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Understanding human actions and poses in images or videos isa challeng-

ing problem in computer vision. There are different topics related to this problem

such as action recognition, pose estimation, human-objectinteraction, and activity

detection. Knowledge of actions and poses could benefit manyapplications, includ-

ing video search, surveillance, auto-tagging, event detection, and human-computer

interfaces.

To understand humans’ actions and poses, we need to address several chal-

lenges. First, humans are able to perform an enormous amountof poses. For exam-

ple, simply to move forward, we can do crawling, walking, running, and sprinting.

These poses all look different and require examples to coverthese variations. Sec-

ond, the appearance of a person’s pose changes when looking from different view-

ing angles. The learned action model needs to cover the variations from different

views. Third, many actions involve interactions between people and other objects,
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so we need to consider the appearance change corresponding to that object as well.

Fourth, collecting such data for learning is difficult and expensive. Last, even if we

can learn a good model for an action, to localize when and where the action happens

in a long video remains a difficult problem due to the large search space.

My key idea to alleviate these obstacles in learning humans’actions and

poses is to discover the underlying patterns that connect the information from dif-

ferent data sources. Why will there be underlying patterns?The intuition is that

all people share the same articulated physical structure. Though we can change our

pose, there are common regulations that limit how our pose can be and how it can

move over time. Therefore, all types of human data will follow these rules and they

can serve as prior knowledge or regularization in our learning framework. If we can

exploit these tendencies, we are able to extract additionalinformation from data and

use them to improve learning of humans’ actions and poses. Inparticular, we are

able to find patterns for how our pose could vary over time, howour appearance

looks in a specific view, how our pose is when we are interacting with objects with

certain properties, and how part of our body configuration isshared across differ-

ent poses. If we could learn these patterns, they can be used to interconnect and

extrapolate the knowledge between different data sources.

To this end, I propose several new ways to connect human activity data.

First, I show how to connect snapshot images and videos by exploring the patterns

of how our pose could change over time. Building on this idea,I explore how to

connect humans’ poses across multiple views by discoveringthe correlations be-

tween different poses and the latent factors that affect theviewpoint variations. In
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addition, I consider if there are also patterns connecting our poses and nearby ob-

jects when we are interacting with them. Furthermore, I explore how we can utilize

the predicted interaction as a cue to better address existing recognition problems in-

cluding image re-targeting and image description generation. Finally, after learning

models effectively incorporating these patterns, I propose a robust approach to effi-

ciently localize when and where a complex action happens in avideo sequence. The

variants of my proposed approaches offer a good trade-off between computational

cost and detection accuracy.

My thesis exploits various types of underlying patterns in human data. The

discovered structure is used to enhance the understanding of humans’ actions and

poses. By my proposed methods, we are able to 1) learn an action with very few

snapshots by connecting them to a pool of label-free videos,2) infer the pose for

some views even without any examples by connecting the latent factors between

different views, 3) predict the location of an object that a person is interacting with

independent of the type and appearance of that object, then use the inferred inter-

action as a cue to improve recognition, and 4) localize an action in a complex long

video. These approaches improve existing frameworks for understanding humans’

actions and poses without extra data collection cost and broaden the problems that

we can tackle.
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Chapter 1

Introduction

In our daily life, we observe and participate in different kinds of poses, ac-

tions and interactions such as walking, sitting, or readingpapers. Learning and

understanding humans’ actions and poses has received increasing attention in re-

cent years in computer vision [3, 97, 164, 178, 52, 102, 176, 132]. It involves

recognizing human actions, multi-view pose and action recognition, human-object

interaction modeling, human image description, and human activity detection. For

each of the topics, today’s methods typically learn the action/pose/interaction model

from labeled image or video data and use the model to infer therelated knowledge

in novel images or videos.

While we are seeing good progress in analyzing people’s actions and poses,

particularly with learning based methods, there are still three main obstacles to be

solved:

1. The variation in appearance. There can be large variations in appearance

for poses that belong to the same action category, not to mention instances

from different action categories. For example, different people can have dif-

ferent ways of walking, and the pose of walking is different from the pose

of sitting. To learn a robust model for each action or pose, wewould need a
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large amount of data [92, 47]. Another factor that changes the appearance of

pose is viewpoint variation [52, 53, 102]. It is clear that a pose may look quite

different between two different views since we are living ina 3D world. An

intuitive solution is to learn a model for each view independently. However,

this would require examples for each of the views and significantly increase

the cost for data collection.

2. Increased complexity due to interaction. Many actions are defined as an

interaction between a person and an object [36, 132, 177, 33]. To learn the

interaction, we need to consider the appearance of the person’s pose and the

appearance of the object together. We can utilize one as the other’s context

such as their spatial relationship to further improve the system. However,

the complexity of the model also increases by incorporatingthis additional

information, and we will need examples to learn the interactions between

different poses and objects.

3. Difficulty in data collection. It is hard to get sufficient data to learn and

analyze human actions and poses. Collecting action relateddata is more ex-

pensive than collecting data for object recognition tasks.There are two major

reasons: (a) video data typically requires more labelling time than data in im-

age format, and (b) the definition of some actions can be vague. For example,

it’s hard to define the boundary between the transition between two actions

and there can be overlap between different action categories. These two as-

pects make it harder to have good quality data for action recognition tasks

2



than typical object recognition tasks. Therefore, many existing datasets only

provide examples for a limited number of actions [47, 179, 97] or are biased

toward one popular (frontal) viewing angle [110, 96, 97].

Intuitively, the first two obstacles can be eased by having enough examples

to cover the variation in appearance and learn complex models. However, the third

obstacle makes this solution difficult or expensive. In order to break through these

obstacles together and provide a realistic solution, my keyidea is to exploit some

specific properties of human data which provide underlying structures that allow us

to connect data in different aspects and extract additionalinformation from them.

These structures are all based on the fact that humans share an articulated physical

architecture. Though we can control our torso, limbs, and head, they have to follow

certain rules limited by our body’s physical structure. Besides, there are also regu-

lations and patterns for how we can move our body. For example, to jump, we need

to first bend our knees and then make them straight. All the jumping related actions

will follow this rule. Furthermore, our pose can only changecontinuously in time.

These structures exist ubiquitously in all human related data. We can use

them to improve the way we learn and understand human action and pose in differ-

ent fronts. In particular, I explorethe latent structure that connects the examples

between snapshots and video clips, examples from differentviews, and examples

from various interactions.The key to achieve these connections and extrapolation

between different data is the discovered pattern of how our pose can vary over time,

how our pose is affected by viewpoint changes, and how we interact with objects

with similar size in similar location.

3
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Figure 1.1: Overview of my dissertation. I explore different ways to use articulated
human pose patterns to connect limited examples to other rich resources to improve
the learning and understanding of humans’ actions and poses. Given an example for
learning humans’ pose/action/interaction, as depicted intop right, we can connect
the a few snapshots to the unlabeled video pool to learn the action (Chapter 3), and
as depicted in middle right, we can enlarge the available pose data by inferring it in
different views (Chapter 4). Furthermore, as depicted in bottom right, we can use
the person’s pose to predict where the object he is interacting with by connecting
the pose to interactee (Chapter 5), and as depicted in bottomleft, we can efficiently
localize when and where this action happened in the video (Chapter 6).

In my dissertation, I explore how to utilize the underlying patterns that en-

able us to analyze human action and pose efficiently by connecting data in different

aspects. First, I connect the labeled snapshots to the examples in unlabeled video

pools. These linked examples from the video pool can help us learn new action

4



models with very few examples [22]. Second, I explore the latent factors that con-

nect the properties of pose across different views. Then we can use the discovered

latent factors to infer how a pose would look in an unseen view[23]. Third, I exploit

the pattern between body pose and certain properties of the object we are interact-

ing with. By the learned model, we are able to predict the location and the size of

the object independent of its appearance and category [21].Besides, I also explore

four different applications by utilizing the inferred interaction localization as a cue

for where to focus in the image. Finally, I propose a new framework to localize

when and where the action happens in a long video sequence by transforming the

localization problem into a maximum weighted subgraph searching problem. With

this framework, we are able to localize the action much faster and in a more flexible

scope [20]. See Figure 1.1 for the outline of these four proposed approaches.

In the following sections of this chapter, I will overview each of four major

components (learning human actions from few labelled snapshots, inferring human

pose in unseen views, predicting location of interactees and its applications, de-

tecting activity with max-subgraph search) of my dissertation. Chapter 2 discusses

related work. Chapter 3 through 6 will then give technical details on these ideas

and present my results. Chapter 7 will describe future work inspired by this thesis.

1.1 Learning Human Actions from Few Labelled Snapshots

Existing methods require large amount of examples to handlethe variations

between different instances. In particular, recent recognition approaches [91, 79,

99] get significant progress by using deep convolutional neural networks to learn

5



an object/action model. To learn the network parameters, a large amount of labeled

training data is required. Furthermore, people are able to understand a human action

with just a few static snapshots. Presumably, the reason humans are able to do this

is that we have strong prior knowledge of how human poses varyover time. The

limited information from these snapshots is connected to our previous experience

of human pose changes and that knowledge is used to expand ourunderstanding of

the action without seeing more examples.

Building on this intuition, I propose an approach to learn action categories

from a small number of static images by leveragingprior observations of generic

human motionto augment the training process. Given unlabelled video, the sys-

tem first learns how body pose changes over time. We assume this video has some

human activity in it, and that humans are often detectable when present, but other-

wise make no assumptions aboutwhichactions are present in the data. Then, given

a small set of labelled images for an action category, the system uses the generic

knowledge obtained from watching the video to extrapolate beyond those exemplars

during training. In particular, it augments its labelled set with “synthetic” examples,

which depict poses that could immediately precede or followthe given examples in

time. In this way, we expand the training set without requiring additional manually

labelled examples.

In my dissertation, I propose two ways to implement this idea. The first uses

an example-based representation of pose dynamics; we matchthe labelled training

images to unlabelled video frames based on their pose similarity, and then augment

the training set with the poses appearing before and after the matched frames. The
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second technique uses a manifold-based representation; welearn a nonlinear mani-

fold over body poses, relying on the temporal nearness of thevideo frames to estab-

lish which should maintain proximity. Then, we map the static training instances

to the manifold, and explore their neighborhoods on the manifold to augment the

training set. In both cases, we adopt a part-based representation of pose, and use

domain adaptation to account for the mismatch between the source images and the

unlabelled video. We show that our synthetic expansions to the training set yield

more accurate predictions, especially when labeled data isquite sparse. Notably,

the gains come at no additional labelling cost, since we makeno assumptions about

which actions appear in the unlabelled video.

I demonstrate the proposed approach to recognize actions inboth static im-

ages and videos from multiple challenging datasets. The results show that by letting

the system first “watch” generic video, it can successfully infer additional plausi-

ble poses that bolster training. For our target scenario where training examples are

very few, my approach outperforms both a method limited to the original static ex-

emplars, as well as alternative methods to pad the data by introducing appearance

variation.

1.2 Inferring Human Pose in Unseen Views

While my idea for connecting snapshots to video (above) exploits patterns to

extrapolate to nearby poses over time, the next major part ofthe thesis studies how

to connect multiple views and image sources to extrapolate to nearby viewpoints in

space.
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After alleviating the requirement for a large number of examples to learn

an action, another obstacle comes from the viewpoint variation. The appearance of

people’s pose varies between views. If we want to fully understand an action, we

would need to collect examples from all different views. However, most available

examples are collected from certaincanonicalviews, such as facing toward the

camera, making it hard to find examples to cover the remainingviews. On the other

hand, the data that does have pose examples observed from different views tend to

come from artificial lab environments.

To overcome this data dilemma, I propose an approach to discover the latent

factors that correlate poses across different views. The proposed method takes as

input images of person organized by their approximate viewpoint. We construct

a 3D tensor indexed by the image examples, their viewpoints,and the spatial im-

age positions. Each entry in the tensor records the appearance observed at those

coordinates. Notably, many entries are unobserved in the input data. I show that a

probabilistic tensor factorization technique can discover the latent factors governing

how all three observed dimensions jointly determine appearance. Intuitively, those

factors might correspond to things like the type of clothing, body weight, lighting,

or partial pose fragments. Using them, we impute missing entries in the tensor,

thereby inferring the image descriptors for unobserved views of people that, during

learning, may have been observed from just one camera viewpoint.

In the experiment result, I show that the inferred views are both visually and

quantitatively accurate, which lets us expand existing datasets to fuller viewpoint

coverage. I demonstrate the impact for two practical applications. First, I show that
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the inferred virtual views let the system learn an action category in a viewpoint for

which it has never seen any real exemplars, yielding resultsthat are competitive with

recent cross-view recognition methods. Second, I show thatby using the virtual

views to augment real training images, we can predict a person’s orientation more

accurately in novel images. In both cases, the inferred views help make statistical

appearance-based methods robust to viewpoint. While existing methods are often

forced to choose between data that is either realistic or multi-view, our virtual views

offer both, thereby allowing greater robustness to viewpoint in novel images.

1.3 Predicting Locations of Interactees

As the two approaches devised above extrapolate and interconnect human

actions across viewpoints and over time, next I explore another aspect of how hu-

man actions relate to each other:interaction. A large portion of human actions

involve interactionsbetween a person and an object, or scene, or another person(s).

For example, a personreading reads a book or paper; a persondiscussingchats

with other people nearby; a personeatinguses utensils to eat food from a plate. In

any such case, the person and the “interactee” object (i.e.,book, other person, food

and utensils, etc.) are closely intertwined; together theydefine the story portrayed

in the image or video.

Existing research in human action recognition aims to exploit this close con-

nection [127, 65, 36, 177, 176, 76, 132, 32]. Their goal is to improve recognition

by leveraging human action in concert with the object being manipulated by the

human. However, these prior methods assume that during training it is possible to
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learn patterns between a particular action and the particular object category it in-

volves, and thus it is assumed that the data can cover all possible actions and object

categories.

In my thesis, I seek to relax these assumptions in order to make predictions

about novel, unseen human-object interactions. In particular, I consider the follow-

ing question:Given a person in a novel image, can we predict the location ofthat

person’s “interactee”—the object or person with which he interacts—even without

knowing the particular action being performed or the category of the interactee it-

self?Why should the goal be possible? We can do so because we have a model of

certain pose, gaze, and scene layout patterns that exist when people interact with a

person/object in a similar relative position and size. Thisis done without knowing

the category of the object, and even without (necessarily) being able to name the

particular action being performed.

Based on this intuition, my proposed idea is to learn from data how the prop-

erties of a person relate to the interactee localization parameters. Given instances

labeled with both the person and interactee outlines—from avariety of activities

and objects—we train a probabilistic model that can map observed features of the

person to a distribution over the interactee’s position andscale. Then, at test time,

given a novel image and a detected person, we predict the mostlikely places the

interactee will be found.

The proposed approach addresses a number of challenges. They include

designing a reliable data collection procedure to handle this somewhat unusual an-

notation task; developing a bank of descriptors to capture the “meta-cues” about
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human appearance that signal localized interactions; and presenting applications to

exploit the interactee predictions.

Whereas the methods devised above explore how to extrapolate and inter-

connect human actions across viewpoints and over time, thiscomponent of my

thesis explores how to interconnect human poses across various interacting objects

in a category-independent manner.

For applications, I explore different ways to utilize the interactee localiza-

tion as a cue to guide the system for focusing on important object/area(s) in the

scene. By focusing attention on regions in the image that areprominently in-

volved in a human interaction, my method can be used to improve object detection

speed/accuracy, image retargeting, and image description. In all such cases, I show

how to utilize interactee localization as person-centric view of importance.

1.4 Detecting Activity with Max-Subgraph Search

The three proposed methods above improve the understandingof human ac-

tion, pose, and interaction by connecting the knowledge between different aspects.

After we learn these models, we can apply them to new data to detect when and

where these activities happened. In the final main componentof my thesis, I focus

on the detection strategy itself.

The activity detection problem entails bothrecognizingand localizingcat-

egories of activity in an ongoing (meaning “untrimmed”) video sequence. In other

words, a system must not only be able to recognize a learned activity in a new
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clip; it must also be able to isolate the (potentially small)portion of a long input

sequence that contains the activity. Reliable activity detection would have major

practical value for applications such as video indexing, surveillance and security,

and video-based human computer interaction.

While the recognition portion of the problem has received increasing at-

tention in recent years, state-of-the-art methods largelyassume that the space-time

region of interest to be classified has already been identified. However, for most

realistic settings, a system must not only name what it sees,but also partition out

the temporal or spatio-temporal extent within which the activity occurs. The dis-

tinction is non-trivial; in order to properly recognize an action, the spatio-temporal

extent usually must be knownsimultaneously.

To meet this challenge, existing methods tend to separate activity detection

into two distinct stages: the first generates space-time candidate regions of interest

from the test video, and the second scores each candidate according to how well

it matches a given activity model (often a classifier). Most commonly, candidates

are generated either using person-centered tracks [116, 134, 175, 87] or using ex-

haustive sliding window search through all frames in the video [84, 43, 143]. Both

face potential pitfalls. On the one hand, a method reliant ontracks is sensitive to

tracking failures, and by focusing on individual humans in the video, it overlooks

surrounding objects that may be discriminative for an activity (e.g., the car a person

is approaching). On the other hand, sliding window search isclearly a substantial

computational burden, and its frame-level candidates may be too coarse, causing

clutter features to mislead the subsequent classifier. In both cases, the scope of
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space-time regions even considered by the classifier is artificially restricted, e.g., to

person bounding boxes or a cubic subvolume.

I propose an efficient approach that unifies activity categorization with space-

time localization. The main idea is to pose activity detection as a maximum-weight

connected subgraph problem over a learned space-time graphconstructed on the

test sequence. I show this permits an efficient branch-and-cut solution for the best-

scoring and possibly non-cubically shaped portion of the video for a given activity

classifier. The upshot is a fast method that can evaluate a broader space of can-

didates than was previously practical, which I find often leads to more accurate

detection.

The proposed approach has several important properties. First, for the spe-

cific case where our space-time nodes are individual video frames, the detection

solution is equivalent to that of exhaustive sliding windowsearch, yet costs orders

of magnitude less search time due to the branch-and-cut solver. Second, we show

how to create more general forms of the graph that permit “non-cubic” detection

regions, and even allow hops across irrelevant frames in time that otherwise might

mislead the classifier (e.g., due to a temporary occluding object). This effectively

widens the scope of candidate video regions considered beyond that allowed by

any prior methods; the upshot is improved accuracy. Third, we explore a two-stage

search extension that increases the speed of the proposed subgraph search for long

videos, and show its generality for detecting multiple activity instances in a single

input sequence. Finally, the method accommodates a fairly wide family of features

and classifiers, making it flexible as a general activity detection tool. To illustrate
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this flexibility, we devise a novel high-level descriptor amenable to subgraph search

that reflects human poses and objects as well as their relative temporal ordering.

Having summarized the main technical threads of my thesis, Iwill next

overview related work.
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Chapter 2

Related Work

In this chapter, I will review related work to the research presented in my

dissertation. First I will review existing work related to general human action recog-

nition, including learning from static images and videos (Sec. 2.1). For the second

topic, I am going to review the work relates to a specific difficulty in action and pose

recognition: multi-view problems (Sec. 2.2). Next, in addition to learning the action

and pose model only from human examples, I will go over the work that models the

interaction between humans and objects or treats each otheras context information

(Sec. 2.3). As interactions play an important rule in how we describe the content in

an image, I will review existing methods for image description. (Sec. 2.4). Next, I

will review the existing techniques for using synthetic data and matrix completion

(Sec. 2.5)—two of the important building blocks of portionsof my proposed meth-

ods. As some of my proposed methods can be seen as a way to reduce data labeling

costs, I will also discuss the difference between my approaches and existing transfer

learning methods (Sec. 2.6). Finally, I provide an overviewof existing methods for

activity detection in video clips (Sec. 2.7).

After each subsection, I briefly highlight the most important differences be-

tween the prior work and my own.

15



2.1 Human Action Recognition

Activity recognition and human motion analysis have a rich literature [3].

To learn activities from video, earlier work emphasized tracking and explicit body-

part models (e.g., [116, 135, 134]). In parallel, many methods to estimate body

pose have been developed, including techniques using nonlinear manifolds to rep-

resent the complex space of joint configurations [62, 165, 14, 100, 152, 153]. Such

methods assume silhouette (background-subtracted) inputs and/or derive models

from mocap data, and are often intended for motion synthesisapplications. More

recently, researchers have considered how activity classes can be learned directly

from lower-level spatio-temporal appearance and motion features—for example,

based on bag-of-words models for video (e.g., [97, 164]). Bysidestepping tracking

and pose, this general strategy offers robustness and can leverage strong learning al-

gorithms; on the other hand, the lack of top-down cues suggests more data is critical

to learn the needed invariance.

In addition to learning human activities from video, recentwork considers

action recognition instatic images, where image data is much easier to collect and

can benefit from existing image-based object recognition techniques. During both

training and testing, these algorithms use only static snapshots of the actions of in-

terest. Most current methods rely on a combination of pose- and appearance-based

descriptors [173, 110, 33, 179, 178]. In particular, “poselets” [16]—local part-based

features mined for their consistency with fragments of bodypose—have proven to

be a promising representation [173, 110, 33], as well as high-level descriptors that

also incorporate interactions with objects [36, 177, 33, 179].
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Discussion: The work described above largely focuses on providing better fea-

tures to model human action. They assume there are enough data to learn the action

of interest. However, this constraint limits the number of actions we could learn,

and some methods require labeled video data, which is much more expensive to

collect. In contrast, I propose a novel approach in Chapter 3that is able to learn

a action model with only a few labeled snapshots by interconnecting the pose in

snapshots to a pool of unlabeled videos.

2.2 Multi-View Human Pose Analysis

The work discussed in Sec. 2.1 aims at providing pose relatedfeatures that

are discriminative across different human actions and consistent within each action

category, yet people who perform similar pose/action couldhave quite different

appearance when observed from different viewpoints. Intuitively, if we can have

enough examples to cover all possible views for all poses, those methods in Sec 2.1

could learn the action model well. However, this would increase the requirement of

data and limit the number of actions that we are able to learn.

To handle this problem, some existing works adapt viewpoint-invariant mod-

els to avoid the need of examples from all views. The view-invariant methods de-

velop features that remain stable across camera views (e.g., [125, 136, 178, 107]),

but they require reliable body joint detection. When multi-view data is available,

3D reconstruction can be used to form 3D exemplars [166] or view-invariant fea-

tures [171], though their view assumptions and computational demands may be too

high for many applications. Multiple action recognition methodstransferfeatures
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between viewpoints, learning the “domain shift” between pairs of views [52, 70,

102, 106, 185]. These methods construct the features to makethem invariant to

viewpoint changes.

Discussion: The view-invariant methods require synchronized multi-view data

during training, which restricts the type of data that can beused. Furthermore,

none of these methods are able to hallucinate unseen views, such as visualization

(e.g., helping an artist sketch an actor from a new viewpoint). In Chapter 4, I pro-

pose a new learning based approach that implicitly capturesgeometry through its

knowledge about discrete viewpoints. The proposed approach is able to leverage

any available views and infer the pose in unseen views.

2.3 Human-Object Interaction

Many human activities are related to the interaction between humans and

other objects/humans. When we are interacting with other objects, to capture the

characteristic of this action, the model has to incorporatethe features from the per-

sonand the interactee. Besides, the information provided from theinteractee can

serve as a cue to recognize this interaction or for other applications.

A great deal of recent work aims to jointly model the human andthe objects

with which he or she interacts [127, 65, 36, 177, 176, 76, 132,32]. The idea is to use

the person’s appearance (body pose, hand shape, etc.) and the surrounding objects

as mutual context—knowing the action helps predict the object, while knowing the

object helps predict the action or pose. For example, the Bayesian model in [65]
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integrates object and action recognition to resolve cases where appearance alone is

insufficient, e.g., to distinguish a spray bottle from a water bottle based on the way

the human uses it. Similarly, structured models are developed to recognize manip-

ulation actions [85] or sports activities [177, 36] in the context of objects. Novel

representations to capture subtle interactions, like playing vs. holding a musical

instrument, have also been developed [176]. Object recognition itself can benefit

from a rich model of how human activity [127] or pose [32] relates to the object cat-

egories. While most such methods require object outlines and/or pose annotations,

some work lightens the labeling effort via weakly supervised learning [76, 132].

To utilize the interactee as context information, the interactee (object or per-

son) needs to be reasonably localized. For localizing objects, there is work focus-

ing on carried object detection [67, 30]. They assume a static video camera, which

permits good background subtraction and use of human silhouette shapes to find

outliers. These approaches are specialized for a single action (carrying) only. As

for the case where the interactee is another person, there are methods for analyzing

social interactions that estimate who is interacting with whom [118, 112, 54], or cat-

egorize the type of physical interaction [174]. These social interaction works can

leverage rules from sociology [118] or perform geometric intersection of mutual

gaze lines [112, 54].

One can also use the knowledge of interactees to help us improve the action

recognition task. For example, methods to predict object affordances consider an

object [89, 35] or scene [66] as input, and predict which actions are possible as

output. They are especially relevant for robot vision tasks, letting the system pre-
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dict, for example, which surfaces are sittable or graspable. While these approaches

utilize interactees to help them solve a problem, in my dissertation, I consider the

inverse task: given a human pose as input, I want to predict the localization param-

eters of the object defining the interaction as output.

Discussion: The existing methods model the interaction between humans and ob-

jects based on the type of interactee and type of action, suchas “picking up the

phone” or “reading book”. Picking and reading are types of actions, while phone

and book are types of interactees. One limitation of these settings is that they need

to learn different models for interactions of different pose and interactee types. In

Chapter 5, I propose a new approach that isaction- andobject-independent. The

cues our method learns cross activity boundaries, such thatwe can predict where

a likely interactee will appear even if we have not seen the particular activity (or

object) before. This is valuable because it could make the learned model generalize

to various data and reduce the labeling cost.

2.4 Describing Images

In Chapter 5 of my dissertation, I use interaction as a cue to guide the system

for image description tasks. Recent work explores ways to produce a sentence

describing an image [50, 93, 181, 122, 40, 49, 83] or video clip [63]. Such methods

often smooth the outputs of visual detectors, making them better agree with text

statistics [93, 63, 129] or a semantic ontology [181]. One general approach is to

produce a sentence by retrieving manually captioned imagesthat appear to match
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the content of the novel query [50, 122, 37]. Another is to employ language models

to generate novel sentences [93, 49, 94].

Other methods explore various criteria forselectivelycomposing textual de-

scriptions for images. In [140], the system composes a description that best dis-

criminates one image from others in a set, thereby focusing on the “unexpected”.

In [129], a language model is used to help infer a person’s motivation, i.e., the pur-

pose of their actions. In [121], a mapping is learned from specific object categories

to natural sounding entry-level category names (e.g., dolphin vs. grampus griseus).

Most related to the part of my work of using interaction to guide the system

to focus on a part of image are methods that modelimportance[150, 71, 151]. They

attempt to isolate those objects within a scene that a human would be most likely to

notice and mention. Using compositional cues like object size and position [150]

as well as semantic cues about object categories, attributes, and scenes [151], one

can learn a function that ranks objects by their importance,or their probability of

being mentioned by a human.

Discussion: The key difference between existing methods and my proposedmethod

in helping image description is that we consider the novel cue: the interactee’s lo-

calization. While a few existing methods employ human activity detectors [122, 63,

129], they do not represent human-object interactions, as Ipropose.

My contribution in Chapter 5 is not a new way to infer sentences. Rather,

it is a new way to infer importance, which can be valuable to description methods.

The existing sentence generation methods are primarily concerned with generating
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a factually correct sentence; the question of “what to mention” is treated only im-

plicitly via text statistics. While we show the impact of ouridea for retrieval-based

sentence generation, it has potential to benefit other description algorithms too.

As compared to the methods focused on selecting the important objects for

description, we propose a novel basis for doing so—the importance signals of-

fered by a human-object interaction. In addition, unlike methods that exploit object

category-specific cues [151, 71, 150], we learn a category-independent metric to

localize a probable important object, relative to a detected person.

2.5 Incorporating Synthetic Data

As I will discuss in Chapters 3, 4 and 3, to understand a human action,

pose, or interaction efficiently without collecting a largeamount of data, we aim to

increase the size of training set with realistic but synthetically generated data.

A standard way to expand training data in object recognitionis by mirroring

the images along the vertical axis (e.g., [123] and many others). This trick has even

been employed to produce flipped versions of video sequencesfor activity recogni-

tion [164]. The availability of humanoid models in graphicssoftware, together with

mocap data, make it possible to generate synthetic images useful for training action

recognition [114] and pose estimation methods [148, 62, 149]. Web images noisily

labeled by tags can also serve as a “free” source of data for action classification [75].

Another aspect to expand data synthetically is to infer the data for differ-

ent views. Existing view synthesis methods originate from image-based render-
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ing [82], where, rather than explicitly construct a 3D model, new views are syn-

thesized directly from multiple 2D views. Typically point correspondences are es-

timated between views, and then intermediate views are synthesized by warping

the pixels appropriately, leveraging insights from projective or multi-view geome-

try (e.g., [146, 6]). The resulting virtual views can be usedto augment training data

for object recognition [25], or to reposition the viewpointat test time [147, 144].

Image-based models of pedestrians using calibrated, synchronized cameras are ex-

plored in [147, 62]. These view synthesis methods rely on geometry and warping.

They make strong assumptions about calibrated cameras and/or simultaneous multi-

view capture and require information of point correspondences, which is difficult

to estimate reliably.

To infer missing data from the structure of observed data, matrix comple-

tion methods have been studied extensively [113, 90, 141, 142, 170] often for

applications in collaborative filtering. While the standard completion problem can

be treated in 2D, there are also approaches developed to model the 3D structure,

e.g. to represent trends over time [170]. However, there is limited work exploring

matrix or tensor completion for visual data. Existing methods infer missing pixels

in a singlesource image/video, e.g., for in-painting [105], or infer new 3D face

meshes captured with a structured light scanner for video puppetry [159]. By ex-

ploring linear factors across classes, [128] learns low rank bilinear discriminative

classifiers for matrix or tensor visual data. The factorizedmodels have also been

used for bilinear models for separating style and content ofvisual data [60].
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Discussion: In Chapter 4, I propose a novel way to infer and incorporate synthetic

data using the properties in human action and pose related data. I demonstrate we

can improve existing frameworks by adding the synthetic data together with original

data. Rather than infer new view using traditional geometrybased methods, I show

how we canlearn the latent factors that connect the poses across different views

and use them to infer the pose in unseen views.

2.6 Transfer Learning

Related to my works on augment training data in Chapters 3 and4, transfer

learning technique can reduce the need for a large amount of labeled training data.

It has been explored for object recognition [55, 9, 172, 133,162, 154, 103, 7], where

the goal is to learn a new object category with few labeled instances by exploiting its

similarity to previously learned class(es). While often the source and target classes

must be manually specified [9, 162, 7], some techniques automatically determine

which classes will benefit from transfer [154, 103, 78].

Discussion: Both transfer learning and my proposed method can reduce thela-

belling cost of data. However, compared to existing forms oftransfer learning,

where they focus on exploring the correspondence between different object classes,

my proposed methods in Chapters 3 and 4 connect the information through different

data sources. Existing transfer learning techniques propagate the knowledge from

a source class to a target class. On the other hand, my proposed methods do not re-

quire knowledge of class labels, but instead explore the underlying pattern existing
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in all types of human related data sources. For example, instead of “transferring”

a learned model of an action from a particular viewpoint to another viewpoint, my

proposed method in Chapter 4 generates synthetic pose examples for an unseen

viewpoint with knowledge from available pose examples of all viewpoints.

2.7 Human Activity Detection

Whereas the work in Sec. 2.1 above largely focuses on the activity recogni-

tion problem, we are also interested indetection. Detecting human activity means

localizing when and where a specific action is in a video sequence. One class

of methods tackles detection by explicitly tracking people, their body parts, and

nearby objects (e.g., [116, 134, 87]). Tracking “movers” isparticularly relevant for

surveillance data where one can assume a static camera. Conscious of the diffi-

culty of relying on tracks, another class of methods has emerged that instead treats

activity classes as learned space-time appearance and motion patterns. The bag of

space-time interest point features model is a good example [97, 145]. In this case,

at detection time the classifier is applied to features falling within candidate subvol-

umes within the sequence. Typically the search is done with asliding window over

the entire sequence [84, 43, 143], or in combination with person tracks [87].

Given the enormous expense of such an exhaustive search, some recent

work explores branch-and-bound solutions to efficiently identify the subvolume that

maximizes an additive classifier’s output [184, 183, 17]. This approach offers fast

detection and can localize activities in both space and time, whereas sliding win-

dows localize only in the temporal dimension.
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An alternative way to avoid exhaustive search is through voting algorithms.

Recent work explores ways to combine person-centric tracksor pre-classified se-

quences with a Hough voting stage to refine the localization [175, 115], or to use

voting to generate candidate frames for merging [168]. Likeany voting method,

such approaches risk being sensitive to noisy background descriptors that also cast

votes, and in particular will have ambiguity for actions with periodicity. Further-

more, in contrast to our algorithm, they cannot guarantee toreturn the maximum

scoring space-time region for a classifier.

Discussion: Relying on tracks to detect action can be limiting; it makes the de-

tector sensitive to tracking errors, which are expected in video with large variations

in backgrounds or rapidly changing viewpoints (e.g., movies or YouTube video).

As for existing branch-and-bound methods, they are restricted to searching overcu-

bic subvolumes in the video; that limits detections to cases where the subject of the

activity does not change its spatial position much over time. In Chapter 6 of my dis-

sertation, I propose an efficient approach that is able to provide flexible non-cubical

detection subvolume and reduce the computational cost to search over long video

sequences.
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Chapter 3

Learning Human Actions from Few Labeled
Snapshots

1People can understand a human action by looking at just a few static snap-

shots. If we are able to develop a system that is capable of learning an activity

model with a few images, it would be quite easy to collect the required data to train

the system. However, today’s systems typically require hundreds, if not thousand

of such exemplars to learn an action category well. Human viewers have an im-

portant advantage, however: prior knowledge of how human poses tend to vary in

time. This undoubtedly helps “fill the gaps” between a sparseset of snapshots, and

thereby improves generalization. See Figure 3.1.

Recent existing methods [91, 79, 99] get significant progress by using deep

convolutional neural networks (CNN) to learn object and action model. Whether

training a CNN or other model, to learn the model parameters in the training stage,

a large amount of labeled data is required. However, as we address in Chapter 1,

it is expensive to get sufficient data to learn and analyze human actions and poses.

In addition, there is also the “long tails” problem in the data, where the number of

1The work in this chapter was supervised by Dr. Grauman and originally published in: Watch-
ing Unlabeled Video Helps Learn New Human Actions from Very Few Labeled Snapshots. C.-Y.
Chen and K. Grauman. In Proceedings of the IEEE Conference onComputer Vision and Pattern
Recognition (CVPR), Portland, OR, June 2013.
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Figure 3.1: The proposed approach learns about human pose dynamics from un-
labeled video, and then leverages that knowledge to train novel action categories
from very few static snapshots. The snapshots and video (left) are used together
to extrapolate “synthetic” poses relevant to that category(center), augmenting the
training set. This leads to better generalization at test time (right), especially when
test poses vary from the given snapshots.

training examples is highly imbalanced between different categories. For some ac-

tions or poses in a given viewpoint, we may not be able to gather enough examples

for learning an accurate model.

In this chapter, I will present a novel method that learns human action with

very few labelled snapshots incorporating a pool of unlabelled videos. As described

in Chapter 1, the intuition is to let the system connect a few snapshots to the unla-

belled video pool. Then, it expands the understanding of theaction by utilizing the
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temporal dependency of pose changes for poses in the videos.

3.1 Approach for Learning Human Actions from Few Labeled
Snapshots

Our approach augments a small set of static snapshots by introducing realis-

tic but synthetically generated body pose examples. The synthetic examples extend

the real ones locally in time, so that we can train action classifiers on a wider set

of poses that are (likely) relevant for the actions of interest. We first define the rep-

resentation we use for pose. Then, after describing our video data requirements, I

present two methods to infer synthetic pose examples; one isexample-based, the

other is manifold-based. Finally, I explain how we use a mix of real and synthetic

data to train a classifier that can predict actions in novel static images.

3.1.1 Representing Body Pose

We use a part-based representation of pose called aposelet activation vector

(PAV), adopted from [110]. A poselet [16] is an SVM classifiertrained to fire on

image patches that look like some consistent fragment of human body pose. For

example, one poselet might capture arms crossed against thechest, or a left leg

bent at the knee, or even the whole body of a seated person. ThePAV records

the “activation strength” of all poselets appearing withina person bounding box.

Specifically, after running a bank ofP poselet classifiers on an image, we take those

poselet detections that overlap with a person bounding box,and record a vector

p = [p1, . . . , pP ] wherepi is the sum of thei-th classifier’s probability outputs.
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Figure 3.2: The PAV representation summarizes those detected poselets in the im-
age that overlap with the person bounding box.

Figure 3.2 shows this process, and the blurry images in Figure 3.3 depict example

poselets in terms of the averaged image patches used to trainthem. We use the

P = 1200 poselets provided by [110].

We use this descriptor because it captures human body pose ata high level,

and it is robust to occlusion and cluttered backgrounds. While it is quite simple—

essentially a histogram of local pose estimates—it is also powerful. The poselets

themselves offer a rich encoding of diverse poses, and they are detectable in spite

of differences in appearance (e.g., clothing, race). Further, since they are specific

to body configurations, the PAV implicitly captures spatiallayout. Since 2D HOG

descriptors underly the poselet classifiers, they are naturally sensitive to substan-

tial 3D viewpoint changes. This is fine for our data-driven approach, which will

synthesize poses that expand exemplars as viewed from a similar viewpoint.

3.1.2 Unlabeled Video Data

My method requires access to unlabeled videos containing human activ-

ity. The video has no action category labels associated withit, and the activity
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is not segmented in any way. In particular, we donot assume that the activities

present belong to the same categories as we will observe in the static training im-

ages. The category-independence of the video data is crucial. We would like the

system to build a model of human motion dynamics—typical changes of body pose

over time—without knowing in advance what novel actions it will be asked to learn

from snapshots. Intuitively, this suggests that a large anddiverse set of clips would

be ideal, as we cannot hope to extrapolate poses for inputs that are unlike anything

the system has seen before. In our current implementation, we use video from the

Hollywood dataset [97] to form the unlabeled pool.

We assume that the humans appearing in the video can often be detected

and tracked, i.e., using state-of-the-art human detectorsand tracking algorithms, so

that we can extract pose descriptors from human bounding boxes. We also expect

that the video and snapshots come from roughly similar sensor types, meaning that

we would not attempt to use dynamics learned from overhead aerial video (where

people are blobs of tens of pixels) to help recognition with snapshots taken on the

ground (where people have substantially greater resolution and body parts are visi-

ble). This is a very mild requirement, since plenty of groundvideo is available to us

via YouTube, Hollywood movies, and so on. In fact, our methodexplicitly builds

in some flexibility to data source mismatches due to its use ofdomain adaptation,

as we will discuss later.

To pre-process the unlabeled video, we 1) detect people and extract person

tracks, 2) compute a PAV pose descriptor for each person window found, and 3)

either simply index those examples for our exemplar-based method or else compute
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a pose manifold for our manifold-based method (both are defined in Sec. 3.1.3).

Note that because this video is unlabeled, our method will enhance the training set

with no additional manual effort.

3.1.3 Generating Synthetic Pose Examples

Our key idea is to expand limited training data by exploring unlabeled video,

which implicitly provides rules governing how human pose changes over time for

various activities. Thus, the heart of our method is to generate synthetic pose ex-

amples. We investigate two strategies: example-based and manifold-based.

Let S = {(pi
1, y1), . . . , (p

i
N , yN)} denote theN training snapshots our sys-

tem receives as input, where the superscripti denotesimage, and eachpi
j ∈ R

P is a

PAV descriptor with an associated action class labelyj ∈ {1, . . . , C} (e.g., running,

answering phone, etc). Let{t1, . . . , tK} denote theK person tracks from the unla-

beled video, and let each tracktk be represented by a sequence of PAV descriptors,

tk = (pv
k1
, . . . ,pv

kM
), where superscriptv denotesvideo, andkM is the number of

frames in thek-th track.

3.1.3.1 Example-based Strategy

Our example-based method treats the video as a non-parametric represen-

tation of pose dynamics. For each training snapshot posepi
j , we find its nearest

neighbor pose in any of the video tracks, according to Euclidean distance in PAV

space. Denote that neighborpv
j∗. Then, we simply sample temporally adjacent

poses topv
j∗ to form synthetic examples that will “pad” the training set for classyj.
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Figure 3.3: For each labeled training snapshot (top left), we use its pose description
(depicted in bottom left) to find a neighbor in the unlabeled video (center panel).
Then we synthesize additional training poses based on its temporal neighbors or
nearby instances on a pose manifold (right panel). Best in color.

Specifically, we takepv
j∗−T andpv

j∗+T , the posesT frames before andT frames af-

ter the match (accounting for boundary cases if the neighborstarts or ends a track).

See Figure 3.3.

We repeat this process for all training snapshots, yieldingan expanded train-

ing setS+ with two new synthetic examples for each original snapshot:S
+ =

{S ∪ {(pv
j∗−T , yj), (p

v
j∗+T , yj)}Nj=1}. In our experiments, we setT = 10 in order to

get frames showing poses that would occur just before or after the matched pose,

without being too visually redundant. In preliminary tests, we found the method
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is not very sensitive to this parameter within the rangeT = 5, . . . , 20, and simply

fixed it at10.

3.1.3.2 Manifold-based Strategy

We also explore a method to extrapolate poses using a nonlinear pose man-

ifold. Whereas the example-based method extrapolates posesolely in the temporal

dimension—and solely using one sequence at a time—the manifold variant unifies

connections in both appearance and dynamics, and it effectively samples synthetic

examples from a mix of sequences at once.

To construct the manifold, we use the locally linear embedding (LLE) algo-

rithm [139]. LLE constructs a neighborhood-preserving embedding function that

maps high-dimensional inputs inRP to a low-dimensional nonlinear manifold in

R
d. The manifold is represented as a set of globally consistentlinear subspaces,

and the solution to minimize its reconstruction error relies on an eigenvalue prob-

lem. The algorithm takes as input a set of data points and their respectivek nearest

neighbors, and returns as output all points’ low-dimensional coordinates.

We use the PAVs from the unlabeled video to build the manifold. Recall

thatpkq denotes the PAV for theq-th frame within thek-th track in the unlabeled

video (dropping the superscriptv for clarity). We determine neighbors for LLE

using a similarity function capturing both temporal nearness and pose similarity:

A(pkq ,pjr) =

λ exp
(

−
∥

∥pkq − pjr

∥

∥ /σp

)

+ (1− λ) exp (−‖q − r‖ /σt) ,
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where‖q − r‖ = ∞ if k 6= j, that is, if the two inputs are from different tracks.

Hereσp andσt are scaling parameters, set to the average distance betweenall PAVs

and frame numbers, respectively, and the weightλ controls the influence of the two

terms. Note that an example’s neighbors underA can span poses from both the

same and different tracks. After applying the LLE embedding, each original PAV

pv ∈ R
P has a low-dimensional counterpartp̂v ∈ R

d.

Next, for each training snapshot, we find nearby poses on the manifold to

generate synthetic examples. Specifically, for snapshotpi
j with nearest neighbor

pv
j∗ in PAV space, we take the associatedp̂v

j∗ manifold coordinate, and compute

its closest two embedded points from the video.2 (We choose two simply to be

consistent with the example-based method above.) Finally,we augment the training

set similarly to above, putting the original PAVs for those two instances labeled with

the snapshot’s category intoS+.

Discussion Whether example- or manifold-based, we stress that the synthetic ex-

amples exist inposespace—not raw image space. Thus, we are padding our train-

ing set with plausible poses that could immediately precedeor follow the observed

static snapshot poses, and ignoring surrounding context, objects, etc. Furthermore,

it is entirely possible that the action the person in the video was performing when

taking on that pose wasnot the action labeled in the static snapshot. Our idea is that

the generic human motion dynamics gleaned from the unlabeled video allow us to

2One could alternatively use an out-of-sample extension to LLE [10] when collecting the mani-
fold neighbors.
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extrapolate the poses observed in novel static images, at least to very near instants

in time. This allows, for example, the system to infer that a kicking action could

take on more diverse poses than the few available in the training set (compare left

and right panels in Figure 3.1).

The proposed approach can be seen as a novel form of transfer or semi-

supervised learning in that my proposed method incorporates unlabeled data. The

synthetic examples are technically unlabeled data, but ourapproach refers their

label with underlying pose dynamic patterns existing in video data. While transfer

learning adapts a learned model to a new category with a few labeled examples from

that category, my method synthetically picks the images across various categories

as additional labeled data to improve training.

3.1.4 Training with a Mix of Real and Synthetic Poses

Finally, we use the augmented training setS
+ to train SVM action classi-

fiers to predict the labels of novel images. Rather than directly use the data as-is,

we specifically account for the uncertainty in the syntheticexamples in two ways.

First, we employ domain adaptation to account for the potential mismatch in fea-

ture distributions between the labeled snapshots and unrelated video. Second, we

use penalty terms in the SVM objective that put more emphasison satisfying the

label constraints for the real data examples compared to thesynthetic ones.

Domain adaptation (DA) techniques are useful when there is ashift between

the data distributions in a “source” and “target” domain. They typically transform

the data in some way that accounts for this discrepancy—for example, by mapping
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to an intermediate space that shares characteristics of both domains. In our case, we

can think of the static snapshots (whether training or testing) as the target domain,

and the unlabeled video as the source domain.

We use the “frustratingly simple” DA approach of [31]. It maps original data

in R
P to a new feature space of dimensionR

3P , as follows. Every synthetic (source)

pose examplepv is mapped topv′ = [pv,pv, 0], where0 = [0, . . . , 0] ∈ R
P . Every

real (target) pose example is mapped topi′ = [pi, 0,pi]. This augmentation ex-

pands the feature space into a combination of three versionsof it: a general version,

a source-specific version, and a target-specific version. The classifier benefits from

having access to all versions to find the most discriminativedecision function.

Given the domain-adapted features, we train one-vs.-all SVM classifiers.

During training, we want to reflect our lower confidence in thesynthetic training

examples, as well as account for the fact that they will outnumber the real examples.

Thus, we use two separate constants for the slack penaltyC in the standard SVM

objective, in order to penalize violating label constraints on real data more heavily.

Specifically, the cost for label errors on the real examplesCreal is set to 1, while the

cost for synthetic examplesCsynth ≤ 1 (set via cross-validation). This weighting,

combined with the soft-margin SVM, will give some resilience to off-base synthetic

pose examples wrongly hypothesized by our method. This can occur, for example,

if the nearest PAV or manifold neighbor is quite distant and thus serves as a weak

proxy for the training snapshot’s pose.
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3.2 Experimental Results

I demonstrate my approach on three datasets for recognizingactivities in

both images and videos.

3.2.1 Datasets

For the unlabeled video data, we use the training and testingclips from the

Hollywood Human Actions dataset [97]. We stress that none ofthe activity labels

are used from these clips. In fact, only one label in Hollywood overlaps with any

of the data below (phoning is in both PASCAL and Hollywood). To get person

tracks, we use the annotation tool provided by [161]. This allows us to focus our

evaluation on the impact of our method, as opposed to the influence of a particular

person tracking method.

For the recognition task with static test images, we test on both the 9 actions

in the PASCAL VOC 2010 dataset [47](phoning, playing instrument, reading, rid-

ing bike, riding horse, running, taking photo, using computer, walking)as well as 10

selected verbs from the Stanford 40 Actions dataset [179](climbing, fishing, jump-

ing, playing guitar, riding a bike, riding a horse, rowing a boat, running, throwing

frisbee, walking the dog). While the latter has 40 total verbs, we limit our exper-

iments to those 10 where the baseline has reasonable precision using a body pose

descriptor alone; many of the others are strongly characterized by the objects that

appear in the scene. We call it Stanford 10. For PASCAL, we use(maximally) the

301 persons from the training set to train, and the 307 persons in the validation set

to test. For Stanford 10, we randomly select (maximally) 250and 1672 persons
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PASCAL VOC 2010 (11 verbs, ~600 images) 

Stanford 40 Actions (10 selected verbs, ~2000 images) 

Hollywood Human Actions (unlabeled, ~400 videos) H

Image 

Image 

Figure 3.4: Examples of PASCAL, Stanford 40 Actions, and Hollywood Human
Action datasets.

for training and testing, respectively, based on the train/test split suggested by the

authors. See Figure 3.4 for example images of these three datasets.

For the video recognition task, we compile a test set from multiple video

sources, since no existing video dataset has both images andvideos for a set of

action labels. We gather 78 test videos from the HMDB51 [92],Action Similarity

Labeling Challenge [92], and UCF Sports [138] datasets thatcontain activities also

appearing in PASCAL:phoning, riding bike, riding horse, running, andwalking.

Note that the unlabeled video source remains the Hollywood data for this task; in all
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cases, the only labels our method gets are those on the staticsnapshots in PASCAL.

We fix the dimensionality for LLEd = 10, and the affinity weightλ = 0.7.

We useχ2-kernels for the SVMs, and set the SVM penaltyCsynth = 0.1 for image

recognition andCsynth = 0.5 for video recognition, based on validation with the

PASCAL training data.

3.2.2 Recognizing Activity in Novel Images

The primary comparison of interest is to see whether recognition improves

when adding our synthetic training data, versus a baseline that does everything else

the same (i.e., PAV representation, SVM, etc.), but uses only the original training

snapshots. This baseline corresponds to the state-of-the-art method of [110], and

we denote itOriginal throughout. In addition, we provide two more baselines to

help isolate the reason for our method’s advantage. The first, Original+random , re-

places our method’s nearest neighbor selection with a randomly selected video pose.

The second,Original+synthetic-current-frame , uses only the matched neighbor

to synthesize an example (i.e., it letsT = 0). This baseline is useful to see the

extent to which we need to extrapolate poses acrosstime(dynamics), versus merely

padding the data with variations inappearance(similar instances of the same pose).

Figure 3.5 shows the mean average precision (mAP) test accuracy as a func-

tion of the number of training images, for both static image datasets. To robustly

estimate accuracy with few training samples, we run the experiment five times with

different randomly sampled training images (when using less than all the data) and

report the average. Our approach substantially boosts accuracy when few training
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Figure 3.5: Accuracy on static action recognition datasetsas a function of the num-
ber of training images. Our method shows dramatic gains withvery few labeled
snapshots, and maintains similar accuracy to the baseline when training exemplars
are plentiful.

snapshots are available. As expected, having only few exemplars accentuates our

method’s ability to “fill in” the related poses. On the other hand, when training

examples are plentiful (hundreds), there is less to be gained, since more variation is

already visible in the originals; in fact, our results are comparable to the baseline’s

in the rightmost part of the plots.3 Adding poses from random frames degrades

accuracy across the board, confirming that our method’s gainis not due to having

morepose examples; rather, it synthesizesusefulones relevant to the recognition

task. Adding a pose from the neighbor frame itself (“current”) increases the base-

line’s accuracy by synthesizing more varied appearances ofthe poses in the training

set, but it is inferior to using the pose dynamics as proposed.

Figure 3.6 shows examples of images responsible for synthetic poses added

to the original training set for PASCAL. We see how useful poses can be found

3And our numbers roughly replicate those reported in [110] for PASCAL—we obtain 57.94 vs.
59.8 mAP when using all training data.
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Synthetic training 

features-previous 

Synthetic training 

features-after 
Original training features 
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Figure 3.6: Six real examples showing the frames our method found in unlabeled
video (left and right panels) and used to expand the originaltraining poses in snap-
shots (center panel). Each pose in the center panel finds a neighbor in the unlabeled
videopv

j∗, which generates a synthetic example for what could come immediately
before (pv

j∗−T , left) and after (pv
j∗+T , right) that pose. Red/yellow/green boxes de-

note person bounding boxes, and smaller cyan boxes denote poselet detections.
Dotted arrows connect to corresponding synthetic frames.

acrossactivity categories. For example, the bottom image of a man phoning has

synthetic poses generated from a man who is not phoning—but who nonetheless

takes on poses and facial expressions that could have been (were the objects in

the scene different). In the special case that a familiar action actually appears in the

unlabeled video, it too can help, as we see in the horse-riding and walking examples.

In all examples, notice how the synthetic examples simulateslight variations over

time. This is how our approach fleshes out the training set.
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Note that our improvements are in spite of the fact that only one label over-

laps between PASCAL and Hollywood, and zero overlap betweenStanford 10 and

Hollywood. We find that for the largest training set size on PASCAL (N = 301), 23

PASCAL images match to a Hollywood clip that shows the verb phoning. Among

those 23, only two of them are themselvesphoning. Hence, our results clearly show

the category-independent nature of our approach. Poses from distinct actions are

relevant to connect the dots between sparse exemplars.

Next we compare our example- and manifold-based strategiesfor gathering

pose neighbors. The mAP averaged over all classes (Fig. 3.5)is fairly similar for

both. Figure 3.7 shows the AP gain of our two methods (compared to Original) for

each individual class in PASCAL when training withN = 20 examples (ignore the

x dimension for now). Indeed, for many classes their gains are similar. However,

manifold-based has a noted advantage over example-based for the actionsrunning

andusing computer. On Stanford 10, it is stronger forrunningandclimbing (not

shown). What these actions seem to have in common that they entail some repeated

motion. We hypothesize the manifold does better in these cases since it captures

both temporally nearby poses and appearance variations.

Figure 3.7 also shows that there is a correlation between those classes most

benefited by our method and their lack of diversity. We measure diversity by the

average inter-PAV distance among training examples. Low distance means low di-

versity. Just as a training set that is too small needs our method to fill in intermediate

poses, so too a class whose examples are too tightly clustered in pose space (e.g.,

due to a dataset creator’s unintentional bias towards “canonical poses”) may benefit
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Figure 3.7: Per class accuracy gains by our methods as a function of the diversity
of the original PASCAL data. See text.

Dataset PASCAL Stanford 10
Domain-adaptation? No Yes No Yes
Example-based 0.4243 0.4320 0.3308 0.3378
Manifold-based 0.4271 0.4327 0.3328 0.3404

Table 3.1: Impact on mAP of domain adaptation on the static datasets.

most from our method.

Table 3.1 isolates the impact of domain adaptation on our results, when the

number of training examplesN = 30. (The impact is very similar no matter the

training set size.) We see that DA gives a modest but noticeable gain in accuracy for

both variants of our method, showing it is worthwhile to model the potential data

mismatch between the unlabeled video and training snapshots. We suspect the PAV

pose descriptors are also playing a role in accounting for the domain shift, since

they abstract away some nuisance factors that could differ between the two sources

(e.g., lighting, scale).
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Original Original+synthetic Original+synthetic
example-based manifold-based

Without DA 0.3846 0.5128 0.4872
With DA N/A 0.5382 0.5128

Table 3.2: Accuracy of video activity recognition on 78 testvideos from HMDB51,
ASLAN, and UCF data.

3.2.3 Recognizing Activity in Novel Video

Next, we apply our method to predict activities in novelvideo, still using

the same static image training set idea (see dataset detailsin Sec. 3.2.1). We use a

simple voting approach to predict the label for the entire video. First, we classify

each frame independently, generating a probability for each possible label1, . . . , C.

Then, we sum the probabilities across all frames to get the final prediction. Note

that this test should allow our method to shine, since the novel videos will exhibit

many intermediate poses that the original snapshots did notcover—but that our

method will (ideally) synthesize. For this experiment, we transform the domain

adapted features usingpv′ = [pv, 0, 0], since the train, test, and synthetic data are

all from different domains.

Table 3.2 shows the results. We compare our method to the Original base-

line, and also show the impact of domain adaptation. Our method makes a substan-

tial improvement in accuracy. Its synthetic padding of the data makes the training

set less sparse, yielding more reliable predictions on the video frames. Domain

adaptation again boosts the accuracy further.
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3.3 Conclusions

In this chapter, I propose a framework to augment training data for learning

human actions without additional labeling cost. My approach leverages knowledge

of human pose patterns over time, as represented by an unlabeled video repository.

To implement our idea, we explore simple but effective example- and manifold-

based representations of pose dynamics, and combine them with a domain adapta-

tion feature mapping that can connect the real and generatedexamples.

Our results classifying activities in three datasets show that the synthetic

poses have significant impact when the labeled training examples are sparse. We

demonstrate the benefits with a state-of-the-art local poserepresentation; however,

our idea is not coupled specifically with that method, and it has potential to boost

alternative descriptors in similar ways.

I have shown how to interconnect the patterns of pose changesover time

in unlabelled video pools to expand our knowledge of human action with very few

snapshots. Next, I study how to relate human poses across different views.
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Chapter 4

Inferring Human Pose in Unseen Views

1In Chapter 3, my proposed approach connects static snapshots to unla-

belled video sequences for better coverage of pose variations. With the help of the

proposed approach, we are able to learn a new human actions efficiently with very

few examples. In this chapter, I am going to further explore another obstacle in

understanding human poses: viewpoint variation.

Since we are living in 3D space, the appearance of our pose would look

quite different in different views. To learn an action modelfor each of multiple

views, we would seemingly require examples collected from each of the views.

Currently, internet images and movies offer abundant realistic examples of humans

performing various actions, but they are naturally biased towards certain viewpoints

(see Figure 4.1(a)). This is to be expected, since humans tend to take photos of

other humans as they face the camera. As a result, nice “in thewild” examples are

sparse for many other viewpoints, and today’s challenge datasets (e.g., PASCAL

Actions [47]) are restricted to canonical viewpoints. On the other hand, efforts

to collect data specifically from multiple views are prone toscripted behavior and

1The work in this chapter was supervised by Dr. Grauman and originally published in: Inferring
Unseen Views of People. C.-Y. Chen and K. Grauman. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Columbus,OH, June 2014.

47



0 

90 

180 

-90 

(a) Realistic snapshots, but limited views

0 

90 

180 

-90 

(b) Multi-view imagery, but artificial lab conditions

Figure 4.1: The data dilemma for human images. (a) Single view images are often
realistic and “unstaged”, but populate only a sparse set of camera viewing angles.
(b) Multi-view data give full view coverage, but are more artificial in terms of acted
poses and simplistic backgrounds. Our method makes use of any available images
to envision seen poses in unseen viewpoints.

artificial lab environments (see Figure 4.1(b)). This is also to be expected, since

the actors must be instructed to do certain actions while in the special synchronized

multi-camera rig.

How can we overcome this dilemma? How can we obtain realistichuman

image data from varied viewpoints? Rather than physically place more cameras

around subjects, my goal is to use whatever viewpoints wedo have to generate

virtual views in those we do not. To this end, I propose a view synthesis approach

based on tensor completion. The key idea is to recover the latent factors that relate
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Figure 4.2: The proposed approach discovers the latent factors that relate viewpoint
and body pose, and uses them to infer unseen views. For example, despite never
seeing a kicking pose from any view but frontal (top right image), it hallucinates
what it will look like from the side (bottom right). The key isto learn connec-
tions between similar looking parts in different poses (here marked with lines for
illustration only).

viewpoint and body posewithoutobserving the two neatly varying together—that

is, without observing each pose in all views during training. We observe that from

the same viewpoint, people look similar in certain portionsof the image, even when

they are performing different actions or poses (see Figure 4.2). Using a latent factor

model, I aim to discover these relationships and use them to infer appearance in

unseen views.
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4.1 Approach for Inferring Unseen Views

I pose unseen view inference as a tensor completion problem.Throughout,

we consider a set of discrete viewpoints consisting ofM orientations of the person

with respect to the camera (facing front, front-left, etc.). As input, our method takes

cropped images of people organized by their discrete viewpoint (M = 5 or 8 in our

datasets). As output, our method returns image descriptorscapturing the appearance

of those same people in each viewpoint from which they were not observed.

I consider two scenarios:synchronizedandunsynchronized. For the syn-

chronized case, the input images include (at least some) examples of people ob-

served simultaneously by multiple cameras. Any subset of theM views might be

present for a given instance, andthe poses in the examples are not annotated in any

way (i.e., no stick figures are given). See Figure 4.3(a). For theunsynchronized

case, the input images are single-view snapshots, such as those one might typically

find in online photo collections. See Figure 4.3(b). In this case, we assume each

training image is annotated with body pose (joint positions). In either case, we as-

sume the inputs contain a variety of body poses, though theremay be an imbalanced

representation of certain poses and viewpoints.

4.1.1 Discovering the Latent Factors

Our model represents human appearance as a function of pose,viewpoint,

and position in the image. The goal is to fit a low-dimensionalfactor model to the

observed data, such that the spatially varying appearance can be approximated as

a combination of some latent pose and viewpoint factors. As discussed above, the
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Figure 4.3: Visualizing the 3D tensorX in the synchronized (left) and unsynchro-
nized (right) cases. (We display a whole image for visualization purposes, though
really its descriptor extends out in the third dimension of the tensor.)

fact that some local appearance patterns re-occur between different poses suggests

that such latent factors exist. Intuitively, they might correspond to things like local

body configurations (arm outstretched, knee bent, etc.), lighting conditions, or body

types.

For each input image, we first extract itsK-dimensional appearance descrip-

tor. We use Histograms of Oriented Gradients (HOG) [29], which offer robustness

to small shifts and rotations. HOG pools the gradients within a grid of cells, and

histograms the pixels per cell into orientation bins; each block of HOG descriptor

dimensions originates from a particular spatial region in the image, and adjacent

blocks originate from adjacent regions (except for boundary cells).

Different from Chapter 3, where I use poselet to represent person’s pose,

here I choose HOG because each feature dimension of HOG corresponds to the

content of a spatial region in the image. In contrast, recallthat poselet descriptors

discard the spatial information and only keep the histogramcount of detected body
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parts. As shown in Figure 4.2, the spatial correlation between different parts is

also a key to our proposed method. For poselet feature, each feature dimension

corresponds to the histogram count of a type of poselet and the spatial information

is less preserved in the descriptor.

Then, we assign each image to one of theM viewpoints. We currently use

ground truth orientation data for this step, as it is available with multiple public

datasets [166, 16]; however, automatic methods are also possible, e.g., [110].

Let i = 1, . . . , N index the input data, where eachi corresponds to a unique

moment in time—that is, a single snapshot, or a set of multi-view images taken si-

multaneously. For each of theN inputs, we thus have a descriptor for some number

between1 andM of the total possible viewpoints. Eachi captures a distinct pose,

whatever pose the human is doing. Thus, we stress that while we refer to theN

inputs as “poses”, if at least some inputs are multi-view, wedo not require pose

annotationsfor the input data.

Using this data, we construct a 3D tensorX ∈ R
N×M×K , where entryxk

ij

corresponds to the image descriptor value in thei-th pose, thej-th view, and thek-

th feature dimension (which reflects image position). LetP ∈ R
D×N , V ∈ R

D×M ,

andS ∈ R
D×K denote matrices whose columns are theD-dimensional latent fea-

ture vectors for each pose, view, and spatial position, respectively. We suppose

thatxk
ij can be expressed as an inner product of latent factors,xk

ij ≈ 〈Pi, Vj, Sk〉,

where a subscript denotes a column of the matrix. In matrix form, this means

X ≈ ∑D

d=1 Pd,: ◦Vd,: ◦Sd,:, where a subscriptd, : denotes thed-th row in the matrix,

and◦ is the outer product.
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To recover the latent factors, we use the Bayesian probabilistic tensor fac-

torization approach of [170], which extends probabilisticmatrix factorization [141,

142] to accommodate time-evolving consumer data for movie recommendation

tasks. To account for uncertainty, we represent the likelihood distribution for the

observed descriptors by

p(X|P,V,S, α) = ΠN
i=1Π

M
j=1Π

K
k=1

[

N(xk
ij |〈Pi, Vj , Sk〉, α−1)

]Iij ,

whereN(x|µ, α) denotes a Gaussian with meanµ and precisionα, andIij

is an indicator variable equal to 1 if posei appears in viewj, and 0 otherwise. We

use Gaussian priors for each of the latent factorsPi, Vj, Sk. For pose and view-

point we use independent Gaussians, while for the spatial factors we use the prior

Sk ∼ N(Sk−1,ΣS), for k = 2, . . . , K, which reflects that descriptor values are

likely to vary smoothly in spatially close regions.2 Let Θ denote a set of random

variables comprised of the mean and covariance of all three factors, includingΣS.

For all Gaussian prior hyper-parameters (α and the variables inΘ), we use conju-

gate distributions as priors to facilitate subsequent sampling steps.

Following [142, 170], we integrate out all the model parameters and hyper-

parameters to obtain a predictive distribution for an unseen view given all observed

input images:

2Accounting separately for the boundary cells (which need not be smooth a priori) would add
complexity to the model, and we find it is sufficient in practice not to.
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p(x̂k
ij |X) =

∫

p(x̂k
ij |Pi, Vj, Sk, α)p(P,V,S, α,Θ|X) d{P,V,S, α,Θ}.

Compared to solving for a single point estimate for the MAP factorsP∗,

V
∗, S∗, this helps prevent overfitting to poorly tuned hyper-parameters. It is ap-

proximated using Markov chain Monte Carlo (MCMC) sampling:

p(x̂k
ij |X) ≈

L
∑

l=1

p(x̂k
ij |P

(l)
i , V

(l)
j , S

(l)
k , α(l)), (4.1)

whereL denotes the number of samples. The samples{P (l)
i , V

(l)
j , S

(l)
k , α(l)} are gen-

erated with Gibbs sampling on a Markov chain whose stationary distribution is the

posterior over the model parameters and hyper-parameters{P,V,S, α,Θ}. Sam-

pling is initialized using the MAP estimates of the three factor matrices. See [170]

for details.

With this tensor formulation, we capture the global influence that image

position has on all the poses and viewpoints, which is very informative for cropped

person images. For example, the model can learn that the presence of strong -

45 degree gradients in cells in the bottom right of the personbounding box when

viewed from the front (due to an extended left leg) suggests the likely presence of

45 degree gradients within the associated bottom left cellsif he were viewed from

behind.

We choose to infer descriptors, rather than raw pixels. The gradient-based

HOGs offer robustness to low-level appearance differences(e.g., clothing), such

that we can expect to learn latent factors with less input data than would be needed
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for raw pixels. Inferring pixel intensities, though in principle possible with the same

approach, would likely waste modeling effort on unneeded detail (a typical person

bounding box in our datasets contains 6,000 pixels, but only108 HOG dimensions).

In addition, as we demonstrate below, we can use the inferredviews directly in

later learning tasks, since most vision methods operate in afeature space other than

pixels. Plus, to visualize the results, we can “invert” HOG descriptors back into

image space with [160].

4.1.2 Learning with Unsynchronized Single-View Images

Next we generalize our approach to handle the challenging case where only

unsynchronized single-view data is available. Doing so will allow us to exploit

existing realistic data sources, such as photos on Flickr. Presumably humans can

infer unseen views because they have seen many individuals in various poses and

viewpoints, not because they have seen carefully orchestrated multi-view examples

for individual people. They understand the pose associations across individuals. In

a similar vein, our idea is to link snapshots that containsimilar 3D body poses, but

differentviewpoints. In this way, a pose “instance” in the tensor can be comprised

of different individual people (as depicted in Figure 4.3(b)).

This variant requires pose-labeled training data, using either manual or au-

tomatic annotations. Good tools are available to semi-automate pose labeling [16],

making this requirement manageable.

Let pq ∈ R
3J denote the normalized body pose configuration for image

q. Its 3J elements are the 3D positions ofJ body joints, normalized to a common
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coordinate system where they can be meaningfully compared.Specifically, we shift

the raw skeleton to place the center of the hips at the origin,rotate it to align the

plane connecting the hips and neck to be orthogonal to thez axis, and scale it to

the average head-to-toe height. We estimate the pose distance between two images

asd(q, r) = ||pq − pr||2. Then we sort all training pairs byd(q, r), and take any

pairs whose pose distance is less than 0.2 times the average distance. Each such pair

provides twoK-dimensional HOG entries for the tensor, placed at the appropriate

two columns based on their viewpoints.3 Once the linked pairs are entered into the

tensor, we perform inference as described above.

With this extension, even if an “in the wild” snapshot was observed from just

a single viewpoint, we can infer its appearance in novel views. As such, our method

provides downstream estimation tasks (e.g., action recognition) with data that is

both more completeand realistic. Furthermore, while our current implementation

focuses on the multi-view and single-view cases separately, our approach naturally

supports a mix of both types of data. In that case, the algorithm will learn the multi-

view constraints from synchronized instances and propagate them to single-view

instances during inference.

4.2 Experimental Results

We validate our approach on two public datasets. The first, INRIA Xmas

Motion Acquisition Sequences (IXMAS) [166], contains multi-view synchronized

3Preliminary tests in which we link beyond pairs of examples did not show a noticeable differ-
ence in results.
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H3D Flickr images 

IXMAS multi-view 

Figure 4.4: Examples of IXMAS and H3D datasets.

data fromM = 5 cameras, with 11 actions (check watch, cross arms, kick, etc.)

performed by 10 actors, for 16,800 total images. The second,Humans in 3D

(H3D) [16], contains 2,378 single-view Flickr images, withpeople doing various

unscripted poses (reaching, walking, riding a bike, etc.),and has 3D pose anno-

tations forJ = 33 joints done by MTurkers. We use the viewpoint annotations

of [110]. See Figure 4.4 for example images of these two datasets.

We extract HOG with 9 cells and 12 bin histograms per cell, yielding a

K = 108 dimensional descriptor per image. We use the factorizationcode of [170],

and fix the latent factor dimensionality toD = 500 and the number of samples
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L = 500, based on cross-validation on training data, andα = 2 as default. We

clip inferred outputs to[0, 1], the valid HOG range. With these parameters, and

with N = 2, 200 instances, learning the latent factors takes about 6 hours.Inferring

feature values requires only two inner products, which takes< 1 ms.

We evaluate how well our inferred views match the (withheld)ground truth

images. In addition, we compare to a variety of state-of-the-art view-invariant

recognition methods as well as two baseline techniques for virtual view creation:

1) MEMORY, a memory-based tensor completion approach and 2) COPY, a method

that copies observed images from nearby views. For MEMORY, we adapt a neigh-

borhood approach in collaborative filtering [90] to our problem setting. For COPY,

we find the observed image in the training datafor the very same pose instancethat

is nearest in viewpoint to the desired unseen view, and copy its HOG descriptor. For

example, if the needed viewj were frontal, and the view 45 degrees off of frontal

appears in the training set, that would be the estimate. Notethat a traditional warp-

ing approach is inapplicable for these tests, since it demands multi-view calibrated

data, and can warp only to fairly nearby views (i.e., not ground to overhead).

In the following, we first evaluate the inferred views’ accuracy (Sec. 4.2.1).

Then we use the virtual views for two applications: action recognition (Sec. 4.2.2)

and viewpoint estimation (Sec. 4.2.3).

4.2.1 Accuracy of Inferred Views

Figure 4.5 visualizes inferred views using the “HOG goggles” inverted-

HOG (iHOG) technique, which inverts a HOG descriptor back toa natural im-
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age [160]. Here we use HOG descriptors with higher dimension(90 cells×12

bins =2970) to provide detailed visualization. We compare the view inferred by

our method to the iHOG for the real ground truth (GT) image, which is the upper

bound on quality. The two often look quite similar, which means our method infers

the true appearance well. While COPY’s results can look realistic—after all, they

originate from HOGs on real images—they are not as accurate as ours. This un-

derscores the value in modeling the latent factors for all observations, rather than

simply matching to the nearest available view. Our advantage is most striking in

the most difficult cases, such as inferring the overhead view(middle row, right side

of (a)). For poses that appear similar between views (bottomrow, left side of (a)),

COPY is competitive, as expected. The H3D visualizations (b) arenoisier due to

fewer observed features and cluttered backgrounds, yet we still capture the shape

of the person and some articulated details of the pose (e.g.,see the bent arm in far

right). (Note, on H3D COPY simply returns the given iHOG for all other views.)

See Supp. for more examples.

Figure 4.6 quantifies these observations. We randomly sample 200 images

for each action in IXMAS, for a total of 2,200 images. Then foreach action in

turn, we withhold all images for that action in a given view, apply factorization,

and compare the inferred unseen views to the withheld groundtruth. We plot the

Summed Square Difference (SSD) error between inferred and actual views, for each

view in IXMAS. (H3D lacks the ground truth to make this evaluation possible.)

Our factorization method outperforms both baselines. As tobe expected, view 5,

the overhead view, is most difficult for all methods; nonetheless, our inferred views
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GT Ours Copy Ours Copy GT Image Image Memory Memory 
(a) IXMAS dataset. Image and its GT iHOG are not seen in training—we infer it.

Image Ours Ours Ours Ours Ours Ours Given Image Given 

-180 -135 -90 -45 0 45 90 135 

(b) H3D dataset. Image and given iHOG’s HOG are seen in training—we infer other
unseen views.

Figure 4.5: Visualization of inferred views using invertedHOGs. Best viewed on
pdf.

remain 74% better than COPY and 6% better than MEMORY.

These results validate the main goal of our approach: to accurately map seen

poses to unseen views, even when training examples are single-view, asynchronous,

and captured in complex environments. In the remaining results, we will further

demonstrate that having estimated the unseen views well, weare better positioned

to train viewpoint-sensitive models for recognition tasks.
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Figure 4.6: Error in inferred views.

4.2.2 Recognizing Actions in Unseen Views

Next, we use our inferred views to train a system to recognizeactions from

a viewpoint it never observed in the training images. As above, for each IXMAS

action label in turn, we hold out all its images in a given viewpoint, and then infer

the unseen views. We use those inferred HOGs to train a viewpoint-specific one-

vs.-rest SVM action classifier for that action category; thepositive exemplars are all

synthetic, while the negative exemplars are real images from all other action labels.

We evaluate accuracy on a test set of single-view static images consisting of 200

real positives and 2000 real negatives.

Table 4.1 shows the results. Our method significantly outperforms the base-

lines. Compared to MEMORY, our recognition advantage is much greater than our

SSD advantage in Figure 4.6, which suggests the perceptual quality differences

are greater than what SSD captures. We also show an upper bound—the accuracy

that would be obtained if thereal images had been available, rather than inferred

(“Ground truth”). Naturally, the accuracy is higher using real training images; still,
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COPY MEMORY Ours Ground truth
15.08 (2.45) 20.39 (2.49) 34.32 (3.47) 60.36 (2.51)

Table 4.1: Action recognition accuracy (mAP) in an unseen viewpoint on IXMAS.
Numbers in parens are standard errors.

we more than double the accuracy of a method that uses the nearest available real

view (COPY).

Figure 4.7 evaluates the impact of input data sparsity. We repeat the recog-

nition task above, but now with an increasingly sparse set ofreal input views for

training. To increase sparsity, we remove views at random. Our method’s accuracy

is fairly stable up until about 40% (i.e., when 60% of the tensor is unobserved),

showing the power of the latent factors with rather incomplete data. While our

accuracy starts to decline when the observed features comprise less than half of

the tensor entries, it is still substantially better than the baselines. With only 20%

observed data, all methods do similarly, indicating insufficient information about

the feature correlations between the views. COPY’s standard error increases with

sparsity; it suffers once fewer nearby views are available.

Next, we demonstrate how our method can infer missing views in the face of

partial occlusions. Table 4.2 shows the results, for actionrecognition on the first five

IXMAS actions. The columns compare our method’s accuracy inthree scenarios:

1) with no occlusions, 2) when training examples are partially occluded, and 3)

when test examples are partially visible. To generate the training set occlusions,

we randomly remove 20% of the HOG cells; to generate the test set occlusions,

we omit the lower body region. Comparing columns 1 and 2, we see our method
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Figure 4.7: Accuracy in unseen views as a function of tensor sparsity.

No occlusions Occluded training Partially visible testing
37.7 (3.06) 36.9 (3.03) 52.6 (2.07)

Table 4.2: Testing the impact of occlusions (average mAP)

maintains its accuracy in spite of occluded training examples, showing the latent

factors have a similar effect for missing data within an image, not just within the

viewpoints. Comparing columns 1 and 3, we see that if the unobserved views are

partially visible, our method can even more precisely complete them.

Finally, we use our inferred views to compare to several existing methods

for cross-view action recognition. We follow the standard leave-one-action-out

IXMAS protocol [52]. We train an action class using the HOG features from all

frames, and predict the action label of a test clip by voting.Table 4.3 shows the re-

sults. They are quite encouraging. Despite using a rather simple frame-based HOG

classifier, our inferred views lead to recognition accuracybetter than four existing

methods that devise sophisticated features or learning algorithms specifically for

this recognition task. This shows that explicitly estimating missing views can offer
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View 0 View 1 View 2 View 3 View 4
Farhadi 08 [52] 61 67 61 63 40
Junejo 08 [81] 63.0 64.3 64.5 58.9 46.6
Farhadi 09 [53] 74 77 76 73 72
Liu 11 [106] 79.0 74.7 75.2 76.4 71.2
Li 12 [102] 83.4 79.9 82.0 85.3 75.5
Zhang 13 [185] 88.3 83.0 87.7 88.3 81.9

COPY 59.9 56.5 53.4 59.8 41.2
MEMORY 67.7 63.0 58.6 65.0 48.9
Ours 79.9 80.8 79.0 80.2 74.2

Table 4.3: Cross-view action recognition accuracy on IXMAS.

advantages over using view-invariant descriptors. That said, we do underperform

two of the methods. We suspect our static frame HOG representation is a handicap,

as the other methods use temporal features. It will be interesting future work to

generalize our idea to the temporal domain.

On top of its good performance on this specific task, our method offers func-

tionality the prior work does not: 1) it can translate seen images to images in new

viewpoints, whereas the prior methods produce invariant features, which cannot be

used in support of other prediction tasks, and 2) it can leverage any available views

during learning, whereas the prior methods focus on learning connections only be-

tween pairs of views.

4.2.3 Estimating Body Orientation

Next we test our unsynchronized method (Sec. 4.1.2) on H3D. We quantize

the torso orientations intoM = 8 discrete views. We use views inferred by our

method to augment a training set of real images, then learn viewpoint classifiers.
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(a) Average mAP, compared to view synthesis baselines

Orig Orig+COPY Orig+MEMORY Orig+Ours
17.29 14.77 19.94 20.30

(b) Classification accuracy vs. state-of-art

Poselet activations+SVM [110] Ours
48.4% 49.9%

Table 4.4: Viewpoint estimation accuracy on H3D when we augment real training
images with inferred views, compared to alternative view synthesis methods (a) and
a state-of-the-art technique (b).

We form a 75%-25% train-test split, and balance the trainingimages per view, since

highly imbalanced training images would favor our approach. We train SVMs with

χ2 kernels for all methods. Given a novel test image, we need to decide which way

the person is facing. Table 4.4(a) shows the mAP results. Adding the view-specific

training instances created by our method, accuracy is better than training with the

real images alone. Furthermore, our factorization approach is again stronger than

both baselines.

Next, we compare our viewpoint estimation to an existing method based

on poselets [110]. We use the same features, classifier, and experimental setup

described in that paper. We train one classifier with the realH3D images, and

another with those same images plus our inferred views. Table 4.4(b) shows the

classification accuracy results.4 We see our virtual views boost the accuracy of this

state-of-the-art approach for viewpoint estimation.

Both these H3D results are encouraging. Not only can we inferhow a person

4Note that the numbers in (a) and (b) are not comparable to eachother due to differences in
features and experimental setup.
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will appear in other viewpoints having seen him in only a single view, but doing so

improves robustness for appearance-based viewpoint estimation.

4.3 Conclusions

In this chapter, I proposed a novel approach for inferring human appearance

in unseen viewpoints. Whereas existing methods tackle the problem using geom-

etry and image warping, my method offers a new perspective based on learning. I

show how to cast the problem in terms of tensor completion, and adapt a factoriza-

tion approach to accommodate both synchronized and unsynchronized single-view

images. Our results on two challenging datasets show that not only can we infer

unseen views, but that doing so is useful for practical humananalysis tasks.

So far I have demonstrated two approaches that expand existing human ac-

tion recognition frameworks to deal with learning from few available instances and

learning from few available views. Next, I study the human actions that involvein-

teractionwith other objects or another person. Existing work understands human-

object interaction by treating the person and the object as context for each other.

This framework increases the complexity of the model and would require a large

amount of examples for learning. To solve this problem, in next chapter, I aim to

develop an approach that connects the person’s pose and the object’s property in a

category independent way. Thus the proposed approach can deal with broader or

more general cases in modelling interactions.
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Chapter 5

Predicting the Location of “Interactees”

1In the previous chapters, I connect observed human data to other available

data with underlying patterns such as temporal dependencies, viewpoint correla-

tions, and partially overlapping poses. In this chapter, I shift to another type of

connection: the interaction between a human and another object or another person

(in this work, we call it aninteracteeas described in Chapter 1).

Here my goal is to discover the patterns that link our pose andcertain prop-

erties of the interactee such as its size and location. Existing work models the inter-

action between a person and an interactee with dependence onthe person’s pose and

interactee’s category. In this chapter, I propose to model the interaction between a

person and that person’s interactee in acategory independentway. For any kind

of interaction, our system can predict the location and the size of the interactee by

observing the cues from the person’s pose, orientation, andscene layout.

In particular, I consider the following question:Given a person in a novel

image, can we predict the location of that person’s “interactee”—the object or

person with which he interacts—even without knowing the particular action being

1The work in this chapter was supervised by Dr. Grauman and originally published in: Predicting
the location of “interactees” in novel human-object interactions. C.-Y. Chen and K. Grauman. In
Proceedings of Asian Conference on Computer Vision (ACCV),Singapore, November, 2014.
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performed or the category of the interactee itself?Critically, by posing the question

in this manner, our solution cannot simply exploit learned action-specific poses and

objects. Instead, I aim to handle the open-world setting andlearn generic patterns

about human-object interactions. In addition, I widen the traditional definition of

an interactee to include not only directly manipulated objects, but also untouched

objects that are nonetheless central to the interaction (e.g., the poster on the wall

the person is reading).

Why should the goal be possible? Are there properties of interactions that

transcend the specific interactee’s category? Figure 5.1 suggests that, at least for

humans, it is plausible. In these examples, without observing the interactee object

or knowing its type, one can still infer the interactee’s approximate position and

size. For example, in image A, we may guess the person is interacting with a small

object in the bottom left. We can do so because we have a model of certain pose,

gaze, and scene layout patterns that exist when people interact with a person/object

in a similar relative position and size. This is done withoutknowing the category of

the object, and even without (necessarily) being able to name the particular action

being performed.

After building a system for predicting the location of an interactee, I explore

how the inferred interactee localization can be used as a cueto guide the system

for focusing on important object/area(s) in the scene and provides four different

applications as following. In the first task, I use interactee localization to improve

the accuracy or speed of an existing object detection framework by guiding the

detector to only focus on areas that are involved in the interaction. Next, I use the

68



?? 

B 

?? 
?? 

A C 

Figure 5.1: Despite the fact we have hidden the remainder of the scene, can you
infer where is the object with which each person is interacting? Our goal is to
predict the position and size of such “interactee” objects in acategory-independent
manner, without assuming prior knowledge of the specific action/object types.

interactee prediction to assist image retargeting. In thistask, the image is resized by

removing the unimportant content and preserving the parts related to the person and

interactee. Furthermore, I use inferred interactee location as importance prediction

for person-centric view of what to mention in an image. For example, given a

novel image containing one or more people, can we predict which objects in the

scene are essential to generating an informative description? Our key hypothesis

is that a person’sinteractionsgive vital cues. As shown in Figure 5.2, each image

contains a dozen or more recognizable objects, but a human viewer has bias towards

noticing the object with which each person interacts:the baby is eating cakeor the

boy is reaching for the frisbee. Notably, not only do we focus on people and their

activity—what they are doing, we also focus on the direct object of that activity—

what they are doing it with/to. By applying my proposed approach, we can leverage

these interactees to rank detected objects by their importance or perform retrieval-

based image captioning.
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A little boy in a chair eating a cake. 

A small boy is reaching up for a frisbee. 

Figure 5.2: When describing an image, people usually mention the object with
which the person is interacting, even if it may be small or appear non-salient to
traditional metrics. For example, here the “interactee” objects are the cake and the
frisbee.

5.1 Approach of Predicting the Location of Interactees

To predict the location of an interactee, I explore two different methods: a

interaction embedding based non-parametric approach and anetwork based prob-

abilistic model. In the following, I first precisely define what qualifies as an inter-

actee and interaction and describe our data collection effort to obtain annotations

for training and evaluation. Then, I explain the two proposed learning and predic-

tion procedures. Finally, I overview the four applicationsthat exploit my method’s

interactee predictions.
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5.1.1 Definition of Human-Interactee Interactions

First we must define precisely what a human-interactee2 interaction is. This

is important both to scope the problem and to ensure maximal consistency in the

human-provided annotations we collect.

Our definition considers two main issues: (1) the interactions are not tied

to any particular set of activity categories, and (2) an interaction may or may not

involve physical contact. The former simply means that an image containing a

human-object interaction of any sort qualifies as a true positive; it need not depict

one of a predefined list of actions (in contrast to prior work [179, 47, 65, 36, 177, 76,

132]). By the latter, we intend to capture interactions thatgo beyond basic object

manipulation activities, while also being precise about what kind of contact does

qualify as an interaction. For example, if we were to define interactions strictly

by cases where physical contact occurs between a person and object, then walking

aimlessly in the street would be an interaction (interactee=road), while reading a

whiteboard would not. Thus, for some object/person to be an interactee, the person

(“interactor”) must be paying attention to it/him and perform the interaction with a

purpose.

Specifically, we say that an image displays a human-interactee interaction if

either of the following holds:

1. The person is watching a specific object or person and paying specific atten-

2An interactee refers to the thing a particular person in the image is interacting with; an interactee
could be an object, a composition of objects, or another person.
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tion to it. This includes cases where the gaze is purposeful and focused on

some object/person within 5 meters. It excludes cases wherethe person is

aimlessly looking around.

2. The person is physically touching another object/personwith a specific pur-

pose. This includes contact for an intended activity (such as holding a camera

to take a picture), but excludes incidental contact with thescene objects (such

as standing on the floor, or carrying a camera bag on the shoulder).

An image can contain multiple human-interactee relationships. We assume

each person in an image has up to one interactee. At test time,our method predicts

the likely interactee location for each individual detected person in turn.

5.1.2 Interactee Dataset Collection

Our method requires images of a variety of poses and interactee types for

training. We found existing datasets that contain human-object interactions, like

the Stanford-40 and PASCAL Actions [179, 47], were somewhatlimited to suit

the category-independent goals of our approach. Namely, these datasets focus on a

small number of specific action categories, and within each action class the human

and interactee often have a regular spatial relationship. Some classes entail no

interaction (e.g.,running, walking, jumping) while others have a low variance in

layout and pose (e.g.,riding horseconsists of people in fairly uniform poses with

the horse always just below). While our approach would learnand benefit from

such consistencies, doing so would essentially be overfitting, i.e., it would fall short

of demonstrating action-independent interactee prediction.
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Therefore, we curated our own dataset and gathered the necessary annota-

tions. We use selected images from three existing datasets,SUN [169], PASCAL

2012 [47], and Microsoft COCO dataset [104]. SUN is a large-scale image dataset

containing a wide variety of indoor and outdoor scenes. Using all available person

annotations3, we selected those images containing more than one person. The SUN

images do not have action labels; we estimate these selectedimages contain 50-100

unique activities (e.g.,talking, holding, cutting, digging, andstaring). PASCAL

is an action recognition image dataset. We took all images from those actions that

exhibit the most variety in human pose and interactee localization—using computer

andreading. We pool these images together; our method does not use any action

labels. This yields a large number (¿100) of unique activities including skiing,

skateboarding, throwing, batting, holding, etc. For COCO,we consider the subset

of COCO training images that contain at least one person witharea>5,000 pixels

and more than 4 out of 5 annotators report there is an interaction.

We use Amazon Mechanical Turk (MTurk) to get bounding box annotations

for the people and interactees in each image. Figure 5.3 shows the instructions col-

lecting the interactee localization in the form of boundingboxes. We again define

what interaction means in our task, and we show examples of good localizations in

the instruction. Figure 5.4 shows an example annotation task.

We get each image annotated by 7 unique workers (due to the large amount

of image in COCO, we have 5 unique workers for this dataset), and keep only

3http://groups.csail.mit.edu/vision/SUN/
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We are investigating how humans interact with surrounding objects and other people. In this 

experiment, an interaction is defined as being one of two types: 

a.Physically touching an object or another person with a specific purpose. 

The touching should reveal a specific purpose. 

The person should be paying attention to the object or other person.

For example, holding a camera to take a picture => yes; walking forward and carrying a bag => 

no; standing on the floor =>no. 

---OR---

b. Watching a specific object/person and paying attention to it. 

If the gaze is purposeful and focused on an object or person within 5 meters, it is an interaction 

=> yes.

If the person is aimlessly looking around, it is not an interaction => no.

In the qualification task, you should be familiar with the definition of the interaction and tight bounding 

box. For each task, you will be shown one image. One person will be outlined with a green box. Tha 

person is interacting with another person or object. 

Your job is to draw a box around the "interactee" -that is, the object or person with which the 

person shown is interacting. 

Be sure to draw a tight bounding box, meaning that the box you draw is exactly as big as the 

interactee object and touches its outer boundaries.

In the example below, the "interactee" is the hole that the person outlined in green is looking at. So, the 

task would be to draw a tight pink bounding box around that hole, as shown here. 

In the following examples, the pink boxes illustrate what we mean by a good or bad "tight" 

bounding box.

Figure 5.3: Instruction for localizing interactee in images.

those images for which at least 4 workers said it contained aninteraction. This left

355/754/10,147 images from SUN/PASCAL/COCO respectively.

The precise location and scale of the various annotators’ interactee bounding
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Task start:

Click and draw a tight, precise bounding box on the object or person that the person in the given 

yellow bounding box is interacting with. 

Mode: Drawing Editing Operation: Delete Selected Rectangle

Figure 5.4: Example task for localizing interactee in images.

boxes will vary. Thus, we obtain a single ground truth interactee bounding box via

an automatic consensus procedure. First, we apply mean shift to the coordinates of

all annotators’ bounding boxes. Then, we take the largest cluster, and select the box

within it that has the largest mean overlap with the rest.

The interactee annotation task is not as routine as others, such as tagging

images by the objects they contain. Here the annotators mustgive careful thought

to which objects may qualify as an interactee, referring to the guidelines we pro-

vide them. In some cases, there is inherent ambiguity, whichmay lead to some

degree of subjectivity in an individual annotator’s labeling. Furthermore, there is

some variability in the precision of the bounding boxes thatMTurkers draw (their
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notion of “tight” can vary). This is why we enlist 7 unique workers on each training

example, then apply the consensus algorithm to decide ground truth. Overall, we

observe quite good consistency among annotators. The average standard deviation

for the center position of bounding boxes in the consensus cluster is 8 pixels. See

Figure 5.9, columns 1 and 3, for examples.

5.1.3 Localizing Interactees in Novel Images

I explore two different methods for interactee localization: (1) a interac-

tion embedding based non-parametric regression approach and (2) a network based

probabilistic model. I will go over the details of both approaches in the following.

In both methods, to capture the properties of the interacteein a category-

independent manner, we represent its layout with respect tothe interacting person.

In particular, an interactee’s localization parameters consist ofy = [x, y, a], where

(x, y) denotes the displacement from the person’s center to the interactee box’s

center, anda is the interactee’s area. Both the displacement and area arenormalized

by the scale of the person, so that near and far instances of a similar interaction are

encoded similarly. Given a novel image with a detected person, we aim to predict

y, that person’s interactee, as I explain next.

5.1.3.1 Non-parametric Regression with Interaction-guided Embedding

My first method for this task predicts the interactee in a novel image using

a learnedinteraction-guided embeddingtogether with non-parametric regression.

Our goal is to estimate the approximate position and area of the interactee based on
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any relevant visual cues in the image.

To learn the relationship between the interactee’s location y and the image

content, we extract three types of features.

First, we learninteraction-guided deep person features. Inspired by the idea

that lower layer neurons in a CNN tend to capture thegeneralrepresentation and

the higher layer neurons tend to capture the representationspecificto the target

task [182], we fine-tune a deep CNN for interactee localization. In particular, as

shown in Figure 5.6, we quantize the space of interactee localization parameters,

then fine-tune a pre-trained object recognition network [91] to produce the proper

discretized parameters when given a detected person (bounding box). The last layer

provides the learned feature map,xcnn−p. This embedding discovers features infor-

mative for an interaction, which may include body pose cues indicating where an

interactee is situated (e.g., whether the arms are outstretched, the legs close together,

the torso upright or leaning, etc.), as well as attentional cues from the person’s head

orientation, eye gaze, or body position. As shown in Figure 5.5, given a query pose,

our xcnn−p feature is able to precisely retrieve training examples that involve in

similar interactions as the query example (e.g., riding andholding bat) while HOG

feature could be misleading in some cases.

In a similar manner, we also learninteraction-guided deep scene features.

As shown in Figure 5.6 we fine-tune a scene recognition network [186] to discover

features about the entire scene that are useful for predicting the interaction, yielding

an interaction-guided scene descriptorxcnn−s. Intuitively, this embedding learns

cues surrounding the person that are relevant to his interactee’s placement, such
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Query Top 5 neighbors Query Top 5 neighbors 

Figure 5.5: Example of nearest pose neighbors by ourxcnn−p feature versus HOG
feature.

as context for the activities that might be taking place. It is also free to capture

the appearance of the interactee itself (though due to the cross-category nature of

interactions discussed above, this may or not be learned as useful.)

Finally, we augment the learned features with several standard descriptors

possibly indicative of interactees. For pose, we take the Histogram of Oriented

Gradients (HOG)xh computed in the person bounding box, plus the box’s aspect

ratio (xa =
h
w

) (e.g., the aspect ratio will be large for a standing person,smaller for

a sitting person). For additional features about the scene,we take a GIST descriptor,

xg, and the person’s normalized position within the image,xp. The latter captures

how the person is situated within the scene, and thus where there is “room” for

an interactee. For attention, we use poselets [110] to estimate the head and torso

orientation,θh andθt, to capture the direction of attention, whether physical ornon-

physical. The head orientation offers coarse eye gaze cues,while the torso tells us

which objects the person’s body is facing.
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Figure 5.6: Interaction-guided fine-tuning and network architecture of our
interaction-guided embedding.

Combining these features, we have the feature vector

x = [θh, θt,xh,xa,xg,xp,xcnn−p,xcnn−s]. (5.1)

We compute and store this descriptor for each interactee-annotated train-

ing image, yielding a set ofN training pairs{(xi,yi)}Ni=1. To infer the interactee

parameterŝyq = [x̂q, ŷq, âq] for a novel query imagexq, we use non-parametric

locally weighted regression. The idea is to retrieve training images most simi-

lar toxq, then combine their localization parameters. Rather than simply average

them, we attribute a weight to each neighbor that is a function of its similarity to

the query. In particular, we retrieve theK nearest neighborsxn1
, . . . ,xnK

from

the training set based on their Euclidean distance toxq. We normalize distances
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per feature by the standard deviation of theL2 norms between training features of

that type. Then, the estimated interactee parameters areŷq =
∑K

i=1wiyni
, where

wi = exp(−‖xq − xni
‖).

Note that while interactees are a function of the action being performed,

there is not a one-to-one correspondence. That is, the same action can lead to

different interactees (e.g., climb atree vs. climb aladder), and vice versa (e.g.,

climba tree vs.trim a tree). This supports our use of a category-independent spatial

representation of the interactee. Our method can benefit from any such sharing

across verbs; we may retrieve neighbor images that contain people doing activities

describable with distinct verbs, yet that are still relevant for interactee estimation.

For example, a person cutting paper or writing on paper may exhibit both similar

poses and interactee locations, regardless of the distinctaction meanings. Thus,

there is value here in not collapsing the dataset to verb-specific models.

A natural question is whether one could simply learn the localization param-

eters “end-to-end” from the image rather than using the person/scene embeddings

as an intermediary to a non-parametric learning approach. In practice, we found

such an approach inferior to ours. This indicates there is value in 1) separating

the person and scene during feature learning (more data would likely be needed if

one wanted to treat the person as a latent variable) and 2) augmenting the learned

features with semantically rich features like gaze.
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5.1.3.2 Probabilistic Model with Mixture Density Network

We expect the non-parametric method described above to farebest when

there is ample labeled data for learning. Since this is not always the case, we also

consider a parametric model to represent interactee localization. As an alternative to

the above proposed non-parametric method, I also explore another way to localize

interactees using the Mixture Density Network (MDN) [13] tobuild a predictive

distribution for the interactee localization parameters.An MDN is a neural network

that takes as input the observed features, their associatedparameters, and as output

produces a network able to predict the appropriate Gaussianmixture model (GMM)

parameters for a novel set of observed features.

To build a predictive distribution for the interactee localization parameters,

we want to represent a conditional probability densityP (y|x). Here we model

density as a mixture of Gaussians withm modes:

P (y|x) =
m
∑

i=1

αiN(x;µi,Σi), (5.2)

whereαi denotes the prior mixing proportion for componenti,µ is its mean, andΣi

is its covariance matrix. We use theN labeled training examples{(x1,y1), . . . , (xN ,yN)}

to train the MDN.

In testing, given a novel test image, we extract the descriptors from the

person bounding box in the image. Then, we use the learned MDNto generate

the GMMP (yt|xt) representing the most likely positions and scales for the target

interactee.
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In this way, we can assign a probability to any candidate position and scale

in the novel image. To estimate the single most likely parameters, we use the center

of the mixture component with the highest prior (αi), following [13]. The output

interactee box is positioned by adding the predicted(x̂, ŷ) vector to the person’s

center, and it has side lengths of
√
â.

5.1.4 Applications of Interactee Prediction

Our method is essentially an object saliency metric that exploits cues from

observed human-interactions. Therefore, it has fairly general applicability. To make

its impact concrete, aside from analyzing how accurate its predictions are against

human-provided ground truth, we also study four specific applications that can ben-

efit from such a metric.

In the first task, I use the interactee localization to improve the accuracy or

speed of existing object detection framework by guiding thedetector to only focus

on areas that involved in the interaction. In the second task, I use the interactee

prediction to assist image retargeting. In this task, the image is resized by removing

the unimportant content and preserving the parts related tothe person and inter-

actee. In the third and fourth tasks, I explore how to leverage inferred interactees

to detect important objects and generate image descriptions. These tasks aim to

mimic human-generated image descriptions by focusing on the prominent object(s)

involved in an interaction. Well-focused descriptions canbenefit image retrieval

applications, where it is useful to judge similarity not purely on how many objects

two images share, but rather on how manyimportantobjects they share.
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5.1.4.1 Task 1: Interactee-aware Contextual Priming for Object Detection

First, we consider how interactee localization can prime anobject detec-

tor. The idea is to use our method to predict the most likely place(s) for an in-

teractee, then focus an off-the-shelf object detector to prioritize its search around

that area. This has potential to improve both object detection accuracy and speed,

since one can avoid sliding windows and ignore places that are unlikely to have

objects involved in the interaction. It is a twist on the well-known GIST contextual

priming [155], where the scene appearance helps focus attention on likely object

positions; here, instead, the cues we read from the person inthe scene help focus

attention. Importantly, in this task, our method will look at the person, but willnot

be told which action is being performed; this distinguishesthe task from the meth-

ods discussed in related work, which use mutual object-posecontext to improve

object detection for a particular action category.

To implement this idea, we run the Deformable Part Model (DPM) [57] ob-

ject detector on the entire image, then we apply our method todiscard the detections

that are outside the 150% enlarged predicted interactee box(i.e., scoring them as

−∞). To alternatively save run-time, one could apply DPM to only those windows

near the interactee.

5.1.4.2 Task 2: Interactee-aware Image Retargeting

As a second application, we explore how interactee prediction may assist in

image retargeting. The goal is to adjust the aspect ratio or size of an image without

distorting its perceived content. This is a valuable application, for example, to allow
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dynamic resizing for web page images, or to translate a high-resolution image to a

small form factor device like a cell phone. Typically retargeting methods try to

avoid destroying key gradients in the image, or aim to preserve the people or other

foreground objects. Our idea is to protect not only the people in the image from

distortion, but also their predicted interactees. The rationale is that both the person

and the focus of their interaction are important to preservethe story conveyed by

the image.

To this end, we consider a simple adaption of the Seam Carvingalgo-

rithm [5]. Using a dynamic programming approach, this method eliminates the

optimal irregularly shaped “seams” from the image that havethe least “energy”.

The energy is defined in terms of the strength of the gradient,with possible add-ons

like the presence of people (see [5] for details). To also preserve interactees, we aug-

ment the objective to increase the energy of those pixels lying within our method’s

predicted interactee box. Specifically, we scale the gradient energyg within both

person and interactee boxes by(g + 5) ∗ 5.

5.1.4.3 Task 3: Interactees as Important Objects

The third application uses interactees to gauge objectimportancewithin a

scene. Following prior work [150, 151], we define “important” objects as those

mentioned by a human describing an image. Our intuition thatpeople tend to men-

tion interactees is supported by data; in COCO, 80% of true interactees appear in

the human descriptions.

We use predicted interactees to generate important object hypotheses, as
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follows. Given a detected person, we project the predicted interactee bounding box

(square box with the predicted area) into the query image. This is essentially a

saliency map of where, given the scene context and body pose,we expect to see an

object key to the person’s interaction. Then, we sort all recognized objects in the

scene by their normalized overlap with the interactee regions. The first object in

this list is returned as an important object.

Whereas past work [150, 71, 151] focuses on composition cues(like size or

position) and semantic cues (like the type of object or attribute), the novelty of our

approach is to inject human-object interaction cues into the predictions.

5.1.4.4 Task 4: Interactees in Sentence Generation

In the fourth task, we generate sentences for the query imagethat account

for its interactee. While the importance task above focusessolely on the question

of whether an object is important enough to mention, the sentence task entails also

describing the activity and scene.

We take a retrieval-based approach, inspired by [122, 37]. Again we use a

non-parametric model. Intuitively, if the content of a query image closely resembles

a database image, then people will describe them with similar sentences.

Given a novel query, we computex and its estimated interactee spatial pa-

rameterŝy, and use them together to retrieve theKs nearest images in a database

annotated with human-generated sentences. In particular,we use Euclidean dis-

tance to sort the neighbors, normalizing distances forx and ŷ. Then, we simply

adopt the sentence(s) for the query that are associated withthose nearest examples.
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SUN PASCAL-Action MS-COCO 

Figure 5.7: Examples of SUN, PASCAL-Action, and MS-COCO datasets.

5.2 Experimental Results

We evaluate three things: (1) how accurately do we predict interactees, com-

pared to several baselines? (Sec. 5.2.2), (2) how well can humans perform this task?

(Sec. 5.2.3), (3) the four applications of interactee localization (Sec. 5.2.4).

5.2.1 Datasets and Implementation Details

We experiment with images containing people from three datasets: PAS-

CAL Actions 2012 [48], SUN [169], and COCO [104]. All three consist of natural,

real-world snapshots with a wide variety of human activity.See Figure 5.7 for

example images of these three datasets.

For PASCAL and SUN, we use the subsets collated for human interactions,

containing 754 and 355 images, respectively, and the publicly available interactee

annotations. As PASCAL Actions and SUN do not have sentence data, we use them

solely to evaluate interactee localization accuracy. For COCO, we use the 10,147

total images for which we obtained interactee bounding box annotations on MTurk
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(see Sec. 5.1.2). COCO contains 5 human-written sentences per image, as well as

object boundaries for 80 common object categories, which weexploit below. See

Figure 5.7 for example images of these three datasets.

For the feature embeddings, we fine-train AlexNet [91] and Places-CNN [186]

with the Caffe deep learning toolbox [79], using SGD solver with 10,000 iterations

and a learning rate of 0.001. To form the target labels, we quantize the interactee’s

displacement and area into 10 and 4 bins, respectively, so the network provides 40

outputs in the last layer. We extract the features from the 7th layer (fc7) asxcnn−p

andxcnn−s from each network. For HOG, each box is resized to80 × 80 and we

use cell size 8.

We localize interactee regions of interest automatically with our two pro-

posed methods. The inferred interactee localization guides us where to focus in

the image for our four applications. In particular, for results in the importance

and sentence tasks, we refer to the ground truth person boxesand object outlines

when deciding what word to use for a predicted region of interest. This lets us

focus evaluation on the “what to mention” task, independentof the quality of the

visual detectors. We setK = 20 andKs = 5 when retrieving the near neighbor

interactions and images, respectively. We fixedK after initial validation showed

values between 5-50 to perform similarly. For PASCAL and SUNwe use a random

75%-25% train-test split and for COCO we use a random 80%-20%train-test split.
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5.2.2 Accuracy of Interactee Localization

First we evaluate the accuracy of our interactee predictions. Given an im-

age, our system predicts the bounding box where it expects tofind the object that is

interacting with the person. We quantify error in the size and position of the box.

In particular, we report the difference in position/area between the predicted and

ground truth boxes, normalized by the person’s size. We alsoevaluate the accu-

racy of our method and baselines by the interaction over union (IOU) between the

inferred and ground truth interactee bounding boxes.

We compare to three baselines: (1) the Objectness (Obj) [4] method, which

is a category-independent salient object detector; (2) a “Near Person” baseline,

which simply assumes the interactee is close to the person4; and (3) a Random

baseline that randomly generates a position and size. Whileour methods exploit

cues about the person, the Objectness method is completely generic and does not.

We score each method’s most confident estimate.

Table 5.1 shows the result. On three datasets, both of our methods offer sig-

nificant improvement in position and size error over the baselines. The margins are

largest on the most diverse COCO dataset, where our data-driven approach (Ours-

embedding) benefits from the large training set (COCO has more than 10 times

the labeled instances than PASCAL or SUN). Our interaction embedding method

provides 12% lower errors over our MDN method on average. This indicates the

strength of our learned features and data-driven estimation approach. Our error re-

4It predicts a box centered on the person, with a scale∼ 0.74 of its area (a parameter set by
validation on the training data).
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Metric Dataset Ours-embedding Ours-MDN Obj [4] Near Person Random

Position error
COCO 0.2256 0.3058 0.3569 0.2909 0.5760

PASCAL 0.1632 0.1926 0.2982 0.2034 0.5038
SUN 0.2524 0.2331 0.4072 0.2456 0.6113

Size error
COCO 38.17 47.16 263.57 65.12 140.13

PASCAL 27.04 34.39 206.59 31.97 100.31
SUN 33.15 33.19 257.25 39.51 126.64

IOU
COCO 0.1989 0.1153 0.0824 0.1564 0.0532

PASCAL 0.2177 0.1369 0.0967 0.1415 0.0552
SUN 0.1710 0.1145 0.0661 0.1504 0.0523

Table 5.1: Average interactee prediction error as measuredby position/size and
average IOU between prediction and ground truth interacteeon all three datasets.

ductions relative to Near Person average 16% overall, and upto 37% on COCO for

object size. However, on the SUN dataset, our MDN method is slightly better than

our embedding method for interactee position; with only 355images in SUN, our

data-driven approach may suffer. Our gain over Near Person confirms that this is

a non-trivial prediction task, particularly when the person is not touching the in-

teractee (see the bottom example in third column in Figure 5.8). As for the IOU

metric, our embedding method provides significantly higheraccuracy than other

methods especially in COCO and PASCAL dataets with the help of larger data size.

Our MDN method provides lower average IOU than the Near Person baseline due

the low score cases from incorrect interactee localizations.

Figure 5.8 shows example predictions by the embedding variant of our

method. We see that our method can often zero in on regions where the interac-

tion is likely to be focused, even when the object may not havebeen seen in the

training examples. On the other hand, we also find failure cases, e.g., when a per-

son’s pose is too rare (upside down in the middle of fourth column) or the unusual
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Low High Possible interactee location 

Figure 5.8: Example interactee localizations. We display aheatmap for our embed-
ding method’s predictions by overlaying the retrieved training examples, such that
they vote on likely areas of interest (white = high confidence). The yellow dotted
boxes indicate the main person in the image. The blue box indicates the ground
truth interactee location. Our method can infer interactees in spite of varying inter-
actions and object types. The fourth column shows failure cases where there is less
confidence in the prediction (see the upside down skater) or errors in unusual cases
with multiple interactees (see the guy using the cell phone while riding a bike). Best
viewed in color.

cases with multiple interactees (using cell phone while riding bike in the top of

fourth column).
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Annotated-test Annotated-GT Annotated-test Annotated-GT 

Figure 5.9: We remove the background from the original imageand ask human
subjects to infer where the interactee might be. Red boxes denote their predictions,
green box denotes consensus. Annotated-GT shows the full image (which is the
format seen for ground truth collection, cf. Sec. 5.1.2). Annotated-test shows the
human subject results. Naturally, annotators can more reliably localize the inter-
actee when it is visible.

5.2.3 Human Subject Experiment

Next we establish an “upper bound” on accuracy by asking human subjects

on MTurk to solve the same task. Our MDN method localizes an interactee without

observing the background content (outside of the person box) and without knowing

what category the interactee belongs to. Thus, we constructan interface forcing

humans to predict an interactee’s location with a similar lack of information. Fig-

ure 5.9, columns 2 and 4, illustrate what the human subjects see, as well as the

responses we received from 10 people.

Table 5.2 shows the human subjects’ results alongside ours,for the subset

of images in either dataset where the interactee is not visible within the person

bounding box (since those cases are trivial for the humans and require no inference).

The humans’ guess is the consensus box found by aggregating all 10 responses with

mean shift as before. The humans have a harder time on SUN thanPASCAL, due
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Human subject Ours-MDN
Position error Size error Position error Size error

SUN w/o visible 0.1573 28.92 0.2736 36.58

PASCAL w/o visible 0.0952 40.84 0.2961 43.27

Table 5.2: Results of the human subject test.

to its higher diversity of interaction types. This study elucidates the difficulty of the

task. It also establishes an (approximate) upper bound for what may be achievable

for this new prediction problem.

5.2.4 Results for Applications of Interactee Prediction

Finally, we evaluate our idea in the context of the four tasksdefined above.

5.2.4.1 Task 1: Interactee-aware object detector contextual priming

We first demonstrate the utility of our approach for contextual priming for

an object detector, as discussed in Sec. 5.1.4.1, Task 1. We use the PASCAL train-

ing images to train DPMs to find computers and reading materials, then apply our

methods and the baselines to do priming.

Figure 5.10 shows the results. We see our methods outperformthe baselines,

exploiting its inference about the person’s attention to better localize the objects.

Note that both of our methods don’t use the action category labels during training.

Again, our interaction embedding method outperforms our MDN method. We also

see that Near person fares well for thereadinginstances, since the book or paper is

nearly always centered by the person’s lap.
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Figure 5.10: Interactee context helps focus the object detector. Numbers denote
mAP.

5.2.4.2 Task 2: Interactee-aware image retargeting

Next, we inject our interactee predictions into the Seam Carving retargeting

algorithm, as discussed in Sec. 5.1.4.2, Task 2. Figure 5.11shows example results.

For reference, we also show results where we adapt the energyfunction using OB-

JECTNESS’s top object region prediction. Both methods are instructed to preserve

the provided person bounding box. We retarget the source500 × 500 images to

300× 300.

We see that our method preserves the content related to both the person

and his interactee, while removing some unrelated background objects. In contrast,

OBJECTNESS[4], unaware of which among the prominent-looking objects might

qualify as an interactee, often discards the interactee andinstead highlights content

in the background less important to the image’s main activity.
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Predictions Predictions Retarget-Ours Retarget-Ours Retarget-Obj Retarget-Obj 

Figure 5.11: Interactee-aware image retargeting example results. Our method suc-
cessfully preserves the content of both the interactee (e.g., BBQ kit, book, painting
of horse, laptop) and person, while reducing the content of the background. OB-
JECTNESScannot distinguish salient objects that are and are not involved in the
activity, and so may remove the informative interactees in favor of background
objects. The bottom right example is a failure case for our method, where our em-
phasis on the interactee laptop looks less pleasing than thebaseline’s focus on the
people.

5.2.4.3 Task 3: Interactees as important objects

Next, we use the interactee region of interest to predict object importance

(cf. Sec. 5.1.4.3, Task 3). Following [150, 151], we are given an image plus a list of

objects and their categories/locations. Ground truth importance is judged by how

often humans mention the object in a caption.

For this task we compare to the existingObject Predictionimportance method

of [151] (Sec. 4.1 in that paper). It trains a logistic regression classifier with fea-
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tures based on object size, location, and category. To ensure fair comparison, we

use the COCO data to train it to predict the object most often mentioned in the im-

age. We again compare to the Near Person baseline, and two additional baselines:

Prior, which looks at all objects present in the image and picks the one most fre-

quently mentioned across all training images, and Majority, which predicts people

will mention the object that happens most frequently in the test image.

All methods ignore the persons in the images, since all images have a per-

son. For this result, we discard images with only a person anda single object since

all methods can only output that same object, leaving 1,617 test images.

Table 5.3 shows the result of 10 train/test splits. We measure accuracy by

the hit rate—the average percentage of ground truth sentences mentioning the ob-

ject deemed most important, per image. If each of the 5 groundtruth captions

include the predicted object, the score is 100% for that image. First, we see that

interactees are correlated with important objects; the ground truth interactee leads

to a hit rate of78.4. Furthermore, our embedding method predictions outperform

the baselines. The nearest competing method is Near Person.Even though the re-

gion of interest it predicts is substantially less precise (as we saw above), it does

reasonably well because the step of identifying the annotated COCO object nearest

to that region is forgiving. Nonetheless, the ground truth upper bound reinforces

that better precision does translate to better performanceon solving this task.

The state-of-the-art importance method [151] is less accurate than our interactee-

based method on this data. We think this is because in the COCOdata, an object

of the same category, size, and location is sometimes mentioned, sometimes not,
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Method Mention rate (%)
Ground truth interactee 78.4(0.6)

Ours-embedding 70.5(0.4)
Importance [151] 65.4(0.4)
Ours-MDN 65.2(0.5)
Near Person 67.5(0.5)
Prior 64.6(0.6)
Majority 51.7(0.6)

Table 5.3: Average hit rates (higher is better) for predicted important objects. Num-
bers in parens are standard errors.

making the compositional and semantic cues used by that method insufficient. In

contrast, our method exploits interactions to learn if an object would be mentioned,

independent of its position and category. This result does not mean the properties

used in [151] are not valuable; rather, in the case of analyzing images of people

involved in interaction, they appear insufficient if taken alone.

5.2.4.4 Task 4: Interactees in sentence generation

Finally, we study how interactee detection can benefit retrieval-based sen-

tence generation (cf. Sec. 5.1.4.4, task 4). For each test image, we retrieve 5 images

from the training set, then compute the average similarity between the ground truth

query and training sentences. We use the standard BLEU score[124] for n-gram

overlap precision.

We compare our interaction embedding based regression approach to two

retrieval-based sentence generation methods in prior work[122, 37]. For [122],

there are two variations: Global Matching, which retrievesneighbors based on

GIST and Tiny Image descriptors, and Global + Content Matching, which reranks
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that shortlist with the local image content as analyzed by visual detectors. We were

unable to obtain code from the authors, so we implement them ourselves. The

Global Matching is straightforward to implement. The Global + Content Match-

ing version involves a series of detectors for objects, stuff, attributes, scene, and

actions. We use the same poselet-based action feature [110], which captures cues

most relevant to our person-centric approach and utilizes the sameground truthper-

son bounding box used by our method.5 The method of [37] is a retrieval method

using CNN features fine-tuned for the caption generation task; we use the features

kindly provided by the authors in order to evaluate it on thissubset of COCO (all

∼10K images with people and interactions).

Table 5.4 shows the results. Our interaction embedding based non-parametric

regression method consistently outperforms the baselinesand [122], and competes

well with [37] despite the fact we do no fine-tuning specific tocaption generation

for our approach.

Without using CNN feature, our embedding base method (Ours-embedding

w/o cnn) outperforms baselines [122]. The result confirms that a person-centric

view of “what to mention” is valuable. The local Content Matching does not im-

prove accuracy over Global Matching, and even detracts fromit slightly. We suspect

this is due to weaknesses in poselets for this data, since theaction variation is very

high in COCO. The authors also observed only a slight gain with Content Matching

5We omit the object, stuff, and attribute detectors because we could not reproduce the implemen-
tation (hence the asterisk in the table). In principle, any benefit from additional local content could
also benefit us.
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1-Gram BLEU 2-Gram BLEU 3-Gram BLEU 4-Gram BLEU Combined BLEU
Random 55.19 19.26 4.18 1.26 8.65
Global Matching [122] 63.80 28.02 9.80 3.75 16.01
Global + Content Matching [122](Actions∗) 63.19 27.12 9.13 3.41 15.20
Global Match+AlexNet fc7 68.21 33.38 13.32 5.44 20.16
Retrieval fine-tuned [37] 73.05 42.63 22.01 11.19 29.59

Ours-embedding w/o cnn feature 65.08 29.74 11.13 4.56 17.64
Ours-embedding w/cnn-p only 68.03 33.30 13.45 5.64 20.36
Ours-embedding w/cnn-s only 70.78 36.42 15.96 6.87 23.05
Ours-embedding w/all 73.85 40.33 18.88 8.68 26.43
Ours-embedding w/all (fine-tuned) + [37] 73.51 43.03 22.45 11.52 30.07

Table 5.4: Average BLEU scores between query and retrieved sentences (higher =
more similar).

in their own results [122].

After incorporating CNN features, our method (Ours-embedding w/all) still

provides higher accuracy than the baseline (Global Match+AlexNet fc7) which

utilizes CNN feature extracted from the person bounding box. In addition to the

main result of our method, we also show results of our methodsby only considering

the two interaction-guided embedding features for ablation study. As shown in the

table, our learned embedding features is helpful for captioning task by guiding the

system to focus on the interaction and combining all features provide the highest

accuracy.

Finally, following [37], we also tested a variant of our method where we

fine-tune our interaction-guided network with training captions. Using our features

with those of [37], accuracy is further improved (see last row in Table 5.4). This

result shows our person-centric feature provides complementary information to the

caption tuned global CNN feature.

Figure 5.12 shows example sentences generated by our method, alongside

those of the baselines. We see how modeling person-centric cues of importance
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allows our method to find examples with similar interactions. In contrast, the base-

lines based on global image matching find images focused on total scene similar-

ity. They often retrieve sentences describing similar overall scene contexts, but are

unable to properly model the fine-grained interactions (e.g., in third column, rid-

ing vs. carrying with a surfboard). The fourth column shows afailure case by our

method, where we mispredict the interactee (cyan box) and soretrieve people doing

quite different interactions.

5.3 Conclusions

In this chapter, I considered a new problem: how to predict where an in-

teractee object will appear, given cues from content of image. While plenty of

work studies action-specific object interactions, predicting interactees in an action-

independent manner is both challenging and practical for various applications. The

proposed method shows promising results to tackle this challenge. I demonstrate

its advantages over multiple informative baselines, including a state-of-the-art ob-

ject saliency metric, and illustrate the utility of knowingwhere interactees are for

contextual object detection, image retargeting, and how the inferred interactee lo-

calization can be used to improve an existing method for describing images by

focusing on the interaction.

The proposed methods in the last three chapters have focusedon under-

standing a human’s action and pose. After learning a model, next I move on to

consider how we can use the learned model to detect when and where it happened

in a video sequence.
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Figure 5.12: Example sentences generated by our method and the Global Matching
method [122] and fine-tuned retrieval system [37]. Blue bbox: true interactee, cyan
bbox: our prediction. In the first three examples, ours is better because it correctly
predicts the location of the interactee, and then uses the interactee’s position and
scale relative to the person to retrieve image examples withsimilar types of inter-
action. In the last one, our method fails to predict the interactee correctly and thus
retrieves poorly matched interactions. See text for details.
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Chapter 6

Detecting Activity with Max-Subgraph Search

1In the previous chapters, I proposed three approaches to improve the learn-

ing framework for understanding people’s actions and poses. In this chapter, I focus

on how to utilize such a learned model efficiently. I propose an approach to improve

the framework of detecting actions in a video sequence.

While the recognition portion of the activity understanding problem has re-

ceived increasing attention in recent years, state-of-the-art methods largely assume

that the space-time region of interest to be classified has already been identified.

However, for most realistic settings, a system must not onlyname what it sees, but

also partition out the temporal or spatio-temporal extent within which the activity

occurs. The distinction is non-trivial; in order to properly recognize an action, the

spatio-temporal extent usually must be knownsimultaneously.

My goal is to unify the classification and localization components into a

single detection procedure. We propose an efficient approach that exploits top-

down activity knowledge to quickly identify the portion of video that maximizes a

classifier’s score. In short, it works as follows. Given a novel video, we construct a

1The work in this chapter was supervised by Dr. Grauman and originally published in: Efficient
Activity Detection with Max-Subgraph Search. C.-Y. Chen and K. Grauman. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Providence, RI, June 2012.
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Figure 6.1: My approach constructs a space-time video graph, and efficiently finds
the subgraph that maximizes an activity classifier’s score.The detection result can
take on non-cubic shapes (see dotted shapes in top frames), as demanded by the
action.

3D graph in which nodes describe local video subregions, andtheir connectivity is

determined by proximity in space and time. Each node is associated with a learned

weight indicating the degree to which its appearance and motion support the action

class of interest. Using this graph structure, we show the detection problem is

equivalent to solving amaximum-weight connected subgraphproblem, meaning to

identify the subset of connected nodes whose total weight ismaximal. For our

setting, this in turn is reducible to a prize-collecting Steiner tree problem, for which

practical branch-and-cut optimization strategies are available. This means we can

efficiently identify both the spatial and temporal region(s) within the sequence that

best fit a learned activity model. See Figure 6.1.

I validate the algorithm on four challenging datasets. The results demon-

strate its clear speed and accuracy advantages over both standard sliding window
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search as well as a state-of-the-art branch-and-bound solution [184].

6.1 Approach of Max-Subgraph Search

My approach first trains a detector using a binary classifier and training ex-

amples where the action’s temporal extent is known. Then, given test sequences for

which we have no knowledge of the start and end of the activity, it returns the subse-

quence (and optionally, the spatial regions of interest) that maximizes the classifier

score. This works by creating a space-time graph over the entire test sequence,

where each node is a space-time cube, and the cubes are linkedaccording to their

proximity in space and time. Each node is weighted by a positive or negative value

indicating its features’ contribution to the classifier’s score. Thus, the subsequence

for which the detector would yield the maximal score is equivalent to the maxi-

mum weight connected subgraph. This subgraph can be efficiently computed using

an existing branch-and-cut algorithm, thereby finding the optimal solution without

exhaustive search through all possible sets of connected nodes.

I first define the classifiers accommodated by our method (Sec.6.1.1), and

the features we use (Sec. 6.1.2). Then I describe how the graphs are constructed

(Sec. 6.1.3); I introduce variants of the node structure andlinking strategy that

allow us to capture different granularities at detection time. Next, I briefly explain

the maximum subgraph problem and branch-and-cut search (Sec. 6.1.4). Finally,

I devise two extensions of our basic framework that can deal with spatio-temporal

detection even in long videos (Sec. 6.1.5) and detection of multiple instances in a

single sequence (Sec. 6.1.6).

103



6.1.1 Detector Training and Objective

We are given labeled training instances of the activity of interest, and train

a binary classifierf : S → R to distinguish positive instances from all other action

categories. This classifier can score any subvolumeS of a novel video according to

how well it agrees with the learned activity. To perform activity detection, the goal

is to determine the subvolume in a new sequenceQ that maximizes the score

S∗ = argmax
S∈Q

f(S). (6.1)

If we were to restrict the subvolume in the spatial dimensions to encompass the en-

tire frame, thenS∗ would correspond to the output of an exhaustive sliding window

detector. More generally, the optimal subvolumeS∗ is the set of contiguous voxels

of arbitrary shape inQ that returns the highest classifier score.

Our approach requires the classifier to satisfy two properties. First, it must

be able to score an arbitrarily shaped set of voxels. Second,it must be defined

such that features computed within local space-time regions of the video can be

combinedadditivelyto obtain the classifier response for a larger region. The latter

is necessary so that we can decompose the classifier responseacross the nodes

of the space-time graph, and thereby associate a single weight with each node.

Suitable additive classifiers include linear support vector machines (SVM), boosted

classifiers, or Naive Bayes classifiers computed with localized space-time features,

as well as certain non-linear SVMs [156].

Our results use a linear SVM with histograms (bags) of quantized space-

time descriptors. The bag-of-features (BoF) representation has been explored in a

104



number of recent activity recognition methods (e.g., [97, 86, 119]), and, despite its

simplicity, offers very competitive results. We consider BoF’s computed over two

forms of local descriptors. The first consists of low-level histograms of oriented

gradients and flow computed at space-time interest points; the second consists of

a novel high-level descriptor that encodes the relative layout of detected humans,

objects, and poses. Both descriptors are detailed below in Sec. 6.1.2.

In either case, we compute a vocabulary ofK visual words by quantizing a

corpus of features from the training images. A video subvolume withN local fea-

tures is initially described by the setS = {(xi, vi)}Ni=1, where eachxi = (xi, yi, ti)

refers to the 3D feature position in space and time, andvi is the associated local de-

scriptor. Then the subvolume is converted to aK-dimensional BoF histogramh(S)

by mapping eachvi to its respective visual wordci, and tallying the word counts

over allN features.

We use the training instances to learn a linear SVM, which means the re-

sulting scoring function has the form:

f(S) = β +
∑

i

αi〈h(S), h(Si)〉, (6.2)

wherei indexes the training examples, andα, β denote the learned weights and

bias. This can be rewritten as a sum over the contributions ofeach feature. Let

hj(S) denote thej-th bin count for histogramh(S). The j-th word is associated

with a weight

wj =
∑

i

αih
j(Si), (6.3)
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for j = 1, . . . , K. Thus the classifier response for a subvolumeS is:

f(S) = β +
K
∑

j=1

wjhj(S) (6.4)

= β +

N
∑

i=1

wci, (6.5)

where againci is the index of the visual word that featurevi maps to,ci ∈ [1, K].

By writing the score of a subvolume as the sum of itsN features’ “word weights”,

we now have a way to associate each local descriptor occurrence with a single

weight—its contribution to the total classifier score.2 This same property of linear

SVMs is used in [95] to enable efficient subwindow search for object detection,

whereas we exploit it to score non-cubic subvolumes in videofor action detection.

We stress that our method is not limited to linear SVMs; alternative additive

classifiers with the properties described above are also permitted. Our experiments

in Sec. 6.2 focus on linear SVMs due to their efficacy. We have also successfully

implemented the framework using others, e.g., Naive Bayes,with the same input

features. The results are sound, however across the board wefind that classifier is

less effective than the SVM for our task.

Furthermore, while the additive requirement does lead to anorderless bag-

of-features representation, it is still possible to encodetemporal ordering into the

approach depending on how the local descriptors are extracted. For example, in

Sec. 6.1.2.2 we provide one way to record the space-time layout of neighboring

objects into high-level visual words.

2The bias termβ can be ignored for the purpose of maximizingf(S).
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6.1.2 Localized Space-Time Features

We consider two forms of localized descriptors for thevi vectors above: a

conventional low-level gradient-based feature, and a novel high-level feature.

6.1.2.1 Low-level Descriptors

For low-level features, we employ an array of widely used local video de-

scriptors from the literature. In general, they capture thetexture and motion within

localized space-time volumes, either at interest points ordense positions within the

video. In particular, we use histograms of oriented gradients (HoG) and histograms

of optical flow (HoF) computed in local space-time cubes [97,86]. The local cubes

are centered at either 3D Harris interest points [96] or densely sampled. These de-

scriptors capture the appearance and motion in the video, and their locality lends

robustness to occlusions. We also incorporate dense trajectory [163] and motion

boundary histogram (MBH) [120] features in a bag-of-features representation. We

refer the reader to the original papers about the descriptors for more details.

As is typical in visual recognition, we can expect better accuracy as a func-

tion of the greater the variety and complementarity of the features we use, but with

some tradeoff in computational cost. Specifically, the maininfluence the features

will have on our method’s complexity is their density in the video; while their den-

sity will not at all affect the node structure (cf. Sec. 6.1.3), it will dictate how many

visual word mappings must be computed. In Sec. 6.2 we providemore discussion

about how we select among these descriptors for different datasets; in short, our

selection is largely based on empirical findings from previous work about which
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are best suited.

6.1.2.2 High-level Descriptors

We introduce a novel descriptor for an alternative high-level representation.

While low-level gradient features are effective for activities defined by gestures

and movement (e.g., running vs. diving), many interesting actions are likely better

defined in terms of the semanticinteractionsbetween people and objects [65, 36,

132]. For example, “answering phone” should be compactly describable in terms

of a person, a reach, a grasp of the receiver, etc.

To this end, we compose a descriptor that encodes the objectsand poses oc-

curring in a space-time neighborhood. First, we run a bank ofobject detectors [57]

and a bank of mid-level “poselet” detectors [16] on all frames. To capture human

pose, we categorize each detected person into one ofP = 15 “person types”. These

types are discovered from person detection windows in the training data: for each

person window we create a histogram of the poselet activations that overlap it, and

then quantize the space of all such histograms withk-means to provideP discrete

types. Each reflects a coarse pose—for example, a seated person may cause upper

body poselets to fire, whereas a hugging person would triggerposelets from the

back.

Given the sparse set of bounding box object detections in a test sequence,

we form one neighborhood descriptor per box. This descriptor reflects (1) the type

of detector (e.g., person type #3, car) that fired at that position, (2) the distribution

of object/person types that also fired within a 50-frame temporal window of it, and
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Figure 6.2: Schematic of the data comprising our high-leveldescriptors. After de-
tecting people and other objects in the video frames, we formsemi-local neighbor-
hoods around each detected object that summarize the space-time layout of other
nearby detections. To map those neighborhoods into discrete and discriminative
visual words, we apply a random forest trained for the actionlabels (Sec. 6.1.2.2).
Here, the left images depict the detected objects surrounding the person detected in
bounding box C in the center frame. The right text box displays the information ex-
posed to the random forest feature quantizer, in terms of theneighboring detections
and their relative spatial and temporal distance from that person box C.

(3) their relative space-time distances. See Figure 6.2.

To quantize this complex space into discriminative high-level “words”, we

devise a random forest technique. When training the random forest, we choose

spatial distance thresholds, temporal distance thresholds, and object types to pa-

rameterize semantic questions that split the raw descriptor inputs so as to reduce

action label entropy. Each training and testing descriptoris then assigned a visual

word according to the indices of the leaf nodes it reaches when traversing each tree

in the forest. Essentially, this reduces each rich neighborhood of space-time object

relationships to a single quantized descriptor, i.e., a single indexci in Eqn. 6.5.

In contrast to the low-level features, this descriptor encodes space-time or-
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dering, demonstrating that our max-subgraph scheme is not limited to pure bag-of-

words representations. Furthermore, it leads to faster node weight computations,

since the number of detected objects is typically much fewerthan the number of

space-time interest points.

6.1.3 Definition of the Space-Time Graph

So far we have defined the training procedure and features we use. Now we

describe how we construct a space-time graphG = (V,E) for a novel test video,

whereV is a set of vertices (nodes) andE is a set of edges. Recall that a test video

is “untrimmed”, meaning that we have no prior knowledge about where an action(s)

starts or ends in either the spatial or temporal dimensions.Our detector will exploit

the graph to efficiently identify the most likely occurrences of a given activity. We

present two variants each for the node and link structures, as follows.

6.1.3.1 Node Structure

Each node in the graph is a set of contiguous voxels within thevideo. In

principle, the smallest possible node would be a pixel, and the largest possible node

would be the full test sequence. What, then, should be the scope of an individual

node? The factors to consider are (1) the granularity of detection that is desired (i.e.,

whether the detector should predict only when the action starts and ends, or whether

it should also estimate the spatial localization), and (2) the allowable computational

cost. Note that nodes larger than individual voxels or frames are favorable not only

for computational efficiency, but also to aggregate neighborhood statistics to give
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better support when the classifier considers that region forinclusion.

With this in mind, we consider two possible node structures.The first breaks

the video into frame-level slabs, such that each node is a sequence ofF consecutive

frames. The second breaks the video into a grid ofH×W×F space-time cubes. In

all our results, we setF = 5 or 10, and letH andW be 1
3

of the frame dimensions.3

See Figure 6.3. At detection time, the two forms yield atemporal subgraph(T-

Subgraph) andspatio-temporal subgraph(ST-Subgraph), respectively. Note that

a T-Subgraph will be equivalent to a sliding window search result with a frame

step size ofF . In contrast, a ST-Subgraph will allow irregular, non-cubic detection

results. See the first and last images in Figure 6.7.

After building a graph with either node structure for a test video, we com-

pute the weight for each nodev:

ω(v) =
∑

xj∈v

wcj , (6.6)

wherexj is the 3D coordinate of thej-th local descriptor falling within nodev ∈ V ,

and cj is its quantized feature index. We assign the features from Sec. 6.1.2 to

their respective graph nodes as follows. For the case of low-level features,xj is

the space-time interest point position. For the case of high-level features,xj is

3Rather than space-time cubes, one could consider using space-timesegmentsfrom a bottom-up
grouping algorithm. This would have some potential advantages, including finer-grained localiza-
tion. However, our preliminary attempts indicated that theregular grid nodes are preferable to
segments in practice, for both accuracy and speed. That is because (1) the irregularly shaped seg-
ment nodes lead to dense adjacency structures, hurting run-time, and (2) the difficulty in producing
quality supervoxels makes it easy to over/under-segment.
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Figure 6.3: The two node structures we consider. (a) Atemporal onlygraph simply
breaks the video into slabs of frames. Max subgraph search onthis graph is equiv-
alent to sliding window in terms of results, but is faster. (b) Spatio-temporalgraphs
further break the frames into spatial cubes, allowing both spatial and temporal lo-
calization of the activity in irregular subvolume shapes, at the cost of a denser input
graph.

the center of the originating object detection window. In either case, a feature is

claimed by the space-time node containing its central position.

Intuitively, nodes with high positive weights indicate that the activity covers

that space-time region, while nodes with negative weights indicate the absence of

the activity.

6.1.3.2 Linking Strategies

The connectivity between nodes also affects both the shape of candidate

subvolumes and the cost of subgraph search. We explore two strategies. In the

first, we link only those neighboring nodes that are temporally (and spatially, for

the ST node structure) adjacent (see Figure 6.4 (a)). In the second, we additionally

link nodes that are within the first two temporal neighbors (see Figure 6.4 (b));

we call this variantT-Jump-Subgraph. Since at test time we will seek a maximum

scoringconnectedsubgraph, the former requires detection subvolumes to be strictly
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Figure 6.4: The two linking strategies we consider. (a) Theneighbors only
graph links temporally adjacent (shown here) and optionally spatially adjacent (not
shown) nodes. (b) Thetemporal “jump” linking strategy also incorporates edges
between non-adjacent nodes, so that the output detection can realize a good con-
nected detection result in spite of intermittent noisy/occlusion features on certain
nodes. Here, the numbers shown on nodes indicate weights; white nodes indicate
those that would be selected under either linking strategy (see text).

contiguous in time (and thus equates to the options available to a sliding window),

while the latter allows subvolumes that “jump” over an adjacent neighbor in time.

By allowing jumps, we can ignore misleading features that may interrupt an

otherwise good instance of an action. For example, Figure 6.4 depicts some tem-

poral nodes and their associated weightsω(vi)’s, under either connectivity scheme.

The max subgraphwithout jumps in (a) is the first two nodes only; in contrast, for

the same node weights, the max subgraphwith jumps in (b) extends to include the

fourth node, yielding a higher weight subgraph (4+2+5 vs. 4+2). This can be use-

ful when the skipped node(s) contain noisy features, such asan object temporarily

blocking the person performing the activity. Like the space-time nodes presented

above, the use of temporal jumps further expands the space ofcandidate subvol-

umes our method can search, at some additional computational cost.
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6.1.4 Searching for the Maximum Weight Subgraph

Having defined the graph constructed on an untrimmed test sequence, we are

ready to describe the detection procedure to maximizef(S) in Eqn. 6.1. Our detec-

tion objective is an instance of the maximum-weight connected subgraph problem

(MWCS): Given a connected undirected, vertex-weighted graphG = (V,E) with

weightsω : V → R, find a connected subgraphT = (VT ⊆ V,ET ⊆ E) of G,

that maximizes the scoreW (T ) =
∑

v∈VT
ω(v). The best-scoring subgraph is the

subvolume in the video most likely to encompass the activityof interest. That is

the output of our approach. In Sec. 6.1.6 we explain how we iteratively apply the

subgraph search procedure to retrieve multiple detectionsin the same video.

With both positive and negative weights, the problem is NP-complete [74];

an exhaustive search would enumerate and score all possiblesubsets of connected

nodes. However, MWCS can be transformed into an instance of the prize-collecting

Steiner tree problem (PCST) [38] which has the same graph structure as original

MWCS and vertex profitsp > 0 and edge costsc > 0. This MWCS is solvable

by transforming the graph into a directed graph and formulating an integer linear

programming (ILP) problem with binary variables for every vertex and edge. Then

by relaxing the integrality requirement, the problem can besolved with linear pro-

gramming using a branch-and-cut algorithm (see [109]). This method gives optimal

solutions and is very efficient in practice for the space-time graphs in our setting.
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6.1.5 Two Stage Spatio-temporal Detection

Next we describe an extension to the framework that further improves ef-

ficiency of spatio-temporal detections, at some loss in search completeness. Basi-

cally this extension offers a way to further scale-up our detection strategy for long

input videos. It is relevant in the spatio-temporal detection variant of our method

(cf. Fig. 6.3(b)), not the temporal-only variant (cf. Fig. 6.3(a)). The fine-grained

space-time detection offered by the ST-Subgraph comes fromits greater number of

nodes and denser connectivity. In particular, in terms of the number of edges as a

function of the number of frames, for a temporal-only graph,one more temporal

node will add one more edge, in contrast, as for spatio-temporal graph, one more

temporal node will add a number of edges quadratic in a function spatial nodes.

Thus, to detect the activity efficiently without reducing the granularity of the search

scope, we consider how a modest sacrifice on detection accuracy (i.e., giving up

the exhaustive search equivalency promised so far) can yield a significantly larger

detection speed-up.

To this end, we propose a hierarchicalbottom-uptwo stage strategy for the

space-time search setting. The basic idea is to first performspace-time detections in

each temporal slab, and then propagate those detection results up to a second level

of processing that performs temporal detection across the slabs. See Figure 6.5.

Given a test video, we divide the video into spatio-temporalnodes (as de-

picted in Fig. 6.5, left) and compute their weights as described in Sec. 6.1.3. Next,

we search for the best detection volume in two stages: (1) a spatial detection stage

and (2) a temporal detection stage. For the spatial detection stage, we connect nodes
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in the same temporal slice into a 2D connected weighted graph(see Fig. 6.5, top

right). This yields a series of graphs, each of which has nodes representing the

features in different spatial positions in the respective temporal slab. We then ap-

ply the subgraph search procedure from Sec. 6.1.4 to find the maximum weighted

connected subgraph in each slab. Next, the detection score for each 2D subgraph is

used to represent the weight of each temporal slab, and theseslabs are connected

into a 1D temporal graph (see Fig. 6.5, bottom right). Finally, we find the maximum

weighted subgraph along the temporal dimension to obtain the detection output.

The spatio-temporal detection result is determined by set of spatial-temporal nodes

in the 2D max-subgraph that are also selected in 1D max-subgraph.

This hierarchical process reduces the computational cost by dividing the

original 3D graph structure into a 2D+1D graph structure. Note, however, that the

detection result from the two-stage subgraph search may differ from that returned

by the original ST-Subgraph. Whereas the ST-Subgraph is guaranteed to return

the same result as an exhaustive search over connected subgraphs, in this modified

two-stage procedure, the temporal connection between nodes is always reduced to

one edge (vs. nine edges for the original ST-Subgraph). However, the two-stage

search process still provides broader searching scope thanthe simpler T-Subgraph

structure.

In practice, when the length of testing video clip is over 1,000 frames,

the two-stage subgraph would be preferred over ST-subgraphfor efficient spatio-

temporal localization. Also, the two-stage subgraph is an approximation of ST-

subgraph. If the features are too noisy, the two-stage subgraph may provide lower
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Figure 6.5: Our two stage subgraph search approximates the ST-Subgraph search,
allowing efficient spatio-temporal detection even with long test sequences. First
we extract the standard space-time cuboid nodes (left). Then, we generate a series
of simpler graphs in time (stage 1, top right), and solve for the maximum con-
nected subgraph in each one. This yields a detection region and score for each
simpler graph. Finally, we create a graph based on temporal nodes only, which are
weighted by the output scores of the previous stage (stage 2,bottom right). The
nodes selected in both stages serve as the final output. Best viewed in color.

accuracy since it ignores many edges when computing the maximum weighted sub-

graph.

6.1.6 Detecting Multiple Activity Instances

Thus far, we have described detection in terms of localizingthe single space-

time region most likely to contain the activity of interest.In particular, the max-

subgraph search returns the subvolume which the trained classifier would score

most highly out of all possible subvolumes. To address the scenario where the

novel test sequence may containmultipleinstances of the activity, and/or to provide
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multiple confidence-rated hypotheses for the detection output, we extend the max-

subgraph search technique as follows.

To detect multiple instances, the main idea is to iteratively run the max-

subgraph procedure on adjusted versions of the original input graph, each time ad-

justing the graph to reflect the most recent detection. The most straightforward

approach to modifying the graph would be to take all the nodesselected for the

most recent detection and re-weight each one to−∞. Doing so is equivalent to

removing those nodes, and it would force the next search iteration to choose other

nodes for its next hypothesis. This approach has shortcomings in practice, however.

While the max-subgraph output from the first detection is optimal in terms of the

classifier and features chosen, it need not be perfect in terms of localizing the actual

activity. So, flattening nodes to have weight−∞ leads to fragmented secondary

detections.

Therefore, we instead downweight those nodes already involved in a detec-

tion, but we do not remove them from the graph entirely. Specifically, each node

is re-weighted to 0, as determined empirically on validation data. In this way, the

modified graph coming into the next iteration of the max-subgraph computation will

favor finding new high-scoring detections, but may still partially re-use portions of

the previous detection(s).

The effect of this process is roughly analogous to standard non-maximum

suppression (NMS) as applied in object/action detection with sliding windows.

With sliding windows, any window with a positive classifier score could be reported

as a detection output. However, many windows with positive scores overlap highly
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with others, and are actually covering the same object/action instance. To reduce

redundant detections, NMS is used to select a single representative output window

among a group that highly overlaps. A key parameter that determines the behavior

of NMS is the threshold for overlap between detections: candidate windows over-

lapping with the selected window by more than the selected threshold are not added

to the detection output. When the threshold is high, one generates more detection

outputs at the risk of redundancy. The re-weighting value applied to nodes in our

graphs is analogous to that threshold. A NMS threshold of 0 intraditional sliding

windows would correspond to a re-weighting value of−∞ in our setup; a higher

NMS threshold corresponds to a higher re-weighting value, allowing some overlap

in output detections.

6.2 Experimental Results

We next present experimental results applying our method for activity detec-

tion on several public benchmark datasets. We evaluate our approach compared to

both sliding window and sliding cuboid baselines as well as an existing state-of-the-

art subvolume detection method that exploits branch-and-bound search. Through-

out we are interested in both the speed and accuracy attainable. Ideally, we would

like to achieve very accurate detection but at a small fraction of the run-time cost

incurred by traditional sliding window methods. Furthermore, in some scenarios

we hope to improve the accuracy over sliding windows, since our method will per-

mit searching a more complete set of windows than is tractable with a naive search

implementation.
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In what follows, we first describe the datasets, baselines, and metrics used

in our experiments, and we provide implementation details for our approach not

already covered above. Then, the next four subsections present results organized

around each of the four datasets. This is the most natural organization, since the

dataset properties and their respective available ground truth dictate which variants

of our approach are relevant for testing (e.g., temporal detection only, fully spatio-

temporal, two-stage for spatio-temporal with long sequences, etc.).

6.2.0.1 Activity Detection Datasets

We validate on four datasets, all of which are publicly available:

• UCF Sports [138]4: UCF Sports consists of 10 actions from various sports

typically found on TV, such as diving, golf swing, running, and skate board-

ing. The data originates from stock footage websites like BBC Motion or

GettyImages. The provided clips are trimmed to the action ofinterest, so we

expand them into longer test sequences by concatenating clips to form “UCF-

Concat” (details below). The ground truth contains the action label and the

bounding box annotation of the human.

• Hollywood Human Actions [97]5: The training set contains 219 clips orig-

inating from 12 Hollywood movies, and the test set contains 211 clips from

a disjoint set of 20 Hollywood movies. The activities are things like answer

4http://crcv.ucf.edu/data/UCF Sports Action.php
5http://www.di.ens.fr/ laptev/actions/
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phone, get out of car, shake hands, etc. We test with the noisy“uncropped”

versions of the test sequences which are only roughly aligned with the action

and contain about 40% extraneous frames. In all data there isa variety of

camera motion and dynamic scenes. The ground truth consistsof the action

label for the clip, as well as the correct temporal boundaries of the activity in

the case of the uncropped sequences.

• MSR Actions [184]6: The MSR dataset consists of 16 test clips with three ac-

tivity classes—hand clapping, hand waving, and boxing—performed in front

of cluttered and moving backgrounds. They are performed by 10 subjects,

both indoor and outdoor. The ground truth consists of a spatio-temporal

bounding box for each action. To our knowledge, this is the only available

activity dataset with both spatial and temporal annotations (others are limited

to temporal boundaries only). For this dataset, we train theactivity classifiers

using the disjoint KTH dataset [145], following [184].

• THUMOS 2014[80]7: THUMOS consists of videos collected from YouTube

containing 101 different action classes. The emphasis on the THUMOS chal-

lenge is to cope with temporally untrimmed videos. Accordingly, the test

sequences contain the target actions naturally embedded inother content, and

the ground truth includes the temporal boundaries of the true action. Follow-

ing the localization setting of the winners for the ECCV 2014workshop’s

6http://research.microsoft.com/en-us/um/people/
zliu/actionrecorsrc/

7http://crcv.ucf.edu/THUMOS14/
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Dataset Features Num test videos Ave length (#frames) Ave length of action
UCF-Concat Dense+HoG3D 12 589 13%
Hollywood STIP+HoG/HoF 211 474 62%
uncropped or high-level
MSR Action STIP+HoG/HoF 16 756 10%
THUMOS STIP+HoG/HoF, Trajectory, MBH 111 1717 29%

Table 6.1: Properties of the four datasets. See text for moredetails.

UCF-Concat 
Hollywood 
uncropped  MSR Action THUMOS 

Figure 6.6: Examples of UCF, Hollywood, MSR Action, and THUMOS datasets.

detection task [1], we divide the 1010 validation videos into two equal parts

for testing and training. The test data contains 20 activityclasses: baseball

pitch, basketball dunk, billiards, clean and jerk, cliff diving, cricket bowl-

ing, cricket shot, diving, frisbee catch, golf swing, hammer throw, high jump,

javelin throw, long jump, pole vault, shot put, soccer penalty, tennis swing,

throw discus, volleyball spiking.

See Table 6.1 for a summary of the dataset properties and Figure 6.6 for

example images of these four datasets. In particular, we include each dataset’s

typical clip lengths and the portion of the sequence occupied by the action to be

detected. On average, the action of interest occupies only 28% of the total test

sequence, making detection (as opposed to classification) necessary.
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6.2.0.2 Baselines

We compare our approach to three baselines:

• T-Sliding: a standard temporal sliding window. This is the status quo method

in the literature, e.g., [84, 43, 143]. Its results are equivalent to our T-Subgraph

variant (using temporal linking structure), but computed with exhaustive search.

• ST-Cube-Sliding: a variant of sliding window that searches all cuboid sub-

volumes having anyrectangularcombination of the spatial-nodes used by

our method. Its search scope is similar to our ST-Subgraph,exceptthat it

lacks all possible spatial links, meaning the detected subvolume cannot shift

spatial location over time. While most existing methods simply apply a slid-

ing temporal window, with no spatial localization, we include this baseline as

the natural straightforward extension of sliding window search if one wants

to obtain localization.

• ST-Cube-Subvolume: the state-of-the-art branch-and-bound method of [184].

It considersall possiblecube-shaped subvolumes, and returns the one max-

imizing the sum of feature weights inside. Its scope is more flexible than

ST-Cube-Sliding. Its objective is identical to ours,exceptthat it is restricted

to searching cube-shaped volumes that cannot shift spatiallocation over time.

We use the authors’ code.8

8We found its behavior sensitive to itspenalty valueparameter, which is a negative prior on zero-
valued pixels [184]. The default setting was weak for our data, so for fairest comparisons, we tuned
for best results on UCF.
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We stress that our approach is a new strategy fordetection; results in the

literature focus largely onclassification, and so are not directly comparable. The

sliding window and subvolume baselines are state-of-the-art methods for detection,

so our comparisonswith identical features and classifierswill give clear insight into

our method’s performance.

We consider four variants of our approach: T-Subgraph, T-Jump-Subgraph,

ST-Subgraph, and two-stage ST-Subgraph, as defined in Sec. 6.1. Recall that T-

Subgraphprovides equivalent accuracy to T-Sliding, but is faster.9 The other two

variants, T-Jump-Subgraph and ST-Subgraph, provide more flexibility for detection

compared to any of the above methods. In particular, the T-Jump-Subgraph variant

allows temporal discontinuitiesnot permitted by any of the above methods, and the

ST-Subgraph variantallows spatial changeswhere the detected content can move

spatially within the frame over time. The two-stage ST-Subgraph (cf. Sec. 6.1.5) is

like the latter, only computed in an approximate form so as toscale well to longer

test sequences.

Figure 6.7 depicts the scope of the regions searched by each method, both

ours and the baselines.

9For the special case of temporal search, one can obtain equivalent solutions using 1-D branch-
and-bound search to detect the max subvector along the temporal axis [11]. In practice we find this
method’s run-time to be similar or slightly faster than T-Subgraph. Note, however, that it isnot
applicable for any other search scope handled by our approach.
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Figure 6.7: Sketch of the candidate subvolume types considered by different meth-
ods, ordered approximately from least to most flexible.T-Sliding or T-Subgraph:
The status quo sliding window search (and the proposed T-Subgraph without
jumps) finds the full-frame subvolume believed to contain the activity (leftmost
image). ST-Cube-Sliding: A variant that performs sliding window on different
spatial portions of the frame, with the restriction of cuboid subvolumes.ST-Cube-
Subvolume: A branch-and-bound search strategy from existing work [184] that
considers all possible cube-shaped subvolumes—not just the grid-based subset con-
sidered by ST-Cube-Sliding.T-Jump-Subgraph: The proposed method using tem-
poral nodes (slabs of frames) only, with additional allowance of temporal “gap(s)”
in the output detections.ST-Subgraph: The most general form of the proposed
method, where we use both spatial and temporal nodes, allowing irregular, non-
cubic detection results.

6.2.0.3 Evaluation Metrics

We adopt standard metrics for detection evaluation. Following [175, 87,

184], we use themean overlap accuracy. Whether performing temporal or full

spatio-temporal detection, this metric computes the intersection of the predicted

detection region with the ground truth, divided by the union.

As for detection speed, we use detection time (on our 3.47GHzIntel Xeon

CPUs) to evaluate computational cost. Note that in this work, we focused on im-

proving the speed of the system in testing stage. We use the same feature extraction

and classifer training framework for all our methods and baselines. To apply our
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method to online system, we will need to add the feature extraction time to our

result.

6.2.0.4 Implementation Details

For all datasets, we train a binary SVM to build a detector foreach ac-

tion. We use the descriptors described in Sec. 6.1.2, following the guidance of

prior work [164, 163] to select which particular sampling strategies and local space-

time descriptors to employ per dataset. In particular, recommendations from [164]

lead us to employ HoG/HoF for Hollywood and HoG3D for UCF withdense sam-

pling. For the THUMOS dataset we use the features provided with the dataset,

which augments the HoG/HoF set with dense trajectories and MBH. In particular,

on THUMOS we train one-versus-all binary SVMs with four types of features: tra-

jectory [163], HOG, HOF, and MBH [120], where the features are quantized to a

bag of words representation via k-means with a dictionary size= 4000. We use

the authors’ code for HoG3D/HoG/HoF/trajectory/MBH [97, 86, 163, 120], with

default parameter settings. We test the high-level descriptors on Hollywood, since

that dataset has substantial person-object interactions,whereas actions in the others

are more person-centric (e.g., diving, clapping, skateboarding). We construct our

temporal graphs with a node size of 10 frames per slab.

The next four sections describe the results on each dataset in turn.
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Verbs T-Sliding ST-Cube-Subvol [184] Our-T-Subgraph Our-T-Jump-Subgraph
Diving 0.8106 0.7561 0.8106 0.9091
Lifting 0.7899 0.8058 0.7899 0.8096
Riding 0.5349 0.5075 0.5349 0.3888
Running 0.4602 0.3269 0.4602 0.4705
Skateboard 0.1407 0.1057 0.1407 0.1803
Swing-Bench 0.5520 0.6259 0.5520 0.4582
Swing-Side 0.6728 0.3478 0.6728 0.7212
Walking 0.4085 0.3462 0.4085 0.4657

Table 6.2: Mean overlap accuracy for the UCF Sports data.

Detection time (ms) T-Sliding ST-Cube-Subvol [184] Our-T-Subgraph Our-T-Jump-Subgraph
Mean 1.25× 105 7.87× 104 1.02× 102 6.51× 102

Stdev 7.52× 103 3.17× 104 5.35× 101 3.17× 102

Table 6.3: Search time for the UCF Sports data.

6.2.1 Temporal Detection on UCF Sports

Since the UCF clips are already cropped to the action of interest, we modify

it to make it suitable for detection. We form 12 test sequences by concatenating

8 different clips each from different verbs. All test videosare totally distinct, and

are available on our project website. We train the SVM on a disjoint set of cropped

instances. We perform temporal detection only, since the activities occupy the entire

frame.

Table 6.2 shows the accuracy results, and Table 6.3 shows thesearch times.

For almost all verbs, our subgraph approaches outperform the baselines. Further,

our T-Jump variant gives top accuracy in most cases, showingthe advantage of

ignoring noisy features (in this data, often found near the onset or ending of the

verb). Figure 6.8 shows an example where T-Jump performs robust detection in

spite of occlusions, whereas the baseline sliding window orbasic T-Sliding fails.
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Figure 6.8: Qualitative example showing how our T-Jump method can perform
robust detection. The five colored cubes represent the weighted node computed
from the extracted features and learned classifier. For the second to fourth nodes,
the classifier generates negative weights due to the occlusion. Using T-Sliding or
T-Subgraph, the detection output does not cover the first andlast cubes due to the
negative weights from three cubes in the middle. In contrast, using our T-Jump
method, it can skip over the intervening negative weights. This makes the detection
framework more robust to noise from occlusion. Best viewed in color.

On this dataset, the ST-Cube-Subvolume baseline is often weaker than slid-

ing window. Upon inspection, we found it often fires on a smallvolume with highly

weighted features when the activity changes in spatial location over time. However,

it is best on “Swing-Bench”, likely because the backgroundsare fairly static, mini-

mizing misleading features. As we see in Table 6.3, both our subgraph methods are

orders of magnitude faster than the baselines. Note that theST-Cube-Subvolume’s

higher cost is reasonable since here it is searching a wider space.

6.2.2 Temporal Detection on Hollywood

We next test the Hollywood data, which also permits a study oftemporal

detection. As noted above, we test with the untrimmed data provided by the dataset

creators. Existing work uses this data for classification, and so trainsand tests with
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Verbs T-Sliding ST-Cube-Subvol [184] Our-T-Subgraph Our-T-Jump-Subgraph
AnswerPhone 0.3968 0.2905 0.3968 0.3994
GetOutCar 0.2276 0.2267 0.2276 0.2921
HandShake 0.3071 0.3390 0.3071 0.3663
HugPerson 0.3869 0.4486 0.3869 0.4150
Kiss 0.3822 0.4230 0.3831 0.4412
SitDown 0.3612 0.2861 0.3612 0.3550
SitUp 0.2592 0.2053 0.2592 0.3255
StandUp 0.3475 0.3013 0.3475 0.3775

Table 6.4: Mean overlap accuracy on uncropped Hollywood data.

Detection Time (ms) T-Sliding ST-Cube-Subvol [184] Our-T-Subgraph Our-T-Jump-Subgraph
Mean 3.71× 103 1.70× 105 6.63× 10 5.69× 102

Stdev 1.03× 104 5.79× 105 7.51× 10 1.77× 103

Table 6.5: Search time on uncropped Hollywood data.

the cropped versions. To perform temporal detection, we instead train with the

cropped clips, and test with the uncropped clips.

Table 6.4 shows the accuracy results, and Table 6.5 shows thesearch times.

Our T-Jump-Subgraph achieves the best accuracy for 6 of the 8verbs, with even

more pronounced gains than on UCF. This again shows the valueof skipping brief

negatively weighted portions; e.g., “AnswerPhone” can transpire across several shot

boundaries, which tends to mislead the baselines.

As Table 6.5 reveals, our method is again significantly faster than the base-

lines. Our T-Jump-Subgraph is slower than our T-Subgraph search, given the higher

graph complexity (which also makes it more accurate). Hence, which variant to ap-

ply depends on how an application would like to make this cost-accuracy tradeoff.

One might wonder whether a naive detector that simply classifies the entire

uncropped clip could do as well. To check, we comparerecognitionresults when
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Test sequence compositionAccuracy
Raw uncropped clips 24.83%
Output from T-Subgraph 29.66%
Manual ground truth 29.97%

Table 6.6: Recognition accuracy on Hollywood as test input varies.

we vary the composition of the test sequence to be either (a) the uncropped clip,

(b) the output of our detector, or (c) the ground truth cropped clip. Table 6.6 shows

the result. We see indeed that detection is necessary; usingour output is much

better than the raw untrimmed clips, and only slightly lowerthan using the manually

provided ground truth.

We also test our high-level descriptor (cf. Sec. 6.1.2.2) onHollywood, since

its actions contain human-object interactions. We apply six object detectors—bus,

car, chair, dining table, sofa, and phone—to every fifth frame, and use random

forests with 10 trees. Table 6.7 shows the results, comparedto our method using

low-level features. For five of the eight actions, the proposed high-level descriptor

improves accuracy. It is best for activities based on the interaction between two

people (e.g., kiss) or involving an obvious change in pose (e.g., sit up), showing the

strength of the proposed person types to capture pose and temporal ordering. For

other verbs with varied objects (answer phone, get out of car), it hurts accuracy,

likely due to object detector failures in this dataset. It remains future work outside

the scope of this project to bolster the component object detectors fed into this

higher-level neighborhood descriptor.
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Verbs T-Subgraph (HoG/HoF) T-Subgraph (high-level)
AnswerPhone 0.3968 0.1741
GetOutCar 0.2276 0.1447
HandShake 0.3071 0.4194
HugPerson 0.3869 0.5292
Kiss 0.3822 0.4906
SitDown 0.3612 0.3753
SitUp 0.2592 0.3843
StandUp 0.3475 0.2636

Table 6.7: Mean overlap accuracy on Hollywood for low-levelfeatures vs. the
object-based high-level descriptors.

6.2.3 Temporal Detection with Multiple Instances on THUMOS

Next we evaluate our approach on the THUMOS dataset. THUMOS allows

temporal detection (like UCF Sports and Hollywood), plus, unlike the others, it

contains test sequences with multiple instances of the activity. This aspect lets us

test our iterative max-subgraph strategy to produce multiple detections, as discussed

in Sec. 6.1.6.

In these experiments, the sliding window baseline represents the same search

strategy taken by the leading approach on this dataset [1]. As such, we follow the

authors’ parameter choices for the window search in order toprovide a close com-

parison. That means for the T-Sliding baseline, we use a stepsize of 10 frames, and

evaluate the windows with durations of 10, 20, 30, 40, 50, 60,70, 80, 90, 100, and

150 frames [1]. We fix the NMS threshold at 0.5 (after we did notobserve better

results for the baseline shifting this threshold within therange (0,1]), and we fix

the node re-weighting value at 0 for our method (cf. Sec. 6.1.6). Note that with a

skip size of 10 frames, the sliding window baseline (T-Sliding) does not exhaus-

tively search all subsequences, whereas our method does. For each testing video,
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Metric T-Sliding Our T-Subgraph Our T-Jump-Subgraph
mAP 0.1983 0.2143 0.1546
Overlap 0.1792 0.2186 0.2636

Table 6.8: Recognition accuracy on THUMOS 2014 data.

we return up to 10 positive detection windows.

Table 6.8 shows the accuracy results for T-Sliding and our T-Subgraph method,

both in terms of overlap and the mean average precision (mAP)as defined by [80],

which is a useful metric for the case when there are multiple instances per testing

clip. Our method obtains higher accuracy than the standard sliding window base-

line. This is a direct consequence of the efficiency of our approach in considering all

possible windows. We also get a noticeable further advantage in overlap accuracy

applying our T-Jump variant, yet it harms average precision. Upon inspection, we

find that for this challenging data, the classifier scores pernode are noisier, which

leads T-Jump to cover too many frames; T-Jump can easily find some small-valued

positive nodes to skip over highly negative nodes, leading to some poorer detec-

tion outputs as seen in the mAP. The high overlapping score ofT-Jump confirms

this observation and illustrates why mAP is a better metric than overlapping accu-

racy in multiple instance detection. We also tried a variantof our approach that less

aggressively reduces the weights on nodes already involvedin a prior iteration’s de-

tections: we set the weight of a “used” node to the mean weightof all nodes, with

the intent to encourage more overlapping detections. However, this led to slightly

worse accuracy for our method (0.2043 overlap accuracy vs. 0.2186 in Table 6.8).

Table 6.9 shows the computation time for both methods. Similar to previous
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Time (ms) T-Sliding Our T-Subgraph Our T-Jump-Subgraph
Mean 7.07× 105 5.34× 104 4.72× 104

Stdev 2.26× 106 2.37× 105 1.97× 105

Table 6.9: Search time on THUMOS 2014 data.

results, our T-Subgraph method for detecting multiple instances provides signifi-

cantly faster running time compared to T-Sliding. For the sliding window method,

no matter how many output detections we want, all the candidate window are eval-

uated. In contrast, for our T-Subgraph, we only return one optimal window in each

subgraph search iteration and re-weight the underlying nodes for next iteration.

Therefore, in this experiment, we need to run our T-Subgraph10 times to find top

10 detection windows—yet, in spite of that repetition, it isstill about an order of

magnitude faster than evaluating all the candidate windowsin the T-Sliding method.

Finally, we more closely analyze the behavior of the slidingwindow base-

line (T-Sliding) as it compares to our T-Subgraph. The goal is to see in practice

what density of windowed search (skip sizes) is necessary for best results. In other

words, if we allow T-Sliding more candidate windows and hence longer running

time, at what point does it come close to the optimal result from our method? Since

running this experiment is rather costly for the baseline, we limit this test to four

of the 20 verbs in the THUMOS test set (chosen randomly: basketball dunk, clean

and jerk, cliff diving, and hammer throw).

Figure 6.9 shows the results in terms of the average accuracyover all four

actions tested. As expected, increasing the pool of candidate windows searched by

T-Sliding increases its accuracy, but at a corresponding linear increase in run-time.

At a search time of 200msper frame, the baseline is searching 35 different window
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Figure 6.9: Accuracy vs. computation time in temporal search. We compare our
T-Subgraph (which produces the optimal detection output for a fixed time) to the
standard T-Sliding method (which produces its detection output based on exhaustive
search of a pool of candidate windows). Here we increase T-Sliding’s accuracy and
run-time by increasing that pool of windows.

sizes (out of 300 window sizes for exhausted search) and achieves accuracy of 0.26,

nearing but not as good as the result from T-Subgraph of 0.30 accuracy obtained

with just a fewmsper frame.

6.2.4 Space-Time Detection on MSR Actions

As the fourth and final dataset, we experiment with MSR Actions. In con-

trast to all of the above datasets, MSR Actions contains ground truth for thespatial

localization of the action—not just the temporal extent. Furthermore, the actors

change their position over time and a test sequence may contain multiple simul-

taneous instances of different actions. Therefore, this dataset is a good testbed to

evaluate our ST-Subgraph with the node structure in Figure 6.3(b), where we link

neighboring nodes both in space and time. In what follows, wepresent results with

both the exact maximum subgraph from ST-Subgraph as well as its approximate
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Verbs T-Sliding ST-Cube-Sliding ST-Cube-Subvol [184] Our-T-Subgraph Our-ST-Subgraph Our-Two-Stage-ST
Boxing 0.0541 0.0717 0.0794 0.0541 0.0989 0.1188
Clapping 0.0982 0.0982 0.0602 0.0982 0.1754 0.1795
Waving 0.2342 0.2204 0.2669 0.2342 0.2926 0.2416

Table 6.10: Mean temporal overlap accuracy on the MSR dataset.

Detection Time (ms) T-Sliding ST-Cube-Sliding ST-Cube-Subvol [184] Our-T-Subgraph Our-ST-Subgraph Our-Two-Stage-ST
Mean 4.2× 103 5.5× 104 3.0× 105 2.8× 102 3.1× 106 1.4× 103

Stdev 3.3× 103 4.2× 104 1.6× 105 2.3× 102 4.6× 106 4.1× 102

Table 6.11: Search time on the MSR dataset.

counterpart, the two-stage search process described in Sec. 6.1.5.

First we isolate temporal detection accuracy alone. We run the temporal and

spatio-temporal variants of our method, and project the spatio-temporal results to

temporal results. Table 6.10 shows results. Even under the temporal criterion, our

ST-Subgraph and two stage ST-Subgraph are most accurate, since they can isolate

those nodes that participate in the action. Figure 6.10 illustrates how our space-time

node structure succeeds when the location of activity changes over time, whereas

ST-Cube-Subvolume may be trapped in cube-shaped maxima. Compared to ST-

Subgraph, our two-stage method yields similar accuracy forBoxing and Clapping

videos and provides lower accuracy for Waving videos. This result shows the two-

stage method is able to provide good approximation to ST-subgraph method.

Next we examine the complete space-time localization accuracy. Table 6.12

shows the results, evaluated under the ground truth annotation for the person who

performs the action10. Results are mixed between the methods, with a slight edge

for our ST-Subgraph. Also, only the non-rectangular shape detection from our ST-

10The original ground truth labels only the hand regions (see Figure 6.10), whereas this ground
truth labels the whole person performing the action.
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Figure 6.10: Example of ST-Subgraph’s top output (top) and the top 4 detections
from ST-Cube-Subvolume [184] (bottom). Red rectangles denote ground truth.
Brighter areas denote detections.

Verbs ST-Cube-Sliding ST-Cube-Subvol [184] Our-ST-Subgraph Our-Two-Stage-ST
Boxing 0.0478 0.0193 0.0417 0.0296
Hand Clapping 0.0373 0.0071 0.0630 0.0425
Hand Waving 0.0851 0.0581 0.1121 0.0809

Table 6.12: Mean space-time overlap accuracy on the MSR dataset. (T-Sliding/T-
Subgraph are omitted since they don’t do spatial localization.)

Subgraph reflects the large spatial motions in actions. As expected, the two-stage

search process does detract from the accuracy of the optimalST-Subgraph result,

as we see in the last two columns of Table 6.12.

Finally, we analyze the run-times for all methods tested in Table 6.11. Here

we see the substantial practical impact of our two-stage spatio-temporal variant,

which yields significantly lower computation time. It is even faster than the sliding

temporal window search that produces no spatial localization, and orders of mag-

nitude faster than the existing branch-and-bound subvolume method [184]. The

two-stage method is slightly slower than the T-Subgraph variant of our method,

136



since it requires additional computation for the spatial detection in the first stage

for each slab.

As discussed in Sec. 6.1.5, we can achieve efficient spatio-temporal local-

ization with the our proposed two stage subgraph search method. In the previous

section, our ST-Subgraph provides more accurate space-time localization of actions

with higher computational cost. In this section, we speed upthe ST-Subgraph with

our two stage subgraph for space time detection on MSR actiondataset.

Table 6.12 and Table 6.11 also show the comparison of detection accuracy

and search time for our Two-Stage-ST-Subgraph and our original ST-Subgraph. By

dividing the node structure into temporal slices, the computation time of the two

stage method is reduced by three orders of magnitude compared to the original

ST-Subgraph. As expected, the two stage method is slightly slower than the T-

Subgraph because it requires additional computation for spatial detection in first

stage for each temporal node. For detection accuracy, recall that the two stage

method does not guarantee to provide the optimal spatial-temporal volumes since it

ignores the temporal link between nodes in the first stage. Thus, it is expected that

the two stage method will be less accurate than the ST-Subgraph method. As shown

in Table 6.12, Two-Stage-ST method achieves similar accuracy to the ST-Subgraph

for hand clapping and hand waving clips, but lower accuracy for boxing clips. It

is because the learned activity model for boxing is less accurate than the learned

models for other two actions (it provides lower overlap accuracy for ST-Subgraph),

and our two stage method is more sensitive to the noisy node score due to the pruned

connections between nodes.
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Figure 6.11: Overview of methods on the three datasets.

6.2.5 Summary of Trade-Offs in Results

Having presented all the results, now we step back and attempt to summa-

rize the outcomes succinctly. There are three dimensions oftrade-offs between all

methods tested: search time, search scope, and detection accuracy.

Figure 6.11 summarizes all trade-offs for three datasets. Here we show the

accuracy versus the detection time for each result, and encode the search scope of

the method by the complexity of its polygonal symbol. More complex symbols

mean wider search scope. For example, recalling Figure 6.7,the least complex

search scope is T-Sliding/T-Subgraph, which is plotted as atriangle, whereas the

most complex search scope is the ST-Subgraph, which is plotted as a 14-sided star.

Importantly, we see that increased search scope generally boosts accuracy.

In addition, the flexibility of the graph structure in our subgraph algorithm allows it

to perform best per dataset in terms ofeitherspeed (see vertical blue dotted lines)

or accuracy (see horizontal red dotted lines).
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6.3 Conclusions

In this chapter, I presented a novel branch-and-cut framework for activity

detection that efficiently searches a wide space of temporalor space-time subvol-

umes. Compared to traditional sliding window search, it significantly reduces com-

putation time. Compared to existing branch-and-bound methods, its flexible node

structure offers more robust detection in noisy backgrounds. Our novel high-level

descriptor also shows promise for complex activities, and makes it possible to pre-

serve the spatio-temporal relationships between humans and objects in the video,

while still exploiting the fast subgraph search.

With this approach, we can localize the learned action models in new video

sequences efficiently. Next, I will discuss about how to extend the ideas in my

dissertation to further broaden their applications and develop related novel ideas in

this area.
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Chapter 7

Future Work

In previous chapters, I described how to interconnect different data sources

to overcome the obstacles in learning humans’ actions and poses. There are several

future directions prompted by this thesis, which could broaden the application of

my ideas and reduce the human supervision for solving computer vision problem.

7.1 Exploring Patterns in Videos

In Chapter 3, I showed how temporal dependency allows us to link the snap-

shots to the images in unlabelled video pools and provide extra information. In

Chapter 4, I showed how the correlations between different poses allow us to infer

the pose for the unseen views. Next, we could further explorethe underlying pat-

terns in human related video clips by combining the dependency across different

viewsand temporal frames. These extracted patterns could be used to provide reg-

ularization in learning human actions or poses. Once we are able to extract these

patterns, we could utilize them as regularization in different tasks.

For example, we could use the videos captured from various views to initial-

ize the weights of a convolutional neural network (CNN) for learning an action/pose

model. Then we could fine-tune the model with few labeled video clips or images.
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Or the system could infer the spatial-temporal features forunseen video segments

for different views. Given two related video clips, the system could connect them

by filling in the gap between the two clips. Also, incorporating the temporal depen-

dency, the system could provide inference for pose sequences in different views or

handling the occlusion problems.

7.2 Interactions in Wearable Devices

The approaches shown in Chapters 3 and 4 focus on learning themodel for a

single person, and the approach shown in Chapter 5 considersinteraction between

a person and a single object. In the future, we could generalize those ideas to

interactions betweenmultiplepeople and objects.

One such application is analyzing the interactions for images/videos cap-

tured through wearable devices. In our daily life, we might interact with multiple

people/objects at the same moment. Besides, the interaction could happen among a

group of people instead of as a pairwise interaction as described in Chapter 5. For

example, while walking in the street, we step on the pavement, look at the street

sign, talk to people, and avoid obstacles. Besides, the people and objects around us

can interact with each other. To model the problem, the approach needs to consider

the relationship between all visible objects and possible interactions from visual

contents captured from multiple devices. The video contentcaptured via wearable

devices tend to be hours long thus cannot afford to have detailed annotations. In

such case, we would need to combine various sources of data toreduce the labeling

cost.
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Chapter 8

Conclusion

My thesis presented novel techniques for improving the learning and under-

standing of human action and pose. The proposed approaches interconnect the data

by exploring underlying patterns from articulated human pose structure.

I consider four major components. In the first, I described a novel approach

to connect static snapshots to the temporal dependency between poses provided by

unlabelled video sequences and utilize the mined information to aid the learning of

new human action from just a few snapshots. Second, I used a tensor completion

technique to discover the latent factors connecting the human poses across different

views. With this method, we are able to learn a human action model from different

views without collecting examples for each of the viewing angles. Third, I proposed

a new approach that explores the pattern that connects the pose and location of in-

teractees in a category-independent way. With the proposedmethod, we are able to

predict the location and size of an interactee for differenttypes of interaction and

objects. In addition, I also explored various applicationsby using the interactee

localization as a cue, including for detection, image retargeting, and image descrip-

tion. Last, after exploring how to better learn models of action and pose, I described

a framework to efficiently detect an action in a video sequence. To localize when
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and where the action is happened in the video, I transform theproblem into finding

a maximum weighted subgraph in a flexible graph structure. This method signif-

icantly increases the speed for searching and provides diverse localization scope.

Furthermore, I developed different variants to handle the trade off between search

speed and computation cost for realistic applications.

In summary, the main impact of my thesis is that it shows how wecan

reduce the data collection cost in human related data. By using the existing la-

belled data more efficiently with unlabelled data or data from other sources, we can

significantly improve the accuracy or speed of existing recognition systems. My

work mainly focuses on finding clever and efficient ways of using the human re-

lated data, and the approaches I proposed are a promising step in improving action

recognition.
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