n-gram

overlap precision.

We compare our interaction embedding based regressionagpto two
retrieval-based sentence generation methods in prior W&R, 37]. For [122],
there are two variations: Global Matching, which retrievesghbors based on

GIST and Tiny Image descriptors, and Global + Content Matghwhich reranks
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that shortlist with the local image content as analyzed byaf detectors. We were
unable to obtain code from the authors, so we implement thersetves. The
Global Matching is straightforward to implement. The GlobaContent Match-
ing version involves a series of detectors for objects fsaifributes, scene, and
actions. We use the same poselet-based action feature [Afigh captures cues
most relevant to our person-centric approach and utillzesameround truthper-
son bounding box used by our methodhe method of [37] is a retrieval method
using CNN features fine-tuned for the caption generatiocky tas use the features
kindly provided by the authors in order to evaluate it on gubset of COCO (all

~10K images with people and interactions).

Table 5.4 shows the results. Our interaction embeddinghrase-parametric
regression method consistently outperforms the basediné$122], and competes
well with [37] despite the fact we do no fine-tuning specificcaption generation

for our approach.

Without using CNN feature, our embedding base method (@omisedding
w/o cnn) outperforms baselines [122]. The result confirnad thperson-centric
view of “what to mention” is valuable. The local Content Maittg does not im-
prove accuracy over Global Matching, and even detracts irshightly. We suspect
this is due to weaknesses in poselets for this data, sincaction variation is very

high in COCO. The authors also observed only a slight gaih @dntent Matching

SWe omit the object, stuff, and attribute detectors becaweseamld not reproduce the implemen-
tation (hence the asterisk in the table). In principle, aegddit from additional local content could
also benefit us.
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1-Gram BLEU | 2-Gram BLEU | 3-Gram BLEU | 4-Gram BLEU || Combined BLEU
Random 55.19 19.26 4.18 1.26 8.65
Global Matching [122] 63.80 28.02 9.80 3.75 16.01
Global + Content Matching [122](Actiori3 63.19 27.12 9.13 3.41 15.20
Global Match+AlexNet fc7 68.21 33.38 13.32 5.44 20.16
Retrieval fine-tuned [37] 73.05 42.63 22.01 11.19 29.59
Ours-embedding w/o cnn feature 65.08 29.74 11.13 4.56 17.64
Ours-embedding w/cnn-p only 68.03 33.30 13.45 5.64 20.36
Ours-embedding w/cnn-s only 70.78 36.42 15.96 6.87 23.05
Ours-embedding w/all 73.85 40.33 18.88 8.68 26.43
Ours-embedding w/all (fine-tuned) + [37] 73.51 43.03 22.45 11.52 30.07

Table 5.4: Average BLEU scores between query and retriezetkaces (higher =
more similar).

in their own results [122].

After incorporating CNN features, our method (Ours-emibaglav/all) still
provides higher accuracy than the baseline (Global Ma#dbexNet fc7) which
utilizes CNN feature extracted from the person bounding boxaddition to the
main result of our method, we also show results of our methgasly considering
the two interaction-guided embedding features for abhestoidy. As shown in the
table, our learned embedding features is helpful for capigtask by guiding the
system to focus on the interaction and combining all featprevide the highest

accuracy.

Finally, following [37], we also tested a variant of our methwhere we
fine-tune our interaction-guided network with training taps. Using our features
with those of [37], accuracy is further improved (see last o Table 5.4). This
result shows our person-centric feature provides compiéamginformation to the

caption tuned global CNN feature.

Figure 5.12 shows example sentences generated by our meibadside

those of the baselines. We see how modeling person-cenieE of importance
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allows our method to find examples with similar interactiomscontrast, the base-
lines based on global image matching find images focusedtahgcene similar-
ity. They often retrieve sentences describing similar alscene contexts, but are
unable to properly model the fine-grained interactions. (éngthird column, rid-
ing vs. carrying with a surfboard). The fourth column showailure case by our
method, where we mispredict the interactee (cyan box) anetseve people doing

quite different interactions.

5.3 Conclusions

In this chapter, | considered a new problem: how to predictneran in-
teractee object will appear, given cues from content of enagvhile plenty of
work studies action-specific object interactions, predgcinteractees in an action-
independent manner is both challenging and practical foowa applications. The
proposed method shows promising results to tackle thidesige. | demonstrate
its advantages over multiple informative baselines, idiclg a state-of-the-art ob-
ject saliency metric, and illustrate the utility of knowimdnere interactees are for
contextual object detection, image retargeting, and h@iriferred interactee lo-
calization can be used to improve an existing method for rieag images by

focusing on the interaction.

The proposed methods in the last three chapters have focusedder-
standing a human’s action and pose. After learning a modged hmove on to
consider how we can use the learned model to detect when agewithappened

in a video sequence.
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Figure 5.12: Example sentences generated by our methothai@abal Matching

method [122] and fine-tuned retrieval system [37]. Blue blinxe interactee, cyan
bbox: our prediction. In the first three examples, ours isdbdtecause it correctly
predicts the location of the interactee, and then uses teeakctee’s position and
scale relative to the person to retrieve image examplessitilar types of inter-

action. In the last one, our method fails to predict the etére correctly and thus
retrieves poorly matched interactions. See text for detail
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Chapter 6

Detecting Activity with Max-Subgraph Search

In the previous chapters, | proposed three approaches toumghe learn-
ing framework for understanding people’s actions and pdsdsis chapter, | focus
on how to utilize such a learned model efficiently. | propase@pproach to improve

the framework of detecting actions in a video sequence.

While the recognition portion of the activity understargiproblem has re-
ceived increasing attention in recent years, state-cathenethods largely assume
that the space-time region of interest to be classified haady been identified.
However, for most realistic settings, a system must not oalye what it sees, but
also partition out the temporal or spatio-temporal exteitiiw which the activity
occurs. The distinction is non-trivial; in order to properécognize an action, the

spatio-temporal extent usually must be knosimultaneously

My goal is to unify the classification and localization compats into a
single detection procedure. We propose an efficient apprdzat exploits top-
down activity knowledge to quickly identify the portion ofdeo that maximizes a

classifier's score. In short, it works as follows. Given aeloxideo, we construct a

1The work in this chapter was supervised by Dr. Grauman amginaily published in: Efficient
Activity Detection with Max-Subgraph Search. C.-Y. Chen & Grauman. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni@MPR), Providence, RI, June 2012.
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Figure 6.1: My approach constructs a space-time video gapdhefficiently finds
the subgraph that maximizes an activity classifier's scohe detection result can
take on non-cubic shapes (see dotted shapes in top fransedgnzanded by the
action.

3D graph in which nodes describe local video subregionstlagid connectivity is
determined by proximity in space and time. Each node is &s®uotwith a learned
weight indicating the degree to which its appearance anibmetipport the action
class of interest. Using this graph structure, we show ttiectien problem is
equivalent to solving amaximum-weight connected subgrgpbblem, meaning to
identify the subset of connected nodes whose total weightasimal. For our
setting, this in turn is reducible to a prize-collectingiBés tree problem, for which
practical branch-and-cut optimization strategies aréaa. This means we can
efficiently identify both the spatial and temporal regignfgthin the sequence that

best fit a learned activity model. See Figure 6.1.

| validate the algorithm on four challenging datasets. Témuits demon-

strate its clear speed and accuracy advantages over battastasliding window
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search as well as a state-of-the-art branch-and-bountiao[@84].

6.1 Approach of Max-Subgraph Search

My approach first trains a detector using a binary classifidrteaining ex-
amples where the action’s temporal extent is known. Theegiest sequences for
which we have no knowledge of the start and end of the activityturns the subse-
quence (and optionally, the spatial regions of interest) thaximizes the classifier
score. This works by creating a space-time graph over theseeist sequence,
where each node is a space-time cube, and the cubes are diogedling to their
proximity in space and time. Each node is weighted by a p@str negative value
indicating its features’ contribution to the classifie®ee. Thus, the subsequence
for which the detector would yield the maximal score is eglent to the maxi-
mum weight connected subgraph. This subgraph can be efficmputed using
an existing branch-and-cut algorithm, thereby finding tpenoal solution without

exhaustive search through all possible sets of connecigelsno

| first define the classifiers accommodated by our method @#&cl), and
the features we use (Sec. 6.1.2). Then | describe how théngjiae constructed
(Sec. 6.1.3); | introduce variants of the node structure larldng strategy that
allow us to capture different granularities at detectiometi Next, | briefly explain
the maximum subgraph problem and branch-and-cut search §Ske4). Finally,
| devise two extensions of our basic framework that can déal spatio-temporal
detection even in long videos (Sec. 6.1.5) and detectionuwfipte instances in a

single sequence (Sec. 6.1.6).
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6.1.1 Detector Training and Objective

We are given labeled training instances of the activity oéiiest, and train
a binary classifieff : S — R to distinguish positive instances from all other action
categories. This classifier can score any subvol§méa novel video according to
how well it agrees with the learned activity. To perform eityi detection, the goal
is to determine the subvolume in a new sequepdthat maximizes the score

S* = argmax f(5). (6.1)
Seq

If we were to restrict the subvolume in the spatial dimensitmnencompass the en-
tire frame, thert™ would correspond to the output of an exhaustive sliding wnd
detector. More generally, the optimal subvoluftes the set of contiguous voxels

of arbitrary shape iid) that returns the highest classifier score.

Our approach requires the classifier to satisfy two progertiirst, it must
be able to score an arbitrarily shaped set of voxels. Sedomalist be defined
such that features computed within local space-time reggyadrthe video can be
combinedadditivelyto obtain the classifier response for a larger region. Therlat
IS necessary so that we can decompose the classifier respommss the nodes
of the space-time graph, and thereby associate a singlehtveith each node.
Suitable additive classifiers include linear support viestachines (SVM), boosted
classifiers, or Naive Bayes classifiers computed with |laedlispace-time features,

as well as certain non-linear SVMs [156].

Our results use a linear SVM with histograms (bags) of quadtispace-

time descriptors. The bag-of-features (BoF) represemtdias been explored in a
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number of recent activity recognition methods (e.g., [%,,819]), and, despite its
simplicity, offers very competitive results. We considesf3 computed over two
forms of local descriptors. The first consists of low-levidtbgrams of oriented
gradients and flow computed at space-time interest poinéssécond consists of
a novel high-level descriptor that encodes the relativeuayf detected humans,

objects, and poses. Both descriptors are detailed belowan6s1.2.

In either case, we compute a vocabularyovisual words by quantizing a
corpus of features from the training images. A video subv@wvith N local fea-
tures is initially described by the sét= {(x;, v;)}Y |, where eackr; = (z;, yi, t;)
refers to the 3D feature position in space and time,@nsthe associated local de-
scriptor. Then the subvolume is converted t& alimensional BoF histograri(S)
by mapping each; to its respective visual word;, and tallying the word counts

over all N features.

We use the training instances to learn a linear SVM, whichnaehe re-

sulting scoring function has the form:

f(S)=p+ Z a;(h(S), h(S;)), (6.2)

wherei indexes the training examples, and $ denote the learned weights and
bias. This can be rewritten as a sum over the contributioresaoh feature. Let
h7(S) denote thej-th bin count for histogrank(S). The j-th word is associated
with a weight

w =" a;h(S)), (6.3)
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forj =1,..., K. Thus the classifier response for a subvolusris:

K

f(S) =8+ Z wh(S) (6.4)
"y

— ﬁ-{—Zuﬁﬁ (6.5)

where again; is the index of the visual word that featuse maps toc; € [1, K.
By writing the score of a subvolume as the sum ofVt$eatures’ “word weights”,
we now have a way to associate each local descriptor ocagreith a single
weight—its contribution to the total classifier sc@r@his same property of linear
SVMs is used in [95] to enable efficient subwindow search foject detection,

whereas we exploit it to score non-cubic subvolumes in videaction detection.

We stress that our method is not limited to linear SVMs; aliéive additive
classifiers with the properties described above are alsuified. Our experiments
in Sec. 6.2 focus on linear SVMs due to their efficacy. We hdse successfully
implemented the framework using others, e.g., Naive Bawyéh, the same input
features. The results are sound, however across the bodiddudat classifier is

less effective than the SVM for our task.

Furthermore, while the additive requirement does lead torderless bag-
of-features representation, it is still possible to enctaheporal ordering into the
approach depending on how the local descriptors are egttadtor example, in
Sec. 6.1.2.2 we provide one way to record the space-timautagfoneighboring

objects into high-level visual words.

2The bias ternp can be ignored for the purpose of maximizifigs).
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6.1.2 Localized Space-Time Features

We consider two forms of localized descriptors for thevectors above: a

conventional low-level gradient-based feature, and alfugé-level feature.

6.1.2.1 Low-level Descriptors

For low-level features, we employ an array of widely usedladédeo de-
scriptors from the literature. In general, they capturetéxéure and motion within
localized space-time volumes, either at interest pointieose positions within the
video. In particular, we use histograms of oriented gragdi@doG) and histograms
of optical flow (HoF) computed in local space-time cubes 5], The local cubes
are centered at either 3D Harris interest points [96] or eigrsampled. These de-
scriptors capture the appearance and motion in the videbthaeir locality lends
robustness to occlusions. We also incorporate dense twajeld 63] and motion
boundary histogram (MBH) [120] features in a bag-of-feasurepresentation. We

refer the reader to the original papers about the descsijoomore details.

As is typical in visual recognition, we can expect betterusacy as a func-
tion of the greater the variety and complementarity of tlafees we use, but with
some tradeoff in computational cost. Specifically, the miafluence the features
will have on our method’s complexity is their density in thdeo; while their den-
sity will not at all affect the node structure (cf. Sec. 6)1iBwill dictate how many
visual word mappings must be computed. In Sec. 6.2 we proviol@ discussion
about how we select among these descriptors for differetatsdes; in short, our

selection is largely based on empirical findings from prasiavork about which
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are best suited.

6.1.2.2 High-level Descriptors

We introduce a novel descriptor for an alternative higtelegpresentation.
While low-level gradient features are effective for adtes defined by gestures
and movement (e.g., running vs. diving), many interesttgas are likely better
defined in terms of the semantitteractionsbetween people and objects [65, 36,
132]. For example, “answering phone” should be compactscdeable in terms

of a person, a reach, a grasp of the receiver, etc.

To this end, we compose a descriptor that encodes the objed{goses oc-
curring in a space-time neighborhood. First, we run a bardbgéct detectors [57]
and a bank of mid-level “poselet” detectors [16] on all fram&o capture human
pose we categorize each detected person into onfe ef 15 “person types”. These
types are discovered from person detection windows in #iritrg data: for each
person window we create a histogram of the poselet activatitat overlap it, and
then quantize the space of all such histograms witheans to providé’ discrete
types. Each reflects a coarse pose—for example, a seatexhpeay cause upper
body poselets to fire, whereas a hugging person would triggselets from the

back.

Given the sparse set of bounding box object detections isteséguence,
we form one neighborhood descriptor per box. This desarigitects (1) the type
of detector (e.g., person type #3, car) that fired at thatiposi(2) the distribution

of object/person types that also fired within a 50-frame t@rapwindow of it, and
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Figure 6.2: Schematic of the data comprising our high-lelesicriptors. After de-
tecting people and other objects in the video frames, we g@mi-local neighbor-
hoods around each detected object that summarize the spac&yout of other
nearby detections. To map those neighborhoods into desared discriminative
visual words, we apply a random forest trained for the adivels (Sec. 6.1.2.2).
Here, the left images depict the detected objects surrogritie person detected in
bounding box C in the center frame. The right text box displéng information ex-
posed to the random forest feature quantizer, in terms ai¢ighboring detections
and their relative spatial and temporal distance from teasqn box C.

(3) their relative space-time distances. See Figure 6.2.

To quantize this complex space into discriminative higheléwords”, we
devise a random forest technique. When training the randwesf, we choose
spatial distance thresholds, temporal distance threshald object types to pa-
rameterize semantic questions that split the raw descripputs so as to reduce
action label entropy. Each training and testing descrifgtinen assigned a visual
word according to the indices of the leaf nodes it reacheswiagersing each tree
in the forest. Essentially, this reduces each rich neigidimd of space-time object

relationships to a single quantized descriptor, i.e., glsimdexc; in Egn. 6.5.

In contrast to the low-level features, this descriptor elesospace-time or-
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dering, demonstrating that our max-subgraph scheme ismipédl to pure bag-of-
words representations. Furthermore, it leads to fastee maglght computations,
since the number of detected objects is typically much fewan the number of

space-time interest points.

6.1.3 Definition of the Space-Time Graph

So far we have defined the training procedure and featuresaeNow we
describe how we construct a space-time grépk- (V, £') for a novel test video,
whereV is a set of vertices (nodes) aidis a set of edges. Recall that a test video
is “untrimmed”, meaning that we have no prior knowledge dlvgiere an action(s)
starts or ends in either the spatial or temporal dimensiOuns detector will exploit
the graph to efficiently identify the most likely occurresad a given activity. We

present two variants each for the node and link structussi|li@ws.

6.1.3.1 Node Structure

Each node in the graph is a set of contiguous voxels withirvitieo. In
principle, the smallest possible node would be a pixel, Aeddrgest possible node
would be the full test sequence. What, then, should be theeseban individual
node? The factors to consider are (1) the granularity ofodietethat is desired (i.e.,
whether the detector should predict only when the actiatsséad ends, or whether
it should also estimate the spatial localization), andt{2)allowable computational
cost. Note that nodes larger than individual voxels or frauare favorable not only

for computational efficiency, but also to aggregate neighbod statistics to give

110



better support when the classifier considers that regiomé&usion.

With this in mind, we consider two possible node structufide first breaks
the video into frame-level slabs, such that each node is@es®eg ofF' consecutive
frames. The second breaks the video into a grifof W x F' space-time cubes. In
all our results, we seff’ = 5 or 10, and letd andW be 1 of the frame dimensions.
See Figure 6.3. At detection time, the two forms yieltemnporal subgraphT-
Subgraph) andspatio-temporal subgrap{&T-Subgraph), respectively. Note that
a T-Subgraph will be equivalent to a sliding window searcsulewith a frame
step size off’. In contrast, a ST-Subgraph will allow irregular, non-cuetection

results. See the first and last images in Figure 6.7.

After building a graph with either node structure for a tesieo, we com-
pute the weight for each node
w(v) = Z w, (6.6)
z;Ev
wherez; is the 3D coordinate of thgth local descriptor falling within node € V,
andc; is its quantized feature index. We assign the features frem 6.1.2 to
their respective graph nodes as follows. For the case ofldvel-featuresy; is

the space-time interest point position. For the case of-lagél featuresx; is

3Rather than space-time cubes, one could consider using-$ipaesegmentérom a bottom-up
grouping algorithm. This would have some potential advgesaincluding finer-grained localiza-
tion. However, our preliminary attempts indicated that tegular grid nodes are preferable to
segments in practice, for both accuracy and speed. Thataube (1) the irregularly shaped seg-
ment nodes lead to dense adjacency structures, hurtingmenand (2) the difficulty in producing
quality supervoxels makes it easy to over/under-segment.
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(a) Temporal only (T) (b) Spatio-temporal (ST)

Figure 6.3: The two node structures we consider. (&8rAporal onlygraph simply
breaks the video into slabs of frames. Max subgraph searthi®graph is equiv-
alent to sliding window in terms of results, but is faste)). patio-temporagiraphs
further break the frames into spatial cubes, allowing bptitial and temporal lo-
calization of the activity in irregular subvolume shapegsha cost of a denser input
graph.

the center of the originating object detection window. Ither case, a feature is

claimed by the space-time node containing its central jposit

Intuitively, nodes with high positive weights indicate tiiae activity covers
that space-time region, while nodes with negative weighdgcate the absence of

the activity.

6.1.3.2 Linking Strategies

The connectivity between nodes also affects both the shapandidate
subvolumes and the cost of subgraph search. We explore tateges. In the
first, we link only those neighboring nodes that are temgppi@nd spatially, for
the ST node structure) adjacent (see Figure 6.4 (a)). Indbensl, we additionally
link nodes that are within the first two temporal neighbomse(&igure 6.4 (b));
we call this varianT-Jump-Subgraph. Since at test time we will seek a maximum

scoringconnectedubgraph, the former requires detection subvolumes taicdyst
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Figure 6.4: The two linking strategies we consider. (a) Tieeghbors only
graph links temporally adjacent (shown here) and optigrsgdhtially adjacent (not
shown) nodes. (b) Theemporal “jump” linking strategy also incorporates edges
between non-adjacent nodes, so that the output detectioreesize a good con-
nected detection result in spite of intermittent noisylosion features on certain
nodes. Here, the numbers shown on nodes indicate weighite mddes indicate
those that would be selected under either linking strategg (ext).

contiguous in time (and thus equates to the options avaikabh sliding window),

while the latter allows subvolumes that “jump” over an adjagmeighbor in time.

By allowing jumps, we can ignore misleading features thag meerrupt an
otherwise good instance of an action. For example, Figutelépicts some tem-
poral nodes and their associated weights;)’s, under either connectivity scheme.
The max subgraptvithoutjumps in (a) is the first two nodes only; in contrast, for
the same node weights, the max subgnrajith jumps in (b) extends to include the
fourth node, yielding a higher weight subgraph (4+2+5 v)4+# his can be use-
ful when the skipped node(s) contain noisy features, su@maxbject temporarily
blocking the person performing the activity. Like the spfo®ge nodes presented
above, the use of temporal jumps further expands the spacandidate subvol-

umes our method can search, at some additional computbtiosta
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6.1.4 Searching for the Maximum Weight Subgraph

Having defined the graph constructed on an untrimmed testseg, we are
ready to describe the detection procedure to maxini{#8 in Egn. 6.1. Our detec-
tion objective is an instance of the maximum-weight cone@cubgraph problem
(MWCS): Given a connected undirected, vertex-weighted gr@ph (V, E') with
weightsw : V' — R, find a connected subgrapgh = (V; C V, Er C FE) of G,
that maximizes the scoié (7)) = > .. w(v). The best-scoring subgraph is the
subvolume in the video most likely to encompass the activitinterest. That is
the output of our approach. In Sec. 6.1.6 we explain how watiteely apply the

subgraph search procedure to retrieve multiple deteciiotie same video.

With both positive and negative weights, the problem is Rlete [74];
an exhaustive search would enumerate and score all possitets of connected
nodes. However, MWCS can be transformed into an instan¢egdrize-collecting
Steiner tree problem (PCST) [38] which has the same grapictate as original
MWCS and vertex profitp > 0 and edge costs > 0. This MWCS is solvable
by transforming the graph into a directed graph and fornmgaan integer linear
programming (ILP) problem with binary variables for eveprtex and edge. Then
by relaxing the integrality requirement, the problem carsbleed with linear pro-
gramming using a branch-and-cut algorithm (see [109])s Tiethod gives optimal

solutions and is very efficient in practice for the spaceetgraphs in our setting.
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6.1.5 Two Stage Spatio-temporal Detection

Next we describe an extension to the framework that furtmgroves ef-
ficiency of spatio-temporal detections, at some loss incke@ompleteness. Basi-
cally this extension offers a way to further scale-up ouedebn strategy for long
input videos. It is relevant in the spatio-temporal detactvariant of our method
(cf. Fig. 6.3(b)), not the temporal-only variant (cf. Fig3@)). The fine-grained
space-time detection offered by the ST-Subgraph comesifsogneater number of
nodes and denser connectivity. In particular, in terms efrtmber of edges as a
function of the number of frames, for a temporal-only graphe more temporal
node will add one more edge, in contrast, as for spatio-teahgoaph, one more
temporal node will add a number of edges quadratic in a fancspatial nodes.
Thus, to detect the activity efficiently without reducing thranularity of the search
scope, we consider how a modest sacrifice on detection axc(ira., giving up
the exhaustive search equivalency promised so far) cad gislgnificantly larger

detection speed-up.

To this end, we propose a hierarchitattom-uptwo stage strategy for the
space-time search setting. The basic idea is to first perdpane-time detections in
each temporal slab, and then propagate those detectidtsrepuo a second level

of processing that performs temporal detection acrossals.sSee Figure 6.5.

Given a test video, we divide the video into spatio-tempales (as de-
picted in Fig. 6.5, left) and compute their weights as désctiin Sec. 6.1.3. Next,
we search for the best detection volume in two stages: (1ataspletection stage

and (2) a temporal detection stage. For the spatial detestage, we connect nodes
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in the same temporal slice into a 2D connected weighted gfsgd Fig. 6.5, top
right). This yields a series of graphs, each of which has sadpresenting the
features in different spatial positions in the respecteragoral slab. We then ap-
ply the subgraph search procedure from Sec. 6.1.4 to find thenmum weighted
connected subgraph in each slab. Next, the detection smoeach 2D subgraph is
used to represent the weight of each temporal slab, and $tedse are connected
into a 1D temporal graph (see Fig. 6.5, bottom right). Finade find the maximum
weighted subgraph along the temporal dimension to obtand#tection output.
The spatio-temporal detection result is determined by fsgpatial-temporal nodes

in the 2D max-subgraph that are also selected in 1D max-aphgr

This hierarchical process reduces the computational opstividing the
original 3D graph structure into a 21D graph structure. Note, however, that the
detection result from the two-stage subgraph search mésr dibm that returned
by the original ST-Subgraph. Whereas the ST-Subgraph isagteed to return
the same result as an exhaustive search over connecte@dpghbgin this modified
two-stage procedure, the temporal connection betweersrnsadways reduced to
one edge (vs. nine edges for the original ST-Subgraph). Memvéhe two-stage
search process still provides broader searching scopdtieaimpler T-Subgraph

structure.

In practice, when the length of testing video clip is over0DGrames,
the two-stage subgraph would be preferred over ST-subdraptfficient spatio-
temporal localization. Also, the two-stage subgraph is por@ximation of ST-

subgraph. If the features are too noisy, the two-stage apbgnay provide lower

116



-0+

Weights H [
t>X Stage 1: spatial detection

<

ot
X
Weighted Space-time nodes

\ Stage 2: temporal detection

Figure 6.5: Our two stage subgraph search approximatesTHsuBgraph search,
allowing efficient spatio-temporal detection even withdaest sequences. First
we extract the standard space-time cuboid nodes (left)n,Tlue generate a series
of simpler graphs in time (stage 1, top right), and solve fe maximum con-
nected subgraph in each one. This yields a detection regidrseore for each
simpler graph. Finally, we create a graph based on tempod#&sionly, which are
weighted by the output scores of the previous stage (stagetfym right). The
nodes selected in both stages serve as the final output. iBestd/in color.

accuracy since it ignores many edges when computing themawiweighted sub-

graph.

6.1.6 Detecting Multiple Activity Instances

Thus far, we have described detection in terms of localithegingle space-
time region most likely to contain the activity of interesh particular, the max-
subgraph search returns the subvolume which the trainesifitta would score
most highly out of all possible subvolumes. To address tlemado where the

novel test sequence may contamltipleinstances of the activity, and/or to provide
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multiple confidence-rated hypotheses for the detectiopuiutve extend the max-

subgraph search technique as follows.

To detect multiple instances, the main idea is to iteragivah the max-
subgraph procedure on adjusted versions of the originatig@aph, each time ad-
justing the graph to reflect the most recent detection. Thst msiwaightforward
approach to modifying the graph would be to take all the na##scted for the
most recent detection and re-weight each one-#0. Doing so is equivalent to
removing those nodes, and it would force the next searchtioer to choose other
nodes for its next hypothesis. This approach has shortgsmirpractice, however.
While the max-subgraph output from the first detection ismalkin terms of the
classifier and features chosen, it need not be perfect irstefiocalizing the actual
activity. So, flattening nodes to have weighto leads to fragmented secondary

detections.

Therefore, we instead downweight those nodes alreadyvedah a detec-
tion, but we do not remove them from the graph entirely. Spedly, each node
is re-weighted to 0, as determined empirically on validatiata. In this way, the
modified graph coming into the next iteration of the max-sapg computation will
favor finding new high-scoring detections, but may stilltizdly re-use portions of

the previous detection(s).

The effect of this process is roughly analogous to standardmaximum
suppression (NMS) as applied in object/action detectioth sliding windows.
With sliding windows, any window with a positive classifieose could be reported

as a detection output. However, many windows with positoges overlap highly
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with others, and are actually covering the same objectfadtistance. To reduce
redundant detections, NMS is used to select a single rapese output window
among a group that highly overlaps. A key parameter thatrchetes the behavior
of NMS is the threshold for overlap between detections: whatd windows over-
lapping with the selected window by more than the selectex$tiold are not added
to the detection output. When the threshold is high, one rg¢e® more detection
outputs at the risk of redundancy. The re-weighting valygieg to nodes in our
graphs is analogous to that threshold. A NMS threshold of t@aiditional sliding
windows would correspond to a re-weighting value-afo in our setup; a higher
NMS threshold corresponds to a higher re-weighting valll@eyang some overlap

in output detections.

6.2 Experimental Results

We next present experimental results applying our methoadivity detec-
tion on several public benchmark datasets. We evaluateppuoach compared to
both sliding window and sliding cuboid baselines as wellrasxsting state-of-the-
art subvolume detection method that exploits branch-amd search. Through-
out we are interested in both the speed and accuracy atlairidbally, we would
like to achieve very accurate detection but at a small foactif the run-time cost
incurred by traditional sliding window methods. Furthergoin some scenarios
we hope to improve the accuracy over sliding windows, singencethod will per-
mit searching a more complete set of windows than is tragtaith a naive search

implementation.

119



In what follows, we first describe the datasets, baselinasnaetrics used
in our experiments, and we provide implementation detaisoir approach not
already covered above. Then, the next four subsectionsmressults organized
around each of the four datasets. This is the most naturahagtion, since the
dataset properties and their respective available graurid dictate which variants
of our approach are relevant for testing (e.g., temporadien only, fully spatio-

temporal, two-stage for spatio-temporal with long segesnetc.).

6.2.0.1 Activity Detection Datasets

We validate on four datasets, all of which are publicly aafalié:

e UCF Sports [138]*: UCF Sports consists of 10 actions from various sports
typically found on TV, such as diving, golf swing, runningycaskate board-
ing. The data originates from stock footage websites likeCBBotion or
Gettylmages. The provided clips are trimmed to the actiontefest, so we
expand them into longer test sequences by concatenatpgtclform “UCF-
Concat” (details below). The ground truth contains theasctabel and the

bounding box annotation of the human.

¢ Hollywood Human Actions [97]°: The training set contains 219 clips orig-
inating from 12 Hollywood movies, and the test set contaib @ips from

a disjoint set of 20 Hollywood movies. The activities arends like answer

“http://crcv. ucf. edu/ dat a/ UCF_Sports_Acti on. php
Shttp://ww. di.ens.fr/ |aptev/actions/
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phone, get out of car, shake hands, etc. We test with the foigyopped”
versions of the test sequences which are only roughly alignth the action
and contain about 40% extraneous frames. In all data thexevasiety of
camera motion and dynamic scenes. The ground truth comdigte action
label for the clip, as well as the correct temporal boundaoidghe activity in

the case of the uncropped sequences.

e MSR Actions [184]%: The MSR dataset consists of 16 test clips with three ac-
tivity classes—hand clapping, hand waving, and boxing—-fgpered in front
of cluttered and moving backgrounds. They are performedygubjects,
both indoor and outdoor. The ground truth consists of a sgatnporal
bounding box for each action. To our knowledge, this is thly emailable
activity dataset with both spatial and temporal annotati@thers are limited
to temporal boundaries only). For this dataset, we trairattizity classifiers

using the disjoint KTH dataset [145], following [184].

e THUMOS 2014[80]": THUMOS consists of videos collected from YouTube
containing 101 different action classes. The emphasiseiitHUMOS chal-
lenge is to cope with temporally untrimmed videos. Accoglinthe test
sequences contain the target actions naturally embedaedaencontent, and
the ground truth includes the temporal boundaries of theedation. Follow-

ing the localization setting of the winners for the ECCV 204drkshop’s

Shtt p://research. m crosoft.con en-us/ un peopl e/
zliu/actionrecorsrc/
"http://crcv. ucf. edu/ THUMOS14/
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Dataset Features Num test videos Ave length (#frames) Ave length of action
UCF-Concat Dense-HoG3D 12 589 13%
Hollywood STIP+HoG/HoF 211 474 62%
uncropped or high-level

MSR Action STIP+HoG/HoF 16 756 10%
THUMOS STIP+HoG/HoF, Trajectory, MBH 111 1717 29%

Table 6.1: Properties of the four datasets. See text for ohetasls.

Hollywood
uncroppe

¢ W

UCF-Concat

MSR Action THUMOS

Figure 6.6: Examples of UCF, Hollywood, MSR Action, and THO® datasets.

detection task [1], we divide the 1010 validation video® itwo equal parts
for testing and training. The test data contains 20 actieliégses: baseball
pitch, basketball dunk, billiards, clean and jerk, clifivithg, cricket bowl-
ing, cricket shot, diving, frisbee catch, golf swing, hanmitieow, high jump,
javelin throw, long jump, pole vault, shot put, soccer pgndéennis swing,

throw discus, volleyball spiking.

See Table 6.1 for a summary of the dataset properties anae~&6 for
example images of these four datasets. In particular, wedeceach dataset’s
typical clip lengths and the portion of the sequence ocalpiethe action to be
detected. On average, the action of interest occupies @%y @f the total test

sequence, making detection (as opposed to classificatemessary.
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6.2.0.2 Baselines

We compare our approach to three baselines:

e T-Sliding: a standard temporal sliding window. This is the status gethod
in the literature, e.qg., [84, 43, 143]. Its results are eglant to our T-Subgraph

variant (using temporal linking structure), but computethwxhaustive search.

e ST-Cube-Sliding a variant of sliding window that searches all cuboid sub-
volumes having anyectangularcombination of the spatial-nodes used by
our method. Its search scope is similar to our ST-Subgraepteptthat it
lacks all possible spatial links, meaning the detected @lulove cannot shift
spatial location over time. While most existing methods@imapply a slid-
ing temporal window, with no spatial localization, we ingd&ithis baseline as
the natural straightforward extension of sliding windovarsh if one wants

to obtain localization.

e ST-Cube-Subvolume the state-of-the-art branch-and-bound method of [184].
It considersall possiblecube-shaped subvolumes, and returns the one max-
imizing the sum of feature weights inside. Its scope is maerilfle than
ST-Cube-Sliding. Its objective is identical to ouexceptthat it is restricted
to searching cube-shaped volumes that cannot shift spatation over time.

We use the authors’ code.

8We found its behavior sensitive to ji@nalty valugparameter, which is a negative prior on zero-
valued pixels [184]. The default setting was weak for ouadat for fairest comparisons, we tuned
for best results on UCF.
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We stress that our approach is a new strategyd@&iection results in the
literature focus largely owglassification and so are not directly comparable. The
sliding window and subvolume baselines are state-of-therathods for detection,
so our comparisonsith identical features and classifiansll give clear insight into

our method’s performance.

We consider four variants of our approach: T-Subgraph,mp}$ubgraph,
ST-Subgraph, and two-stage ST-Subgraph, as defined in SecRécall that T-
Subgraplprovides equivalent accuracy to T-Sliding, but is fadtd@rhe other two
variants, T-Jump-Subgraph and ST-Subgraph, provide nmedbility for detection
compared to any of the above methods. In particular, thenipd8ubgraph variant
allows temporal discontinuitiasot permitted by any of the above methods, and the
ST-Subgraph variardllows spatial changewhere the detected content can move
spatially within the frame over time. The two-stage ST-Sapy (cf. Sec. 6.1.5) is
like the latter, only computed in an approximate form so ascede well to longer

test sequences.

Figure 6.7 depicts the scope of the regions searched by eetttod) both

ours and the baselines.

9For the special case of temporal search, one can obtainaguisolutions using 1-D branch-
and-bound search to detect the max subvector along the tahgpads [11]. In practice we find this
method’s run-time to be similar or slightly faster than Te§taph. Note, however, that it isot
applicable for any other search scope handled by our apiproac

124



T-Sliding or  ST-Cube- ST-Cube- T-Jump- ST-
T-Subgraph Sliding Subvolume  Subgraph  Subgraph

Figure 6.7: Sketch of the candidate subvolume types coresidey different meth-
ods, ordered approximately from least to most flexiBlkSliding or T-Subgraph:
The status quo sliding window search (and the proposed T&ph without
jumps) finds the full-frame subvolume believed to contaie #ttivity (leftmost
image). ST-Cube-Sliding A variant that performs sliding window on different
spatial portions of the frame, with the restriction of cubsubvolumesST-Cube-
Subvolume A branch-and-bound search strategy from existing world[1Bat
considers all possible cube-shaped subvolumes—not gigiriti-based subset con-
sidered by ST-Cube-Sliding-Jump-Subgraph: The proposed method using tem-
poral nodes (slabs of frames) only, with additional alloaeanf temporal “gap(s)”
in the output detectionsST-Subgrapht The most general form of the proposed
method, where we use both spatial and temporal nodes, aljoiwiegular, non-
cubic detection results.

6.2.0.3 Evaluation Metrics

We adopt standard metrics for detection evaluation. FoligWl75, 87,
184], we use thanean overlap accuracyWhether performing temporal or full
spatio-temporal detection, this metric computes the setetion of the predicted

detection region with the ground truth, divided by the union

As for detection speed, we use detection time (on our 3.47@Gtéz Xeon
CPUs) to evaluate computational cost. Note that in this ywawk focused on im-
proving the speed of the system in testing stage. We use the feature extraction

and classifer training framework for all our methods andebaes. To apply our
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method to online system, we will need to add the feature etxtna time to our

result.

6.2.0.4 Implementation Details

For all datasets, we train a binary SVM to build a detectordach ac-
tion. We use the descriptors described in Sec. 6.1.2, fatigwhe guidance of
prior work [164, 163] to select which particular samplingagtgies and local space-
time descriptors to employ per dataset. In particular, meoendations from [164]
lead us to employ HoG/HoF for Hollywood and HoG3D for UCF watnse sam-
pling. For the THUMOS dataset we use the features provided thie dataset,
which augments the HoG/HoF set with dense trajectories aBtl Mn particular,
on THUMOS we train one-versus-all binary SVMs with four tgpe features: tra-
jectory [163], HOG, HOF, and MBH [120], where the features quantized to a
bag of words representation via k-means with a dictionazg si 4000. We use
the authors’ code for HOG3D/HoG/HoF/trajectory/MBH [98,863, 120], with
default parameter settings. We test the high-level detecsmn Hollywood, since
that dataset has substantial person-object interaciidreseas actions in the others
are more person-centric (e.g., diving, clapping, skateting). We construct our

temporal graphs with a node size of 10 frames per slab.

The next four sections describe the results on each datageti
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Verbs T-Sliding | ST-Cube-Subvol [184] Our-T-Subgraph Our-T-Jump-Subgraph
Diving 0.8106 0.7561 0.8106 0.9091
Lifting 0.7899 0.8058 0.7899 0.8096
Riding 0.5349 0.5075 0.5349 0.3888
Running 0.4602 0.3269 0.4602 0.4705
Skateboard 0.1407 0.1057 0.1407 0.1803
Swing-Bench| 0.5520 0.6259 0.5520 0.4582
Swing-Side 0.6728 0.3478 0.6728 0.7212
Walking 0.4085 0.3462 0.4085 0.4657

Table 6.2: Mean overlap accuracy for the UCF Sports data.

Detection time (ms) T-Sliding | ST-Cube-Subvol [184] Our-T-Subgraph Our-T-Jump-Subgraph
Mean 1.25 x 10° 7.87 x 10% 1.02 x 102 6.51 x 102
Stdev 7.52 x 103 3.17 x 101 5.35 x 10! 3.17 x 102

Table 6.3: Search time for the UCF Sports data.

6.2.1 Temporal Detection on UCF Sports

Since the UCF clips are already cropped to the action ofestewe modify
it to make it suitable for detection. We form 12 test sequsrine concatenating
8 different clips each from different verbs. All test videsre totally distinct, and
are available on our project website. We train the SVM on poitisset of cropped
instances. We perform temporal detection only, since theies occupy the entire

frame.

Table 6.2 shows the accuracy results, and Table 6.3 shovegéneh times.
For almost all verbs, our subgraph approaches outperfoenbdiselines. Further,
our T-Jump variant gives top accuracy in most cases, shothi@g@dvantage of
ignoring noisy features (in this data, often found near thesed or ending of the
verb). Figure 6.8 shows an example where T-Jump performsstatetection in

spite of occlusions, whereas the baseline sliding windobeasic T-Sliding fails.
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Weights = = =>T-Subgraph/T-Sliding

Time

Figure 6.8: Qualitative example showing how our T-Jump méthan perform
robust detection. The five colored cubes represent the tesighode computed
from the extracted features and learned classifier. Fordbersl to fourth nodes,
the classifier generates negative weights due to the ooalusising T-Sliding or
T-Subgraph, the detection output does not cover the firstastccubes due to the
negative weights from three cubes in the middle. In contnasing our T-Jump
method, it can skip over the intervening negative weighkss Thakes the detection
framework more robust to noise from occlusion. Best viewedlor.

On this dataset, the ST-Cube-Subvolume baseline is oftekavehan slid-
ing window. Upon inspection, we found it often fires on a sraalume with highly
weighted features when the activity changes in spatiatioca@aver time. However,
it is best on “Swing-Bench”, likely because the backgrouasfairly static, mini-
mizing misleading features. As we see in Table 6.3, both obgsaph methods are
orders of magnitude faster than the baselines. Note th&THeube-Subvolume’s

higher cost is reasonable since here it is searching a widees

6.2.2 Temporal Detection on Hollywood

We next test the Hollywood data, which also permits a studieofporal
detection. As noted above, we test with the untrimmed dataiged by the dataset

creators. Existing work uses this data for classificatiowl, o trainsand tests with
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Verbs T-Sliding | ST-Cube-Subvol [184] Our-T-Subgraph Our-T-Jump-Subgraph
AnswerPhone 0.3968 0.2905 0.3968 0.3994
GetOutCar 0.2276 0.2267 0.2276 0.2921
HandShake 0.3071 0.3390 0.3071 0.3663
HugPerson 0.3869 0.4486 0.3869 0.4150
Kiss 0.3822 0.4230 0.3831 0.4412
SitDown 0.3612 0.2861 0.3612 0.3550
SitUp 0.2592 0.2053 0.2592 0.3255
StandUp 0.3475 0.3013 0.3475 0.3775

Table 6.4: Mean overlap accuracy on uncropped Hollywood.dat

Detection Time (ms)| T-Sliding | ST-Cube-Subvol [184] Our-T-Subgraph Our-T-Jump-Subgraph
Mean 3.71 x 103 1.70 x 10° 6.63 x 10 5.69 x 102
Stdev 1.03 x 107 5.79 x 10° 7.51 x 10 1.77 x 103

Table 6.5: Search time on uncropped Hollywood data.

the cropped versions. To perform temporal detection, weeatstrain with the

cropped clips, and test with the uncropped clips.

Table 6.4 shows the accuracy results, and Table 6.5 shoveg#neh times.
Our T-Jump-Subgraph achieves the best accuracy for 6 of thezl&s, with even
more pronounced gains than on UCF. This again shows the wéklepping brief
negatively weighted portions; e.g., “AnswerPhone” cangpre across several shot

boundaries, which tends to mislead the baselines.

As Table 6.5 reveals, our method is again significantly fastan the base-
lines. Our T-Jump-Subgraph is slower than our T-Subgragictkegiven the higher
graph complexity (which also makes it more accurate). Hewbéh variant to ap-

ply depends on how an application would like to make this-e@suracy tradeoft.

One might wonder whether a naive detector that simply diasghe entire

uncropped clip could do as well. To check, we compamgnitionresults when
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Test sequence compositignAccuracy
Raw uncropped clips 24.83%
Output from T-Subgraph | 29.66%
Manual ground truth 29.97%

Table 6.6: Recognition accuracy on Hollywood as test injauies.

we vary the composition of the test sequence to be eithehg@ymncropped clip,
(b) the output of our detector, or (c) the ground truth crapplg. Table 6.6 shows
the result. We see indeed that detection is necessary; osingutput is much
better than the raw untrimmed clips, and only slightly lothem using the manually

provided ground truth.

We also test our high-level descriptor (cf. Sec. 6.1.2.2Holtywood, since
its actions contain human-object interactions. We applyobiect detectors—bus,
car, chair, dining table, sofa, and phone—to every fifth Barmnd use random
forests with 10 trees. Table 6.7 shows the results, comgaredr method using
low-level features. For five of the eight actions, the praubkigh-level descriptor
improves accuracy. It is best for activities based on theradtion between two
people (e.qg., kiss) or involving an obvious change in pogg,(sit up), showing the
strength of the proposed person types to capture pose ambtahordering. For
other verbs with varied objects (answer phone, get out 9f danurts accuracy,
likely due to object detector failures in this dataset. thagns future work outside
the scope of this project to bolster the component objecatiets fed into this

higher-level neighborhood descriptor.
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Verbs T-Subgraph (HoG/HoF) T-Subgraph (high-level
AnswerPhone 0.3968 0.1741
GetOutCar 0.2276 0.1447
HandShake 0.3071 0.4194
HugPerson 0.3869 0.5292
Kiss 0.3822 0.4906
SitDown 0.3612 0.3753
SitUp 0.2592 0.3843
StandUp 0.3475 0.2636

Table 6.7: Mean overlap accuracy on Hollywood for low-lefestures vs. the
object-based high-level descriptors.

6.2.3 Temporal Detection with Multiple Instances on THUMOS

Next we evaluate our approach on the THUMOS dataset. THUMD& s
temporal detection (like UCF Sports and Hollywood), pluslike the others, it
contains test sequences with multiple instances of theiyctirhis aspect lets us
test our iterative max-subgraph strategy to produce maltiptections, as discussed

in Sec. 6.1.6.

In these experiments, the sliding window baseline repitssha same search
strategy taken by the leading approach on this dataset [dsu&h, we follow the
authors’ parameter choices for the window search in ordprdweide a close com-
parison. That means for the T-Sliding baseline, we use asstef 10 frames, and
evaluate the windows with durations of 10, 20, 30, 40, 50,7/60.80, 90, 100, and
150 frames [1]. We fix the NMS threshold at 0.5 (after we did ologerve better
results for the baseline shifting this threshold within thage (0,1]), and we fix
the node re-weighting value at O for our method (cf. Sec6§.INote that with a
skip size of 10 frames, the sliding window baseline (T-3lg)idoes not exhaus-

tively search all subsequences, whereas our method doe®a€lo testing video,
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Metric | T-Sliding | Our T-Subgraphl Our T-Jump-Subgraph
mAP 0.1983 0.2143 0.1546
Overlap| 0.1792 0.2186 0.2636

Table 6.8: Recognition accuracy on THUMOS 2014 data.

we return up to 10 positive detection windows.

Table 6.8 shows the accuracy results for T-Sliding and cdBubgraph method,
both in terms of overlap and the mean average precision (rm8Egfined by [80],
which is a useful metric for the case when there are multipdéainces per testing
clip. Our method obtains higher accuracy than the standaficigg window base-
line. Thisis a direct consequence of the efficiency of ouraggh in considering all
possible windows. We also get a noticeable further advantagverlap accuracy
applying our T-Jump variant, yet it harms average precisidgpon inspection, we
find that for this challenging data, the classifier scoresnpele are noisier, which
leads T-Jump to cover too many frames; T-Jump can easily éineesmall-valued
positive nodes to skip over highly negative nodes, leadingame poorer detec-
tion outputs as seen in the mAP. The high overlapping scofeJfmp confirms
this observation and illustrates why mAP is a better mehantoverlapping accu-
racy in multiple instance detection. We also tried a varedraur approach that less
aggressively reduces the weights on nodes already involeegrior iteration’s de-
tections: we set the weight of a “used” node to the mean weifjhll nodes, with
the intent to encourage more overlapping detections. Hewyévis led to slightly

worse accuracy for our method (0.2043 overlap accuracy.2486 in Table 6.8).

Table 6.9 shows the computation time for both methods. &itolprevious
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Time (ms)| T-Sliding | Our T-Subgraph Our T-Jump-Subgraph
Mean 7.07 x 10° 5.34 x 10% 4.72 x 10*
Stdev 2.26 x 10° 2.37 x 10° 1.97 x 10°

Table 6.9: Search time on THUMOS 2014 data.

results, our T-Subgraph method for detecting multipleanses provides signifi-
cantly faster running time compared to T-Sliding. For thdisg window method,
no matter how many output detections we want, all the canelandow are eval-
uated. In contrast, for our T-Subgraph, we only return ortéva window in each
subgraph search iteration and re-weight the underlyingesddr next iteration.
Therefore, in this experiment, we need to run our T-Subgfdptimes to find top
10 detection windows—yet, in spite of that repetition, istdl about an order of

magnitude faster than evaluating all the candidate windowse T-Sliding method.

Finally, we more closely analyze the behavior of the slidnngdow base-
line (T-Sliding) as it compares to our T-Subgraph. The gedbisee in practice
what density of windowed search (skip sizes) is necessaiydst results. In other
words, if we allow T-Sliding more candidate windows and hefanger running
time, at what point does it come close to the optimal resathfour method? Since
running this experiment is rather costly for the baseline,lwmit this test to four
of the 20 verbs in the THUMOS test set (chosen randomly: lbakelunk, clean

and jerk, cliff diving, and hammer throw).

Figure 6.9 shows the results in terms of the average accunaayall four
actions tested. As expected, increasing the pool of cateliimdows searched by
T-Sliding increases its accuracy, but at a correspondimeali increase in run-time.

At a search time of 20fsper frame, the baseline is searching 35 different window
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Figure 6.9: Accuracy vs. computation time in temporal Seand/e compare our
T-Subgraph (which produces the optimal detection outputfoxed time) to the
standard T-Sliding method (which produces its detectidpuitbased on exhaustive
search of a pool of candidate windows). Here we increasedin§ls accuracy and
run-time by increasing that pool of windows.

sizes (out of 300 window sizes for exhausted search) aneéaehaccuracy of 0.26,

nearing but not as good as the result from T-Subgraph of Gc80racy obtained

with just a fewmsper frame.

6.2.4 Space-Time Detection on MSR Actions

As the fourth and final dataset, we experiment with MSR Adiolm con-
trast to all of the above datasets, MSR Actions containsrgtdruth for thespatial
localization of the action—not just the temporal extent.rtkermore, the actors
change their position over time and a test sequence mayisantdtiple simul-
taneous instances of different actions. Therefore, thiasgd is a good testbed to
evaluate our ST-Subgraph with the node structure in FiguBé}h where we link
neighboring nodes both in space and time. In what followspresent results with

both the exact maximum subgraph from ST-Subgraph as wetkagpproximate
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Verbs T-Sliding | ST-Cube-Sliding| ST-Cube-Subvol [184]| Our-T-Subgraph| Our-ST-Subgraph| Our-Two-Stage-ST
Boxing 0.0541 0.0717 0.0794 0.0541 0.0989 0.1188
Clapping | 0.0982 0.0982 0.0602 0.0982 0.1754 0.1795
Waving 0.2342 0.2204 0.2669 0.2342 0.2926 0.2416

Table 6.10: Mean temporal overlap accuracy on the MSR datase

Detection Time (ms)| T-Sliding | ST-Cube-Sliding| ST-Cube-Subvol [184] Our-T-Subgraph| Our-ST-Subgraph| Our-Two-Stage-ST
Mean 4.2 x 10° 5.5 x 107 3.0 x 10” 2.8 x 102 3.1 x 10° 1.4 x 10°
Stdev 3.3 x 10% 4.2 x 107 1.6 x 10° 2.3 x 107 4.6 x 10° 4.1 x 102

Table 6.11: Search time on the MSR dataset.

counterpart, the two-stage search process described i 3€8.

First we isolate temporal detection accuracy alone. Welraneémporal and
spatio-temporal variants of our method, and project théiepamporal results to
temporal results. Table 6.10 shows results. Even undeethpdral criterion, our
ST-Subgraph and two stage ST-Subgraph are most accurate,tbey can isolate
those nodes that participate in the action. Figure 6.16tilies how our space-time
node structure succeeds when the location of activity cbsuoger time, whereas
ST-Cube-Subvolume may be trapped in cube-shaped maximmp&ed to ST-
Subgraph, our two-stage method yields similar accuracgting and Clapping
videos and provides lower accuracy for Waving videos. Téssilt shows the two-

stage method is able to provide good approximation to Ssydh method.

Next we examine the complete space-time localization aoyuiTable 6.12
shows the results, evaluated under the ground truth anmotar the person who
performs the actiold. Results are mixed between the methods, with a slight edge

for our ST-Subgraph. Also, only the non-rectangular shagtedtion from our ST-

1°The original ground truth labels only the hand regions (Sgeré 6.10), whereas this ground
truth labels the whole person performing the action.
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ST-Subgraph

Figure 6.10: Example of ST-Subgraph’s top output (top) dedtop 4 detections
from ST-Cube-Subvolume [184] (bottom). Red rectanglesotieiground truth.
Brighter areas denote detections.

Verbs ST-Cube-Sliding| ST-Cube-Subvol [184] Our-ST-Subgraph Our-Two-Stage-ST|
Boxing 0.0478 0.0193 0.0417 0.0296
Hand Clapping 0.0373 0.0071 0.0630 0.0425
Hand Waving 0.0851 0.0581 0.1121 0.0809

Table 6.12: Mean space-time overlap accuracy on the MSRelatar-Sliding/T-
Subgraph are omitted since they don’t do spatial locabrai

Subgraph reflects the large spatial motions in actions. Age&ed, the two-stage
search process does detract from the accuracy of the opfm&8ubgraph result,

as we see in the last two columns of Table 6.12.

Finally, we analyze the run-times for all methods testedabld 6.11. Here
we see the substantial practical impact of our two-stagécsgemporal variant,
which yields significantly lower computation time. It is evi&aster than the sliding
temporal window search that produces no spatial locatinatind orders of mag-
nitude faster than the existing branch-and-bound subwelomathod [184]. The

two-stage method is slightly slower than the T-Subgraplewarof our method,
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since it requires additional computation for the spatidakdgon in the first stage

for each slab.

As discussed in Sec. 6.1.5, we can achieve efficient spatigpadral local-
ization with the our proposed two stage subgraph searchadetim the previous
section, our ST-Subgraph provides more accurate spaeddualization of actions
with higher computational cost. In this section, we speetheST-Subgraph with

our two stage subgraph for space time detection on MSR agdtitaset.

Table 6.12 and Table 6.11 also show the comparison of deteaticuracy
and search time for our Two-Stage-ST-Subgraph and oumali@T-Subgraph. By
dividing the node structure into temporal slices, the cotaton time of the two
stage method is reduced by three orders of magnitude cothparthe original
ST-Subgraph. As expected, the two stage method is slighilyes than the T-
Subgraph because it requires additional computation fatiapdetection in first
stage for each temporal node. For detection accuracy,| ibedlthe two stage
method does not guarantee to provide the optimal spatigbdeal volumes since it
ignores the temporal link between nodes in the first stagas,Tihis expected that
the two stage method will be less accurate than the ST-Spbgnathod. As shown
in Table 6.12, Two-Stage-ST method achieves similar acgumthe ST-Subgraph
for hand clapping and hand waving clips, but lower accuraecybbxing clips. It
is because the learned activity model for boxing is less rateuhan the learned
models for other two actions (it provides lower overlap aacy for ST-Subgraph),
and our two stage method is more sensitive to the noisy nade dae to the pruned

connections between nodes.
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Figure 6.11: Overview of methods on the three datasets.

6.2.5 Summary of Trade-Offs in Results

Having presented all the results, now we step back and attengomma-
rize the outcomes succinctly. There are three dimensiotradé-offs between all

methods tested: search time, search scope, and deteatioacy

Figure 6.11 summarizes all trade-offs for three dataset¢se Mie show the
accuracy versus the detection time for each result, anddent® search scope of
the method by the complexity of its polygonal symbol. Morengbex symbols
mean wider search scope. For example, recalling Figuretbe/least complex
search scope is T-Sliding/T-Subgraph, which is plotted &gagle, whereas the

most complex search scope is the ST-Subgraph, which isflet a 14-sided star.

Importantly, we see that increased search scope genemltdaccuracy.
In addition, the flexibility of the graph structure in our gmaph algorithm allows it
to perform best per dataset in termsetther speed (see vertical blue dotted lines)

or accuracy (see horizontal red dotted lines).
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6.3 Conclusions

In this chapter, | presented a novel branch-and-cut framevao activity
detection that efficiently searches a wide space of temporgpace-time subvol-
umes. Compared to traditional sliding window search, ihngigantly reduces com-
putation time. Compared to existing branch-and-bound austhits flexible node
structure offers more robust detection in noisy backgrsur@ur novel high-level
descriptor also shows promise for complex activities, aattes it possible to pre-
serve the spatio-temporal relationships between humah®lajects in the video,

while still exploiting the fast subgraph search.

With this approach, we can localize the learned action nsidatew video
sequences efficiently. Next, | will discuss about how to edtéhe ideas in my
dissertation to further broaden their applications ancetigvrelated novel ideas in

this area.
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Chapter 7

Future Work

In previous chapters, | described how to interconnect idiffedata sources
to overcome the obstacles in learning humans’ actions asespd here are several
future directions prompted by this thesis, which could deyathe application of

my ideas and reduce the human supervision for solving coenpigion problem.

7.1 Exploring Patterns in Videos

In Chapter 3, | showed how temporal dependency allows uskdhie snap-
shots to the images in unlabelled video pools and provideanewrformation. In
Chapter 4, | showed how the correlations between differesep allow us to infer
the pose for the unseen views. Next, we could further expglwrainderlying pat-
terns in human related video clips by combining the depecyenross different
viewsandtemporal frames. These extracted patterns could be usedvime reg-
ularization in learning human actions or poses. Once we laleeta extract these

patterns, we could utilize them as regularization in défertasks.

For example, we could use the videos captured from variaygs/o initial-
ize the weights of a convolutional neural network (CNN) fearining an action/pose

model. Then we could fine-tune the model with few labeled @idgs or images.
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Or the system could infer the spatial-temporal featuresifseen video segments
for different views. Given two related video clips, the gyatcould connect them

by filling in the gap between the two clips. Also, incorpongtthe temporal depen-

dency, the system could provide inference for pose seqaenakfferent views or

handling the occlusion problems.

7.2 Interactions in Wearable Devices

The approaches shown in Chapters 3 and 4 focus on learnimgatiel for a
single person, and the approach shown in Chapter 5 consideraction between
a person and a single object. In the future, we could geuzerahtiose ideas to

interactions betweemultiplepeople and objects.

One such application is analyzing the interactions for iesagdeos cap-
tured through wearable devices. In our daily life, we migtteract with multiple
people/objects at the same moment. Besides, the intemaiidd happen among a
group of people instead of as a pairwise interaction as tbestm Chapter 5. For
example, while walking in the street, we step on the paveeok at the street
sign, talk to people, and avoid obstacles. Besides, thelpang objects around us
can interact with each other. To model the problem, the aggtroeeds to consider
the relationship between all visible objects and possibleractions from visual
contents captured from multiple devices. The video contaptured via wearable
devices tend to be hours long thus cannot afford to haveldétannotations. In
such case, we would need to combine various sources of degduoe the labeling

cost.
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Chapter 8

Conclusion

My thesis presented novel techniques for improving theniegrand under-
standing of human action and pose. The proposed approatkesonnect the data

by exploring underlying patterns from articulated humasepstructure.

| consider four major components. In the first, | describedwehapproach
to connect static snapshots to the temporal dependencgbetposes provided by
unlabelled video sequences and utilize the mined infolondb aid the learning of
new human action from just a few snapshots. Second, | usetsarteompletion
technique to discover the latent factors connecting thedmiposes across different
views. With this method, we are able to learn a human actiodehimom different
views without collecting examples for each of the viewinglas. Third, | proposed
a new approach that explores the pattern that connects seegmal location of in-
teractees in a category-independent way. With the propostdod, we are able to
predict the location and size of an interactee for diffetgpes of interaction and
objects. In addition, | also explored various applicatitiysusing the interactee
localization as a cue, including for detection, image ggtng, and image descrip-
tion. Last, after exploring how to better learn models of@acand pose, | described

a framework to efficiently detect an action in a video seqee® localize when
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and where the action is happened in the video, | transforrpribielem into finding
a maximum weighted subgraph in a flexible graph structuras fitethod signif-
icantly increases the speed for searching and providessaivecalization scope.
Furthermore, | developed different variants to handle thdé off between search

speed and computation cost for realistic applications.

In summary, the main impact of my thesis is that it shows howcae
reduce the data collection cost in human related data. Bygusie existing la-
belled data more efficiently with unlabelled data or datafther sources, we can
significantly improve the accuracy or speed of existing geition systems. My
work mainly focuses on finding clever and efficient ways ohgsihe human re-
lated data, and the approaches | proposed are a promispmsteproving action

recognition.
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