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Embodied Learning for Visual Recognition

Dinesh Jayaraman, Ph.D.
The University of Texas at Austin, 2017

Supervisor: Kristen Grauman

Over the fifty years or so of its existence, the field of visual recognition has

gradually moved away from the first entirely manually designed rule-based methods,

to methods that learn increasingly more and more components of their recognition

pipelines from data. Naturally, this has placed increasing demands on the quantity

and quality of data available for learning. Thus, the status quo in computational

visual recognition is to learn from large datasets of manually curated images anno-

tated by human workers. For example, today’s popular datasets for visual learning

comprise millions of manually curated images annotated by human workers through

tens of thousands of hours of crowdsourced labor costing up to hundreds of thousands

of dollars.

On the other hand, converging evidence from disciplines like cognitive science,

psychology, and biology indicate that visual perception in biological systems develops

very differently. Vision in nature develops in the context of acting and moving in the

world, where the visual experience is inextricably tied to the motor activity behind it.

Given the long history of biologically inspired scientific advances, this evidence raises

the question: could modern computer vision systems benefit from such “embodied”

learning too?
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An agent continuously acting, moving and monitoring its environment has

many avenues of knowledge available to it, going well beyond what can be learned

from observing only orderless “bags of images” with category labels like today’s stan-

dard datasets. As an example, such an agent may exploit ordered image sequences,

i.e., its observed continuous video stream, with freely available relationships among

images or between images and other sensor streams. It may act deliberately to af-

fect its environment and then use the observed results of those actions as a form

of self-acquired supervision. Such forms of supervision may allow agents to discover

knowledge not available through the standard supervised paradigm.

In this PhD thesis, I aim to show that these and other advantages of embod-

ied vision systems may allow large improvements over the current status quo across

a wide range of standard visual recognition tasks. I proceed in five stages. First,

I propose a new answer to the question: how can unlabeled video augment visual

learning? Our solution, which is based on the temporal smoothness of the visual

world, generalizes and outperforms a large body of existing approaches. Second, I

show the advantages of augmenting such continuous visual streams with propriocep-

tive “motor signal” data streams. With such proprioceptive knowledge, it becomes

possible to learn to predict the effects of one’s own actions, and I show that this

induces general visual abilities. Third, I show how to exploit the setting where at

training time, an agent has access not only to the effect of one action, but to the

effects of all possible actions.

Starting in the fourth stage of my thesis, I examine the visual recognition

problem as it applies to agents that are embodied at testing time as well as at
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training time. Embodied agents can not only probe their environments to acquire

supervision without manual intervention for visual learning, but also acquire new

observations to better perform visual tasks during deployment after training. Thus

in this new setting, I study: how can an agent learn appropriate behaviors to acquire

the most useful visual observations at test time? First, I investigate the learning

of such intelligent data-directed action in the context of a supervised categorization

task. I show how it is possible to train an end-to-end system that optimizes agent

behaviors for category recognition, and further, that such a system benefits from

being simultaneously trained to predict the effects of its actions. Finally, in the

fifth stage of my thesis, I move back to an unsupervised setting, and show that

it is possible to learn exploratory or curious data acquisition behaviors that seek

generically informative observations without training on a specific supervised task.

Throughout, I evaluate these proposed methods on challenging datasets against

a variety of previously proposed state-of-the-art approaches and other pertinent base-

lines. Our key empirical findings include the following: (1) Unlabeled web video is

often competitive with large manually labeled image sets as a data source for learning

visual representations. (2) Egomotion can aid visual learning, e.g., video data from

a car-mounted camera, with accompanying registered steering data can significantly

improve visual learning for generic scene recognition. (3) Embodied systems de-

ployed for scene recognition tasks after training can also enjoy significant additional

advantages by exploring the scenes through intelligently planned motions. Our re-

sults serve as compelling evidence of the benefits of studying and learning to perform

visual perception in embodied settings.
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Chapter 1

Introduction and Overview

Computational visual recognition is the area of artificial intelligence that

deals with the broad problem of allowing a machine to understand images and videos

in the myriad ways that humans do. Early attempts in this field have focused on fun-

damental problems like identifying previously seen object instances (instance recog-

nition), or identifying the category to which a newly observed object or scene belongs

(category recognition). While the first attempts towards solving these problems em-

ployed heuristic handwritten-rule-based methods, research in recognition since the

mid-nineties has come to be dominated by discriminative machine learning techniques

that learn semantic concepts in a data-driven way. To train a typical recognition

system, images relevant to the target task are first manually captured or downloaded

from the Web, and then further annotated by humans to indicate the desired out-

puts of the system. In particular, within the duration of my graduate studies, great

progress in these tasks has been driven by the advent of neural network-based “deep”

machine learning techniques that learn feature spaces jointly with their relationships

to semantic concepts.

Thus, the trajectory of visual recognition research over the last fifty or so

years of the field’s existence can be seen as gradually moving away from the first,
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entirely hand-coded rule-based methods, to methods that learn increasingly more

and more components of their recognition pipelines from data. Naturally, this places

increasing demands on the quantity and quality of data available to learn from. This

has led to a situation where the status quo in computational visual recognition is to

train systems on large datasets of millions of manually curated images annotated by

human workers through tens of thousands of hours of crowdsourced labor costing up

to hundreds of thousands of dollars [35, 91, 92, 103, 162, 192].

As computer vision systems get better at tasks like category recognition, the

focus within the vision research community is shifting to other aspects of visual

intelligence and its role in general artificial intelligence. In the only context in which

we have observed intelligence, the biological context, the emergence of intelligence

and superior visual abilities in different families of animals has each time been closely

tied to the emergence of the ability to move and act in their environments [58,

106, 119, 130]. Cognitive scientists have also empirically verified that self-generated

motions are critical to the development of visual perceptual skills in animals [69],

and a sizeable research program studies “embodied cognition” — the hypothesis

that cognition is strongly influenced by aspects of an agent’s body beyond the brain

itself [53, 54, 173].

Progress in standard visual recognition tasks in the last few years has been fu-

eled by access to today’s largest painstakingly curated and manually labeled datasets [35,

91, 92, 103, 162, 192]. However, intuitively and on the basis of the evidence cited

above, certain kinds of knowledge are available to an agent continuously, acting,

moving, and monitoring its environment that are not available from observing only
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orderless, independent, and identically distributed (i.i.d.) “bags of images” with cat-

egory labels like today’s standard datasets. For instance, such an agent may exploit

ordered image sequences, i.e., its observed video stream, with freely available rela-

tionships among visual observations over time or between visual and other sensor

streams. An agent that is able to act or move in its environment also has open to it

the possibility of using the observed results of its actions as a form of self-acquired

“supervision by experimentation”, e.g., it may tap an object to determine its mate-

rial properties, walk around it to observe a less ambiguous view of it, or learn natural

world physics by dropping, pushing or throwing objects and learning to anticipate

their behavior. Thus these forms of supervision may allow a system to discover

new forms of knowledge and perform tasks that the standard manually supervised

paradigm is poorly suited for.

Moreover, alleviating the non-scalable and expensive curation and labeling

requirements involved in compiling today’s standard datasets is a worthwhile goal in

itself, so that all or most visual learning may happen without manual supervision.

Replacing manual supervision with alternative forms of supervision in this manner

would have many advantages: (1) it would open up the possibility of exploiting

much larger datasets for visual learning. This could potentially drive even better-

performing computer vision systems for conventional tasks, since the evidence over

the last few years has suggested that visual learning benefits from ever-higher capac-

ity models trained on ever-larger datasets, (2) it would enable easy development of

visual applications for more narrow, non-standard domains for which large labeled

datasets neither currently exist, nor are likely to be curated in the future, such as
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disembodied bags of manually labeled images

Figure 1.1: Today’s standard vision approaches are trained with manually supervised
learning from disordered, disembodied “bags of labeled images”. In this dissertation, I aim
to move these to embodied settings where the visual agent is able to monitor, act on and
move in a world, and affect its own future observations of the world, both during learning
and during eventual deployment.

say, vision for an inter-planetary rover, and (3) compared to standard supervised

learning, it more closely resembles what we know about the mechanisms of learning

in the biological visual systems we hope to ultimately emulate.

While the computer vision enterprise in its beginnings was very much moti-

vated by the end-goal of enabling autonomously acting agents in the real world, its

aforementioned trajectory towards learning-based supervision-hungry methods have

engendered a change in this focus: nearly all of computer vision today deals pri-

marily with disembodied off-the-shelf datasets of human-captured images and video,

restricting its applications. While the field has made much progress on perception

in this limited setting, through this thesis, I argue that our vision and learning tech-

niques are now at a stage of maturity where it is fruitful to once more consider the

problems of vision not just on stationary computers, but in the much larger class

of real-world embodied agents (see Figure 1.1). This prompts some key questions:

How must embodied agents learn to perceive their sensory inputs? How must they

4



act intelligenty towards a goal? How must they explore, observe, and inspect their

surroundings to acquire their own observations?

To help motivate my thesis research, consider the famous “kitten carousel”

experiment (1963) in which psychologists Held and Hein examined visual learning in

kittens [69]. They designed a carousel-like apparatus in which two kittens could be

harnessed. For eight weeks after birth, the kittens were kept in a dark environment,

except for one hour a day on the carousel. One kitten, the “active” kitten, could

move freely of its own volition while attached. The other kitten, the “passive” kitten,

was carried along in a basket and could not control his own movement; rather, he

was forced to move in exactly the same way as the active kitten. Figure 1.2 shows

a schematic of the apparatus. Thus, both kittens had identical visual experiences.

However, while the active kitten simultaneously experienced signals about his own

motor actions, the passive kitten was simply along for the ride. It saw what the

active kitten saw, but it could not simultaneously learn from self-generated motion

signals.

The outcome of the experiment is remarkable. After eight weeks, the active

kitten’s visual perception was indistinguishable from kittens raised normally, whereas

the passive kitten suffered fundamental problems. The implication is clear: proper

perceptual development requires leveraging self-generated movement in concert with

continuous monitoring of visual feedback. Specifically, the active kitten had two

advantages over the passive kitten: (1) it had proprioceptive knowledge of the specific

motions of its body that were causing the visual responses it was observing, and (2)

it had the ability to select those motions in the first place. The results of this
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Figure 1.2: Schematic figure from [69] showing the apparatus for the kitten carousel
study. The active kitten ’A’ was free to move itself in both directions around the three
axes of rotation a-a, b-b and c-c, while pulling the passive kitten ’P’ through the equivalent
movements around a-a, b-b and d-d by means of the mechanical linkages in the carousel
setup.

experiment establish that these advantages are critical to the development of visual

perception.

I contend that today’s visual recognition algorithms are crippled much like

the passive kitten. The culprit: learning from disembodied bags of labeled snapshots,

which is the dominant paradigm today. Whether learning object categories, scene

classes, body poses, or features themselves, the status quo idea is to discover patterns

within an orderless collection of snapshots, blind to their physical source.

6



In my research, I have targeted this deficiency, moving learning methods for

visual recognition from the “passive kitten” to the embodied “active kitten” scenario

progressively, in several stages:

• Learning representations from video, rather than disordered bags of images, to

embed temporal dynamics into image features [77]. (Chapter 3)

• Simultaneously exploiting observer egomotions during visual learning from

videos [75, 78]. (Chapter 4)

• Learning image representations for object views by learning to hallucinate un-

observed viewpoints from an arbitrary view [80]. (Chapter 5)

• Visual learning while simultaneously learning to move, i.e., active self-generated

motion for vision [76]. (Chapter 6)

• Learning generic exploratory behaviors to intelligently inspect objects and

scenes [79]. (Chapter 7)

I will spend the rest of this chapter introducing my work on each of these

stages in turn, mainly discussing the motivating questions and high-level ideas but

also briefly describing my solutions and highlighting some key results. Chapters 3, 4, 6, 5,

and 7 will then cover each stage in detail, recapping the main motivations and then

describing the methods and results in detail.
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1.1 Learning steady representations encoding visual dynam-
ics from video

Visual feature learning with deep neural networks has yielded dramatic gains

for image recognition tasks in recent years [92, 149]. While the main techniques

involved in these methods have been known for some time, a key factor in their recent

success is the availability of large human-labeled image datasets like ImageNet [35].

Deep convolutional neural networks (CNNs) designed for image recognition typically

have millions of parameters, necessitating notoriously large training databases to

avoid overfitting.

As discussed above, however, visual learning should not be restricted to sets

of category-labeled exemplars. Taking human learning as an obvious example, chil-

dren build up visual representations through constant observation and action in the

world. This hints that machine-learned representations would also be well served to

exploit long-term video observations, even in the absence of deliberate labels. Indeed,

researchers in cognitive science find that temporal coherence plays an important role

in visual learning. For example, altering the natural temporal contiguity of visual

stimuli hinders translation invariance in the inferior temporal cortex [100], and func-

tions learned to preserve temporal coherence share behaviors observed in complex

cells of the primary visual cortex [17].

As the first major contribution of my thesis research, I explore how to exploit

unlabeled video, as might be obtained freely from the Web, to improve visual feature

learning. In particular, I am interested in improving learned image representations
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for visual recognition tasks.

Prior work leveraging video for feature learning focuses on the concept of

slow feature analysis (SFA). First formally proposed in [174], SFA exploits temporal

coherence in video as “free” supervision to learn image representations invariant to

small transformations. In particular, SFA encourages the following property: in

a learned feature space, temporally nearby frames should lie close to each other,

i.e., for a learned representation z and adjacent video frames a and b, one would

like z(a) ≈ z(b). The rationale behind SFA rests on a simple observation: high-level

semantic visual concepts associated with video frames typically change only gradually

as a function of the pixels that compose the frames. Thus, representations useful for

recognizing high-level concepts are also likely to possess this property of “slowness”.

Another way to think about this is that scene changes between temporally nearby

frames are usually small and represent label-preserving transformations. A slow

representation will tolerate minor geometric or lighting changes, which is essential

for high-level visual recognition tasks. The value of exploiting temporal coherence for

recognition has been repeatedly verified in ongoing research, including via modern

deep convolutional neural network implementations [15, 62, 64, 118, 168, 195].

However, existing approaches require only that high-level visual signals change

slowly over time. Crucially, they fail to capture how the visual content changes

over time. In contrast, our idea is to incorporate the steady visual dynamics of the

world, learned from video. For instance, if trained on videos of walking people, slow

feature-based approaches would only require that images of people in nearby poses

be mapped close to one another. In contrast, we aim to learn a feature space in which
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frames from a novel video of a walking person would follow a smooth, predictable

trajectory. A learned steady representation capturing such dynamics would be in-

fluenced not only by object motions, but also other types of visual transformations.

For instance, it would capture how colors of objects in the sunlight change over the

course of a day, or how the views of a static scene change as a camera moves around

it.

To this end, we propose steady feature analysis [77]—a generalization of slow

feature learning. The key idea is to impose higher order temporal constraints on the

learned visual representation. Beyond encouraging temporal coherence, i.e., small

feature differences between nearby frame pairs, we would like to encourage consistent

feature transitions across sequential frames. In particular, to preserve second order

slowness, we look at triplets of temporally close frames a, b, c, and encourage the

learned representation to have z(b) − z(a) ≈ z(c) − z(b). We develop a regularizer

that uses contrastive loss over tuples of frames to achieve such mappings with CNNs.

Whereas slow feature learning insists that the features not change too quickly, the

proposed steady learning insists that—in whichever way the features are evolving—

they continue to evolve in that same way in the immediate future. See Figure 1.3.

We hypothesize that higher-order temporal coherence could provide a valu-

able prior for recognition by embedding knowledge of the rich dynamics of the visual

world into the feature space. We empirically verify this hypothesis using five datasets

for a variety of recognition tasks, including object instance recognition, large-scale

scene recognition, and action recognition from still images. In each case, by aug-
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Figure 1.3: In Chapter 3, we exploit unlabeled videos to learn “steady features” that
exhibit consistent feature transitions among sequential frames.

menting a small set of labeled exemplars with unlabeled video, the proposed method

generalizes better than both a standard discriminative CNN as well as a CNN reg-

ularized with existing slow temporal coherence metrics [64, 118]. We further show

that in the absence of all labeled data, our approach allows the learning of generi-

cally useful visual representations that are competitive and in some cases better than

representations trained by standard supervised pretraining approaches. Our results

reinforce that unsupervised feature learning from unconstrained video is an exciting

direction, with promise to offset the large labeled data requirements of current state-

of-the-art computer vision approaches by exploiting virtually unlimited unlabeled

video.

Chapter 3 discusses the approach for this work in more detail and presents

experiments and results. This work was published at CVPR 2016 [77].

1.2 Learning image representations tied to observer motion
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Learning through constantly monitoring a visual stream, as above, is only

the first step towards a solution for embodied vision. As we can see from the kitten

carousel experiment, or in general from observing biological perceptual systems, vi-

sion in nature develops in the context of acting and moving in the world. Without

leveraging the accompanying motor signals initiated by the observer, learning from

video data does not escape the passive kitten’s predicament.

Inspired by this concept, in Chapter 4, we propose to treat visual learning

as an embodied process, where the visual experience is inextricably linked to the

motor activity behind it.1 In particular, our goal is to learn representations that

exploit the parallel signals of egomotion and pixel appearance. As I will explain

below, we hypothesize that downstream processing will benefit from access to such

representations.

To this end, we attempt to learn the connection between how an observer

moves, and how its visual surroundings change. We do this by exploiting motor

signals accompanying unlabeled egocentric video, of the sort that one could obtain

from a wearable platform like Google Glass, a self-driving car, or even a mobile phone

camera.

To understand what we mean by learning the egomotion-vision connection,

consider the “guess the new view” game, depicted in Figure 1.4(a). Given only one

view of an object or a scene, the problem of computing what other views would look

1Depending on the context, the motor activity could correspond to either the 6-DOF egomo-
tion of the observer moving in the scene or the second-hand motion of an object being actively
manipulated, e.g., by a person or robot’s end effectors.
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View A

Position A
Position B

View B

(a)

(b)

Figure 1.4: Guess the new view: (a) Given the view, View A, out of the windshield of
the car when in position A, can you guess what the view (View B) would look like, when
the car shifts to position B? (b) View B, the answer to (a), can be reasonably guessed from
semantic, geometric, depth and contextual cues from View A, as shown in red outlines
below view B. See text for explanation.
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like is severely underdetermined. Yet, most often, humans are able to hallucinate

such views. For instance, in the example of Figure 1.4(a), there are many hints in the

first view that allow us to reasonably guess many aspects of the new view following

the car’s rotation. For instance, the traffic lights indicate that the observer must be

at an intersection; the tree in the first view is probably closer to the camera than

the tower, and will occlude the tower after the observer has moved; and it is even

possible to extrapolate an entirely unseen face of the building using only geometric

and semantic priors on the symmetry of buildings. The true view from the new

position is shown in Figure 1.4(b).

We hypothesize that learning to solve this egomotion-conditioned view predic-

tion task may help visual learning. As shown in the example above, view prediction

draws on complex visual skills such as semantics (recognizing “building”, “tree”,

“tower”, and so on), depth and 3D geometry (the “tree” and the “tower”), and con-

text (“traffic lights” ⇒ “intersection”). These are general visual skills that are not

limited to the view prediction task, but instead transfer well to many other tasks,

including recognition. Moreoever, view prediction offers a way to acquire these skills

entirely without manual labels.

As the second major contribution of my thesis research, I exploit this fact

by incorporating the view prediction task above into an unsupervised equivariant

feature learning approach using egocentric video and motor signals [75, 78]. During

training, the input image sequences are accompanied by a synchronized stream of

ego-motor sensor readings; however, they need not possess any semantic labels. The

ego-motor signal could correspond, for example, to the inertial sensor measurements
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Figure 1.5: In Chapter 4, we propose an embodied approach to learn image embeddings
from unlabeled video. Starting from egocentric video together with observer egomotion
signals, we train a system on a “view prediction” task (left), to learn equivariant visual
features that respond predictably to observer egomotion (right). In this target equivariant
feature space, pairs of images related by the same egomotion are related by the same feature
transformation too.

received alongside video on a wearable or car-mounted camera. The objective is to

learn a feature mapping from pixels in a video frame to a space that is equivariant

to various motion classes. In other words, the learned features should change in

predictable and systematic ways as a function of the transformation applied to the

original input. See Figure 1.5. We develop a convolutional neural network (CNN)

approach that optimizes a feature map for the desired egomotion-based equivariance.

To exploit the features for recognition, we augment the network with a classification

loss when class-labeled images are available. In this way, egomotion serves as side

information to regularize the features learned, which we show facilitates category

learning when labeled examples are scarce.

In sharp contrast to our idea, previous work on visual features—whether hand-

designed or learned—primarily targets feature invariance [15, 42, 62, 118, 147, 148,

151, 164, 168, 195]. Invariance is a special case of equivariance, where transformations

of the input have no effect. Typically, one seeks invariance to small transformations,
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e.g., the orientation binning and pooling operations in SIFT/HOG and modern CNNs

both target invariance to local translations and rotations. While a powerful concept,

invariant representations require a delicate balance: “too much” invariance leads to

a loss of useful information or discriminability. In contrast, more general equivariant

representations are intriguing for their capacity to impose structure on the output

space without forcing a loss of information. Equivariance is “active” in that it exploits

observer motor signals, like Hein and Held’s active kitten.

The main contribution of this component of my thesis is a novel feature learn-

ing approach that couples ego-motor signals and unlabeled video. To the best of my

knowledge, ours is the first attempt to ground feature learning in physical activ-

ity. The limited prior work on unsupervised feature learning with video [62, 114,

118, 133, 168] learns only passively from observed scene dynamics, uninformed by

explicit motor sensory cues. Furthermore, while equivariance is explored in some

recent work, unlike our idea, it typically focuses on 2D image transformations as

opposed to 3D egomotion [88, 141] and considers existing features [98, 163]. Finally,

whereas existing methods that learn from image transformations focus on view syn-

thesis applications [71, 94, 114], we explore recognition applications of learning jointly

equivariant and discriminative feature maps.

We apply our approach to three public datasets. On pure equivariance as

well as recognition tasks, our method consistently outperforms the most related

techniques in feature learning. In the most challenging test of our method, we show

that features learned from video captured on a vehicle can improve image recognition

accuracy on a disjoint domain. In particular, we use unlabeled KITTI [51, 52] car
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data to regularize feature learning for the 397-class scene recognition task for the

SUN dataset [177]. Our results show the promise of departing from the “bag of

images” mindset, in favor of an embodied approach to feature learning.

Chapter 4 discusses the approach for this work in more detail and presents

experiments and results. This work first appeared at ICCV 2015 [75], and was

expanded in [78].

1.3 Unsupervised learning through one-shot image-based shape
reconstruction

In Section 1.2 above, I introduced our approach to learn image represen-

tations from video captured together with registered egomotion information. Since

the setting uses precaptured off-the-shelf egocentric video, it is restricted to using

only the useful content that was incidentally captured in that video. For instance,

a video feed from a car-mounted camera might only have two views of a building,

leaving much of the building unobserved. In contrast, an agent acting and learning

in the real world is not restricted to using a small number of views. In the next

component of this dissertation, I explore the setting where, rather than one video in

each training environment from which sparse, useful views are mined and exploited

for learning, the agent instead has access to full “viewgrids” consisting of all possibly

useful views. I will now motivate and introduce our approach that takes advantage of

such “viewgrids” to learn representations that explicitly encode 3D information from

only a single 2D view. In a sense, this approach generalizes the ideas of Sec 1.2 to

the setting where the learning agent can explore all egomotions from a given position
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during training.

While visual perception relies largely on 2D observations, the visual world and

objects in particular are inherently three dimensional entities. Inferring 3D geometry

from 2D views is therefore a necessary component of object perception. Cognitive

psychologists have found strong evidence supporting this view. In a seminal series

of discoveries [146], Shepard and collaborators observed that humans attempting to

determine if two views portrayed the same abstract 3D shape spent time that was

linearly proportional to the 3D angular rotation between those views. Further, they

showed that the time taken was independent of whether the 3D shape underwent sim-

ple in-plane rotations in the picture plane, or more complex out-of-plane rotations.

These findings are striking. In particular, they suggest that humans explicitly form

mental representations of 3D shape from individual 2D views, and suggest that the

act of mentally rotating such representations is integral to registering object views,

and by extension, to object perception and recognition.

Inspired by this, we ask the question: can we learn image representations

encoding geometry from 2D views, for use in computer vision systems? We propose

to do this by training a system for the same target task as was set for the humans

in Shepard et al’s study: mental rotation.

More concretely, we set up the task of single view image-based shape recon-

struction. Given one 2D view of an object from an arbitrary viewpoint, the system

must output views corresponding to arbitrary rotations from the current viewpoint.

This task is illustrated in Figure 1.6.
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Figure 1.6: One-shot image-based shape reconstruction (Chapter 5): A 3D shape is
represented by its “viewgrid” — views from evenly spaced viewpoints. Given one 2D view
of an arbitrary shape, we train a deep network to produce the remaining views in the
viewgrid and ask: does this training induce transferable representations in the network?
(note: this schematic shows 6 views around a solid object arrange in a cube for easy
illustration; in practice, our viewgrids are more densely sampled (details in Chapter 5).

With an infinite number of views from all around an object, classic geometric

methods allow full 3D shape recovery [67]. These methods can operate with very

limited object understanding, as they are completely agnostic to the semantics of

the object, and work for arbitrary shapes that might not even represent real-world

objects. With real world objects however, 3D understanding is possible from much

sparser observations by using cues such as semantics and shading. This suggests the

use of learning-based approaches for reconstruction.

Vision researchers have recently begun to investigate single view 3D recon-

struction by employing deep learning methods [31, 43, 56, 84, 135, 159, 175, 183, 193].

However, these few prior attempts (1) all target reconstruction as an end task in it-

self, (2) largely build category-specific models for common categories (e.g., chairs,

cars, faces), and (3) rely on deep neural networks pretrained heavily on manually
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supervised classification tasks to yield better reconstructions. In contrast, we wish

to investigate this task as a means to learn generic visual representations that embed

knowledge of 3D shape properties from arbitrary object views. As suggested above,

we hypothesize that downstream vision tasks such as recognition would benefit from

an image representation that “lifts” 2D views of objects to inferred 3D shapes.

To this end, we train a category-agnostic deep feed-forward neural network

from scratch, to produce a complete image-based shape representation given a single

view of a generic object, in one forward pass. In order to perform this one-shot

reconstruction task, the network must learn a representation that encodes knowledge

of the full 3D object shape. Therefore, after training our deep neural network model

on this unsupervised task, we extract representations from intermediate layers in the

model to use as input features for recognition tasks.

Through experiments on widely used shape datasets and comparison against

various baselines, we validate that (i) our system successfully learns the training

task of category-agnostic image-based shape reconstruction, generalizing even to cat-

egories that were not seen in the training set, and (ii) the representations learned

in the process are generically useful, in particular transferring well to the seman-

tic tasks of object recognition and retrieval. Our results establish the promise of

explicitly targeting 3D understanding as a means to learn generically useful visual

representations.

Chapter 5 discusses our one-shot reconstruction approach in detail and presents

our experiments and results. This work is currently under review [80] and will be

made public in August 2017.
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1.4 End-to-end active visual category recognition

While in the above setting, the system has knowledge of the camera motions

in precaptured third-party egocentric videos or in full grids of views of 3D objects,

the fourth component of this dissertation considers the setting where the system has

not only knowledge but also control over the camera movements for the acquisition

of data during training as well as testing. This setting is meant to represent visual

recognition systems mounted on autonomous moving agents.

People consistently direct their senses in order to better understand their

surroundings. For example, one might swivel around in an armchair to observe a

person behind him, rotate a coffee mug on his desk to read an inscription, or walk

to a window to observe the rain outside.

In sharp contrast to such scenarios, recent recognition research has been fo-

cused almost exclusively on static image recognition: the system takes a single snap-

shot as input, and produces a category label estimate as output. As discussed above,

the ease of collecting large labeled datasets of images has enabled major advances on

this task in recent years, as evident for example in the striking gains made on the

ImageNet challenge [137]. Yet, despite this recent progress, recognition performance

remains low for more complex, unconstrained images [103].

To illustrate the problem, Figure 1.7 shows some examples of web images and

images captured by a human head-mounted camera that was not explicitly controlled

to capture well-framed images. Recognition systems mounted on autonomous mov-

ing agents acquire unconstrained visual input which may be difficult to recognize
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Figure 1.7: Examples of web images from ImageNet [137] (left) and randomly chosen
frames from a human head-worn camera [97] (right). Cameras mounted on autonomous
agents typically acquire ill-framed images that can be very hard to recognize one frame at
a time, compared to web images which are human-captured and usually capture important
content prominently in the foreground. However, autonomous moving visual agents can
direct their cameras to acquire multiple views. Our active recognition approach employs
reinforcement learning to learn policies to intelligently acquire views to facilitate scene and
object category recognition.

effectively, one frame at a time. However, similar to the human actor in the opening

examples above, such systems have the opportunity to improve their performance by

moving their camera apparatus or manipulating objects to acquire new information,

as shown in Figure 1.8. This control of the system over its sensory input has tremen-

dous potential to improve its recognition performance. While such mobile agent

settings (such as mobile robots and autonomous vehicles) are closer to reality today

than ever before, the problem of learning to actively move to direct the acquisition

of data remains underexplored in modern visual recognition research.

The problem we are describing fits into the realm of active vision, which has a
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Selected new viewStarting view

mug / bowl / frying pan? mug / bowl / frying pan?

Figure 1.8: A schematic illustrating the active categorization of two objects. A moving
vision system may not recognize objects after just one view, but may intelligently choose
to acquire new views to disambiguate amongst its competing hypotheses.

rich history in the literature (e.g., [4, 7, 27, 38, 140, 171]). Active vision offers several

technical challenges that are unaddressed in today’s standard passive scenario. In

order to perform active vision, a system must learn to intelligently direct the acqui-

sition of input to be processed by its recognition pipeline. In addition, recognition in

an active setting places different demands on a system than in the standard passive

scenario. To take one example, “nuisance factors” in still image recognition—such as

pose, lighting, and viewpoint changes—become avoidable factors in the active vision

setting, since in principle, they can often be overcome merely by moving the agent

to the right location.

This calls for a major change of approach. Rather than strive for invariance to

nuisance factors as is the standard in static image recognition, an intriguing strategy

is to learn to identify when conditions are non-ideal for recognition and to actively

select the correct agent motion that will lead to better conditions. In addition, recog-

nition decisions must be made based on intelligently fusing evidence from multiple

observations. Figure 1.9 illustrates a generic active recognition pipeline.

I contend that these three functions of an active vision system—control, per-
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Figure 1.9: A generic active recognition pipeline illustrating the three functions of an
active vision system—control, per-view perception, and evidence fusion. We aim to learn
all three functions jointly and end-to-end.

view perception, and evidence fusion—are closely intertwined, and must be tailored

to work together. In particular, as the first contribution of this paper, we propose

to learn all three modules of an active vision system simultaneously and end-to-

end. We employ a stochastic neural network to learn intelligent motion policies

(control), a standard neural network to process inputs at each timestep (per-view

perception), and a modern recurrent neural network (RNN) to integrate evidence over

time (evidence fusion). Given an initial view and a set of possible agent motions, our

approach uses reinforcement learning to learn how to move in the 3D environment

to produce accurate categorization results.
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Additionally, I hypothesize that motion planning for active vision requires an

agent to internally “look before it leaps”. That is, it ought to simultaneously reason

about the effect of its motions on future inputs. To demonstrate this, as a second

contribution of this active recognition component of my thesis, we jointly train our

active vision system to have the ability to predict how its internal representation of

its environment will evolve conditioned on its choice of motion. As I will explain

below, this may be seen as preferring equivariance, i.e., predictable feature responses

to pose changes, rather than invariance as is standard in passive recognition pipelines.

This builds upon the ideas introduced above in Section 1.2, where I introduce our

method for exploiting equivariance to observer motions as a useful inductive bias for

feature learning.

Through experiments on two datasets, we validate both our key ideas: (1)

RNN-based end-to-end active categorization and (2) learning to forecast the effects

of self-motion at the same time one learns how to move to solve the recognition task.

We study both a scene categorization scenario, where the system chooses how to

move around a previously unseen 3D scene, and an object categorization scenario,

where the system chooses how to manipulate a previously unseen object that it holds.

Our results establish the advantage of our end-to-end approach over both passive and

traditional active methods.

Chapter 6 discusses our approach in more detail and presents our experiments

and results. This work appeared at ECCV 2016 [76].
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1.5 Learning to look around

In the last section, I introduced our approach for learning to select obser-

vations most informative to a supervised and pre-specified object or scene category

recognition task. In this final component of my thesis, I ask: can an agent learn

curiosity-driven, exploratory “look around” behaviors in the absence of any supervi-

sion, and which are not specific to any one task, but instead generically useful?

As discussed in Section 1.4, visual perception requires not only making infer-

ences from observations, but also making decisions about what to observe. Individual

views of an environment afford only a small fraction of all information relevant to a

visual agent. For instance, an agent with a view of a television screen in front of it

may not know if it is in a living room or a bedroom. An agent observing a mug from

the side may have to move to see it from above to know if it is empty. An agent

surveying a rescue site may need to explore at the onset to get its bearings.

In principle, complete certainty in perception is only achieved by making

every possible observation—that is, looking around in all directions, or systematically

examining all sides of an object—yet observing all aspects is often inconvenient if not

intractable. In practice, however, not all views are equally informative. The natural

visual world contains regularities, suggesting not every view needs to be sampled

for near-perfect perception. For instance, humans rarely need to fully observe an

object to understand its 3D shape [86, 152, 153], and one can often understand

the primary contents of a room without literally scanning it [161]. Given a set of

past observations, some new views are more useful than others. This leads us to

investigate the question: how can a learning system make intelligent decisions about
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how to acquire new exploratory visual observations?

Today, much of the computer vision literature deals with inferring visual

properties from a fixed observation. For instance, there are methods to infer shape

from multiple views [67], depth from monocular views [139], or category labels of

objects [92]. The implicit assumption is that the input visual observation is already

appropriately captured. We contend that this assumption neglects a key part of the

challenge: intelligence is often required to obtain proper inputs in the first place.

Arbitrarily framed snapshots of the visual world are ill-suited both for human per-

ception [44, 126] and for machine perception [5, 179]. Circumventing the acquisition

problem is only viable for passive perception algorithms running on disembodied sta-

tionary machines, which are tasked only with processing human-captured imagery.

In contrast, we are interested in learning to observe efficiently—a critical yet

understudied problem for autonomous embodied visual agents. An agent ought to

be able to enter a new environment or pick up a new object and intelligently (non-

exhaustively) look around. This capability would be valuable in both task-driven

scenarios (e.g., a drone searches for signs of a particular activity) as well as scenarios

where the task itself unfolds simultaneously with the agent’s exploratory actions

(e.g., a search-and-rescue robot enters a burning building and dynamically decides

its mission).

We address the general setting, where exploration is not specialized to one

task (as in the active classifier introduced in Section 1.4), but should benefit per-

ception tasks in general. To this end, we formulate the learning objective as active

observation completion: a system must intelligently acquire a small set of observa-
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tions, so that it is then able to hallucinate all other possible observations. The agent

continuously updates its internal model of a target scene or 3D shape based on all

previously observed views. The goal is not to produce photorealistic predictions, but

rather to represent the agent’s evolving internal state. Its task is to select actions

leading to new views that will efficiently complete its internal model. Posing the

active view acquisition problem in terms of observation completion has two key ad-

vantages: generality and low cost (label-free) training data. It is also well-motivated

by findings that infants’ abilities to actively manipulate and inspect objects correlates

with learning to complete 3D shapes [153].

We develop a reinforcement learning solution for active visual completion.

Our approach uses recurrent neural networks to aggregate information over a se-

quence of views. The agent is rewarded based on its predictions of unobserved

views.

We explore two applications of our idea. See Figure 1.10. In the first, the

agent scans an omnidirectional natural scene through its limited field of view camera;

here the goal is to select efficient camera motions so that after a few glimpses, it has

modeled unobserved portions of the scene well. In the second, the agent manipulates

a 3D object to inspect it; here the goal is to select efficient manipulations so that

after only a small number of actions, it has a full model of the object’s 3D shape.

In both cases, the system must learn to leverage visual regularities (such as shape

primitives and context) that suggest the likely contents of unseen views, focusing

actions on portions that are difficult to hallucinate.

Chapter 7 discusses our one-shot reconstruction approach in detail and presents
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Where to

look next? ?

Figure 1.10: Looking around efficiently is a complex task requiring the ability to reason
about regularities in the visual world using cues like context and geometry. (Left) An
agent that has observed limited portions of its environment can reasonably hallucinate
some unobserved portions (e.g., water near the ship), but is much more uncertain about
other portions. Where should it look next? (Right) An agent inspecting a mug. Having
seen a top view and a side view, how must it rotate the mug now to get maximum new
information?

our experiments and results. This work [79] is currently under review and will be

made public in June 2017.

Dissertation Roadmap: In the above, I have provided a bird’s eye-view of the

five components of my dissertation. Next, Chapter 2 reviews related work such as on

unsupervised visual feature learning, sensorimotor feature learning, active vision, and

learning-based reconstruction. After this, in chapters 3, 4, 5, 6, and 7, I discuss the
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proposed methods outlined above in Sections 1.1, 1.2, 1.3, 1.4, and 1.5 respectively.

Finally, Chapter 8 summarizes the key findings of my thesis work and highlights

some interesting directions for follow-up research.
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Chapter 2

Related Work

In this chapter, I review prior work that is related to the work presented

in Chapters 3, 4, 5, 6, and 7. The material presented here aims both to set the

stage to understand our proposed methods against their respective contexts, and to

provide a useful starting point for readers interested in understanding the literature

surrounding the topics of my thesis.

However, in later chapters, I will not rely on a careful reading of the material

presented here. Where I deem prior work critical to a technical understanding of

our proposed approaches, I will review them once again (and in greater detail) in

the corresponding chapters, with the aim of keeping chapters self-contained to the

extent possible.

2.1 Vision from/for motion and action

Concurrently with our work, and independently of it, a growing body of

work [3, 19, 21, 29, 32, 99, 155, 170] has recently begun to study the interaction

between high-level visual tasks and agent actions or motions during learning. Among

these, some works [19, 29, 99, 170] focus on end-to-end learning of visual representa-
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tions targeting action tasks such as driving. In [29], a neural network learns to drive

a simulated car in a video game. In [99], end-to-end reinforcement learning trains

robotic agents to perform simple tasks. For the active vision approach I develop

in Chapter 6, perhaps the most conceptually relevant among these is [170]. Their

method learns an image feature space in which optimal control actions can be com-

puted as simple linear functions of current visual observations, with applications to

simulated control tasks. In contrast, our approach in Chapter 6 employs an end-to-

end scheme for learning embeddings that encode complete histories of observations

and agent actions, with the aim of exposing this temporally aggregated information

to an active visual recognition controller.

Sensorimotor feature embeddings [21, 32, 155] combine (possibly non-visual)

sensor streams together with proprioception or other knowledge about the actions of

the agent on which the sensors are mounted. In [21], dimensionality reduction and

manifold learning are guided by proprioceptive knowledge, in similar spirit to our

egomotion-equivariant features in Chapter 4, but only for simplistic toy scenarios.

Sensorimotor embeddings are trained to reflect the geometry of an agent’s environ-

ment in [155]. The theoretical beneficial properties of visual representations that

vary linearly with observer motion are studied in [32]. These properties discussed

in [32] are relevant both to our steady features (Chapter 3) where consecutive frame

triplets are encouraged to be collinear, and to our egomotion-equivariant features

(Chapter 4) where representations are trained to transform in “simple” ways in re-

sponse to observer motion.

Finally, concurrently with our equivariant representation learning work in
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Chapter 4 and independent of it, [3] also learns visual representations from video

with associated egomotion sensor streams, but uses a different approach. Rather

than learn to predict a new view in the feature space given the starting view and

the egomotion as we do, their method learns to predict the egomotion, given the

original and final views. Conceptually, while our approach explicitly targets a desired

property, egomotion-equivariance, in the learned feature space, the method of [3]

treats their egomotion-regression task as a generic proxy task for representation

learning. We present empirical comparisons against their methods in Chapter 4.

2.2 Active perception

While in the last section we discussed work that uses actions at training time

to enable the learning of perception or control tasks, we now discuss the “active

vision” setting where an embodied agent deployed after training has the option of

acting or moving to influence its observations.

The idea that a subject’s actions may play an important role in perception can

be traced back almost 150 years [22] in the cognitive psychology literature [7]. Recent

surveys of relevant work can be found in [7, 10, 18]. “Active perception”, the idea

of exploiting intelligent control strategies (e.g., agent motion, object manipulation,

and camera parameter changes) for goal-directed data acquisition to improve machine

vision, was pioneered by [4, 9, 11, 171]. While most research in this area has targeted

low-level vision problems [4, 11, 116] such as segmentation, structure from motion,

depth estimation, optical flow estimation, or the “semantic search” task of object
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localization [6, 49, 70, 150], approaches targeting active recognition are most directly

related to our work in Chapter 6.

Most prior active recognition approaches attempt to identify during train-

ing those canonical or “special” views that minimize ambiguity among candidate

labels [27, 36, 38, 140, 171]. At test time, such systems iteratively estimate the

current pose, then select moves that take them to such pre-identified informative

viewpoints. These approaches are typically applicable only to instance recognition

problems, since broader categories can be too diverse in appearance and shape to fix

“special viewpoints”.

In contrast, our approach in Chapter 6 handles complex real-world categories.

To the best of our knowledge, very little prior work attempts this challenging task of

active category recognition (as opposed to instance recognition) [20, 132, 176, 185].

The increased difficulty is due to the fact that with complex real-world categories, it is

much harder to anticipate new views conditioned on actions. Since new instances will

be seen at test time, it is not sufficient to simply memorize the geometry of individual

instances, as many existing active instance recognition methods effectively do.

Recently, in [176], information gain is used in view planning for active cat-

egorization. Their system learns to predict the next views of unseen test objects

conditioned on various candidate agent motions starting from the current view by

estimating 3D models from 2.5D RGBD images. It then estimates the information

gain on its category beliefs from each such motion, and finally greedily selects the

estimated most informative “next-best” move. While our idea for learning to predict

action-conditional future views of novel instances is similarly motivated, we refrain
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from explicit greedy reasoning about the next move. Instead, our approach uses re-

inforcement learning (RL) in a stochastic recurrent neural network to learn optimal

sequential movement policies over multiple timesteps. The closest methods to ours in

this respect are [125] and [110], both of which employ Q-learning [169] in feedforward

neural networks to perform view selection, and target relatively simpler visual tasks

compared to this work.

In addition to the above, an important novelty of our active vision approach in

Chapter 6 is in learning the entire system end-to-end. Active recognition approaches

must broadly perform three separate functions: action selection, per-instant view

processing, and belief updates based on the history of observed views. While previous

approaches have explored several choices for action selection, they typically train a

“passive” per-instant view recognition module offline and fuse predictions across time

using some manually defined heuristic [36, 38, 110, 132, 140]. For example, recently, a

deep neural network is trained to learn action policies in [110] after pretraining a per-

view classifier and using a simple Naive Bayes update heuristic for label belief fusion.

In contrast, we train all three modules jointly within a single active recognition

objective.

All of the active perception literature (including our work in Chapter 6) con-

fines itself to the problem of selecting actions for specific pre-specified end goals. In

Chapter 7, we go beyond this. Rather than target a recognition task, we aim to

learn a data acquisition strategy useful to perception in general, hence framing it as

active “observation completion”. This allows us to learn from unlabeled viewpoint-

calibrated observations rather than from manually labeled data.
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Finally, with a few very recent exceptions [5, 110], the evaluation of active

vision methods has been restricted to simplified, unrealistic (often virtual) settings,

whereas we employ complex real-world imagery in our experiments in both Chapter 6

and 7, benchmarking our approach on realistic, yet repeatable and benchmarkable

data against several previously proposed techniques.

2.3 Saliency and attention

Visual saliency and attention are also related to active vision [2, 8, 13, 66, 104,

117, 128, 143, 160, 181]. While active vision systems aim to form policies to acquire

new data, saliency and attention systems aim to block out “distractors” in existing

data by identifying portions of input images/video to focus on, often as a faster

alternative to sliding window-based methods. Attention systems thus sometimes take

a “foveated” approach [25, 117]. In contrast, in our settings in Chapters 6 and 7, the

system never holds a snapshot of the entire environment at once. Rather, its input

at each timestep is one portion of its complete physical 3D environment, and it must

choose motions leading to more informative—possibly non-overlapping—viewpoints.

Its decision is not where to focus within a current observation, but rather where

to look for a new observation. Another difference between the two settings is that

the focus of attention may move in arbitrary jumps (saccades) without continuity,

whereas active vision agents may only move continuously.

Saliency is the main way in which the question of “looking around” generically

has been posed in the computer vision literature. Our active observation completion
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task in Chapter 7 may be thought of as providing an alternative definition for saliency

or informativeness — those views are salient which are most useful to complete a full

model of the environment. As such, in our experiments, we compare our policy for

looking around against one driven by traditional saliency.

Sequential attention systems using recurrent neural networks in particular

have seen significant interest of late [117], with variants proving successful across

several attention-based tasks [8, 143, 181]. We adopt the basic attention architecture

of [117] as a starting point for our model, and develop it further to accommodate

the active vision setting, instill look-ahead capabilities, and select camera motions

surrounding a 3D object that will most facilitate categorization.

2.4 Active visual localization and mapping

Active visual simultaneous localization and mapping (SLAM) aims to limit

samples needed to densely reconstruct a 3D environment using geometric meth-

ods [34, 87, 89, 111, 154]. While related to our active observation completion setting

in Chapter 7, this literature is different in several important ways. Beyond measur-

ing uncertainty in the current scene, our learning approach capitalizes on learned

context from previous experiences with different scenes/objects. While purely ge-

ometric methods are confined to using exactly what they see, and hence typically

require dense observations, our approach can infer substantial missing content using

semantic and contextual cues. Finally, our scope is broader than SLAM, in that it

also applies to image-based panoramic scene completion.
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2.5 Optimal sensor placement

The sensor placement literature studies how to place sensors in a distributed

network to provide maximum coverage [37, 90, 167]. This is superficially similar

to our active completion problem in Chapter 7. However unlike in our setting, the

sensors are static, i.e., their positions are preset, and their number is fixed. Further,

sensor placement is based on coverage properties of the sensors, whereas our model

must react to past sequential observations obtained by its sensors. Further, whereas

sensors can be arbitrarily spaced, our agent in Chapter 7 is constrained to move its

sensor within small neighborhoods at each discrete timestep, to be realistic.

2.6 Unsupervised feature learning

Another recurring theme in this dissertation is the idea of learning “useful”

image representations suitable for standard recognition tasks, without supervision.

Recall from Chapter 1 that computer vision systems have come to rely largely on

painstakingly curated and manually labeled bags of category-labeled snapshots [35,

91, 92, 103, 162, 192], costing up to hundreds of thousands of dollars. Throughout

this dissertation, I ask: is this really necessary? Could the majority of visual learning

instead be performed through observation and/or experimentation?

This idea of unsupervised visual learning is a very active area of recent re-

search interest. Several papers [3, 24, 40, 48, 63, 64, 95, 118, 123, 166, 168, 189] have

trained unsupervised image representations within deep neural networks.
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Note that the word “unsupervised” in this context is used slightly differently

from its traditional use in machine learning— here unsupervised refers only to a

lack of deliberate human supervision and the training process may involve solving

“supervised machine learning” problems like classification and regression, so long

as the target labels or regression outputs are not manually specified. Throughout

this dissertation, I will use “supervised” and “unsupervised” in this sense, unless

otherwise specified.

Indeed, the standard method for unsupervised feature learning has become to

set up unsupervised “proxy” or “surrogate” tasks. A deep network is optimized to

perform this unsupervised task, and upon convergence, its internal representations

are treated as the desired unsupervised image features, and tested for their useful-

ness as representations for other (typically supervised) tasks. For example, efficent

generative codes for image synthesis are learned in [24]—here, image pixels are both

the input and the target for a regression task. In [166], features are trained to predict

pixel-level optical flow maps for video frames—again, optical flow is automatically

computed from video, so no manual intervention is involved. Concurrently with our

work, a method to learn features that vary linearly in time is proposed in [63], for

the specific task of extrapolating future video frames given a pair of past frames.

They report qualitative results for toy video frame synthesis. While our formulation

in Chapter 3 also encourages collinearity in the feature space, our aim is to learn

generally useful features from real videos without supervision, and we report results

on natural image scene, object, and action recognition tasks.

In Chapter 4, we show how equivariant representations may be learned in an
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unsupervised manner in a different setting, where the camera egomotions involved

in capturing unlabeled video are known. A different formulation for learning unsu-

pervised representations from egomotion-labeled video was proposed in [3], which we

compare against empirically.

Finally, in Chapter 5, we examine yet another setting for unsupervised rep-

resentation learning, where full image-based 3D shape knowledge is available for

every training instance. Throughout, we compare these approaches against several

previously proposed methods for learning unsupervised features.

2.7 Invariant visual representations

Invariance is known to be valuable for visual representations. To build a ro-

bust object recognition system, the image representation must incorporate some de-

gree of invariance to changes in pose, illumination, and appearance. Descriptors like

SIFT [107], HOG [33], and aspects of CNNs like pooling and convolution, are hand-

designed for invariance to small shifts and rotations. Feature learning work aims to

learn invariances from data [42, 147, 148, 151, 164]. Strategies include augmenting

training data by perturbing image instances with label-preserving transformations

(e.g., translation, scaling, and intensity scaling) [42, 148, 164], and inserting linear

transformation operators into the feature learning algorithm [151]. A good represen-

tation will ensure that jittered versions originating from the same content all map

close by in the learned feature space.
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Related to the unsupervised feature learning theme discussed in Section 2.6,

several works aim to induce invariance into learned representations as a useful prior.

In particular, many attempts learn invariant image features by observing video,

i.e., rather than hand-designing jittered content for data augmentation as described

above, they rely on natural variations in factors such as pose, illumination, and

occlusions occurring among nearby frames in video [15, 62, 118, 168, 195].

These works based on exploiting temporal coherence fall under the umbrella

of “slow feature analysis” techniques. The idea is to impose requirements that the

features being learned vary slowly over continuous video, since visual stimuli can only

gradually change between adjacent frames. These methods either produce a holistic

image embedding [15, 62, 64, 118], or else track local patches to learn a localized

representation [48, 168, 195, 196]. Most methods exploit the learned features for

object recognition [15, 118, 168, 195], while others employ them for dimensionality

reduction [64] or video frame retrieval [62]. In [118], a standard deep CNN architec-

ture is augmented with a temporal coherence regularizer, then trained using video of

objects on clean backgrounds rotating on a turntable. The method of [15] builds on

this concept, proposing the use of decorrelation to avoid trivial solutions to the slow

feature criterion, with applications to handwritten digit classification. The authors

of [62] propose injecting an auto-encoder loss and explore training with unlabeled

YouTube video. Building on SFA subspace ideas [174], researchers have also exam-

ined slow features for action recognition [190], facial expression analysis [186], future

prediction [165], and temporal segmentation [105, 121].

Our work presented in this dissertation generalizes invariant feature learning
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along two directions. First, related to all the above methods, Chapter 3 describes

our method that aims to learn features from unlabeled video. However, whereas all

the past work aims to preserve feature slowness, our idea is to preserve higher order

feature coherence, i.e., steadiness. Our learning objective is the first to move beyond

adjacent frame neighborhoods, requiring not only that sequential features change

gradually, but also that they change in a similar manner in adjacent time intervals.

Secondly, invariance may be seen as a special case of a more general property

called equivariance, discussed in the next section. While invariant features discard

all sensitivity to pose, illumination etc., equivariant features are instead predictably

sensitive. As we will show, the steady features of Chapter 3 implicitly seek equiv-

ariance to common image transformations. Later, in Chapter 4, we exploit video

coupled with ego-motor signals to explicitly target egomotion equivariance, since

equivariant features offer conceptual and empirical advantages over purely invariant

representations for several applications.

2.8 Equivariant representations

As discussed above, while invariant features are unresponsive to transforma-

tions, equivariant features respond in easily predictable ways to image transforma-

tions. Invariance discards information, while equivariance organizes it. Equivariant

features can also be hand-designed or learned. For example, equivariant or “co-

variant” operators are designed to detect repeatable interest points [163]. Recent

work explores ways to learn descriptors with in-plane translation/rotation equivari-

ance [88, 141]. While the latter does perform feature learning, its equivariance prop-
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erties are crafted for specific 2D image transformations. In contrast, our approach in

Chapter 4 targets more complex equivariances arising from natural observer motions

(3D egomotion) that cannot easily be crafted, and our method learns them from

data.

Methods to learn representations with disentangled latent factors [71, 94] aim

to sort properties like pose and illumination into distinct portions of the feature

space. For example, the transforming auto-encoder learns to explicitly represent

instantiation parameters of object parts in equivariant hidden layer units [71]. Such

methods target equivariance in the limited sense of inferring pose parameters, which

are appended to a conventional feature space designed to be invariant. In this sense,

they are closer to methods that learn image transformations, as described above in

Section 2.9. In contrast, our formulation in Chapter 4 encourages equivariance over

the complete feature space; we show the impact as an unsupervised regularizer when

training a recognition model with limited training data.

The work of [98] quantifies the invariance/equivariance of various standard

representations, including CNN features, in terms of their responses to specified

in-plane 2D image transformations (affine warps, flips of the image). We adopt the

definition of equivariance used in that work, but our goal in Chapter 4 is entirely dif-

ferent. Whereas [98] quantifies the equivariance of existing descriptors, our approach

learns a feature space that is equivariant.

2.9 Synthesis of transformed views and features

43



As discussed above, the equivariant features we target in Chapter 4 respond

predictably to transformations. Somewhat related to this, there is recent interest

in “visual prediction” problems in various contexts, often using CNNs [39, 47, 133,

165, 166, 176]. For example, one can train CNNs to predict the features of the next

video frame conditioned on the last frame [165], or predict dense optical flow from

a single image [166]. Recurrent networks can also learn to extrapolate videos based

on previously observed frames [133]. These future frame prediction approaches do

not attempt to reason about causes of view transformations, e.g., camera motions,

similar to our steady feature analysis method described in Chapter 3. However, while

these methods aim to predict future views in the fixed spaces of pixels or pretrained

features, our steady feature analysis technique (Chapter 3) is based on the idea that

feature spaces trained to make simple extrapolation of future views possible also

acquire useful properties for recognition tasks.

Also related to some of the work in this dissertation is another class of methods

that deals with inferring 3D from 2D observations. While 3D vision has long been

tackled with geometry and densely sampled views [67], recent work explores ways

to inject learning into the solution [31, 43, 56, 65, 94, 113, 114, 135, 175, 183, 193].

Several of these works aim to directly map a view [31, 56, 84, 135, 175] to a 3D

representation of the object, such as a voxel occupancy grid. An out-of-category

test in [183] shows the potential and challenges for direct 3D outputs. Instead, in

Chapters 5 and 7, we target unseen view synthesis, where a 3D model is not directly

learned, but maintained implicitly. Framing the problem as novel view synthesis

has the advantage of readily available ground truth. Finally, in both Chapters 5
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and 7, we treat the problem of inferring 3D from 2D views as a proxy or surrogate

task— the reconstruction is not the end goal in itself, but training on reconsruction

is hypothesized to induce generically useful feature and exploratory policy learning

respectively.

Other recent work is more relevant to the work in this dissertation, targeting

novel view synthesis [30, 39, 43, 47, 71, 81, 94, 159, 184, 193]. The goal is to infer

an image as a function of a specified transformation or viewpoint. When provided

with two 2D views, methods can learn to predict intermediate views—as, for ex-

ample, in transforming autoencoders [71], deep stereo [47], deep morphing [81], and

the learned similarity functions of [39]. Alternatively, when the input consists of

a single view, methods can learn to render the observed object from new camera

poses. A tensor completion approach organizes views by people’s body poses and

camera viewpoints in order to infer “missing” novel views [30]. The inverse graphics

network of [94] generates new images of an object with varying pose and lighting,

having learned a disentangled representation with a deep convolutional neural net-

work (CNN). Related to this, recurrent convolutional encoder-decoder networks are

explored for rendering rotated objects from a single input image [184]. Training with

synthetic models, a generative CNN can produce images with specified object types,

viewpoints, colors, etc. [43]. A learning objective based on “appearance flow” allows

a CNN to learn how to map pixels in the input to its proper destination in a new tar-

get view [193]. A convolutional autoencoder architecture in [159] synthesizes views

for various rotations from an observed view before combining them into a 3D model

and refining the views further.
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The main restriction of such view synthesis approaches is their category-

specificity. Existing methods concentrate on object-specific models (e.g., chairs, cars,

people) and/or 3D CAD objects, making them inapplicable to unseen categories and

environments. In contrast, we consider generalizing synthesis across objects. To our

knowledge, ours are the first view synthesis results for unseen categories. Secondly,

whereas all prior work learns to aggregate and extrapolate from passively captured

views in one shot, our work in Chapter 7 is the first to consider active, sequential

acquisition of informative views. Thirdly, our “observation completion” framework

in Chapter 7 is more general than 3D object view synthesis— unlike any prior work,

it considers inferring the appearance of complete 360 degree scenes. Finally, once

again, in both Chapters 5 and 7, we learn to infer new views not as an end goal

in itself but instead as a means to unsupervised feature and exploratory behavior

learning.

This body of prior work on inferring novel views is also broadly related to our

equivariance (Chapter 4) and lookahead (Chapter 6) approaches. The distinction

is similar to the difference pointed out above between our steady feature analysis

idea and future frame prediction approaches. While the these methods target view

synthesis under specified transformations in the pixel space as an end goal in itself,

our approaches aim to learn feature spaces such that view synthesis in those learned

feature spaces is possible through simple operators, with the end goal being that

the features thus learned prove useful for generic recognition tasks. Our look-ahead

module in Chapter 6 goes further, learning to predict the evolution of temporally

aggregated features—computed from a complete history of seen views—as a func-
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tion of observer motion choices, and integrates this idea with the closely tied active

recognition problem.

2.10 Egocentric vision

Egocentric video is that which is captured from the point-of-view of an ob-

server moving and acting within a scene, such as through a head-mounted camera.

We exploit such egocentric video recordings as natural data sources throughout this

work to explore our ideas related to embodied vision. Recently, there is renewed

interest in egocentric computer vision methods targeting applications such as ego-

centric video summarization [60, 97, 108] and activity recognition [46, 129, 138].

There is also work focusing on exploiting camera motion accompanying first person

visual streams. For example, some recent methods use egomotion cues to separate

foreground and background [134, 180] or infer the wearer’s gaze [101, 182]. While

most work relies solely on apparent image motion, the method of [180] exploits a

robot’s motor signals to detect moving objects and [120] uses reinforcement learning

to form robot movement policies by exploiting correlations between motor commands

and observed motion cues. None of these prior works perform feature learning using

motor signals and pixels in concert as we propose for egomotion-equivariant feature

learning in Chapter 4.
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2.11 Image completion

In Chapter 7, we pose the task of “looking around” as observation completion.

Completion tasks appear in other contexts within vision and graphics. Inpainting

and texture synthesis fill small holes in images by modeling local textures (e.g., [50,

127]). Influential scene completion work [68] showed that larger holes can be filled

by pasting appropriate regions from similar-looking scenes. Recent work explores

unsupervised “proxy tasks” to learn useful deep visual representations, based on

various forms of observation completion like inpainting and colorization [95, 127,

189]. Our observation completion setting differs from these in that 1) it requires

agent action, 2) a much smaller fraction of the overall environment is observable

at a time, 3) our target is a representation of multimodal beliefs, rather than a

photorealistic rendering, and 4) completion is used to learn exploratory behaviors

rather than features

Having briefly overviewed the key ideas of the five components of this thesis

in Chapter 1, and reviewed relevant prior literature in this chapter, we now move

to discussing the technical details of the approach together with results for each

component in the upcoming chapters.
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Chapter 3

Learning steady representations encoding visual
dynamics from video

1In this chapter, I address the problem of replacing expensive large manually

curated and labeled image datasets with unsupervised video for visual learning, which

I introduced earlier in Section 1.1.

To recap, visual feature learning with deep neural networks has yielded dra-

matic gains for image recognition tasks in recent years [92, 149], largely due to the

availability of large human-labeled image datasets like ImageNet [35, 103] that can

cost up to hundreds of thousands of dollars to collect. But does visual learning really

have to rely on such “bags of labeled snapshots”? The answer is clearly no, since chil-

dren acquire much of their visual learning through constant observation and action

in the world [17, 100]. This suggests that it is possible to build up representations of

the visual world by exploiting long-term video observations, with no deliberate labels

attached.

Prior work on learning image representations from video have focused on the

1The work in this chapter was supervised by Prof. Kristen Grauman and originally published in:
“Slow and steady feature analysis: higher order temporal coherence in video”. Dinesh Jayaraman
and Kristen Grauman. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, NV, June 2016.
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Figure 3.1: From unlabeled videos, we learn “steady features” that exhibit consistent
feature transitions among sequential frames.

principle of “slow feature analysis”—good image representations should not vary

much between consecutive video frames, since high level concepts associated with

those frames typically change only slowly over time. While this idea captures that

high-level visual signals change slowly over time, this is a very impoverished view of

visual dynamics in the world, since it captures only invariances to small changes. For

instance, slow feature analysis does not model that an object sliding on a smooth

surface maintains constant speed over time, or that the poses of a walking person

over time follow each other in a specific sequence.

In the work I present in this chapter, we will show that it is possible to more

efficiently exploit video to learn image representations, mining richer signals than just

invariances. To take the example of the walking person above, her poses over time

will follow a smooth, predictable trajectory in the feature space that we will learn.

Figure 3.1 shows a high-level illustration of this idea of “steady feature analysis”.

In the rest of this chapter, I will first describe our approach for learning these

steady representations from unlabeled video in Section 3.1, before presenting our
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experiments and results in Sec 3.2.

3.1 Approach

Given auxiliary raw unlabeled video, we wish to learn an embedding amenable

to a supervised classification task. We pose this as a feature learning problem in a

convolutional neural network, where the hidden layers of the network are tuned not

only with the backpropagation gradients from a classification loss, but also with

gradients computed from the unlabeled video that exploit its temporal steadiness.

3.1.1 Problem setup

A supervised training dataset S = {(xi, ci)} provides target class labels ci ∈

C = [1, 2, .., C] for images xi ∈ X (represented in pixel space). The unsupervised

training dataset U = {xt} consists of ordered video frames, where xt is the video

frame at time instant t.2

Importantly, we do not assume that the video U necessarily stems from the

same categories or even precisely the same domain as images in S. For example,

in results we will demonstrate cases where S and U consist of natural scene images

and autonomous vehicle video, respectively; or Web photos of human actions and

YouTube video spanning dozens of distinct activities. The idea is that training

with diverse unlabeled video should allow the learner to recover fundamental cues

2For notational simplicity, we will describe our method assuming that the unsupervised training
data is drawn from a single continuous video, but it is seamless to train instead with a batch of
unlabeled video clips.
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about how objects move, how scenes evolve over time, how occlusions occur, how

illumination varies, etc., independent of their specific semantic content.

The full image-pixels-to-class label classifier we learn will have the compo-

sitional form ĉθ,W = fW ◦ zθ(.), where zθ : X → RD is a D-dimensional feature

map operating on images in the pixel space, and fW : RD → C takes as input the

feature map zθ(x), and outputs the class estimate. We learn a linear classifier fW

represented by a C × D weight matrix W with rows w1, . . . ,wC . At test time, a

novel image is classified as ĉθ,W = arg maxi w
T
i zθ(x).

To learn the classifier ĉθ,W , we optimize an objective function of the form:

(θ∗,W ∗) = arg min
θ,W

Ls(θ,W,S) + λLu(θ,U), (3.1)

where Ls(.) represents the supervised classification loss, Lu(.) represents an unsu-

pervised regularization loss term, and λ is the regularization hyperparameter. The

parameter vector θ is common to both losses because they are both computed on

the learned feature space zθ(.). The supervised loss Ls is a standard softmax classi-

fication loss over the supervised training dataset.

In the following, we first discuss how the unsupervised regularization loss Lu(.)

may be constructed to exploit temporal smoothness in video (Section 3.1.2). Then

we generalize this to exploit higher order coherence, i.e., steadiness (Section 3.1.3).

Section 3.1.4 then shows how a neural network corresponding to ĉθ,W may be trained

to minimize Equation (3.1) above.
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3.1.2 Background review: First-order temporal coherence

As discussed previously in Chapters 1 and 2, “slow feature analysis” (SFA) [174]

seeks to learn image features that vary slowly over the frames of a video, with the

aim of learning useful invariances. This idea of exploiting “slowness” or “temporal

coherence” for feature learning has been explored in the context of neural networks

[15, 62, 64, 118, 195]. We briefly review that underlying objective before introducing

the proposed higher order generalization of temporal coherence.

A temporal neighbor pair dataset U2 is first constructed from the unlabeled

video U , as follows:

U2 = {⟨(j, k), pjk⟩ : xj,xk ∈ U and pjk = 1(0 ≤ j − k ≤ T )}, (3.2)

where T is the temporal neighborhood size, and the subscript 2 signifies that the set

consists of pairs. U2 indexes image pairs with neighbor-or-not binary annotations pjk,

automatically extracted from the video. We discuss the setting of T in results. In

general, one wants the time window spanned by T to include motions that are small

enough to be label-preserving, so that correct invariances are learned; in practice

this is typically on the order of a second or less.

With this dataset, the SFA property translates as zθ(xj) ≈ zθ(xk), ∀pjk = 1.

A simple formulation of this as an unsupervised regularizing loss would be as follows:

R′
2(θ,U) =

∑
(j,k)∈N

d(zθ(xj), zθ(xk)), (3.3)

where d(., .) is a distance measure (e.g., ℓ1 in [118] and ℓ2 in [64]), andN ⊂ U2 denotes

the subset of “positive” neighboring frame pairs, i.e., those for which pjk = 1. This
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loss by itself admits problematic minimizers such as zθ(x) = 0,∀x ∈ X , which

corresponds to R′
2 = 0. Such solutions may be avoided by a contrastive [64] version

of the loss function that also exploits “negative” (non-neighbor) pairs:

R2(θ,U) =
∑

(j,k)∈U2

Dδ(zθ(xj), zθ(xk), pjk)

=
∑

(j,k)∈U2

pjk d(zθj, zθk) + pjk max(δ − d(zθj, zθk), 0), (3.4)

where zθi denotes zθ(xi) and p = 1 − p. As shown above, the contrastive loss

Dδ(a, b, p) penalizes distance between a and b when the pair are neighbors (p = 1),

and encourages distance between them when they are not (p = 0), up to a margin δ.

3.1.3 Key idea: higher-order temporal coherence

The slow feature formulation of Equation (3.4) encourages feature maps that

produce small first-order temporal derivatives in the learned feature space: dzθ(xt)/dt ≈

0. This first-order temporal coherence is restricted to learning to ignore small jitters

in the visual signal.

Our idea is to model higher order temporal coherence in the unlabeled video,

so that the features can further capture rich structure in how the visual content

changes over time. In the general case, this means we want a regularizer that en-

courages higher order derivatives to be small: dnzθ(xt)/dt
n ≈ 0,∀n = 1, 2, ..N .

Accordingly, we need to generalize from pairs of temporally close frames to tuples of

frames.

In this work, we focus specifically on learning steady features—the second-

order case, which can be encoded with triplets of frames, as we will see next. In
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a nutshell, whereas slow learning insists that the features not change too quickly,

steady learning insists that feature changes in the immediate future remain similar

to those in the recent past.

First, we create a triplet dataset U3 from the unlabeled video U as:

U3 = {⟨(l,m,n), plmn⟩ : xl,xm,xn ∈ U and

plmn = 1(0 ≤ m− l = n−m ≤ T )}. (3.5)

U3 indexes image triplets with binary annotations indicating whether they are in-

sequence, evenly spaced frames in the video, within a temporal neighborhood T .

In practice, we select “negatives” (plmn = 0) from triplets where m − l ≤ T but

n−m ≥ 2T to provide a buffer and avoid noisy negatives.

We construct our steady feature analysis regularizer using these triplets, as

follows:

R3(θ,U) =
∑

(l,m,n)∈U3

Dδ(zθl − zθm, zθm − zθn, plmn), (3.6)

where zθl is again shorthand for zθ(xl) and Dδ refers to the contrastive loss defined

above. For positive triplets—meaning those occurring in sequence and within a tem-

poral neighborhood—the above loss penalizes distance between the adjacent pairwise

feature difference vectors. For negative triplets, it encourages this distance, up to a

maximum margin distance δ. Effectively, R3 encourages the feature representations

of positive triplets to be collinear, i.e., zθ(xl) − zθ(xm) ≈ zθ(xm) − zθ(xn). See

Figure 3.1.

Our final optimization objective combines the first and second order losses
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(Equation (3.4) and (3.6)) into the unsupervised regularization term:

Lu(θ,U) = R2(θ,U) + λ′R3(θ,U), (3.7)

where λ′ controls the relative impact of the two terms. Recall this regularizer ac-

companies the classification loss in the main objective of Equation (3.1).

Equivariance-inducing property of R3(θ,U): While first-order coherence en-

courages invariance, the proposed second-order coherence may be seen as encouraging

the more general property of equivariance.

The mapping z(.) is equivariant to an image transformation g if there exists

some “simple” function fg : RD → RD such that z(gx) ≈ fg(z(x)). As we demon-

strate later in Chapter 4, equivariance has been found to be useful for visual repre-

sentations (cf. [71, 75, 78, 98, 141]). To see how feature steadiness is related to equiv-

ariance, consider a video with frames xt, 1 ≤ t ≤ T . Given a small temporal neigh-

borhood ∆t, frames xt+∆t and xt must be related by a small transformation g (small

because of first order temporal coherence assumption), i.e., xt+∆t = gxt. Assuming

second order coherence of video, this transformation g itself remains approximately

constant in a small temporal neighborhood, so that, in particular, xt+2∆t ≈ gxt+∆t.

Now, for equivariant features z(.), by the definition of equivariance and the

observations above, z(xt+2∆t) ≈ fg(z(xt+∆t)) ≈ fg ◦ fg(z(xt)). Further, given that

g is a small transformation, fg is well-approximated in a small neighborhood by

its first order Taylor approximation, so that: (1) z(xt+∆t) ≈ z(xt) + c(t), and (2)

z(xt+2∆t) ≈ z(xt)+2c(t). In other words, under the realistic assumption that natural
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videos evolve smoothly, within small temporal neighborhoods, feature equivariance

is equivalent to the second order temporal coherence formulated in Eq (3.6), with

l,m, n set to t, t + ∆t, t + 2∆t respectively. This connection between equivariance

and the second order temporal coherence induced by R3 helps motivate why we can

expect our feature learning scheme to benefit recognition.

3.1.4 Form of the feature mapping function

We use a convolutional neural network (CNN) architecture to represent the

feature mapping function zθ(.). The parameter vector θ represents the CNN’s learned

layer weight matrices. See Section 3.2.1 for architecture choices.
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Figure 3.2: “Siamese” network configuration (shared weights for the zθ layer stacks) with
portions corresponding to the 3 terms Ls, R2 and R3 in our objective. R2 and R3 compose
the unsupervised loss Lu in Equation (3.1). Ls is the supervised loss for recognition in
static images.
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To optimize Equation (3.1) with the regularizer in Equation (3.7), we em-

ploy standard mini-batch stochastic gradient descent (as implemented in [82]) in a

“Siamese” setup, with 6 replicas of the stack zθ(.), as shown in Figure 3.2, 1 stack for

Ls (input: supervised training samples xi), 2 for R2 (input: temporal neighbor pairs

(xj,xk)) and 3 for R3 (input: triplets (xl,xm,xn)). The shared layers are initialized

to the same random values and modified by the same gradients (sum of the gradients

of the 3 terms) in each training iteration, so they remain identical throughout. More

details are in Section 3.2.1.

3.2 Experiments

We test our approach using five challenging public datasets for three tasks—

object, scene, and action recognition—spanning 432 categories. We also analyze its

ability to learn higher order temporal coherence with a sequence completion task.

3.2.1 Experimental setup

Our three recognition tasks (specified by the names of the unsupervised and

supervised datasets as U → S) are NORB→NORB object recognition, KITTI→SUN

scene recognition and HMDB→PASCAL-10 single-image action recognition. Ta-

ble 3.1 (left) summarizes key dataset statistics. Figure 3.3 shows depicts the unsupervised-

to-supervised transfer tasks together with examples from each dataset.

Supervised datasets S (1) NORB [96] has 972 images each of 25 toys against

clean backgrounds captured over a grid of camera elevations and azimuths. (2)
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Figure 3.3: Examples from unsupervised video datasets (left) and the supervised image
datasets (right). Representations trained on unlabeled videos are evaluated on supervised
tasks using the datasets on the right. See Section 3.2.1.

SUN [177] contains Web images of 397 scene categories. (3) PASCAL-10 [45]

is a still-image human action recognition dataset with 10 categories. For all three

datasets, we use few labeled training images (see Table 3.1), since unsupervised

regularization schemes should have most impact when labeled data is scarce [118].

This is an important scenario, given the “long tail” of categories lacking ample labeled

exemplars.

Unsupervised datasets U (1) NORB consists of pose-registered turntable im-

ages (not video), but it is straightforward to generate the pairs and triplets for U2
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Task Img/frame dims #Classes Recog. Task #Train #Test Unsup. Input Type #Pairs (1:3) #Triplets (1:1)

NORB→NORB 96×96×1 25 object 150 8100 pose-reg. images 50,000 75,000

KITTI→SUN 32×32×1 397 scene 2382 7940 car-mounted video 100,000 100,000

HMDB→PASCAL-10 32×32×3 10 action 50 2000 Web video 100,000 100,000

Table 3.1: Statistics for the unsupervised and supervised datasets (U → S) used in the
recognition tasks (positive to negative ratios for pairs and triplets indicated in headers).

and U3 assuming smooth motions in the annotated pose space. We mine these pairs

and triplets from among the 648 images per class that are not used for testing. (2)

KITTI [52] has videos captured from a car-mounted camera in a variety of locations

around the city of Karlsruhe. Scenes are largely static except for traffic, but there

is large and systematic camera motion. (3) HMDB [93] contains 6849 short Web

and movie video clips containing 51 diverse actions. We select 1000 clips at ran-

dom. While some videos include camera motion (e.g., to follow an athlete running),

most have stationary cameras and small human pose-change motions. The time win-

dow T is a hyperparameter of both our method as well as existing SFA methods.

We fix T = 2 and T = 0.5 seconds for KITTI and HMDB, respectively, based on

cross-validation for best performance by the SFA baselines.

Baselines We compare our slow-and-steady feature analysis approach (ssfa) to

four methods, including two key existing methods for learning from unlabeled video.

The three unsupervised baselines are: (1) unreg: An unregularized network trained

only on the supervised training samples S. (2) sfa-1: An SFA approach proposed

in [118] that uses ℓ1 for d(.) in Equation 3.4. (3) sfa-2: Another SFA variant [64]

that sets the distance function d(.) to the ℓ2 distance in Eq 3.4. The sfa methods
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train with the unlabeled pairs, while ssfa trains with both the pairs and triplets

These comparisons are most crucial to gauge the impact of the proposed

approach versus the state of the art for feature learning with unlabeled video. Also

note that the SFA baselines are known (see e.g., [3]) to be superior to alternative

paradigms for unsupervised learning such as autoencoders [72]. However, we are also

interested in knowing to what extent learning from unlabeled video can even start

to compete with methods learned from heavily labeled data (which costs substantial

human effort). Thus, we also compare against a supervised pretraining and finetuning

approach denoted sup-ft (details in Section 3.2.3).

Network architectures For the NORB→NORB task, we use a fully connected

network architecture: input → 25 hidden units → ReLU nonlinearity → D=25 fea-

tures. For the other two tasks, we resize images to 32×32 to allow fast and thorough

experimentation with standard CNN architectures known to work well with tiny im-

ages [1], producing D=64-dimensional features. The 32×32 CNN architecture [1]

representing zθ, used for the KITTI→SUN and HMDB→PASCAL-10 tasks is shown

in Figure 3.4. Recognition tasks on 32×32 images are much harder than with full-

sized images, so these are highly challenging tasks.

Optimization details We initialize neural networks according to the scheme pro-

posed in [59], and run Nesterov accelerated stochastic gradient descent using the open

source Caffe [82] package, until validation classification loss converges or begins to

rise. Optimization hyperparameters are selected greedily through cross-validation
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Figure 3.4: 32×32 CNN architecture used for the KITTI→SUN and HMDB→PASCAL-
10 tasks

in the following order: base learning rate, λ and λ′ (starting from λ=λ′=0). Our

validated (λ,λ′) values for NORB→NORB, KITTI→SUN, and HMDB→PASCAL

respectively are (0.1,0.3),(3,0.1), and (0.3,1).

Specifically, for each task, the optimal base learning rate (from 0.1, 0.01, 0.001,

0.0001) was first identified for unreg. Next λ was set through a logarithmic grid

search (steps of 100.5), with λ′ set to 0, i.e., this parameter was optimized for sfa-2.

The margin parameter δ of the contrastive loss in R2(.) was set to 1.0 for all methods

– this affects the objective function only up to a feature scaling operation, and so

may be set to any positive value. For ssfa, a similar search was then performed

over λ′ (logarithmic grid search with steps of 100.5), and then a small search for the

contrastive loss margin δ in R3(.) (over 0, 0.1 and 1). Setting the margin to δ = 0 in

a contrastive loss reduces it to the simple distance loss over positive samples.
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3.2.2 Quantifying steadiness

First we use a sequence completion task to analyze how well the desired

steadiness property is induced in the learned features. We compose a set of se-

quential triplets from the pool of test images, formed similarly to the positives in

Equation (3.5). At test time, given the first two images of each triplet, the task is

to predict what the third looks like.

We apply our ssfa to infer the missing triplet item as follows. Recall that our

formulation encourages sequential triplets to be collinear in the feature space. As a

result, given zθ(x1) and zθ(x2), we can extrapolate zθ(x3) as z̃θ(x3) = 2zθ(x2) −

zθ(x1). To backproject to the image space, we identify an image closest to z̃θ(x3) in

feature space. Specifically, we take a large pool C of candidate images, map them all

to their features via zθ, and rank them in increasing order of distance from z̃θ(x3).

The rank r of the correct candidate x3 is now a measure of sequence completion

performance.

For the candidate set C for NORB, the entire NORB test image set was used.

For the video datasets KITTI and HMDB though, it is practically difficult to include

all image frames in the candidate set C. To avoid having to compute features and

perform very expensive nearest neighbor search over a very large number of frames,

we form a randomly sub-sampled C instead, as follows. Starting from empty C,

we added (1) all the unique images among the query pairs (2) their corresponding

ground truth completion images and (3) a minimum number N of randomly chosen

frames from each video represented within C until this point. This ensures that the

task is non-trivial by adding distractors from the same video as the ground truth
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Datasets→ NORB KITTI HMDB

sfa-1 [118] 0.95 31.04 2.70
sfa-2 [64] 0.91 8.39 2.27
ssfa (ours) 0.53 7.79 1.78

Table 3.2: Sequence completion normalized correct candidate rank η. Lower is better.
(See Section 3.2.2.)

candidate image, which are likely to have similar appearance. We used N=10 for

KITTI and N=5 for HMDB to keep the total numbers of images manageable. Finally,

we select from |C| =8100, 5000 and 5000 candidates respectively for NORB, KITTI

and HMDB, for each of N =20,000, 1000 and 1,000 query pairs respectively for the

three datasets.

Table 3.2 reports the mean percentile rank η = E[r/|C|]× 100 over all query

pairs. Lower η is better. Clearly, our ssfa regularization induces steadiness in the

feature space, reducing η nearly by half compared to baseline regularizers on NORB

and by large margins on HMDB too. Our regularizer R3 is closely matched to this

task, so these gains are expected. Note however that these gains are reported after

training to minimize the joint objective, which includes Ls and R2, apart from R3,

and with regularization weights tuned for recognition tasks.

Figure 3.5 shows sequence completion examples from all three video datasets.

Particularly impressive results are the third NORB example (where despite a difficult

viewpoint, the sequence is completed correctly by the top-ranked candidate), and the

third HMDB example, where a highly dynamic baseball pitch sequence is correctly

completed by the third ranked image. The top-ranked candidate for this example
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NORB KITTI HMDB

Figure 3.5: Sequence completion examples from all three video datasets. In each instance,
a query pair is presented on the left, and the top three completion candidates as ranked
by our method are presented on the right. Ground truth frames are marked with black
highlights.

illustrates a common failure mode—the second image of the query pair is itself picked

to complete the sequence. This may reflect the fact that HMDB sequences in partic-

ular exhibit very little motion (camera motions rare, mostly small object motions).

Usually, as in the third KITTI example, even the top-ranked candidates other than

the ground truth frame are highly plausible completions.

3.2.3 Recognition results

Now we report results on the three unsupervised-to-supervised recognition

tasks. Table 3.3 shows the results. Our ssfa method comprehensively outperforms

not only the purely supervised unreg baseline, but also the popular sfa-1 and sfa-

2 slow feature learning approaches, beating the best baseline for each task by 9%,

36% and 9% respectively. The results on KITTI→SUN and HMDB→PASCAL-10 are

particularly impressive because the unsupervised and supervised dataset domains are

mismatched. All KITTI data comes from a single car-mounted road-facing camera

driving through the streets of one city, whereas SUN images are downloaded from

the Web, captured by different cameras from diverse viewpoints, and cover 397 scene
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Task type→ Objects Scenes Actions

Datasets→ NORB→NORB KITTI→SUN HMDB→PASCAL-10
Methods↓ [25 cls] [397 cls] [397 cls, top-10] [10 cls]

random 4.00 0.25 2.52 10.00
unreg 24.64±0.85 0.70±0.12 6.10±0.67 15.34±0.28
sfa-1 [118] 37.57±0.85 1.21±0.14 8.24±0.25 19.26±0.45
sfa-2 [64] 39.23±0.94 1.02±0.12 6.78±0.32 19.04±0.24
ssfa (ours) 42.83±0.33 1.65±0.04 9.19±0.10 20.95±0.13

Table 3.3: Recognition results (mean ± standard error of accuracy % over 5 repetitions)
(Section 3.2.3). Our method outperforms both existing slow feature/temporal coherence
methods and the unregularized baseline substantially, across three distinct recognition
tasks.

categories mostly unrelated to roads. PASCAL-10 images are bounding-box-cropped

and therefore centered on single persons, while HMDB videos, which are mainly clips

from movies and Web videos, often feature multiple people, are not as tightly focused

on the person performing the action, and are of low quality, sometimes with overlaid

text etc.

Aside from the diversity of tasks (object, scene, and action recognition), our

unsupervised datasets also exhibit diverse types of motion. NORB is generated from

planned, discrete camera manipulations around a central object of interest. The

KITTI camera moves through a real largely static landscape in smooth motions on

roads at varying speeds. HMDB videos on the other hand are usually captured

from stationary cameras with a mix of large and small foreground and background

object motions. Even the dynamic camera videos in HMDB are sometimes captured

from hand-held devices leading to jerky motions, where our temporal steadiness

assumptions might be stressed.
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Pairing unsupervised and supervised datasets: Thus far, our pairings of un-

supervised and supervised datasets reflect our attempt to learn from video that

a priori seems related to the ultimate recognition task, e.g., HMDB human action

videos are paired with PASCAL-10 Action still images. However, as discussed above,

the domains are only roughly aligned. Curious about the impact of the choice of un-

labeled video data, we next try swapping out HMDB for KITTI in the PASCAL

action recognition task. On this new KITTI→PASCAL task, we still easily outper-

form our nearest baseline, although our gain drops by ≈ 0.9% (sfa-2:19.06% vs.

our ssfa:20.01%). Despite the fact that the human motion dynamics of HMDB os-

tensibly match the action recognition task better than the egomotion dynamics of

KITTI (where barely any people are visible), we maintain our advantage over the

purely slow methods. This indicates that there is reasonable flexibility in the choice

of unlabeled videos fed to ssfa.

Increasing supervised training sets: Thus far, we have kept labeled sets small

to simulate the “long tail” of categories with scarce training samples where priors

like ours and the baselines’ have most impact. In a preliminary study for larger

training pools, we now increase SUN training set sizes from 6 to 20 samples per class

for KITTI→SUN, for a total of 7,940 labeled training images. Our method retains a

20% gain over existing slow methods (ssfa: 3.24% vs sfa-2: 2.65%). This suggests

our approach is valuable even with larger supervised training sets.

Varying unsupervised training set size: To observe the effect of unsupervised

training set size, we now restrict ssfa to use varying-sized subsets of unlabeled video
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on the HMDB→PASCAL-10 task. Performance scales roughly log-linearly with the

duration of video observed, as shown in Figure 3.6. This suggests that even larger

gains may be achieved simply by training ssfa with more freely available unlabeled

video.
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Figure 3.6: ssfa classification accuracy vs. duration of unsupervised video (mean, stan-
dard error over 5 runs). Performance scales log-linearly with the duration of observed
video, suggesting that even larger gains may be possible by simply exploiting more freely
available video.

Purely unsupervised feature learning: We now evaluate the usefulness of fea-

tures trained to optimize the unsupervised ssfa loss Lu (Equation (3.7)) alone (rather

than the full objective of Equation (3.1), which includes a supervised classification

loss Ls). Features trained on HMDB are evaluated at various stages of training, on

the task of k-nearest neighbor classification on PASCAL-10 (k =5, and 100 training

images per action). Figure 3.7 shows the results. Starting at ≈ 17.8% classification

accuracy for randomly initialized networks, unsupervised ssfa training steadily im-

proves the discriminative ability of features. This shows that ssfa can train useful
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image representations even without jointly optimizing a supervised objective.
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Figure 3.7: ssfa k-NN accuracy improvement with ssfa training (mean, standard error
over 5 runs).

Comparison to supervised pretraining and finetuning: Recently, a two-stage

supervised pretraining and finetuning strategy (sup-ft) has emerged as the leading

approach to solve visual recognition problems with limited training data where high-

capacity models like deep neural networks may not be directly learned [41, 57, 85,

124]. In the first stage (“supervised pretraining”), a neural network “NET1” is first

trained on a related problem for which large training datasets are available. In a

second stage (“finetuning”), the weights from NET1 are used to initialize a second

network (“NET2”) with similar architecture. NET2 is then trained on the target task,

using reduced learning rates to minimally modify the features learned in NET1.

In principle, completely unsupervised feature learning approaches like ours

have important advantages over the sup-ft paradigm. In particular, (1) they can
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leverage essentially infinite unlabeled data without requiring expensive human label-

ing effort thus potentially allowing the learning of higher capacity models and (2)

they do not require the existence of large “related” supervised datasets from which

features may be meaningfully transferred to the target task. While the pursuit of

these advantages continues to drive vigorous research, unsupervised feature learn-

ing methods still underperform supervised pretraining for image classification tasks,

where great effort has gone into curating large labeled databases, e.g., ImageNet [35],

CIFAR [91].

As a final experiment, we examine how the proposed unsupervised feature

learning idea competes with the popular supervised pretraining model. To this end,

we adopt the CIFAR-100 dataset consisting of 100 diverse object categories as a basis

for supervised pretraining.3 The new baseline sup-ft trains NET1 on CIFAR, then

finetunes NET2 for either PASCAL-10 action or SUN scene recognition tasks using

the exact same (few) labeled instances given to our method. In parallel, our method

“pretrains” only via the SSFA regularizer learned with unlabeled HMDB / KITTI

video respectively for the two tasks. Our method uses zero labeled CIFAR data.

Fig 3.8 shows the results. On PASCAL-10 action recognition (left), our

method significantly outperforms sup-ft pretrained with all 50,000 images of CIFAR-

100! Gathering image labels from the crowd for large multi-way problems can take

on average 1 minute per image [137], meaning we are getting better results while also

3We choose CIFAR-100 for its compatibility with the 32 × 32 images used throughout our results
in this chapter, which let us leverage standard CNN architectures known to work well with tiny
images [1]. CIFAR-100 classification is the most widely benchmarked tiny image classification task,
much as ImageNet ILSVRC is most widely benchmarked for larger images.
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Figure 3.8: Comparison to CIFAR-100 supervised pretraining sup-ft, at various super-
vised training set sizes. Flat dashed lines reflect that our method (and SFA) always use
zero additional labels.

saving ∼ 830 hours of human effort. On SUN scene recognition (right), ssfa out-

performs sup-ft with 5K labels and remains competitive even when the supervised

method has a 17,500 label advantage. However, sup-ft-50k’s advantage on the

SUN task is more noticeable; its gain is similar to our gain over the best slow-feature

method.

The upward trend in accuracy for sup-ft with more CIFAR-100 labeled data

indicates that it successfully transfers generic recognition cues to the new tasks. On

the other hand, the fact that it fares worse on PASCAL actions than SUN scenes

reinforces that supervised transfer depends on having large curated datasets in a

strongly related domain. In contrast, our approach successfully “transfers” what

it learns from purely unlabeled video. In short, our method can achieve better

results with substantially less supervision. More generally, we view it as an exciting

step towards unlabeled video bridging the gap between unsupervised and supervised

pretraining for visual recognition.
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3.3 Conclusion

In this chapter, I formulated an unsupervised feature learning approach that

exploits higher order temporal coherence in unlabeled video, and demonstrated its

powerful impact for several recognition tasks. Despite over 15 years of research

surrounding slow feature analysis (SFA), its variants and applications, we are the

first to identify that SFA is only the first order approximation of a more general

temporal coherence idea. This basic observation leads to our intuitive approach that

can be easily plugged into applications where first order temporal coherence has

already been found useful [15, 62, 64, 105, 118, 121, 168, 186, 190, 195]. To our

knowledge, ours are the first results where unsupervised learning from video actually

surpasses the accuracy of today’s favored approach, heavily supervised pretraining,

on generic recognition tasks.

Some questions surrounding the work in this chapter remain that could yield

fruitful directions for follow-up work. Firstly, while we have laid out the general prin-

ciple of higher-order temporal coherence, we have only empirically evaluated second-

order coherence. It may be expected that higher orders yield diminishing returns,

but this remains to be confirmed in practice. Secondly, standard temporal coherence

methods have been strengthened through ranking-based losses recently [142, 168],

and it would be of value to investigate how to formulate higher-order coherence

losses within these frameworks. Thirdly, due to implementation issues, we have con-

fined our experiments to small images. More efficient implementations are possible,

which would allow evaluation on datasets of larger images. Finally, a thorough and

systematic study of the effect of temporal neighborhood sizes on temporal coherence-
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based learning would be of empirical value to many temporal coherence approaches

in general, including ours.

Learning through constantly monitoring a visual stream, as described in this

chapter, is only the first step towards a solution for embodied visual learning. In

the next chapter, we take one further step, modeling a setting where the embodied

agent at training time has additional access to proprioceptive information about its

own motions.
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Chapter 4

Learning image representations tied to observer
motion

1In the last chapter, we exploited the temporal sequentiality of frames in video

to mine signals for unsupervised representation learning. This may be thought of as

learning by continuous passive observation of the visual world. While we have begun

to move away from the “bag of labeled snapshots” manually supervised paradigm

and towards embodied visual learning, learning from video as in Chapter 3 is only

the first step.

In embodied agents, visual observations are inextricably tied to the motor

activity behind them. A cat moving through its environment knows how it is moving

to cause the observed changes to its visual sensory input over time, and as we saw

in Held and Hein’s kitten carousel study [69] (described before in Chapter 1), this

knowledge is critical to its visual development. In other situations, the proprioceptive

“motor signal” knowledge most relevant to the visual observation may not be the

egomotion of the observer moving in the scene, but the second-hand motion of an

1The work in this chapter was supervised by Prof. Kristen Grauman and originally published
in: “Learning image representations tied to egomotion”. Dinesh Jayaraman and Kristen Grauman.
In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, Decem-
ber 2015. An expanded article appeared in “Learning egomotion-tied image representations from
unlabeled video”. Dinesh Jayaraman and Kristen Grauman. In Internation Journal of Computer
Vision Special Issue of Best Papers from ICCV 2015, March 2017.
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Figure 4.1: Our approach learns an image embedding from unlabeled video. Starting
from egocentric video together with observer egomotion signals, we train a system on a
“view prediction” task (left), to learn equivariant visual features that respond predictably
to observer egomotion (right). In this target equivariant feature space, pairs of images
related by the same egomotion are related by the same feature transformation too.

object being actively manipulated, e.g., by a person or robot’s end effectors. In either

case, vision must develop in the context of acting and moving in the world. As the

celebrated psychologist J.J. Gibson wrote, “We perceive in order to move, but we

must also move in order to perceive.” [55].

In this chapter, I attempt to exploit the structure in this joint space of visual

observations and agent actions or motions towards visual learning, as I introduced

earlier in Section 1.2. We do this by exploiting motor signals accompanying unlabeled

egocentric video, of the sort that one could acquire through a wearable platform like

Google Glass, or a self-driving car. Figure 4.1 shows a schematic illustration of our

idea. Section 4.1 describes our technical approach, and Section 4.2 later presents our

key empirical findings.

4.1 Approach

Our goal is to learn an image representation that is equivariant with respect to

egomotion transformations, given video together with registered camera egomotion
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information from the time of capture.

4.1.1 Problem setup

Let xi ∈ X be an image in the original pixel space, and let yi ∈ Y be

its associated ego-pose representation. The ego-pose captures the available motor

signals, and could take a variety of forms. For example, Y may encode the complete

observer camera pose (its position in 3D space, pitch, yaw, roll), some subset of those

parameters, or any reading from a motor sensor paired with the camera.

As input to our learning algorithm, we have a training set U of Nu unlabeled

image pairs and their associated ego-poses, U = {⟨(xi,xj), (yi,yj)⟩}Nu

(i,j)=1}. The

image pairs originate from video sequences, though they need not be adjacent frames

in time. The set may contain pairs from multiple videos and cameras. Note that this

training data does not have any semantic labels (e.g., object categories); they are

“labeled” only in terms of the ego-motor sensor readings. Since our method relies

on freely available motion sensor readings associated with video streams (e.g., from

Google glass, self-driving cars, or even hand-held mobile devices), rather than on

expensive manually supplied labels, it is effectively unsupervised.2

In the following, we first explain how to translate ego-pose information into

2One could attempt to apply our idea using camera poses inferred from the video itself (i.e.,
with structure from motion). However, there are conceptual and practical advantages to relying
instead on external sensor data capturing egomotion. First, the sensor data, when available, is
much more efficient to obtain and can be more reliable. Second, the use of an external sensor
parallels the desired effect of the agent learning from its proprioception motor signals, as opposed
to bootstrapping the visual learning process from a previously defined visual odometry module
based on the same visual input stream.
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pairwise “motion pattern” annotations (Section 4.1.2). Then, Section 4.1.3 defines

the precise nature of the equivariance we seek, and Section 4.1.4 defines our learning

objective. We define a variant of our approach using non-discrete egomotion patterns

and non-linear equivariance maps in Section 4.1.5. Then, in Section 4.1.6, we show

how a feedforward neural network architecture may be trained to produce the desired

equivariant feature space. Finally, Section 4.1.7 shows how our equivariant feature

learning scheme may be used to enhance recognition with limited training data.

4.1.2 Mining discrete egomotion patterns

First we want to organize training sample pairs into a discrete set of egomotion

patterns G. For instance, one egomotion pattern might correspond to “tilt downwards

by approximately 20◦”. As we will see in Section 4.1.4, translating raw egomotion

signals into a few discrete motion patterns helps to simplify the design of our system.

While one could collect new data explicitly controlling for the patterns (e.g., with a

turntable and camera rig), we prefer a data-driven approach that can leverage video

and ego-pose data collected “in the wild”.

To this end, we discover clusters among pose difference vectors yi−yj for pairs

(i, j) of temporally close frames from video (typically less than 1 second apart; see

Section 4.2.1 for details). For simplicity we apply k-means to find G clusters, though

other methods are possible. Let pij ∈ P = {1, . . . , G} denote the motion pattern ID,

i.e., the cluster to which (yi,yj) belongs. We can now replace the ego-pose vectors

in U with motion pattern IDs: ⟨(xi,xj), pij⟩. 3

3For movement with d degrees of freedom, setting G ≈ d should suffice (cf. Section 4.1.3).
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right turn zoomleft turn

Figure 4.2: Motion pattern discovery in KITTI car-mounted videos. (Top) Largest
motion clusters in the “forward distance”-“yaw” space correspond to forward motion or
“zoom”, “right turn” and “left turn” respectively. (Bottom) Some example pairs corre-
sponding to discovered motion patterns. Within each box corresponding to one motion
pattern, each row corresponds to a pair.
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Figure 4.2 illustrates motion pattern discovery on frame pairs from the KITTI

dataset [51, 52] videos, which are captured from a moving car. Here Y consists of the

position and yaw angle of the camera. So, we are clustering a 2D space consisting

of forward distance and change in yaw. As shown in the bottom panel, the largest

clusters correspond to the car’s three primary egomotions: turning left, turning right,

and going forward.

In the next few sections, we present our method assuming discrete egomotions

mined as above. Later, in Section 4.1.5 we discuss a variant of our approach that

operates with non-discrete motion patterns.

4.1.3 Definition of egomotion equivariance

Given U , we wish to learn a feature mapping function zθ(.) : X → RD

parameterized by θ that maps a single image to a D-dimensional vector space that

is equivariant to egomotion.

To define equivariance, it is convenient to start with the notion of feature

invariance, which is the standard property that visual representations for recognition

are designed to exhibit. Invariant features are unresponsive to certain classes of

so-called “nuisance transformations” such as observer egomotions, pose change, or

illumination change. For images xi and xj with associated ego-poses yi and yj

respectively, an egomotion-invariant feature mapping function zθ satisfies:

zθ(xj) ≈ zθ(xi). (4.1)

Section 4.1.4 discusses tradeoffs involved in selecting G. We chose a small value for G for efficiency
and did not vary it in experiments.
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Recall that this is the form of representation sought by many existing feature learning

methods, including those that learn representations from video [26, 48, 62, 102, 118,

168, 195].

Rather than being unresponsive as above, equivariant functions are predictably

responsive to transformations, i.e., an egomotion-equivariant function zθ must re-

spond systematically and predictably to egomotions:

zθ(xj) ≈ f(zθ(xi),yi,yj), (4.2)

for some simple function f ∈ F , where again yi denotes the ego-pose meta-data

associated with video frame xi. Note that f must be simple; as the space of allowed

functions F grows larger, the requirement in Eq (4.2) above is satisfied by more

feature mapping functions zθ. In other words, as F grows large, the equivariance

constraint on zθ grows weak.

We will first consider equivariance for linear functions f(.), following [98].

Later, in Section 4.1.5, we will show how to extend this to the non-linear case. In

the linear case, zθ is said to be equivariant with respect to some transformation g if

there exists a D ×D matrix4 Mg such that:

∀x ∈ X : zθ(gx) ≈Mgzθ(x). (4.3)

Such an Mg is called the “equivariance map” of g on the feature space zθ(.). It

represents the affine transformation in the feature space that corresponds to trans-

formation g in the pixel space. For example, suppose a motion pattern g corresponds

4bias dimension assumed to be included in D for notational simplicity
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to a yaw turn of 20◦, and x and gx are the images observed before and after the turn,

respectively. Equivariance demands that there is some matrix Mg that maps the pre-

turn image to the post-turn image, once those images are expressed in the feature

space zθ. Hence, zθ “organizes” the feature space in such a way that movement

in a particular direction in the feature space (here, as computed by matrix-vector

multiplication with Mg) has a predictable outcome. The linear case, as also studied

in [98], ensures that the structure of the mapping has a simple form—the space F of

possible equivariance maps is suitably restricted so that the equivariance constraint

is significant, as discussed above. It is also convenient for learning since Mg can be

encoded as a fully connected layer in a neural network. In Section 4.2, we experiment

with both linear and simple non-linear equivariance maps.

4.1.3.1 Equivariance in dynamic 3D scenes

While prior work [88, 141] focuses on equivariance where g is a 2D image

warp, we explore the case where g ∈ P is an egomotion pattern (cf. Section 4.1.2)

reflecting the observer’s 3D movement in the world. In theory, appearance changes

of an image in response to an observer’s egomotion are not determined completely by

the egomotion alone. They also depend on the depth map of the scene and the motion

of dynamic objects in the scene. One could easily augment either the frames xi or the

ego-pose yi with depth maps, when available. Non-observer motion appears more

difficult, especially in the face of changing occlusions and newly appearing objects.

Even accounting for everything, a future frame may never be fully predictable purely

from egomotion alone, due to changing occlusions or newly visible elements in the
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scene. However, our experiments indicate we can learn effective representations even

with dynamic objects and changing occlusions. In our implementation, we train with

pairs relatively close in time, so as to avoid some of these pitfalls.

4.1.3.2 Equivariance to composite motions

While during training we target equivariance for the discrete set of G egomo-

tions, if we use linear equivariance maps as above, the learned feature space will not

be limited to preserving equivariance for pairs originating from the same egomotions.

This is because the linear equivariance maps are composable. If we are operating in

a space where every egomotion can be composed as a sequence of “atomic” motions,

equivariance to those atomic motions is sufficient to guarantee equivariance to all

motions.

To see this, suppose that the maps for “turn head right by 10◦” (egomotion

pattern r) and “turn head up by 10◦” (egomotion pattern u) are respectively Mr

and Mu, i.e, z(rx) = Mrz(x) and z(ux) = Muz(x) for all x ∈ X . Now for a novel

diagonal motion d that can be composed from these atomic motions as d = r ◦ u

(“turn head up by 10◦, then right by 10◦”), we have:

z(dx) = z((r ◦ u)x)

= Mrz(ux)

= MrMuz(x), (4.4)

so that, setting Md := MrMu, we have:

z(dx) = Mdz(x). (4.5)

82



Comparing this against the definition of equivariance in Eq (4.3), we see that Md =

MrMu is the equivariance map for the novel egomotion d = r ◦ u, even though d

was not among 1, . . . , G. This property lets us restrict our attention to a relatively

small number of discrete egomotion patterns during training, and still learn features

equivariant with respect to new egomotions. Section 4.1.5 presents a variant of our

method that operates without discretizing egomotions.

4.1.4 Equivariant feature learning objective

We now design a loss function that encourages the learned feature space zθ to

exhibit equivariance with respect to each egomotion pattern. Specifically, we would

like to learn the optimal feature space parameters θ∗ jointly with its equivariance

maps M∗ = {M∗
1 , . . . ,M

∗
G} for the motion pattern clusters 1 through G (cf. Sec-

tion 4.1.2).

To achieve this, a naive translation of the definition of equivariance in Eq (4.3)

into a minimization problem over feature space parameters θ and the D ×D equiv-

ariance map candidate matrices M (assuming linear maps) would be as follows:

(θ∗,M∗) = arg min
θ,M

∑
g

∑
{(i,j):pij=g}

d (Mgzθ(xi), zθ(xj)) , (4.6)

where d(., .) is a distance measure. This problem can be decomposed into G inde-

pendent optimization problems, one for each motion, corresponding only to the inner

summation above, and dealing with disjoint data. The g-th such problem requires

only that training frame pairs annotated with motion pattern pij = g approximately

satisfy Eq (4.3).
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However, similar to the problem encountered before in Section 3.1.2, such a

formulation admits problematic solutions that perfectly optimize it. For example,

for the trivial all-zero feature space zθ(x) = 0,∀x ∈ X with Mg set to the all-

zeros matrix for all g, the loss above evaluates to zero. To avoid such solutions,

and to force the learned Mg’s to be different from one another (since we would

like the learned representation to respond differently to different egomotions), we

simultaneously account for the “negatives” of each motion pattern. Our learning

objective is:

(θ∗,M∗) = arg min
θ,M

∑
g,i,j

dg (Mgzθ(xi), zθ(xj), pij) , (4.7)

where dg(., ., .) is a “contrastive loss” [64] specific to motion pattern g:

dg(a, b, c) = 1(c = g)d(a, b) + 1(c ̸= g)max(δ − d(a, b), 0), (4.8)

where 1(.) is the indicator function. This contrastive loss penalizes distance between

a and b in “positive” mode (when c = g), and pushes apart pairs in “negative” mode

(when c ̸= g), up to a minimum margin distance specified by the constant δ. We use

the ℓ2 norm for the distance d(., .).

In our objective in Eq (4.7), the contrastive loss operates in the latent feature

space. For pairs belonging to cluster g, the contrastive loss dg penalizes feature space

distance between the first image and its transformed pair, similar to Eq (4.6) above.

For pairs belonging to clusters other than g, the loss dg requires that the transforma-

tion defined by Mg must not bring the image representations close together. In this

way, our objective learns the Mg’s jointly. It ensures that distinct egomotions, when
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applied to an input zθ(x), map it to different locations in feature space. We discuss

how the feature mapping function parameters are optimized below in Section 4.1.6.

Note that the objective of Eq (4.8) depends on the choice G of the number of

discovered egomotion patterns from Section 4.1.2. As remarked earlier, for movement

with d degrees of freedom, setting G ≈ d should suffice (cf. Section 4.1.3). There

are several tradeoffs involved in selecting G: (i) The more clusters, the fewer the

training samples in each. This could lead to overfitting of equivariance maps Mg,

so that optimizing Eq (4.8) may no longer produce truly equivariant features. (ii)

The more the clusters, the more the number of parameters to be held in memory

during training — each cluster has a corresponding equivariance map module. (iii)

The fewer the clusters, the more noisy the training sample labels. Fewer clusters lead

to larger clusters with more lossy quantization of egomotions in the training data.

This might adversely affect the quality of training. In practice, for our experiments

in Section 4.2, we observed that this dependence on G is not a problem — a small

value for G is both efficient and produces good features. We did not vary G in

experiments.

We now highlight the important distinctions between our objective of Eq (4.8)

and the “temporal coherence” objective of [118], which is representative of works

learning representations from video through slow feature analysis [26, 48, 62, 102,

168, 195]. Written in our notation, the objective of [118] may be stated as:

θ∗ = arg min
θ

∑
i,j

d1(zθ(xi), zθ(xj),1(|ti − tj| ≤ T )), (4.9)

where ti, tj are the video time indices of xi, xj and T is a temporal neighborhood

85



size hyperparameter. This loss encourages the representations of nearby frames to be

similar to one another, learning invariant representations. To see this, note how this

loss directly optimizes representations to exhibit the invariance property defined in

Eq (4.1). Observe that this is nearly identical to the first-order temporal coherence

loss of Equation (3.4) (the only difference is the use of the ℓ1 norm here rather

than the ℓ2 norm) that our “steady” features formulation in Chapter 3 generalizes

to achieve higher order temporal coherence. However, temporal coherence alone

does not account for the nature of the egomotion between the frames. Accordingly,

while temporal coherence helps learn invariance to small image changes, it does

not target a (more general) equivariant space. Like the passive kitten from Hein

and Held’s experiment, the temporal coherence constraint watches video to passively

learn a representation; like the active kitten, our method registers the observer motion

explicitly with the video to learn more effectively, as we will demonstrate in results.

4.1.5 Equivariance in non-discrete motion spaces with non-linear equiv-
ariance maps

Thus far, we have dealt with a discrete set of motions G. When using linear

equivariance maps, due to the composability of the maps, equivariance to all motions

is guaranteed by achieving equivariance to only the discrete set of motions in G, so

long as those discrete motions span the full motion space (Section 4.1.3).

Still, the discrete motion solution has two limitations. First, it only gener-

alizes to all egomotions for the restricted notion of equivariance relying on linear
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maps, defined in Eq (4.3). In particular, for non-linear equivariance mapping func-

tions f(.) in the more general definition of equivariance in Eq (4.2), it does not

guarantee equivariance to all egomotions. While linear maps nonetheless may be

preferable for injecting stronger equivariance regularization effects, it is worth con-

sidering more general function families. Secondly, this discrete solution is lossy, as it

requires discretizing the continuous space of all motions into specific clusters. More

specifically, image pairs assigned to the same cluster may be related by slightly

different observer motions. This information is necessarily ignored by the motion

discretization solution.

On the other hand, directly learning an infinite number of equivariance maps

Mg, one corresponding to each motion g in the training set, is intractable. In this

section, we develop a variant of our approach that implicitly learns these infinite

equivariance maps and allows it to naturally transcend the linearity constraint on

equivariance maps.

We now describe this non-discrete variant of our method. The set of egomo-

tions G may now be an infinite, uncountable set of motions. As an example, we will

assume the set of all motions in the training set:

G = {yi − yj; i, j are temporally nearby frames in training video}, (4.10)

where yi is the ego-pose associated with frame xi, as defined before.

Now, rather than attempting to learn separate equivariant maps Mg for each

motion g ∈ G, we may parameterize the entire family of Mg’s through a single matrix
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function M, as: Mg = M(g). Substituting this in Eq (4.3), we now want:

zθ(xj) ≈M(yi − yj)zθ(xi). (4.11)

At a high level, this may be thought of as similar to forming G = ∞ egomotion

clusters for use with the discrete egomotions approach developed above (or more

precisely, as many clusters as the number of egomotion-labeled training pairs, i.e.,

G = Nu). Until this stage, our equivariance maps remain linear, as in Eq (4.3).

However, since we are no longer restricted to a discrete set of motions G, we need no

longer rely on the composability of linear equivariance maps. Instead, we can further

generalize our maps as follows:

zθ(xj) ≈M(zθ(xi),yi − yj), (4.12)

where M is now a function that produces a vector in the learned feature space as

output. Note how this compares against the general notion of equivariance first

defined in Eq (4.2).

Our general “non-discrete” equivariance objective may now be stated as:

(θ∗,M∗) = arg min
θ,M

∑
i,j

d (M(zθ(xi),yi − yj), zθ(xj)) , (4.13)

where d(., .) is a distance measure. Note that the objective in Eq (4.13) parallels the

alternative objective in Eq (4.7) for the discrete motion case.5 The architecture of the

function M(.) and how it is trained, are specified in Section 4.1.6 and Section 4.2.1.

5However, while the loss of Eq (4.7) is contrastive, Eq (4.13) specifies a non-contrastive loss. To
overcome this deficiency in our experiments, we optimize this non-discrete equivariance loss only in
conjunction with an auxiliary contrastive loss, such as drlim [64].
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Figure 4.3: Training setup for discrete egomotions: (top) a two-stack “Siamese network”
processes video frame pairs identically before optimizing the equivariance loss of Eq (4.7),
and (bottom) a third layer stack simultaneously processes class-labeled images to optimize
the supervised recognition softmax loss as in Eq (4.14). See Section 4.2.1 for exact network
specifications.

This non-discretized motion and non-linear equivariance formulation allows

an easy way to control the strength of the equivariance objective. The more complex

the class of functions modeled by M(.), the weaker the notion of equivariance that

is imposed upon the learned feature space. Moreover, it does not require discarding

fine-grained information among the egomotion labels, as in the discrete motion case.

We evaluate the impact of these conceptual differences in experiments (Section 4.2.4).

4.1.6 Form of the feature mapping function

For the mapping zθ(.), we use a convolutional neural network architecture,

so that the parameter vector θ now represents the layer weights. We start with the

discrete egomotions variant of our method. Let Led denote the equivariance loss

of Eq (4.7) based on discretized egomotions. Led is optimized by sharing the weight

parameters θ among two identical stacks of layers in a “Siamese” network [23, 64,

118], as shown in the top two rows of Figure 4.3. Video frame pairs from U are
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fed into these two stacks. Both stacks are initialized with identical random weights,

and identical gradients are passed through them in every training epoch, so that the

weights remain tied throughout. Each stack encodes the feature map that we wish

to train, zθ.

To optimize Eq (4.7), an array of equivarance maps M, each represented

by a fully connected layer, is connected to the top of the second stack. Each such

equivariance map then feeds into a motion-pattern-specific contrastive loss function

dg, whose other inputs are the first stack output and the egomotion pattern ID pij.

This Siamese network architecture is depicted in the U → Led pipeline in Figure 4.3

(top).

Optimization is done through mini-batch stochastic gradient descent imple-

mented through backpropagation with the Caffe package [82] (more details in Sec-

tion 4.2 and the Appendix).
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Figure 4.4: Unsupervised training setup for the “non-discrete” variant Eq (4.13) of the
equivariance objective. First, layer stacks with tied weights, representing the feature map-
ping zθ to be learned, process video frame pairs identically to embed them into a feature
space. In this space, an equivariance mapping function M(.) acts on the first frame and
camera egomotion vector g to attempt to predict the second frame. See Figure 4.5 for the
architecture of M(.), and Section 4.2.1 for further details. When used in a regularization
setup with labeled data L, a third stack of layers may be added as in Figure 4.3 to compute
the classification loss.
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Figure 4.5: Architecture of the module M(.) used for optimizing the non-discrete equiv-
ariance objective of Eq (4.13). The feature vector zθ and the continuous egomotion vector
g = yi − yj are processed through separate neural network modules M1 and M2 respec-
tively, before appending and processing through a final module M3 that produces an output
in the same domain as the input zθ. Figure 4.4 shows where this fits into the full Siamese
network framework.

For the case of the non-discretized motions variant of our approach in Eq (4.13),

let Len denote the equivariance loss of Eq (4.13). Len is optimized as follows. The

array of equivariance maps M is replaced by a single module M(zθ, g), as shown

in Figure 4.4. The architecture of M(zθ, g) is specified in Figure 4.5. The feature

vector zθ and the non-discrete egomotion g = yi−yj are processed through separate

neural network modules M1 and M2 before appending and processing through a

final module M3. The specific architectures of these internal modules M1,M2,M3

are specified in Section 4.2.

It is worth reiterating that the architectures of equivariance maps define the

nature of the desired equivariance, and control the strength of the equivariance ob-

jective: broadly, we expect that the more complex the architecture, the weaker the

equivariance regularization is. An equivariance map architecture that is very simple
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could lead to heavy regularization, but equally, complex architectures might back-

propagate no regularizing gradients to the base learned features zθ, since they might

be able to represented overfitted equivariance maps even for arbitrary input features,

such as features from a randomly initialized neural network.

4.1.7 Applying learned equivariant representations to recognition tasks

While we have thus far described our formulation for generic equivariant im-

age representation learning, our hypothesis is that representations trained as above

will facilitate high-level visual tasks such as recognition. One way to see this is by

observing that equivariant representations expose camera and object pose-related

parameters to a recognition algorithm, which may then account for this critical

information while making predictions. For instance, a feature space that embeds

knowledge of how objects change under different viewpoints or manipulations may

allow a recognition system to hallucinate new views (in that feature space) of an

object to improve performance.

More generally, recall the intuitions gained from the view prediction task

illustrated in Figure 1.4. As discussed in Section 1.2, acquiring the ability to halluci-

nate future views in severely underdetermined situations requires mastery of complex

visual skills like depth, 3D geometry, semantics, and context. Therefore, our equiv-

ariance formulation of this view prediction task within the learned feature space

induces the development of these ancillary high-level skills, which are transferable to

other high-level tasks like object or scene recognition.

Suppose that in addition to the ego-pose annotated pairs U we are also given a
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small set of Nl class-labeled static images, L = {(xk, ck)}Nl
k=1, where ck ∈ {1, . . . , C}.

We may now adapt our equivariance formulation to enable the training of a recog-

nition pipeline on L. In our experiments, we do this in two settings, purely unsu-

pervised feature extraction (Section 4.2.4), and unsupervised regularization of the

supervised recognition task (Section 4.2.5). We now describe the approaches for

these two settings in detail.

In both of the scenarios below, note that neither the supervised training data

L nor the testing data for recognition are required to have any associated sensor

data. Thus, our features are applicable to standard image recognition tasks.

4.1.7.1 Adapting unsupervised equivariant features for recognition

In the unsupervised setting, we first train representations by optimizing the

equivariance objective of Eq (4.7) (or Eq (4.13) for the non-discrete case). We then

directly represent the class-labeled images from L in our learned equivariant feature

space. These features may then be input to a generic machine learning pipeline, such

as a k-nearest neighbor classifier, that is to be trained for recognition using labeled

data L. Alternatively, the weights learned in the network may be finetuned using

the labeled data L, producing a neural network classifier.

This setting allows us to test if optimizing neural networks only for equivari-

ant representations, with no explicit discriminative component in the loss function,

still produces discriminative representations. Aside from testing the power of our

equivariant feature learning objective in isolation, this setting allows a nice modu-

larity between the feature learning step and category learning step. In particular,
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when learned prior to any recognition task, our features can be used for easy “off-

the shelf” testing of the unsupervised neural network directly as a feature extractor

for new tasks. The user does not need to simultaneously optimize the embedding

parameters and classifier parameters specific to his task. Moreoever, it requires no

more computational resources than for the Siamese paired network scheme described

in Section 4.1.6 for learning equivariant representations.

4.1.7.2 Unsupervised equivariance regularization for recognition

Alternatively, we may jointly train representations for equivariance, as well

as for discriminative ability geared towards a target recognition task, similar to the

setup we used in the last chapter (see Section 3.1.1). Let Led denote the unsupervised

equivariance loss of Eq (4.7). We can integrate our unsupervised feature learning

scheme with the recognition task, by optimizing a misclassification loss together

with Led . Let W be a C×D matrix of classifier weights. We solve jointly for W and

the maps M:

(θ∗,W ∗,M∗) = arg min
θ,W,M

Lc(θ,W,L) + λLe(θ,M,U), (4.14)

where Lc denotes the softmax loss over the learned features:

Lc(W,L) = − 1

Nl

Nl∑
i=1

log(σck(Wzθ(xi)), (4.15)

and σck(.) is the softmax probability of the correct class.

σci(pi) = exp(pci)/
C∑
c=1

exp(pc). (4.16)

The regularizer weight λ in Eq (4.14) is a hyperparameter.
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In this setting, the unsupervised egomotion equivariance loss encodes a prior

over the feature space that can improve performance on the supervised recognition

task with limited training examples.

To optimize Eq (4.14), in addition to the Siamese net that minimizes Le as

above, the supervised softmax loss is minimized through a third replica of the zθ

layer stack with weights tied to the two Siamese networks stacks. Labelled images

from L are fed into this stack, and its output is fed into a softmax layer whose other

input is the class label. So while this is a more complete framework for applying

our equivariant representations to recognition tasks, it is also more computationally

intensive; compared to Section 4.1.7.1, it requires more memory, more computation

per iteration, and more iterations for convergence due to the more complex objective

function. The complete scheme is depicted in Figure 4.3.

4.1.7.3 Equivariant representations for next-best view selection

Next, we model a situation where an agent equipped with equivariant visual

representations has the ability to act on the real world at test time. Specifically, given

one view of an object, the agent must decide how to move next to help recognize

the object, i.e., which neighboring view would best reduce object category prediction

uncertainty. This task is illustrated in Figure 4.6. Precisely because our features

are equivariant (i.e., behave predictably) with respect to egomotion, we can exploit

them to “envision” the next views that are possible and choose the most valuable

one accordingly.
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Figure 4.6: Illustration of “next-best-view” selection for recognition. Suppose that a
robot, having observed one view of an object (top) is not immediately confident of the
category of the object. In the next-best view setting, it can then select to move around the
object (or manipulate the object) intelligently, to disambiguate among its top competing
hypotheses.

We now describe a simple method for this task, similar in spirit to [176].6

We limit the choice of next view g to { “up”, “down”, “up+right” and “up+left” }

for simplicity. First, we build a k-nearest neighbor (k-NN) image-pair classifier for

each possible g, using only training image pairs (x, gx) related by the egomotion

g. This classifier Cg takes as input a vector of length 2D, formed by appending the

features of the image pair (each image’s representation is of length D) and produces

the output probability of each class. So, Cg([zθ(x), zθ(gx)]) returns class likelihood

probabilities for all C classes. Output class probabilities for the k-NN classifier are

computed from the histogram of class votes from the k nearest neighbors.

At test time, we first compute features zθ(x0) on the given starting image

6Later, in Chapter 6, we will explore more sophisticated solutions for such active recognition
problems.
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x0. Next, we predict the feature zθ(gx0) corresponding to each possible surrounding

view g, as Mgzθ(x0), per the definition of equivariance (cf. Eq (4.3)).

With these predicted transformed image features and the pair-wise nearest

neighbor class probabilities Cg(.), we may now pick the next-best view as:

g∗ = arg min
g

H(Cg([zθ(x0), Mgzθ(x0)])), (4.17)

where H(.) is the information-theoretical entropy function. This selects the view

that would produce the least predicted image pair class prediction uncertainty.

This simple mutual information-based approach to next-best view selection

for exploiting egomotion-equivariant representations is intended only as a prelimi-

nary demonstration of the suitability of egomotion-equivariant representations for

active recognition. In Chapter 6, we will go beyond this approach, showing how an

egomotion-equivariance-based “lookahead” regularizer helps in the development of

an end-to-end active recognition system.

4.2 Experiments

We validate our approach on three public datasets and compare to multi-

ple existing methods. The main questions we address in the experiments are: (i)

quantitatively, how well is equivariance preserved in our learned embedding? (Sec-

tion 4.2.2); (ii) qualitatively, can we see the egomotion consistency of embedded

image pairs? (Section 4.2.3); (iii) when learned entirely without supervision, how

useful are our method’s features for recognition tasks? (Section 4.2.4); (iv) when

used as a regularizer for a classification loss, how effective are our method’s fea-
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tures for recognition tasks? (Section 4.2.5); and (v) how effective are the learned

equivariant features for next-best view selection in an active recognition scenario?

(Section 4.2.6).

Throughout, we compare the following methods:

• clsnet: A neural network trained only from the supervised samples with a

softmax loss.

• temporal: The temporal coherence approach of [118], which regularizes the

classification loss with Eq (4.9) setting the distance measure d(.) to the ℓ1

distance in d1. This method aims to learn invariant features by exploiting the

fact that adjacent video frames should not change too much.

• drlim: The approach of [64], which also regularizes the classification loss with

Eq (4.9), but setting d(.) to the ℓ2 distance in d1.

• lsm: The “learning to see by moving” (LSM) approach of [3], proposed inde-

pendently and concurrently with our method, which also exploits video with

accompanying egomotion for unsupervised representation learning. lsm uses

egomotion in an alternative approach to ours; it trains a neural network to

predict the observer egomotion g, given views x and gx, before and after the

motion. In our experiments, we use the publicly available KITTI-trained model

provided by the authors.

• equiv: Our egomotion equivariant feature learning approach, as defined by

the objective of Eq (4.7).
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• equiv+drlim: Our approach augmented with temporal coherence regulariza-

tion ([64]).

• equiv+drlim (non-discrete): The non-discrete motion variant of our ap-

proach as defined by the objective of Eq (4.12), augmented with temporal

coherence regularization.7

All of these baselines are identically augmented with a classification loss

for the regularization-based experiments in Section 4.2.2, 4.2.5 and 4.2.6. tem-

poral and drlim are the most pertinent baselines for validating our idea of ex-

ploiting egomotion for visual learning, because they, like us, use contrastive loss-

based formulations, but represent the popular “slowness”-based family of techniques

([26, 48, 62, 102, 195]) for unsupervised feature learning from video, which, unlike

our approach, are passive. In addition, our results against lsm evaluate the strength

of our egomotion-equivariance formulation against the alternative approach of [3].

4.2.1 Experimental setup

Recall that in the fully unsupervised mode, our method trains with pairs of

video frames annotated only by their ego-poses in U . In the supervised mode, when

applied to recognition, our method additionally has access to a set of class-labeled

images in L. Similarly, the baselines all receive a pool of unsupervised data and

7Note that we do not test equiv (non-discrete), i.e., the non-discrete formulation of Eq (4.13)
in isolation. This is because Eq (4.13) specifies a non-contrastive loss that would result in collapsed
feature spaces (such as zθ = 0∀x) if optimized in isolation. To overcome this deficiency, we
optimize this non-discrete equivariance loss only in conjunction with the contrastive drlim loss in
the equiv+drlim (non-discrete) approach.
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supervised data. We now detail the data composing these two sets. Figure 4.7 shows

samples from the various datasets used in our experiments in this chapter.

KITTI video
Car platform

Egomotions: 

yaw, 

forward motion

SUN images
Static web images

397 scene categories

NORB images
Orbits of toy images

Egomotions:

elevation, azimuth

Figure 4.7: We test our method across diverse standard datasets: (Top) Figure from [52]
showcasing images from the four KITTI location classes (shown here in color; we use
grayscale images), (Middle) Figure from [177] showcasing images from a subset of the 397
SUN classes (shown here in color; see text for image pre-processing details). (Bottom)
Figure from [96], showing images of toys captured from varying camera poses and with
varying backgrounds. In some of our experiments, we learn representations from KITTI
videos and apply them to SUN scene recognition. Note how these two datasets vary greatly
in content. In KITTI, the camera always faces a road, and it has a fixed field of view and
camera pitch, and the content is entirely street scenes around Karlsruhe. In SUN, the
images are downloaded from the internet, and belong to 397 diverse indoor and outdoor
scene categories—most of which have nothing to do with roads.
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Unsupervised datasets We consider two unsupervised datasets, NORB and KITTI,

to compose the unlabeled video pools U augmented with egomotion.

• NORB [96]: This dataset has 24,300 96×96-pixel images of 25 toys captured

by systematically varying camera pose. We generate a random 67%-33% train-

validation split and use 2D ego-pose vectors y consisting of camera elevation

and azimuth. Because this dataset has discrete ego-pose variations, we consider

two egomotion patterns, i.e, G = 2 (cf. Section 4.1.2): one step along elevation

and one step along azimuth. For equiv, we use all available positive pairs for

each of the two motion patterns from the training images, yielding a Nu =

45, 417-pair training set. For drlim and temporal, we create a 50,000-pair

training set (positives to negatives ratio 1:3). Pairs within one step (elevation

and/or azimuth) are treated as “temporal neighbors”, as in the turntable results

of [64, 118].

• KITTI [51, 52]: This dataset contains videos with registered GPS/IMU sensor

streams captured on a car driving around four types of areas (location classes):

“campus”, “city”, “residential”, “road”. We generate a random 67%-33% train-

validation split and use 2D ego-pose vectors consisting of “yaw” and “forward

position” (integral over “forward velocity” sensor outputs) from the sensors. We

discover egomotion patterns pij (cf. Section 4.1.2) on frame pairs ≤ 1 second

apart. We compute 6 clusters and automatically retain the G = 3 with the

largest motions, which upon inspection correspond to “forward motion/zoom”,

“right turn”, and “left turn” (see Figure 4.2). For equiv, we create a Nu =
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47, 984-pair training set with 11,996 positives. For drlim and temporal,

we create a 98,460-pair training set with 24,615 “temporal neighbor” positives

sampled ≤2 seconds apart.8 Of the various KITTI cameras that simultaneously

capture video, we use the feed from “camera 0” (see [51] for details) in our

expriments. For our unsupervised pretraining experiments, we reproduce the

setting of [3] to allow fair comparison, cropping random 227× 227 images from

the original 370×1226 video frames to create the unlabeled dataset U (“KITTI-

227”), before optimizing the objective of Eq (4.7). In Section 4.2.5, when

testing the more computationally demanding regularization pipeline of 4.1.7.2

(cf. discussion in Section 4.1.7), we use grayscale, downsampled 32×32 pixel

frames, so that (i) fast and thorough experiments are still possible, (ii) we

can adopt CNN architecture choices known to be effective for tiny images [1],

described below, and (iii) model complexity can be kept low enough so that

our unsupervised training datasets are not too small.9

Supervised datasets In our recognition experiments, we consider three super-

vised datasets L. These datasets allow us to test our approach’s impact for three

distinct recognition tasks for static images: object instance recognition, location

recognition, and scene recognition. The supervised datasets are:

8For fairness, the training frame pairs for each method are drawn from the same starting set of
KITTI training videos.

9Note that while the number of frame pairs Nu may be different for different methods, all
methods have access to the same training videos, so this is a fair comparison. The differences in
Nu are due to the methods themselves. For example, on KITTI data, equiv selectively uses frame
pairs corresponding to large motions (Section 4.1.2), so even given the same starting videos, it is
restricted to using a smaller number of frame pairs than drlim and temporal.
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• NORB: We select six images from each of the C = 25 object training splits at

random to create instance recognition training data.

• KITTI: We select four images from each of the C = 4 location class training

splits at random to create location recognition training data.

• SUN [177]: We select six images for each of C = 397 scene categories at

random from the standard training dataset to create scene recognition training

data, unless otherwise stated. We preprocess them identically to the KITTI

images above for all experiments. For the purely unsupervised experiments, we

follow the setting of [3], resizing images to 256 × 256 before cropping random

227× 227 regions (“SUN-227”).

We keep all the supervised datasets small, since unsupervised feature learning

should be most beneficial when labeled data is scarce. This corresponds to handling

categorization problems in the “long tail”. Note that while the video frames of the

unsupervised datasets U are associated with ego-poses, the static images of L have

no such auxiliary data.

Network architectures and optimization We now discuss the neural network

architectures used for the base network zθ and the equivariance maps in various

experimental settings. These architectures are chosen to be appropriate for the size

and complexity of images (or video frames) in each dataset.

For NORB, zθ is a fully connected network: 20 full-ReLU→ D =100 full fea-

ture units. Mg is a single fully connected layer Linear(100,100). These are schemat-
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Figure 4.8: Schematics representing neural network architectures used in various exper-
imental settings, for the base network zθ and the equivariance maps Mg (for the discrete
case) and M(zθ,g) (for the non-discrete case).

ically depicted in Figure 4.8 (top row).

For KITTI, the base neural network zθ closely follows the cuda-convnet [1] rec-

ommended CIFAR-10 architecture: 32 Conv(5x5)-MaxPool(3x3)-ReLU→ 32 Conv(5x5)-

ReLU-AvgPool(3x3) → 64 Conv(5x5)-ReLU-AvgPool(3x3) → D =64 full feature

units. The equivariance map Mg is a single fully connected layer Linear(64,64),
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which takes in 64-dimensional zθ(x) as input, and produces 64-dimensional Mgzθ(x)

as output. Figure 4.8 (middle row) presents schematics of these architectures.

For experiments with KITTI-227 and SUN-227, we follow the standard AlexNet

architecture, augmented for fast training with batch normalization [74] (before every

layer with learnable weights - conv1-5, fc6). We truncate the AlexNet architecture at

the first fully connected layer, fc6, treating its output as the feature representation

zθ. For equiv+drlim(discrete), the equivariance map modules Mg have the archi-

tecture: input → Linear(4096,128) → ReLU → Linear(128,4096), that produces a

feature in the original 4096-dim feature space.10 For equiv+drlim(non-discrete),

the architecture of the equivariance map module M(.) follows the outline in Sec-

tion 4.1.6 and Figure 4.5. Specifically,

• Module M1, which processes the 4096-dimensional output of fc6, has the archi-

tecture: input→ Linear(4096,128)→ReLU, producing a 128-dimensional out-

put.

• Module M2, which processes the 2-dimensional continuous egomotion label, has

the architecture: input→ Linear(2,128)→ReLU, producing a 128-dimensional

output.

• Module M3, which processes the 256-dimensional concatenated outputs of the

first two modules, has the architecture: input→ Linear(256,4096), producing

10We do not use a straightforward fully connected layer Linear(4096,4096) as this would dras-
tically increase the number of network parameters, and possibly cause overfitting of Mg, back-
propagating poor equivariance regularization gradients through to the base network zθ. The Mg

architecture we use in its place is non-linear due to the ReLU units.
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a vector in the original 4096-dimensional feature space.

These architectures for KITTI-227 and SUN-227 experiments are shown in Figure 4.8

(bottom row).

We use Nesterov-accelerated stochastic gradient descent. The base learning

rate and regularization λs are selected with greedy cross-validation. We report all

results for all methods based on five repetitions.

4.2.2 Quantitative analysis: equivariance measurement

First, we test the learned features for equivariance. Equivariance is measured

separately for each egomotion g through the normalized error ρg:

ρg = E

[
∥M ′

gzθ(x)− zθ(gx)∥2
∥zθ(x)− zθ(gx)∥2

]
, (4.18)

where E[.] denotes the empirical mean, M
′
g is the equivariance map, and ρg = 0

would signify perfect equivariance. To understand this error measure, we start by

noting that the numerator is directly related to the definition of equivariance in

Eq (4.3): zθ(gx) ≈ Mgzθ(x). Thus, the numerator alone constitutes the most

straightforward measure of equivariance error. However, this term depends on the

scale of the feature representation, which may vary between methods. So, rather than

measure the distance between the transformed and ground truth features directly,

ρg measures the ratio by which M ′
g reduces the distance between zθ(gx) and zθ(x).

The denominator and numerator in Eq (4.18) are therefore the distance between

the representations of original and transformed images, respectively before and after
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applying the equivariance map. The normalized error ρg is the empirical mean of

this distance reduction ratio across all samples.

We closely follow the equivariance evaluation approach of [98] to solve for the

equivariance maps of features produced by each compared method on held-out vali-

dation data, before computing ρg. Such maps are produced explicitly by our method,

but not the baselines. Thus, as in [98], we compute their maps11 by solving a least

squares minimization problem based on the definition of equivariance in Eq (4.3):

M ′
g = arg min

M

∑
m(yi,yj)=g

∥zθ(xi)−Mzθ(xj)∥2. (4.19)

The equivariance maps M ′
g computed as above are used to compute the normalized

errors ρg as in Eq (4.18). M ′
g and ρg are computed on disjoint subsets of the validation

image pairs.

We test both (i) “atomic” egomotions matching those provided in the train-

ing pairs (i.e, “up” 5◦and “down” 20◦) and (ii) composite egomotions (“up+right”,

“up+left”, “down+right”). The latter lets us verify that our method’s equivariance

extends beyond those motion patterns used for training (cf. Section 4.1.3).

First, as a sanity check, we quantify equivariance for the unsupervised loss of

Eq (4.7) in isolation, i.e, learning with only U . Our equiv method’s average ρg error

is 0.0304 and 0.0394 for atomic and composite egomotions in NORB, respectively.

In comparison, drlim—which promotes invariance, not equivariance—achieves ρg =

11For uniformity, we do the same recovery of M ′
g for our method; our results are similar either

way.
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Motion types → atomic composite
Methods ↓ “up (u)” “right (r)” avg. “u+r” “u+l” “d+r” avg.

random 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
clsnet 0.9276 0.9202 0.9239 0.9222 0.9138 0.9074 0.9145
temporal [118] 0.7140 0.8033 0.7587 0.8089 0.8061 0.8207 0.8119
drlim [64] 0.5770 0.7038 0.6404 0.7281 0.7182 0.7325 0.7263

equiv 0.5328 0.6836 0.6082 0.6913 0.6914 0.7120 0.6982
equiv+drlim 0.5293 0.6335 0.5814 0.6450 0.6460 0.6565 0.6492

Table 4.1: The “normalized error” equivariance measure ρg for individual egomotions
(Eq (4.18)) on NORB, organized as “atomic” (motions in the equiv training set) and
“composite” (novel) egomotions. This metric captures how well equivariance is preserved
in the embedding space. Lower values are better.

0.3751 and 0.4532. Thus, without class supervision, equiv tends to learn nearly

completely equivariant features, even for novel composite transformations.

Next, we evaluate equivariance for all methods using features optimized for

the NORB recognition task. Table 4.1 shows the results. As expected, we find that

the features learned with equiv regularization are again easily the most equivariant.

Normalized errors are lower for smaller motions than for larger motions, e.g., all

methods do better on the atomic motion “u” (up by 5◦) than on the other atomic

motion “r” (right by 20◦). Naturally, this also means error must be lower for atomic

motions than for composite motions, since the latter are combinations of two atomic

motions. This is confirmed by the results in Table 4.1.

Finally, we run similar experiments on the more challenging KITTI-227 data.

Over the three egomotion clusters on KITTI-227, drlim fc6 features achieved an

average equivariance error ρg of 0.7791. In comparison, equiv produced significantly

more equivariant features as expected, yielding average equivariance error 0.7315.
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KITTI frame pairs NORB frame pairs

Figure 4.9: Nearest neighbor image pairs (columns 3 and 4 in each block) in pairwise
equivariant feature difference space for various query image pairs (columns 1 and 2 per
block). For comparison, columns 5 and 6 show pixel-wise difference-based neighbor pairs.
The direction of egomotion in query and neighbor pairs (inferred from ego-pose vector
differences) is indicated above each block. See text.

To estimate how much more egomotion-equivariance may be beneficial for generic

visual features, we now compare these unsupervised models against a fully supervised

model (“imagenet-sup” [92]) with the same standard AlexNet architecture as our

models, but trained on ImageNet [35], a large manually curated classification dataset

with millions of labeled images. Features extracted from such models are among

the most widely used representations for various computer vision tasks today [41].

Fully supervised imagenet-sup fc6 features achieve 0.6285 average error, indicating

significant egomotion-equivariance. We view the equivariance of these standard,

widely used neural network features trained on labeled classification datasets as

validation that equivariance to egomotions may be a useful desideratum for learning

good generic visual features in an unsupervised manner, as our method aims to do.
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4.2.3 Qualitative analysis: detecting image pairs with similar motions

To qualitatively evaluate the impact of equivariant feature learning, we pose

a nearest neighbor task in the feature difference space to retrieve image pairs related

by similar egomotion to a query image pair.

Given a learned feature space z(.) and a query image pair (xi,xj), we form

the pairwise feature difference dij = z(xi)− z(xj). In an equivariant feature space,

other image pairs (xk,xl) with similar feature difference vectors dkl ≈ dij would be

likely to be related by similar egomotion to the query pair.12 This can also be viewed

as an analogy completion task, xi : xj = xk :?, where the right answer xl must be

computed by applying the unknown transformation pij to xk.

Figure 4.9 shows examples from KITTI (top) and NORB (bottom). For a

variety of query pairs, we show the top neighbor pairs in the equiv space, as well

as in pixel-difference space for comparison. Overall they visually confirm the desired

equivariance property: neighbor-pairs in equiv’s difference space exhibit a similar

transformation (e.g., turning and zooming), whereas those in the original image

space often do not. Consider the first NORB example (first row among NORB

examples), where pixel distance, perhaps dominated by the lighting, identifies a

wrong egomotion match, whereas our approach finds a correct match, despite the

changed object identity, starting azimuth, lighting etc. The red boxes show failure

cases. For instance, in the last KITTI example (third row), large foreground motion

12Note that in our model of equivariance, this is not strictly true, since the pair-wise difference
vector Mgzθ(x)−zθ(x) need not actually be consistent across images x. However, for small motions
and linear maps Mg, this still holds approximately, as we show empirically.
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of a truck in the query image pair causes our method to wrongly miss the rotational

motion.

4.2.4 Evaluation of purely unsupervised feature learning for recognition

Next, we present experiments to test whether useful visual features may be

trained in neural networks by minimizing only the unsupervised equivariance loss

of Eq (4.7), using no labeled samples. We follow the approach described in Sec-

tion 4.1.7.1.

As discussed before, this setting tests the power of our equivariant feature

learning objective in isolation, and offers several advantages: (i) It has lower memory

and computational requirements, since there is no need for a third stack of layers

dedicated to classification (Section 4.1.6, Figure 4.3). (ii) It allows easy off-the-shelf

testing of the unsupervised neural network either directly as a feature extractor for

new tasks, or as a “pretrained” network to be fine-tuned for new tasks. (iii) It gets rid

of the regularization λ of Eq (4.14), thus leaving fewer hyperparameters to optimize.

These advantages allow relatively fast experimentation with large neural networks

to test our purely supervised pipeline. We therefore perform experiments on large

227× 227 images for most of the remainder of this section.

For these experiments, each layer stack follows the standard AlexNet architec-

ture [92] for the layer stacks in these experiments, treating the output of the first fully

connected layer, fc6, as the feature representation zθ (as shown in Figure 4.8). Both

the 227×227 image resolution and network architecture allow us to test our method

with identical settings against a concurrent and independently proposed approach
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for unsupervised representation learning from video+egomotion [3], lsm. We com-

pare the features produced by our method against baselines under two conditions:

nearest neighbor classification, and finetuning for classification. In the rest of this

subsection, we first present both these settings in Section 4.2.4.1 and Section 4.2.4.2,

before discussing their results together in Section 4.2.4.3.

4.2.4.1 Nearest neighbor classifiers with unsupervised features

We first test our unsupervised features for the task of k-nearest neighbor

scene recognition on SUN images (“SUN-227” as described in Section 4.2.1). Nearest

neighbor tasks are useful to directly analyze the effectiveness of the learned features;

such tasks are also used in prior work for unsupervised feature learning [62, 168].

Our nearest neighbor training set has 50 class-labeled training samples per class

(50× 397 = 19850 total training samples), and we set k = 1. To evaluate the effect

of the equivariance loss on features learned at various layers in the neural network,

we perform these nearest neighbor experiments separately on features from conv3,

conv4, conv5, and fc6 layers of the AlexNet architecture used in our experiments.

In addition to the passive slow feature analysis baseline drlim, we also com-

pare against the egomotion-based feature learning baseline, lsm, trained with iden-

tical settings to our method. We also report the performance when (i) using the

pixel space itself as the feature vector (“pixel”), and (ii) using a randomly initialized

neural network with identical architecture to ours and baselines (“random weights”).

Note that this “random weights” baseline benefits from inductive biases specifically

designed and encoded into the architecture of neural networks, such as through con-
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volutions and pooling, same as our methods, which should enable it to produce better

representations than its input pixel space (“pixel”), even without any training.

4.2.4.2 Finetuning unsupervised network weights for classification

In our second setting for testing the effectiveness of purely unsupervised train-

ing with our approach, we finetune the unsupervised network weights for a classifi-

cation task.

Specifically, we build a new neural network classifier from the unsupervised

network by attaching a small neural network “TopNet” with random weights to the

layer that is to be evaluated. The architecture for TopNet is Linear(D,500)-ReLU-

Linear(500,C)-Softmax Loss, where D is the dimensionality of the output at the

layer under evaluation, and C = 397 is the number of classes in SUN. We finetune

all models on 5 class-labeled training samples per class (5×397 = 1985 total training

samples). We use identical, standard finetuning settings for all models: learning rate

0.001 and momentum 0.9 with minibatch size 128 for 100 epochs with standard

stochastic gradient descent. As before, we test all networks at various layers: conv3,

conv4, conv5, and fc6. Once again, we compare our methods against drlim and

lsm.

4.2.4.3 Unsupervised feature evaluation results

Results for the nearest neighbor experiments in Section 4.2.4.1 are shown in

Table 4.2, and those for the finetuning experiments are in Table 4.3.
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Datasets→ KITTI-227→SUN-227 [397 cls]
Methods↓/Layers→ conv3 conv4 conv5 fc6 best layer

random 0.25
pixels 1.80
random weights 3.66± 0.12 3.60± 0.06 3.68± 0.25 4.04± 0.07 4.04± 0.07
lsm [3] ≈ 4.9 ≈ 4.3 ≈ 4.3 - ≈ 4.9
drlim [64] 6.44± 0.17 6.42± 0.23 5.80± 0.21 3.46± 0.10 6.44± 0.17

equiv 7.14± 0.22 7.62± 0.17 6.96± 0.09 4.48± 0.22 7.62± 0.17
equiv+drlim 7.38± 0.08 7.48± 0.19 6.88± 0.22 3.84± 0.18 7.48± 0.19
equiv+drlim (non-discrete) 6.46± 0.17 6.16± 0.09 6.22± 0.20 3.40± 0.08 6.46± 0.17

Table 4.2: SUN scene recognition accuracies (mean ± standard error) with purely unsupervised
feature learning, and nearest neighbor classification (k=1, 50 labeled training images per class).
The columns correspond to different layers of the AlexNet architecture. Our equiv-based meth-
ods once again outperform all baselines. (lsm fc6 results are not reported in [3], so that entry is
left blank. It has only one publicly shared model, so its scores do not have error bars.)

Our method strongly outperforms the baselines in both settings. On nearest

neighbor experiments, equiv and equiv+drlim earn best scores of 7.62% and 7.48%

compared to the best two baselines, drlim and lsm, which score 6.44% and 4.9%

respectively. Recall that this is a 397-way classification task, so chance performance

is 0.25%. Finetuning experiments yield similar results (Table 4.3), with equiv and

equiv+drlim yielding best results of 6.77% and 6.71%, with other methods far

behind. These results establish that the equivariance formulation more effectively

exploits egomotion than the motion-regression approach of [3] for this data, and

succeeds in learning generic image features.13

As expected, the pixel space baseline “pixels”, and the randomly initialized

13For fairness, Table 4.3 uses identical finetuning settings for all models (see Section 4.2.4.2).
Compared to its results in Table 4.3, the lsm baseline achieves higher scores on a related experiment
in [3], possibly due to differences in finetuning settings and train-test splits.
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Datasets→ KITTI-227→SUN-227 [397 cls]
Methods↓/Layers→ conv3 conv4 conv5 fc6 best layer

random 0.25
lsm [3] ≈ 0.26∗ ≈ 1.04∗ ≈ 3.97 - ≈ 3.97
drlim [64] 6.16± 0.17 6.12± 0.08 5.61± 0.05 3.32± 0.05 6.16± 0.017

equiv 6.77± 0.05 6.75± 0.17 6.77± 0.07 4.22± 0.06 6.77± 0.05
equiv+drlim 6.70± 0.05 6.71± 0.08 6.36± 0.05 3.93± 0.06 6.71± 0.08
equiv+drlim (non-discrete) 6.10± 0.08 6.00± 0.03 5.37± 0.07 3.53± 0.06 6.10± 0.08

Table 4.3: SUN scene recognition accuracies (mean ± standard errors) with purely unsupervised
feature learning, followed by finetuning for classification (5 labeled training images per class). The
columns correspond to different layers of the AlexNet architecture. Our equiv-based methods
once again outperform all baselines. (lsm fc6 results are not reported in [3], so that entry is left
blank. It has only one publicly shared model, so its scores do not have error bars.) ∗ denotes
models that failed to converge with finetuning.

neural network “random weights” perform significantly worse than all other methods

on the nearest neighbor task in Table 4.2. The results also confirm the effect of the

inductive bias of the network architecture; the “random weights” baseline builds

stronger representations than its input pixel space.

Finally, we also test the non-discrete variant of our approach, equiv+drlim

(non-discrete). Recall from Section 4.1.5, that this approach has an important ad-

vantage over equiv+drlim: it does not discretize the space of motions, so it may be

able to more effectively exploit egomotion information. This variant therefore allows

us to evaluate whether this advantage is important empirically for this dataset.

As shown in Table 4.2 and Table 4.3, equiv+drlim (non-discrete) is once

again stronger than the baselines. However, it falls short of our standard equiv+drlim

variant. This may be due to (i) the non-linear equivariance map (cf. Section 4.2.1)

being too complex and thus weakening the constraint on the learned feature space
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(cf. the discussion in Section 4.1.3), (ii) the formulation of Eq (4.13) lacking the

contrastive property of the loss of Eq (4.7); the feature space is held up from collaps-

ing only by the contrastive term within drlim (Eq (4.9)), and (iii) the difficulty of

learning a single effective function M in Eq (4.13), to encode feature transformations

corresponding to all possible motions. Given the success of the discretized motion

variant of our approach, we focus on it for all subsequent experiments.

Interestingly, representations learned by all methods are most discriminative

at conv3 and conv4, and drop off at higher layers, especially fc6, where for nearest

neighbor classification in Table 4.2, “random weights” performs better or on par with

most methods. This suggests that model complexity of the networks may be too high

in this setting (reproduced from [3]), given the relatively modest size of the KITTI

dataset(≈20,500 video frames). Despite this, equiv features perform reasonably well

even at conv5 — in both Table 4.2 and Table 4.3, equiv conv5 features are better

than all baseline features at any layer, suggesting that our egomotion-equivariance

idea exploits unsupervised KITTI data more efficiently than the baselines. In par-

ticular, the temporal coherence objective of drlim appears to induce a loss of dis-

criminativeness in feature layers close to fc6, the layer to which the loss is applied.

drlim is best at conv3, and while equiv+drlim performs similarly to equiv at

lower layers, its performance significantly drops at higher layers compared to equiv.

This is in keeping with our intuitions outlined in Section 1.2; the drlim slow feature

analysis objective targets invariance, too much of which can lead to a loss of useful

information for class discrimination. lsm too shows similar trends, falling off steadily

in feature discriminativeness from conv3 to conv5, as seen in Table 4.2.
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4.2.5 Equivariance as a regularizer for recognition

Having assessed the effectiveness of training purely with our unsupervised ob-

jective in Section 4.2.4, we now test the unsupervised regularization pipeline of Sec-

tion 4.1.7.2 on three recognition tasks: NORB-NORB, KITTI-KITTI, and KITTI-

SUN. The first dataset in each pairing is unsupervised, and the second is supervised.

To allow the usage of less complex neural network architectures,14 reduce computa-

tional requirements and enable faster experimentation, all these datasets have smaller

images relative to the KITTI-227 and SUN-227 datasets in Section 4.2.4. NORB has

96× 96 images while KITTI and SUN are composed of 32× 32 images.

Table 4.4 (top, “Regularized”) shows the results. On all three datasets, our

method significantly improves classification accuracy, not just over the no-prior

clsnet baseline, but also over the closest previous unsupervised feature learning

methods.15

All the unsupervised feature learning methods yield large gains over clsnet

on all three tasks. However, drlim and temporal are significantly weaker than

the proposed method. Those methods are based on the “slow feature analysis”

principle [174]—nearby frames must be close to one another in the learned feature

space. We observe in practice that temporally close frames are mapped close to

each other after only a few training epochs. This points to a possible weakness in

these methods—even with parameters (temporal neighborhood size, regularization

14We observed in Section 4.2.4 that performance dropped at higher layers, indicating that AlexNet
model complexity might be too high.

15To verify the clsnet baseline is legitimate, we also ran a Tiny Image nearest neighbor baseline
on SUN as in [177]. It achieves 0.61% accuracy (worse than clsnet, which achieves 0.70%).
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Datasets→ NORB-NORB KITTI-KITTI KITTI-SUN KITTI-SUN
Methods↓ [25 cls] [4 cls] [397 cls, top-1] [397 cls, top-10]

Regularized

temporal [118] 35.47± 0.51 45.12± 1.21 1.21± 0.14 8.24± 0.25
drlim [64] 36.60± 0.41 47.04± 0.50 1.02± 0.12 6.78± 0.32
equiv 38.48± 0.89 50.64± 0.88 1.31± 0.07 8.59± 0.16
equiv+drlim 40.78± 0.60 50.84± 0.43 1.58± 0.17 9.57± 0.32

random 4.00 25.00 0.25 2.52
clsnet 25.11± 0.72 41.81± 0.38 0.70± 0.12 6.10± 0.67

Unsupervised

temporal [118] 42.97± 0.62 47.39± 0.53 0.79± 0.01 -
drlim [64] 42.83± 0.76 46.83± 0.45 0.86± 0.03 -
equiv 42.18± 0.32 43.25± 1.00 0.56± 0.01 -
equiv+drlim 44.08± 0.31 49.59± 0.66 0.87± 0.01 -

Table 4.4: Recognition result for three datasets (mean ± standard error) of accuracy % over five
repetitions. The last two columns are both results from the KITTI-SUN task, only with different
accuracy metrics (top-1 and top-10). Each unsupervised method is tested in two configurations:
unsupervised regularization for supervised learning as in Section 4.1.7.2 (top band), and purely
unsupervised feature learning as in Section 4.1.7.1 followed by k-nearest neighbor classification
(bottom band) with the same labeled training set as the regularization methods. We use small
supervised training sets and small k, so it is not straightforward to measure top-10 accuracy with
k-nearest neighbor classifiers. We leave those entries blank above.

λ) cross-validated for recognition, the slowness prior is too weak to regularize feature

learning effectively, since strengthening it causes loss of discriminative information.

In contrast, our method requires systematic feature space responses to egomotions,

and offers a stronger prior.

The most exciting result is KITTI-SUN (the two rightmost columns in Ta-

ble 4.4). The KITTI data itself is vastly more challenging than NORB due to its

noisy ego-poses from inertial sensors, dynamic scenes with moving traffic, depth vari-

ations, occlusions, and objects that enter and exit the scene. Furthermore, the fact

we can transfer equiv features learned without class labels on KITTI (street scenes

from Karlsruhe, road-facing camera with fixed pitch and field of view) to be useful
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for a supervised task on the very different domain of SUN (“in the wild” Web im-

ages from 397 categories mostly unrelated to streets) indicates the generality of our

approach. Note that our method was also validated with larger images in this same

KITTI-SUN setting in Section 4.2.4.

Our best recognition accuracy of 1.58% on SUN is achieved with only 6 la-

beled examples per class. It is ≈30% better than the nearest competing baseline

temporal and over 6 times better than chance. We also compute “Top-10” ac-

curacy (last column) for SUN. This corresponds to the likelihood of the true class

being among the top-10 most likely classes according to the classifier. Top-10 accu-

racy trends closely follow the standard top-1 accuracy result, with equiv+drlim

scoring 9.57% compared to 8.24% for the best baseline, temporal.

Comparison with purely unsupervised training: Finally, while the broad

trends observed above are similar to those observed for the unsupervised training

evaluation in Section 4.2.4, individual accuracies are not directly comparable with

those reported in Table 4.2 and 4.3, due to the differences in image sizes and network

architectures. To address this, we now repeat the experiments of Section 4.2.4.1 for

these new datasets, performing nearest neighbor classification with purely unsuper-

vised features. Networks are trained with purely unsupervised losses. Features are

then extracted and used in a nearest neighbor classifier (k = 1) using the target task

training set (6, 4, and 6 labeled training images per class respectively for NORB,

KITTI, and SUN).

The results of these experiments, shown in Table 4.4 (bottom, “Unsuper-
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vised”), allow us to observe several trends. In general, we should expect that regu-

larization yields higher accuracies than purely unsupervised feature learning followed

by nearest neighbors — the regularization setting allows target domain and target

task knowledge to influence the learning of the features themselves. From Table 4.4,

KITTI-SUN and KITTI-KITTI both follow these expected trends. Of these, KITTI-

SUN results in particular are consistently significantly poorer with purely unsuper-

vised training, compared to regularization. We believe this is due to the large domain

differences between KITTI and SUN, which mean that networks produced by purely

unsupervised training on KITTI may be less well-suited to processing SUN image

inputs. This is supported by the fact that accuracies on KITTI-KITTI, where only

the target dataset is changed and domains are matched, are only marginally better

with regularization than with unsupervised training.

NORB-NORB accuracies are an exception in which purely unsupervised train-

ing consistently performs slightly better than regularization. We believe that the toy

neural network architecture employed in our NORB experiments (see Section 4.2.1

and Figure 4.8) could prevent effective training, allowing a simple nearest neighbor

classifier to be more effective. Finally, on both the “regularized” and “unsupervised”

accuracies in Table 4.4, equiv+drlim features improve significantly over equiv.

This trend is thus consistent among experiments with small image datasets, but not

observed in our experiments with larger images in Section 4.2.4. This suggests that

the performance of equiv+drlim may especially depend significantly on network

architectures and/or feature dimensionality.
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Varying training set sizes: We are especially interested in the impact of our

feature learning idea when supervised training sets are relatively small. This corre-

sponds to handling categorization problems in the “long tail”, where training samples

are scarce and priors are most useful. However, we do continue to see impact by our

approach for larger training sets. For example, with N=20 samples for each of 397

classes on KITTI-SUN (7,940 total labeled training images), equiv scores 3.66+/-

0.08% accuracy vs. 1.66+/-0.18 for clsnet. Thus, our equivariance prior continues

to boost recognition accuracy even at larger training set sizes.

Later in this thesis, in Section 5.2.3.3, we compare the egomotion-equivariance

approach of this chapter directly against the slow and steady features of Chapter 3.

4.2.6 Next-best view selection for recognition

Finally, we show the results of a direct application of equivariant features to

“next-best view selection” on NORB, as described in Section 4.1.7.3 and illustrated

in Figure 4.6. Given one view of a NORB toy, the task is to tell a hypothetical robot

how to move next, in order to best recognize the object, i.e, which neighboring view

would best reduce object instance label prediction uncertainty.

To use the approach of Section 4.1.7.3 for the baselines, we first compute

equivariance maps M ′
g for all methods as described in Section 4.2.2. We set k = 25

for computing k-nearest neighbors, as per Section 4.1.7.3.

Table 4.5 shows the results. On this task too, equiv features easily outper-

form the baselines. Recall that our approach for this task is based on exploiting

the predictability of feature responses to observer motions, i.e., feature equivariance.
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Methods↓ 1-view→ 2-view accuracy gain

random 4.00 → 4.00 0
temporal [118] 29.60→ 31.90 2.30
drlim [64] 14.89→ 17.95 3.06

equiv 38.52→43.86 5.34
equiv+drlim 38.46→43.18 4.72

Table 4.5: Next-best view selection accuracy % on NORB. Our method equiv (and
augmented with slowness in equiv+drlim) clearly outperforms all baselines.

This result thus highlights the potential for many such novel applications of our

equivariant feature-learning formulation. Indeed, we use these insights in developing

a more sophisticated active recognition system in Chapter 6.

4.2.7 Comparison against more recent methods

Finally, there has been much other work on unsupervised feature learning

since the time this work was completed. We now present some results comparing

our features against more recent work, and discuss the findings. Note also that

while our baselines until now have been restricted to using the same dataset as ours

for unsupervised learning, we now compare against methods trained on arbitrary

datasets.

My co-authors and I evaluated our egomotion-equivariance approach trained

on KITTI 227×227 images against other more recent methods in [48]. We evaluated

all features on PASCAL VOC 2012 multi-label classification after finetuning. The

results are shown in Table 4.6. Our method achieves an average precision score

122



Methods↓ Supervision PASCAL VOC 2012

ImageNet 1.2M labeled images 73.9%

Wang et al [168] 4M visual tracks 47.4%
Agrawal et al [3] 20K image egomotion 40.2%
Pathak et al [127] 1M image spatial context 41.4%
Gao et al [48] 1M region proposal pairs 44.1%

Ours 20K image egomotion 40.7%

Table 4.6: PASCAL VOC 2012 multi-label classification mean average precision scores
for our method versus various more recent unsupervised feature learning methods, and
ImageNet-pretrained features.

of 40.7%. This is roughly on par with learning features by inpainting [127] which

scores 41.4%, and learning features by predicting motion [3] which scores 40.2%.

A method for learning from temporal continuity within precomputed visual tracks

of objects [168] performs best, scoring 47.4%. These approaches however all fall

significantly short of supervised ImageNet-pretrained AlexNet features, which score

73.9%.

We believe that a major limiting factor for the performance of our approach

is the availability of appropriate unlabeled data. While camera egomotion metadata

accompanying video is in principle free to acquire for an embodied agent, off-the-shelf

video data with egomotion labels is scarce in practice, and this is a limiting factor

in the practical applicability of egomotion-based learning. For instance, our KITTI

models are trained with fewer than 20,000 images overall (which are also highly

correlated since they are video frames). In contrast, the best performing method

of [168] in the above evaluation was trained on 4 million visual tracks from video.

Finally, we cite a result from recent work that attempts to analyze the con-
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cepts learned within various neural network models. Recently, the semantic concepts

detected within various models were visualized in [12] and categorized into “object”,

“part”, “scene”, “material”, “texture”, and “color” concept detectors. They found

that our egomotion-based model learned mainly texture, scene, object, and color

detectors. This is largely similar to other unsupervised approaches evaluated in the

paper. The tracking-based method of [168] once again performs qualitatively best in

this evaluation.

4.3 Conclusion

Over the last decade, visual recognition methods have focused almost exclu-

sively on learning from “bags of images”. We argue that such “disembodied” image

collections, though clearly valuable when collected at scale, deprive feature learning

methods from the informative physical context of the original visual experience. We

presented the first “embodied” approach to feature learning that generates features

equivariant to egomotion. Our results on multiple datasets and on multiple tasks

show that our approach successfully learns equivariant features, which are beneficial

for many downstream tasks and hold great promise for novel future applications.

Our results are promising, but there is an important caveat currently limiting

the ability to scale up our approach to be practically useful. As pointed out in

Section 4.2.7, while egomotion-labeled data is in principle free for an agent exploring

the world, off-the-shelf video data with egomotion labels is scarce in practice, and this

is a limiting factor in the practical applicability of egomotion-based learning. I have

considered but not explored alternative sources of data such as Google Streetview and
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similar services from which large-scale datasets of egomotion-labeled image pairs may

be mined, as in [187]. Such sources share many of the limitations of KITTI (limited

to outdoor, day-time images from a car-mounted camera on a road), but it would be

interesting to empirically investigate how well our method can exploit a much larger

dataset collected from all around the world. An even more interesting source of

data could be human-worn egocentric camera recordings with accompanying camera

motion data. Such a dataset would exhibit greater variation in content together

with more degrees of freedom for the camera egomotion, which might strengthen the

representations learned by our approach.

There are other potential directions for follow-up work. Our experiments

showed that the clustering-based discrete approach was more effective than the non-

discrete variant. However, at a high level, these methods may be seen to lie at two

ends of a spectrum over which the granularity of clusters may be varied continuously.

It would be interesting to study if there is an optimal granularity. It would be

interesting to probe other points in this spectrum.

Another drawback stems from the fact that appearance changes of an image

in response to an observer’s ego-motion are not determined by the current view and

the egomotion alone. Several latent factors are involved, such as the depth map of

the observed scene, dynamic moving objects within or even outside of the currently

observed view, occlusions etc. One possibility for modeling these ambiguities is to

allow the system to predict multiple alternative futures and penalize the error of only

the most correct prediction for each sample.

Finally, to see a high-level shortcoming of this work, recall the two advan-
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tages of the active kitten from Chapter 1, which proved to be key to its perceptual

development: (1) proprioceptive knowledge, and (2) ability to select motions during

development. While the work in this chapter captures the first of these advantages by

substituting known camera motion for the active kitten’s proprioception, it currently

relies on pre-recorded video that is captured without the system’s own direction. The

second advantage is explored later within this dissertation, in Chapters 6 and 7.

Before that though, we take one intermediate step, asking: what if we were

able to access arbitrary viewpoints within visual environments during training time,

rather than having to rely on precaptured video? In Chapter 5, rather than concern

ourselves with how to select motions to access those viewpoints, we will instead

assume all possible viewpoints are available at training time.
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Chapter 5

Unsupervised learning through one-shot
image-based shape reconstruction

1In contrast to the setting of the last chapter where our egomotion equivari-

ance approach exploited precaptured off-the-shelf video, an embodied learning agent

has the option of exhaustively examining its visual environment during learning.

This means that rather than having to rely on incidentally useful information such

as a small number of overlapping views of a 3D object for learning, the agent could

learn through full observation. For example rather than watch an object rotate in

one direction, an agent might turn it around in all directions with its manipulators

during training. In this chapter, I will describe an approach to effectively exploit

such complete observations of 3D objects to learning good 2D image representations,

which I introduced earlier in Section 1.3.

The work in this chapter may be seen as a logical extension of the preceding

chapters as follows. In Chapters 3 and 4, we have been exploring the learning of vi-

sual representations from video. Whereas previous “slow feature analysis” methods

for learning from video were restricted to learning invariances from the slowness of

transitions between a pair of consecutive frames, Chapter 3 generalizes this notion to

1The work in this chapter was supervised by Prof. Kristen Grauman.
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learn higher order “steadiness” dynamics by exploiting longer sequences of frames.

Then, in Chapter 4, we showed how to exploit pairs of image observations related by

known observer motions. In this chapter, we take one further step to ask: what if,

rather than having access to only pairs of observations related by known agent mo-

tions as in Chapter 4, the agent could instead learn by fully inspecting objects from

a grid of viewpoints? In this sense, this work may be thought of as extending the

equivariance idea of Chapter 4 analogously to how the steady feature analysis notion

developed in Chapter 3 extends prior slow feature analysis approaches—richer infor-

mation may be mined from jointly exploiting known relationships among collections

of images if we do not restrict those collections to only have two elements.

More specifically, in this component of my thesis, I explore the setting where,

rather than one video in each training environment from which rare, useful view

pairs must be mined in a preprocessing stage, the agent instead has the ability to

acquire a full “viewgrid” consisting of all possibly useful views, related by all possible

egomotions.

To recap the motivating ideas for this component from Section 1.3, while

visual perception relies largely on flat 2D observations, the visual world and objects in

it are inherently three dimensional. Inferring 3D geometry from 2D views is therefore

basic to visual perception, as confirmed by evidence from cognitive psychology [146].

Inspired by this, we ask the question: can we learn image representations encoding

geometry from 2D views, for use in computer vision systems? We propose to do

this by training a system for the “mental rotation” or single view image-based shape

reconstruction task. Given one 2D view of an object from an arbitrary viewpoint,
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the system must output views corresponding to arbitrary rotations from the current

viewpoint. This task is illustrated in Figure 5.1.

Figure 5.1: One-shot image-based shape reconstruction: A 3D shape is represented by
its “viewgrid” — views from evenly spaced viewpoints. Given one 2D view of an arbitrary
shape, we train a deep network to produce the remaining views in the viewgrid and ask:
does this training induce transferable representations in the network?

With an infinite number of views from all around an object, classic geometric

methods allow full 3D shape recovery [67] with little or no object understanding, as

they are completely agnostic to the semantics of the object, and work for arbitrary

shapes that might not even represent real-world objects. With real world objects

however, 3D understanding is possible from much sparser observations by using cues

such as semantics and shading. This suggests the use of learning-based approaches

for reconstruction.

As reviewed in Section 1.3 and in more detail in Section 2.9, other vision

researchers have also recently begun to investigate the use of deep learning methods

for single view 3D reconstruction [31, 43, 56, 84, 135, 159, 175, 183, 193]. Our

convolutional encoder-decoder [112] neural network architecture is similar to [159,
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183, 193]. However, while we view reconstruction as a path to learning good image

representations, these works differ from us in viewing reconstruction as an end task

in itself. While we train one model to reconstruct all categories, prior approaches

instead build category-specific models for some common categories like chairs and

cars. Our main hypothesis is that once we have induced a latent representation

within the model for “lifting” 2D views of generic objects of inferred 3D shapes, that

representation then possesses useful properties for generic high-level vision tasks such

as object category recognition.

The rest of this chapter will proceed as follows: Section 5.1 describes the

technical details of our neural network-based system for one-shot image-based shape

reconstruction. Section 5.2 then presents our key results validating that (i) our

system successfully learns the training task of category-agnostic image-based shape

reconstruction, generalizing even to categories that were not seen in the training set,

and (ii) the representations learned in the process are generically useful, in particular

transferring well to the semantic tasks of object recognition and retrieval.

5.1 Approach

Our goal is to train a system to recover a full image-based shape reconstruction

of an object after observing one view of it from an arbitrary viewpoint. This task

of “mentally rotating” the object from its observed viewpoint to arbitrary relative

poses requires developing 3D understanding from single 2D views, which is crucial for

many vision tasks. Through training on this image-based shape reconstruction task,
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we want to eventually learn generically useful visual representations that embed this

3D understanding and apply those representations to other visual tasks.

5.1.1 Problem setup

During training, we first evenly sample views from the viewing sphere around

each object. To do this, we begin by selecting a set Saz of M camera azimuths

Saz = {360◦/M, 720◦/M, . . . 360◦} centered around the object. Then we select a set

Sel of N camera elevations Sel = {0◦,±180◦/(N − 1),±360◦/(N − 1), · · · ± 90◦}. We

now sample all M ×N views of every object corresponding to the cartesian product

S = Saz × Sel of azimuth and elevation positions: {y(θi) : θi ∈ S}.2 Note that each

θi is an elevation-azimuth pair, and represents one position in the viewing grid S.

Now, with these evenly sampled views, the one-shot image-based shape re-

construction task can be formulated as follows. Suppose the observed view is at an

unknown camera position θ sampled from our viewing grid set S of camera posi-

tions. The system must learn to predict the views y(θ′) at position θ′ = θ + δi for

all δi ∈ S. Because of the even sampling over the full viewing sphere, θ′ is itself also

in our original viewpoint set S, so we have already acquired supervision for all views

that our system must learn to predict.

Our training phase may be thought of as representing a setting where a robotic

visual agent learns visual perception from scratch by inspecting a large number of

objects. It can move its camera to arbitrary viewpoints around each object as it does

2omitting object indices throughout to simplify notation.
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Figure 5.2: Architecture of our system. A single view of an object (top left) and the
corresponding camera elevation (bottom left) are processed independently in “image sen-
sor” and “elevation sensor” neural net modules, before fusion in a “fusion module”. The
output code, which embeds the 3D shape of the object aligned to the observed view, is now
processed in a deconvolutional “mental rotation” decoder. The final output is a sequence
of images representing systematically shifted viewpoints relative to the observed view.

so, to acquire its own supervision. At test time, as a first goal, it must be able to

observe only one view and hallucinate the effects of all camera displacements from

that view. Eventually, the goal is to transfer knowledge acquired from training on

this unsupervised reconstruction task to recognition tasks.

5.1.2 Shape reconstruction system architecture

To tackle this one-shot shape reconstruction task, we model the system as a

deep feed-forward neural network. Our network architecture naturally splits into four

132



modular sub-networks with different functions: an elevation sensor module, an image

sensor module, a fusion module, and finally, a mental rotation module. Together,

the elevation sensor, image sensor, and fusion modules process the observation and

proprioceptive camera elevation information to produce a single feature vector that

encodes the full object model. The mental rotation module then acts as a decoder

— it processes this code through a series of learned deconvolutions to produce the

desired image-based shape reconstruction at its output. Figure 5.2 presents this

architecture in detail.

Encoder: First, the image sensor module embeds the observed view through a

series of convolutions and a fully connected layer into a vector. In parallel, infor-

mation about the camera elevation angle is processed through the elevation sensor

module.Note that the object pose is not fully known — while camera elevation can

be determined from gravity cues, there is no way to determine the azimuth.

The outputs of the image and elevation sensor modules are concatenated

and passed through a fusion module which jointly processes the information from

the image and elevation sensors to produce a D = 256-dimensional output “code”

vector, which embeds knowledge of object shape. To sum up, the function of the

encoder is to “lift” a 2D view to a single vector representation of the full 3D object

shape.

Decoder: The output of the fusion module is now processed through another fully

connected layer to increase its dimensionality before reshaping into a sequence of
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small 4 × 4 feature maps. These maps are then iteratively upsampled through a

series of learned deconvolutional layers. The final output of the mental rotation

module is a sequence of MN output maps {ŷi : i = 1, . . .M×N} of same height and

width as the input image. Together these MN maps represent the system’s output

viewgrid.

The complete architecture, together with more detailed specifications, is visu-

alized in Figure 5.2. Our convolutional encoder-decoder [112] neural network archi-

tecture is similar to [159, 183, 193]. The primary focus of our work is, however, very

different. We view one-shot reconstruction as a path to good image representations

that lift 2D views to 3D.

There is one final detail of the pipeline to be dealt with — what is the cor-

respondence between the individual views in the target viewgrid and the system’s

output maps? Recall that at test time, the system will be presented with a single

view of a novel object, from an unknown viewpoint (again elevation known, azimuth

unknown). How then can it know the correct viewpoint coordinates for the viewgrid

it must produce? It instead produces viewgrids aligned with the observed viewpoint

at the azimuthal coordinate origin. Azimuthal rotations of a given viewgrid all form

an equivalence class. In other words, circularly shifting the 7×12 viewgrid in Fig 1

by one column will produce a different, but entirely valid viewgrid representation of

the same airplane object.

To optimize the entire pipeline, we regress to the target viewgrid y, which

is available for each training object. Since our output viewgrids are aligned by

the observed view, we must accordingly shift the target viewgrid before performing

134



regression. This leads to the following minimization objective:

L =
M×N∑
i=1

∥ŷi − y(θ + δi)∥2, (5.1)

where we omit the summation over the training set to keep the notation simple.

Each output map ŷi is thus penalized for deviation from a specific relative shift from

the observed viewpoint θ.3

At test time, the full image-based shape representation is recovered in one

shot, i.e., in a single forward pass through the neural network. This is different from

iterative mental rotation by learning to directly hallucinate only some elemental ro-

tations, and then composing them together, as in [31]. Directly producing the full

viewgrid has several advantages. In particular, it is efficient, and it avoids “drift”

degradation from iterated forward passes. Most critically to our end goal of unsu-

pervised feature learning, this one-shot reconstruction task enforces that the encoder

must capture the full 3D object shape from observing just one 2D view.

At this point, it is appropriate to step back to once again observe connec-

tion between this one-shot reconstruction approach and the egomotion-equivariance

approach of Chapter 4. In both cases, we exploit known camera pose relationships,

i.e., egomotions among images for unsupervised image representation learning. As

pointed out earlier, while Chapter 4 is restricted to pairs of views from precaptured

unlabeled video, the one-shot reconstruction approach of this chapter instead exploits

relationships among all views of an object jointly.

3Since our system has access to elevation, we zero out the elevation coordinate of θ, i.e., the sys-
tem is trained to produce viewgrids that are perfectly aligned with the target viewgrid in elevation.
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Finally, aside from high-level motivational connections, the two approaches

are also technically related. Egomotion-equivariance targets view prediction in the

latent feature space as a proxy task for feature learning. The one-shot reconstruction

task of this chapter also involves view prediction, but in the pixel space, and of all

unobserved views simultaneously. Keeping the prediction task in the pixel space

has the technical advantage of not relying on contrastive formulations using negative

samples, as was necessary in Chapter 4 (and Chapter 3 before that).

5.1.3 Optimization

Models are initialized with parameters drawn from a uniform distribution

between -0.1 and +0.1. The mean squared error loss is then optimized through

standard minibatch stochastic gradient descent (batch size 32, momentum 0.9) via

backpropagation. For our method and all baselines, we optimize the learning rate

hyperparameter on validation data. Training terminates when the loss on the vali-

dation set begins to rise.

5.1.4 Unsupervised features for recognition

While we have thus far described our formulation for training a deep neural

network for image-based shape reconstruction from single views, our hypothesis is

that representations trained in this manner will facilitate high-level visual recognition

tasks. This is motivated by the fact that in order to solve the reconstruction task

effectively, the network must implicitly learn to “lift” 2D views of objects to inferred

3D shapes. A full 3D shape representation has many attractive properties for generic
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visual tasks. For instance, pose invariance is desirable for recognition, but is a hard

problem in 2D views. This becomes trivial in a 3D representation, since different

poses correspond to simple transformations in the 3D space.

Suppose that the visual agent has learned a model as above for image-based

shape reconstruction by inspecting 3D shapes. If it is now presented with new

dataset of class-labeled training images for a categorization task, we may transfer

the 3D knowledge acquired in the one-view reconstruction task to this new task.

Specifically, for each new class-labeled image, we directly represent it in the

feature space by an intermediate layer in our deep neural network trained for recon-

struction. These features are then input to a generic machine learning pipeline, such

as a k-nearest neighbor classifier, that is to be trained for the categorization task.

Recall that the output of the fusion module in Figure 5.2, which is the fc3

feature vector, is trained to encode 3D shape. In our experiments, we test the

usefulness of features from fc3 and its two immediate preceding layers, fc2, and fc1,

for solving object classification and retrieval tasks.

5.2 Experiments

We evaluate our approach for two tasks. First, we assess its performance on

the image-based shape completion task that it is trained on. Next, we evaluate the

strength of the features learned within the model for semantic recognition tasks.
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ModelNet

ShapeNet

Figure 5.3: Examples of 3D object models from ModelNet (top) and ShapeNet (bottom),
the two datasets we use in our experiments. Note: we use grayscale renderings for both
datasets.

5.2.1 Experimental setup

We test our method on two publicly available datasets: ModelNet [176] and

ShapeNet [28]. Both of these datasets provide large numbers of manually generated

3D models, with class labels. For each object model, we render 32×32 grayscale views

from a grid of viewpoints that is evenly sampled over the viewing sphere centered on

the object. Example object models from the two datasets are shown in Figure 5.3.

ModelNet [176] has 3D CAD models that are downloaded from the Web,

and then manually aligned and categorized. ModelNet comes with two standard

subsets: ModelNet-10 and ModelNet-40, with 10 and 40 object classes respectively.

The 40 classes in ModelNet-40 include the 10 classes in ModelNet-10. We use the

10 ModelNet-10 classes as our unseen classes, and the other 30 ModelNet-40 classes
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Dataset→ ModelNet ShapeNet
Methods↓/ Data→ seen classes unseen classes seen classes unseen classes

Camera elevations 0,±30◦,±60◦,±90◦ 0,±30◦,±60◦
Camera azimuths 0,30◦,60◦,…,330◦ 0,45◦,±315◦
View size 32×32 32×32
Categories 30 10 30 25
Training models 5,852 - 11,532 -
Validation models 312 - 1,681 -
Testing models 1,248 726 3,569 641

Table 5.1: Dataset statistics

as seen classes. We use the standard train-test split, and set aside 20% of seen class

test set models as validation data. Table 5.1 shows more details.

ShapeNet [28] contains a large number of models organized into semantic

categories under the WordNet taxonomy. All models are consistently aligned to fixed

canonical viewpoints. We use the standard ShapeNetCore-v2 subset which contains

models from 55 diverse categories. Of these, we select the 30 largest categories as

seen categories, and the remaining 25 categories are unseen. We use the standard

train-test split. Further, since different categories have highly varying numbers of

object instances, we limit each category in our seen class training set to 500 models

at most, to prevent the training from being dominated by models of a small number

of very common categories. Table 5.1 shows more details.

5.2.2 Image-based shape reconstruction

First, we train and test our method on the one-shot image-based shape recon-
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struction task. For both datasets, the system is trained on the seen classes training

set. To set the learning rate and determine termination criteria during deep network

training, we employ the seen classes validation set. The trained model is subsequently

tested on both seen and unseen class test sets.

To quantitatively evaluate our method, we measure the per-pixel mean squared

deviation of the viewgrid produced by our method from the ground truth viewgrid.

We compare our method on both seen and unseen classes, against several baselines:

• Avg view: This baseline simply predicts, at each viewpoint in the viewgrid,

the average of all views observed in the training set over all viewpoints.

• Avg viewgrid: Both ModelNet and ShapeNet have consistently aligned mod-

els, so there are significant biases that can be exploited by a method that has

access to this canonical alignment information. This baseline aims to exploit

this bias by predicting, at each viewpoint in the viewgrid, the average of all

views observed in the training set at that viewpoint. Note that our system does

not actually have access to this alignment information, so it cannot exploit this

bias.

• GT category avg view: This baseline represents a model that has perfectly

learned classification. Given an arbitrary object from some ground truth cate-

gory, this baseline predicts, at each viewpoint, the average of all views observed

in the training set for that category.

• GT category avg viewgrid: This baseline is the same as GT category avg

view, but has knowledge of canonical alignments too, so it produces the average
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of views observed at each viewpoint over all models in that category in the

training set.

• Ours w. canonical alignment: Our method does not see canonical viewgrid

alignments during training, since it is trained to produce views at various rela-

tive displacements from the observed view, i.e., its target is a viewgrid that has

the current view at its origin. This is realistic, since such knowledge is unlikely

to be available to an agent observing objects in the real world. However, for

the sake of evaluation, we also evaluate a baseline that has access to canonical

viewpoints. Concretely, at training time, this baseline is trained to produce a

canonically aligned viewgrid from observing one view. Rather than optimizing

the objective in Eq (5.1), this baseline optimizes:

L =
M×N∑
i=1

(ŷi − y(δi))
2, (5.2)

so that each output map ŷi of the system is now assigned to a specific coordinate

in the canonical viewgrid axes, rather than a specific relative shift from the

observed viewpoint θ, as in Eq (5.1).

Table 5.2 shows the mean squared error results. “Avg viewgrid” and “GT

category avg viewgrid” improve by large margins over “Avg view” and “GT category

avg view” respectively. This shows that viewgrid alignment biases can be useful for

reconstruction in ModelNet and ShapeNet.

Despite this, our approach not only outperforms these methods by large mar-

gins but even outperforms its variant “Ours w. canonical alignment” that does use
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Dataset→ ModelNet ShapeNet
Methods↓/ Data→ seen classes unseen classes seen classes unseen classes

MSE×1000 MSE×1000 MSE×1000 MSE×1000

Avg view 13.514 15.956 14.793 16.394
Avg viewgrid 12.954 15.725 14.334 15.942
GT category avg view 11.006 - 12.279 -
GT category avg viewgrid 8.891 - 9.374 -
Ours w. canonical alignment 4.689 10.440 5.879 9.021
Ours 3.718 7.005 4.656 6.811

Table 5.2: Quantitative results for one-shot image-based shape completion. Results are
reported in MSE on images normalized to lie in [0, 1]. Lower is better. Per-category results
are shown in Figure 5.4 and Figure 5.5. “GT category” methods do not work on unseen
classes since they rely on knowledge of the category, so those entries are left blank.

alignment biases in the data. The margin is especially large on unseen class subsets

of both ModelNet and ShapeNet, where using alignment biases of seen class cat-

egories strongly hurts the performance of “Ours w. canonical alignment”. Why is

“Ours w. canonical alignment” weaker? Recall that it is trained to produce canon-

ically aligned viewgrids from observing one view, but like our method, it also does

not have access to the absolute azimuth of the observed view. If “Ours w. canonical

alignment” were learning to do something simple like produce the average viewgrid

for an inferred category (similar to “GT category avg viewgrid”), then targeting

canonically aligned viewgrids would be a clear advantage.4 But to exploit instance-

specific details from the observed view effectively, it must perform the additional

step of inferring the position of the observed view in the canonical viewgrid, which

can be difficult. Even if it infers shape correctly, it may struggle to produce correct

canonically aligned viewgrids. It is therefore easier and more natural to represent

4assuming seen categories. For unseen categories, such a strategy is infeasible.
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shape with respect to the observed viewpoint, as in “Ours”.

Figure 5.4 and 5.5 show errors for each seen and unseen category in sorted

order. While the distribution of errors among unseen classes is shifted towards higher

errors from the seen classes, there is a significant overlap, i.e., many unseen classes

have lower reconstruction errors than many seen classes, indicating significant gen-

eralization from seen to unseen classes.
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ModelNet category-wise MSE

Figure 5.4: ModelNet seen (top) and unseen (bottom) class reconstruction performance in
MSE per class (lower is better). Seen classes are not evenly represented in the training set, so
the number of training samples per class is indicated in parentheses next to the corresponding
class name.
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ShapeNet category-wise MSE

Figure 5.5: ShapeNet seen (top) and unseen (bottom) class reconstruction performance in
MSE per class (lower is better). Seen classes are not evenly represented in the training set,
so number of training samples per class are indicated in parentheses next to the class names.
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Figure 5.6: One-shot image-based shape reconstructions from single view. In each panel,
ground truth viewgrids are shown at the top, the observed view is marked with a red box, and
our method’s reconstructions are shown at the bottom. Top two rows show ModelNet results,
and bottom row shows ShapeNet results. (Best seen in pdf at high resolution.) In (row 1,
panel 1) from ModelNet and (row 3, panel 4) from ShapeNet, our method exhibits the ability
to infer shape from shading cues for simple objects. In (row 1, panel 3), the system manages
to reconstruct an object shape from what appears to be an impossible viewpoint to fully infer
the shape, indicating that it effectively exploits the semantic structure in ModelNet to make
educated guesses. In (row 2, panel 2), the system observes a very ambiguous viewpoint that
could be any one of four different views at the same azimuth. In response to this ambiguity, it
attempts to play it safe to minimize MSE loss by averaging over possible outcomes, producing
blurry views.
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Figure 5.6 shows some example viewgrids generated by our method. In (row

1, panel 1) from ModelNet and (row 3, panel 4) from ShapeNet, our method exhibits

the ability to infer shape from shading cues for simple objects. In (row 1, panel

3), the system manages to reconstruct an object shape from what appears to be an

impossible viewpoint to fully infer the shape, indicating that it effectively exploits

the semantic structure in ModelNet to make educated guesses. In (row 2, panel

2), the system observes a very ambiguous viewpoint that could be any one of four

different views at the same azimuth. In response to this ambiguity, it attempts to

play it safe to minimize MSE loss by averaging over possible outcomes, producing

blurry views.

Overall, these results establish that our approach successfully learns a uni-

fied category-agnostic one-shot shape reconstruction model that handles not only a

large number of generic categories that are represented in its training set, but even

completely novel unseen categories.

Influence of observed view position on viewgrid reconstruction error

We now break down the errors summarized in Table 5.2 on the basis of the

dependence of those errors on the observed view. Specifically, in both ModelNet and

ShapeNet, models are manually aligned to some canonical starting positions (which

are deliberately withheld from our approach). This means that we can meaning-

fully attempt to understand which positions in the viewgrid, when observed, led to

higher or lower reconstruction errors for the full viewgrid for each category. In other

words, which views are more or less informative to our one-shot image-based shape
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reconstruction approach?

Figure 5.7 show results for a few ModelNet seen classes. For each class, a

heatmap of mean-square errors is overlaid over the average viewgrid for that class.

The first map corresponds to all 30 ModelNet seen classes, and the accompanying

colorbar illustrates how lower MSEs correspond to darker, colder, blue colors, and

higher MSEs to lighter, warmer, yellow colors.

Studying these heatmaps reveals some intuitive and interesting trends. Across

all datasets, perfectly aligned viewing positions from where only a single or a small

number of faces of an object are visible have yellowish, lighter highlights indicating

high reconstruction errors conditioned on those views, i.e., lower informativeness. See

for instance, the “bench” heatmap in Figure 5.7, which has characteristic yellowish

horizontal and vertical stripes running across the viewgrid corresponding to eleva-

tions and azimuths that only reveal a small number of faces of the object. Top and

bottom views, sampled at -90◦and +90◦in ModelNet, are consistently uninformative,

since very different shapes can have very similar overhead projections. Shapes that

have narrow linear projections along some directions tend to present very little in-

formation from the corresponding views. For example, see the horizontal view of the

airplane and the keyboard (middle row in the corresponding viewgrids, corresponding

to zero azimuth) in Figure 5.7.

Overall, these trends largely agree with our intuitive notions of which views

are most informative for 3D understanding, and serve as evidence that our method

learns to perform reconstruction by observing meaningful and appropriate cues.
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Figure 5.7: ModelNet reconstruction MSE for a few sample seen classes, conditioned on
observed view (best observed in pdf at high resolution). See Section 5.2.2.

5.2.3 Unsupervised feature evaluation

Our system is trained end-to-end from scratch for the task of predicting all

unobserved viewpoints given only one view of an object. We now test whether it
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learns visual representations useful for recognition in the process.

5.2.3.1 Nearest neighbor classification

First, as described in Section 5.1.4, we extract features from various layers

in the network (fc1, fc2, fc3 in Figure 5.2) and use them as inputs in a k-nearest

neighbor classifier trained for categorization of individual object views. We run this

experiment on both seen and unseen class subsets on both ModelNet and ShapeNet.

In each case, we use 1000 samples per class in the training set, and set k = 5.

We compare our features against a variety of baselines:

• Pixels: For this baseline the 32× 32 image is vectorized and used directly as

a feature vector.

• Random weights: A network with identical architecture to ours and initial-

ized with the same scheme is used to extract features with no training.

• DrLIM [64]: This is a commonly used “slow feature analysis”-based unsu-

pervised feature learning approach, which we also used as a baseline for work

in Chapters 3 and 4. During training, DrLIM attempts to learn an invariant

feature space by mapping features of views of the same training object close to

each other, and pushing features of views of different training objects far apart

from one another.

• Autoencoder [14, 72, 112]: A network is trained to observe an input view

from an arbitrary viewpoint and produce exactly that same view as its output
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(compared to our method which produces the full viewgrid, including views

from other viewpoints too). A long line of work has attempted to learn un-

supervised visual representations through autoencoders [14, 72, 112]. For this

method, we use an architecture identical to ours except at the very last decon-

volutional layer, where, rather than producing N×M output maps, it predicts

just one map corresponding to the observed view itself.

• Egomotion [3]: Like our method, this baseline also exploits camera motion

to learn unsupervised representations. While our method is trained on the

task of predicting all rotated views given a starting view, this method trains

on the task of predicting the camera rotation between a given pair of images.

In our implementation of this baseline, we trained a model to predict eight

classes of rotations, corresponding to the immediately adjacent viewpoints in

the viewgrid for a given view (3×3 neighborhood).

• Ours w. canonical alignment: Also used in the previous experiment, this

baseline is a variant of our method that is trained to produce canonically aligned

viewgrids at training time, rather than views that are relatively displaced from

the observed view.

All models are trained with identical architectures to ours until the fc3 layer,

to allow fair comparison. Figure 5.8 shows detailed specifications of network archi-

tectures used in our method and baselines.

Recall that our models are trained to observe camera elevations together with

views, as shown in Figure 5.2. While this is plausible in a real world setting where
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an agent may know its camera elevation angle from gravity cues, for fair comparison

with our baselines, we do not use location inputs when evaluating our unsupervised

features. Instead, we feed in camera elevation 0◦ to the location module for all views.

Table 5.3 and Table 5.4 show the results for ModelNet and ShapeNet re-

spectively. Trends across fc1, fc2, and fc3 are all very similar, and all three layers’

representations appear to be approximately equally discriminative for this task for

each method. Among the baselines, all unsupervised learning methods outperform

“Pixels” and “Random weights”, as expected. The two strongest baselines are “Ego-

motion” [3] and “DrLIM” [64]. Recall that “Egomotion” is especially relevant to our

approach as it also has access to relative camera motion information during training.

However, our approach exploits this information much more effectively. “Ours” and

“Ours w. canonical alignment” both strongly outperform all prior approaches, and

of the two, “Ours” marginally outperforms “Ours w. canonical alignment”.

As seen from our results, “Autoencoder” features perform very poorly. In-

terestingly, our method — which can be thought of as a generalized autoencoder in

3D that maps one view to a full image-based shape reconstruction — learns much

stronger representations. This suggests that our system benefits strongly from the

incentive to learn not just an identity mapping, as in the autoencoder, but to acquire

3D understanding.

Comparison against ImageNet-pretrained features: While our baselines in

the above experiments are mainly unsupervised approaches, it is interesting to ask:
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how do our features compare against standard image representations learned with

supervision? We use VGG features [149] trained on ImageNet. Note that to allow

this comparison, we use higher-resolution ModelNet views (224 × 224) compared

to our inputs (32 × 32). So, not only are these features learned with one million

labeled images as supervision, they also enjoy the advantage of higher-resolution

data. With these advantages, VGG fc6 features yield 60.3% accuracy for nearest

neighbor classification on ModelNet-10. Comparing against the results shown in

Table 5.3, these supervised features are better than our baselines, but significantly

weaker than our approach. We believe that this is due in large part to the domain

gap between ImageNet images and ModelNet views.

153



Network architecture specifications
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Figure 5.8: Architecture of our system and various baselines (best observed in pdf at high
resolution).
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Varying training set size Nearest neighbor classifiers can be sensitive to the

size and specific constitution of the training set. We test the stability of the results

in Table 5.3 and 5.4. To do this, we sample multiple training sets of varying sizes

ranging from 50 to 1000 samples per class (50, 100, 200, 300, …1000), and report

accuracies for k-nearest neighbor classification (k=5) with each training set.

These are presented for both seen and unseen class subsets of both ModelNet

and ShapeNet, in Figure 5.9. We observe that curves corresponding to different

methods rarely overlap as the training set is varied, establishing the stability of

the results in Table 5.3 and 5.4. In particular, our one-shot reconstruction-based

approaches continue to produce the most discriminative features at all training set

sizes. fc1, fc2, and fc3 trends all continue to be similar.
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ModelNet seen classes: k-NN classification results with varying training set sizes
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ModelNet unseen classes: k-NN classification results with varying training set sizes
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ShapeNet seen classes: k-NN classification results with varying training set sizes
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ShapeNet unseen classes: k-NN classification results with varying training set sizes
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Figure 5.9: ModelNet and ShapeNet seen and unseen classes k-NN classification, varying
training set size.
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5.2.3.2 Object category retrieval

Aside from these nearest neighbor classification experiments, we also perform

object category retrieval experiments to test the usefulness of our features for a

different high-level task. A retrieval system is presented with an individual object

view as a query, and the task is to fetch the closest views from the training set in

the learned feature space. We compare against the same baselines as for the nearest

neighbor experiments. For this task, we present a query image from the test set, and

retrieve the closest images in the training set, as measured by Euclidean distance in

the learned feature space. For representations that encode semantics, these closest

images would belong to the same category as the query, so we evaluate the various

representations on their ability to retrieve images from the same class as the query.5

We measure top-1, top-5, and top-20 accuracies. We separately test fc1,

fc2, and fc3 features from our method and the baselines, as in the classification

experiments in Sec 4.3. Results are shown in Table 5.5, for ModelNet and ShapeNet

for both seen and unseen classes.

Trends are very similar to those observed for classification. Ours and Ours

w. canonical alignment once again easily outperform all baselines. Performance for

all methods remains roughly similar at all three feature layers, except DrLIM [64].

DrLIM is strongest at fc1, and weakens at fc2 and still further at fc3, indicating that

the invariance enforced by DrLIM at fc3 (See Figure 5.8) leads to loss of discrimina-

tiveness.

5For the unseen class experiments, images are retrieved from the corresponding unseen class
training set, disjoint from the test set from which queries were drawn.
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An interesting trend related to generalization to unseen classes is observed

most clearly in the ShapeNet experiments, where the number of classes among seen

and unseen classes is comparable (30 and 25 respectively), so that the numbers are

roughly comparable among seen and unseen class experiments. Note how features

from the Autoencoder baseline have much lower accuracies on unseen classes than on

seen classes, demonstrating lack of generalization. Our one-shot reconstruction-based

approaches have very similar accuracies on seen and unseen classes, thus establishing

that they learn generalizable features. DrLIM [64] and Egomotion [3] accuracies are

also comparable for seen and unseen classes, but significantly lower than our method.
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ModelNet retrieval results
Datasets→ ModelNet-seen classes (30 cls)
Layers→ fc1 fc2 fc3
Methods↓/Metrics→ top-1 top-5 top-20 top-1 top-5 top-20 top-1 top-5 top-20

Pixels 55.2 46.9 36.6 55.2 46.9 36.6 55.2 46.9 36.6
Random weights 51.6 44.2 34.9 50.0 42.9 34.2 50.4 42.8 34.0
DrLIM [64] 58.8 51.1 41.7 56.7 48.8 39.7 53.8 46.3 37.1
Autoencoder [14, 72, 112] 54.8 46.5 37.5 55.1 46.7 37.5 55.5 47.3 37.7
Egomotion [3] 56.6 48.8 39.6 57.6 49.6 39.9 57.4 49.6 39.7
Ours w. canonical alignment 64.3 57.9 49.5 64.4 58.2 50.2 63.5 57.7 50.0
Ours 65.6 59.2 49.7 64.9 58.3 49.5 65.5 58.4 49.7

Datasets→ ModelNet-unseen classes (10 cls)
Layers→ fc1 fc2 fc3
Methods↓/Metrics→ top-1 top-5 top-20 top-1 top-5 top-20 top-1 top-5 top-20

Pixels 60.3 53.9 44.5 60.3 53.9 44.5 60.3 53.9 44.5
Random weights 60.0 52.6 44.3 57.9 51.7 43.5 57.9 51.1 43.0
DrLIM [64] 64.7 58.5 49.5 63.9 56.8 47.6 60.7 54.0 44.8
Autoencoder [14, 72, 112] 60.5 54.7 45.5 60.0 54.3 45.5 60.6 54.0 45.1
Egomotion [3] 63.4 57.4 48.2 64.2 57.3 48.2 63.8 57.4 48.3
Ours w. canonical alignment 69.0 63.9 56.3 68.8 63.8 56.5 68.4 63.3 56.3
Ours 69.8 64.7 55.9 69.2 63.9 55.5 68.5 64.0 55.2

ShapeNet retrieval results
Datasets→ ShapeNet-seen classes (30 cls)
Layers→ fc1 fc2 fc3
Methods↓/Metrics→ top-1 top-5 top-20 top-1 top-5 top-20 top-1 top-5 top-20

Pixels 42.8 36.5 28.6 42.8 36.5 28.6 42.8 36.5 28.6
Random weights 38.6 32.9 26.4 37.5 31.9 25.8 36.4 32.0 25.7
DrLIM [64] 47.1 40.2 31.3 45.9 39.6 30.2 43.3 37.1 28.9
Autoencoder [14, 72, 112] 42.5 36.8 29.6 42.6 37.1 29.8 42.3 37.4 29.5
Egomotion [3] 48.9 42.1 33.3 47.5 40.6 32.1 47.2 40.1 31.7
Ours w. canonical alignment 56.1 50.8 44.0 57.3 51.6 45.2 56.9 51.4 43.6
Ours 56.0 50.2 42.4 55.8 50.5 42.8 55.3 49.6 42.2

Datasets→ ShapeNet-unseen classes (25 cls)
Layers→ fc1 fc2 fc3
Methods↓/Metrics→ top-1 top-5 top-20 top-1 top-5 top-20 top-1 top-5 top-20

Pixels 44.6 40.4 33.6 44.6 40.4 33.6 44.6 40.4 33.6
Random weights 26.6 20.8 15.4 25.9 21.0 15.3 25.7 20.4 15.2
DrLIM [64] 48.1 41.5 36.1 48.3 41.8 34.7 44.9 41.1 34.1
Autoencoder [14, 72, 112] 30.7 23.9 17.0 31.1 23.9 17.3 30.5 23.9 17.2
Egomotion [3] 49.9 43.6 37.1 49.4 42.8 36.3 48.7 42.5 36.1
Ours w. canonical alignment 53.7 49.1 42.9 53.4 49.6 43.5 52.8 49.1 43.6
Ours 54.9 49.3 42.7 55.1 49.5 42.7 54.7 49.2 42.4

Table 5.5: Above: Retrieval experiments on ModelNet (1000 training samples per class).
Seen class (top) and unseen class (bottom) results. Results reported as top-1, top-5 and top-
20 accuracies. (Higher is better.) Below:.Retrieval experiments on ShapeNet (1000 training
samples per class). Seen class (top) and unseen class (top) results. Results reported as top-1,
top-5 and top-20 accuracies. (Higher is better.)
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5.2.3.3 Comparison against our SSFA and egomotion-equivariant fea-
tures

The one-shot image-based shape reconstruction method of this chapter is the

third unsupervised feature learning approach we have proposed in this thesis. We now

compare this method against the slow and steady features (“SSFA”) of Chapter 3 and

the egomotion-equivariant features (“Ego-equiv”) of Chapter 4. To avoid confusion,

since all three methods are ours, in this section, we will refer to the method of this

chapter as “One-shot”.

We perform the comparison on ModelNet-30. We first train all three methods

on unsupervised data from ModelNet-30 training images. The second-order temporal

coherence “SSFA” method of Chapter 3 exploits triplets of consecutive frames in

video. We construct such triplets from ModelNet-30 training data viewgrids by

starting at a random view (first view), selecting one of eight possible motions to an

adjacent view (second view) and then repeating that same motion (third view). The

“Ego-equiv” method of Chapter 4 uses camera egomotion cluster membership labels

associated with pairs of images (we use the discrete egomotion-equivariance variant).

For “One-shot”, we use the model trained for the experiments in previous

sections. For “SSFA” and “Ego-equiv”, we use identical architectures to “One-shot”,

up to fc3. After training, we evaluate the learned features by constructing a nearest

neighbor classifier in the fc3 feature space learned by each method, as in Table 5.3.

The accuracies are reported in Table 5.6. Comparing against Table 5.3, all

three methods perform well in comparison to standard unsupervised feature learning
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Methods↓ accuracy
SSFA (Chapter 3) 62.3%
Ego-equiv (Chapter 4) 70.0%
One-shot (this chapter) 64.7%

Table 5.6: ModelNet-30 nearest neighbor classification accuracies using fc3 features, com-
paring the methods of Chapters 3 and Chapter 4 against the one-shot approach of this
chapter.

baselines such as DrLIM [64], and Autoencoder [14, 72, 112]. First, the second-order

temporal coherence approach of SSFA strongly outperforms the first-order approach

of DrLIM (62.3 vs 57.4). Second, exploiting egomotion-equivariance in our Ego-

equiv formulation yields a substantial further gain (62.3 to 70.0). Finally, One-shot

is significantly better than SSFA, but falls well short of Ego-equiv (64.28 vs 70.0).

This is interesting as it points to the advantage of the feature-space formu-

lation of Ego-equiv over the pixel-space formulation of this chapter. Specifically,

optimizing the fidelity of a pixel-space reconstruction as in this chapter could dis-

courage the development of invariances in the learned feature space as the network

is forced to preserve all the information in its input. Further, the one-shot recon-

struction loss of this chapter relies on Euclidean distance, which is a poor distance

metric for the pixel space.

We therefore expect that a one-shot reconstruction formulation that relies on

learned losses such as a GAN might succeed in learning better features. A formulation

that optimizes for viewgrid reconstruction directly in the learned feature space rather

than in the pixel space (similar to the feature-space “next view predictability” idea

of Ego-equiv) might conceivably learn even better features by entirely avoiding the

162



drawbacks associated with pixel space outputs.

Pixel space prediction problems also enjoy some advantages over feature space

problems. In particular, feature space prediction problems are typically formulated

as regression to moving targets since the prediction targets are within the feature

space that is currently being learned. Such formulations carry the risk that the net-

work may learn to simplify the target to minimize the loss, rendering the learned

feature space uninteresting. For instance, our feature space prediction losses of both

Chapter 3 and Chapter 4 require contrastive losses and careful training hyperparam-

eter selection to avoid uninteresting solutions. In contrast, for prediction problems in

the pixel space, the target is fixed and losses can be much simpler regression losses as

demonstrated in this chapter, so that optimization is straightforward and tractable.

5.3 Conclusion

In this chapter, we proposed an approach to mentally rotate a view of any

object to arbitrary viewpoints, recovering a full image-based shape reconstruction

in one shot, from a single view. Through experiments on two recent, widely used

and publicly available shape datasets, we have validated that our approach learns

a single model that can produce good shape reconstructions for a variety of objects

from across many categories including categories that are not seen during training

time.

Further, our approach is well-suited to learn unsupervised image features use-

ful for recognition that can represent 3D shape information from observing just a

single 2D view, since it is trained on the task of producing a full viewgrid in one shot.
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Through experimental comparison against various unsupervised learning techniques,

we have validated that our approach learns generic visual representations that trans-

fer well to semantic tasks like object recognition and image retrieval, outperforming

representative state of the art approaches. Our results establish the promise of ex-

plicitly targeting 3D understanding as a means of learning generically useful visual

representations.

This work points to some interesting directions for follow-up research. Firstly,

as pointed out above in Section 5.2.3.3, mean squared error (MSE) is a poor measure

of inter-image distance— we use this both in the objective to train our approach to

reconstruct viewgrids, and also to evaluate at test time how good our output re-

constructions are. There is scope for improvement in both these applications: (i)

For the training objective, it has recently become common practice to replace MSE

and other regression-style losses (for pixel-domain output tasks like reconstruction)

with a learned “true/fake” generative adversarial networks(GAN)-style loss func-

tion [61, 115, 127]. Whereas the MSE loss induces the network to average over its

beliefs, the GAN loss is unforgiving of unrealistic-looking outputs. Consequently, we

would expect the reconstruction results to improve significantly with such learned

losses, but it is unclear whether there would be a corresponding improvement in the

quality of the learned representations. (ii) While reconstruction performance is not

our primary goal in this work, our evaluation of the output reconstructions using

MSE distances from ground truth in the pixel space can be improved. In particular,

it may be interesting to measure distances in a learned feature space instead, to

judge whether high-level semantic properties are appropriately reconstructed.
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Secondly, it would be interesting to recover 3D models using geometric meth-

ods from the reconstructed viewgrid as in [159], and further, to use the 3D recon-

structions in turn to refine the viewgrid reconstructions.

Thirdly, we have compared our features against a previously proposed egomo-

tion approach in this chapter [3]. However, in Chapter 4, we learned egomotion-based

features that performed better than features learned using the concurrently proposed

method of [3]. It would therefore be instructive to directly compare the one-shot re-

construction approach of this chapter against the egomotion-equivariance approach

of Chapter 4.

Before moving to the next chapter, it is appropriate at this stage to step back

and reflect on the progress in the last few chapters. In Chapter 3, we showed how

higher-order temporal coherence in natural video can be exploited for unsupervised

learning. In Chapter 4, we showed that agents can exploit proprioceptive egomotion

knowledge as additional metadata when learning representations of the visual world

from precaptured video. And finally, in this chapter, we showed how, when we re-

move the restriction of precaptured video and assume access to any and all possible

observations of an object at training time, an unsupervised one-shot shape recon-

struction task enables visual learning. All of this work until now has been focused

on learning a feature mapping for images. Going forward, in Chapters 6 and 7, we

will be interested in learning exploratory behaviors or policies for embodied agents

that will dictate both the data they are exposed to during training, and the data

they acquire in testing environments.
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Chapter 6

End-to-end active visual category recognition

1In Chapters 4 and 5, we explored the idea that motion enables improved vi-

sual learning. However, the uses of motion in vision extend far beyond proprioceptive

knowledge as a supervisory signal during learning; for embodied agents, motion plays

a key role in visual inference. On the one hand, such agents may face the problem

of unconstrained (e.g. ill-framed or poorly focused) visual input which is difficult to

recognize effectively, one frame at a time. However, like a human might walk over

to a window to better judge the weather, embodied agents have the opportunity to

move within or act upon their environments to improve their performance. Indeed,

as Gibson would say [55], the complete animal visual system consists not only of the

eyes, but also the head to which those eyes are attached, and further still, the body

to which that head is attached.

In the introductory chapter of this dissertation, I motivated and introduced

the key concepts of this work in detail in Section 1.4. To recap, we now step into an

“active vision” setting, where the agent has the ability to voluntarily and intelligently

1The work in this chapter was supervised by Prof. Kristen Grauman and originally published
in: “Look-ahead before you leap: active vision by forecasting the effects of motion”. Dinesh Ja-
yaraman and Kristen Grauman. In Proceedings of the European Conference on Computer Vision,
Amsterdam, the Netherlands, October 2016.
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Selected new viewStarting view

mug / bowl / frying pan? mug / bowl / frying pan?

Figure 6.1: A schematic illustrating the active categorization of two objects. A moving
vision system may not recognize objects after just one view, but may intelligently choose
to acquire new views to disambiguate amongst its competing hypotheses.

acquire new information at test time. This setting is illustrated in Fig 6.1. In contrast,

recent recognition research has almost exclusively focused on static image recognition

tasks, where the system takes a single snapshot as input. The implicit assumption

is that the input snapshot is already appropriately captured. This neglects a key

challenge for embodied visual agents: intelligence is required to obtain proper inputs

in the first place.

There are three technical challenges for an active vision system—control, per-

view recognition, and evidence fusion. I contend that these are closely intertwined,

and must be tailored to work together. In particular, as the first contribution of

this component of my thesis, I develop an approach to learn all three modules of

an active vision system simultaneously and end-to-end, in a deep recurrent neural

network. Given an initial view and a set of possible agent motions, our approach

learns how to move in the 3D environment to produce accurate categorization results.

Additionally, I hypothesize that motion planning for active vision requires an

agent to internally “look before it leaps”. That is, it ought to simultaneously reason

about the effect of its motions on future inputs. To demonstrate this, as a second
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contribution of this active recognition component of my dissertation, we jointly train

our active vision system to have the ability to predict how its internal representation

of its environment will evolve conditioned on its choice of motion. This idea builds

upon the egomotion-conditioned view prediction idea of Chapter 4, but now in the

context of reinforcement learning for motion policies.

Going forward, I describe our approach in Section 6.1, and present results

that empirically validate its performance in Section 6.2.

6.1 Approach

First, we define the setting and data flow for active recognition (Section 6.1.1).

Then we define our basic system architecture (Section 6.1.2). Finally, we describe

our look-ahead module (Section 6.1.3).

6.1.1 Problem setup

We first describe our active vision setting at test time, using a 3D object

category recognition scenario as a running example. Our results consider both object

and scene category recognition tasks.

In the 3D object setting, the active recognition system can issue motor com-

mands to move a camera within a viewing sphere around the 3D object X of interest.

Each point on this viewing sphere is indexed by a corresponding 2D camera pose vec-

tor p indexing elevation and azimuth. An agent’s manipulations of a 3D object in

front of it can now be represented as a trajectory over the elevation and azimuth.
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The system is allowed T timesteps to recognize every object instance X. At

every timestep t = 1, 2, . . . T :

• The system issues a motor command mt, e.g., “increase camera elevation by

20◦, azimuth by 10◦”, from a set M of available camera motions. In our

experiments, M is a discrete set consisting of small camera motions to points

on an elevation-azimuth grid centered at the previous camera pose pt−1. At

time t = 1, the “previous” camera pose p0 is set to some random unknown

vector, corresponding to the agent initializing its recognition episode at some

arbitrary position with respect to the object.

• Next, the system is presented a new 2D view xt = P (X,pt) of X captured from

the new camera pose pt = pt−1 + mt, where P (., .) is a projection function.

This new evidence is now available to the system while selecting its next action

mt+1.

At the final timestep t = T , the system must additionally predict a category label ŷ

for X, e.g., the object category it believes is most probable. In our implementation,

the number of timesteps T is fixed, and all valid motor commands have uniform

cost. The system is evaluated only on the accuracy of its prediction ŷ. However, the

framework generalizes to the case of variable-length episodes.

6.1.2 Active recognition system architecture

Our basic active recognition system is modeled on the recurrent architecture

first proposed in [117] for visual attention. Our system is composed of four basic mod-

169



ules: actor, sensor, aggregator and classifier, with weights Wa,Ws,Wr,Wc

respectively. At each step t, actor issues a motor command mt, which updates

the camera pose vector to pt = pt−1 + mt. Next, a 2D image xt captured from

this pose is fed into sensor together with the motor command mt. sensor pro-

duces a view-specific feature vector st = sensor(xt,mt), which is then fed into

aggregator to produce aggregate feature vector at = aggregator(s1, . . . , st).

The cycle is completed when, at the next step t+ 1, actor processes the aggregate

feature from the previous timestep to issue mt+1 = actor(at). Finally, after T

steps, the category label beliefs are predicted as ŷ(W,X) = classifier(at), where

W = [Wa,Ws,Wr,Wc] is the vector of all learnable weights in the network, and for

a C-class classification problem, ŷ is a C-dimensional multinomial probability den-

sity function representing the likelihoods of the 3D object X belonging to each of

the C classes. See Figure 6.2 (top) for a schematic showing how the modules are

connected. Procedure block 1 lists the steps involved in the forward pass during

training/inference.

In our setup, aggregator is a recurrent neural network, classifier is a

simple fully-connected hidden layer followed by a log-softmax and sensor separately

processes the view xt and the motor signal mt in disjoint neural network pipelines be-

fore merging them through more layers of processing to produce the per-instance view

feature st = sensor(xt,mt). actor has a non-standard neural net architecture in-

volving stochastic units: at each timestep, it internally produces an |M|-dimensional

multinomial density function π(mt) over all candidate camera motions in M, from

which it samples one motion. For more details on the internal architectures of these
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Figure 6.2: A schematic of our system architecture depicting the interaction between
actor, sensor and aggregator and classifier modules, unrolled over timesteps. This
schematic depicts an unrolled version of our network architecture, where each module is
repeated once for each timestep. At training time, lookahead acts across two timesteps,
learning to predict the evolution of the output of aggregator conditional on the selected
motion. See Section 6.1.2 for details.

modules, see Figure 6.3 (bottom).
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... ...
time t time t+1

Figure 6.3: (Top) A high-level schematic of our system architecture depicting the inter-
action between actor, sensor and aggregator and classifier modules, unrolled over
timesteps. Information flows from left to right. At training time, the additional lookahead
acts across two timesteps, learning to predict the evolution of the aggregate feature at into
at+1 conditional on the selected motion mt. (Bottom) A detailed schematic diagram showing
the architectures of and connections amongst our active vision system modules. The small
schematic at the top presents a succinct bird’s-eye view of information flow within as well as
between time steps, and the large schematic below zooms into the operations at some given
time step t in more detail. Processing proceeds from left to right, with arrows to disambiguate
where necessary. In the bottom schematic, “Linear(a,b)” denotes fully connected layers which
transform a-length vector inputs to b-length vector outputs. The “Clamp” operator in AC-
TOR is a squashing function that sets both upper and lower limits on its inputs. The red
“Sample” layer in ACTOR takes the weights of a multinomial pdf as input and samples
stochastically from the distribution to produce its output (gradients cannot be backpropa-
gated through this layer; it is trained through REINFORCE [172] instead of SGD from the
classification loss). “Delay” layers store inputs internally for one time-step and output them
at the next time-step. Other layer names in the schematic are self-explanatory. Input and
output sizes of some layers are marked in red to denote that these are parameters derived
from dataset-related choices — these are set for our SUN360 experiments in this schematic,
and explanations are shown below each module. Note that aggregator is a recurrent neu-
ral network, and lookahead may be considered a “predictive” autoencoder, that reduces
its input features (appended together with the current agent motion mt) to a more compact
representation in its bottleneck layer before producing its prediction of its next time-step
input.
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Procedure 1 Forward propagation (training/inference time)
Input: 3D instance X, together with:

• projection function P (X,p) denoting the view captured from camera pose
p

• proprioception function f(p) of the current position, which is known to the
active vision system, e.g., wrist position, or gravity direction.

Output: ŷ, the predicted label for instance X.

1: procedure ForwardOneStep(t,at−1,pt−1, ât) ▷ 1 forward propagation step
2: mt ← actor(at−1, f(pt−1)) ▷ motor command sampled from C to adjust

camera
3: pt ← pt−1 +mt ▷ camera pose update
4: xt ← P (X,pt) ▷ capture new view
5: st ← sensor(xt,mt) ▷ per-view processing
6: at ← aggregator(at−1, st) ▷ evidence fusion
7: if t > 1 then ▷ relevant only at training time
8: ât ← lookahead(at−1,mt−1, f(pt)) ▷ look-ahead prediction of current

time-step feature
9: look-ahead error ζt ← d(at, ât)

10: return at,pt, ζt

11: a0 ← 0 ▷ initialization
12: p0 ← random position
13: for t =1,2,…T do ▷ move, observe, aggregate in a loop
14: at,pt, ζt ← ForwardOneStep(t,at,pt−1)

15: ŷ ← classifier(at) ▷ final class prediction
16: return ŷ

Training At training time, the network weights W are trained jointly to maximize

classifier accuracy at time T . Following [117], training W follows a hybrid procedure

involving both standard backpropagation and “connectionist reinforcement learn-

ing” [172]. The modules with standard deterministic neural network connections
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(classifier, aggregator and sensor) can be trained directly by backpropagat-

ing gradients from a softmax classification loss, while the actor module which con-

tains stochastic units can only be trained using the REINFORCE procedure of [172].

Roughly, REINFORCE treats the actor module as a Partially Observable

Markov Decision Process (POMDP), with the pdf π(mt|at−1,W ) representing the

policy to be learned. In a reinforcement learning (RL)-style approach, REINFORCE

iteratively increases weights in the pdf π(m) on those candidate motions m ∈ M

that have produced higher “rewards”, as defined by a reward function. A simple

REINFORCE reward function to promote classification accuracy could be Rc(ŷ) = 1

when the most likely label in ŷ is correct, and 0 when not. To speed up train-

ing, we use a variance-reduced version of this loss R(ŷ) = Rc(ŷ) − Rc(z), where z

is set to the most commonly occuring class. Beyond the stochastic units, the RE-

INFORCE algorithm produces gradients that may be propagated to non-stochastic

units through standard backpropagation. In our hybrid training approach, these RE-

INFORCE gradients from actor are therefore added to the softmax loss gradients

from classifier before backpropagation through aggregator and sensor.

More formally, given a training dataset of instance-label pairs {(X i, yi) : 1 ≤

i ≤ N}, the gradient updates are as follows. Let W\c denote [Wa,Ws,Wr], i.e., all

the weights in W except the classifier weights Wc, and similarly, let W\a denote
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[Wc,Wr,Ws]. Then:

∆WRL
\c ≈

N∑
i=1

T∑
t=1

∇W\c log π(mi
t|ai

t−1;W\c)R
i, (6.1)

∆W SM
\a = −

N∑
i=1

∇W\aLsoftmax(ŷ
i(W,X), yi), (6.2)

where indices i in the superscripts denote correspondence to the ith training sample

X i. Equation (6.1) and (6.2) show the gradients computed from the REINFORCE

rewards (RL) and the softmax loss (SM) respectively, for different subsets of weights.

The notation in the RHS of Equation (6.1) makes explicit the fact that the conditional

action probability π(mi
t|ai

t−1) is influenced by all the parameters in the network,

except classifier weights. The REINFORCE gradients ∆WRL are computed using

the approximation proposed in [172]. Final gradients with respect to the weights

of each module used in weight updates are given by: ∆Wa = ∆WRL
a , ∆Ws =

∆WRL
s + ∆W SM

s , ∆Wr = ∆WRL
r + ∆W SM

r , ∆Wc = ∆W SM
c . Training is through

standard stochastic gradient descent with early stopping based on a validation set.

6.1.3 Look-ahead: predicting the effects of motions

Active recognition systems select the next motion based on some expectation

of the next view. Though non-trivial even in the traditional instance recognition

setting [27, 38, 140, 171], with instances one can exploit the fact that pose estimation

in some canonical pose space is sufficient in itself to estimate properties of future

views. In other words, with enough prior experience seeing the object instance, it is

largely a 3D (or implicit 3D) geometric model formation problem.

In contrast, as discussed in Section 2.2, this problem is much harder in active
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categorization with realistic categories—the domain we target. Predicting subsequent

views in this setting is severely under-constrained, and requires reasoning about

semantics and geometry together. In other words, next view planning requires some

element of learning about how 3D objects in general change in their appearance as

a function of observer motion. Indeed, we presented a proof-of-concept experiment

in Chapter 4 that showed that representations that facilitate future view prediction

can be exploited effectively in a simple next-best view selection task. We build upon

this insight in this chapter.

Concretely, we hypothesize that the ability to predict the next view condi-

tional on the next camera motion is closely tied to the ability to select optimal mo-

tions. Thus, rather than learn separately the model of view transitions and model of

motion policies, we propose a unified approach to learn them jointly. Our idea is that

knowledge transfer from a view prediction task will benefit active categorization. In

this formulation, we retain the system from Section 6.1.2, but simultaneously learn

to predict, at every timestep t, the impact on aggregate features at+1 at the next

timestep, given at and any choice of motion mt ∈ M. In other words, we simulta-

neously learn how the accumulated history of learned features—not only the current

view—will evolve as a function of our candidate motions.

For this auxiliary task, we introduce an additional module, lookahead,

with weights Wl into the setup of Section 6.1.2 at training time. At timestep t,

lookahead takes as input the previous timestep aggregate feature vector at−1 and

the last motion command issued by actor mt, and produces ât as an estimate

of the current timestep aggregate features, i.e.,ât = lookahead(at−1,mt). This
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module may be thought of as a “predictive auto-encoder” in the space of aggregate

features at output by aggregator. A look-ahead error loss is computed at every

timestep between the predicted and actual aggregate features: d(ât,at|at−1,mt).

We use the cosine distance to compute this error. This per-timestep look-ahead loss

provides a third source of training gradients ∆WLA
\ca for the network weights, as it is

backpropagated through aggregator and sensor:

∆WLA
\ca =

N∑
i=1

T∑
t=2

∇W\cad(ât,at|at−1,mt), (6.3)

where W now includes Wl and LA denotes lookahead. The lookahead module itself

is trained solely from this error, so that ∆Wl = ∆WLA
l . The final gradients used to

train sensor and aggregator change to include this new loss: ∆Ws = ∆WRL
s +

∆W SM
s + λ∆WLA

s , ∆Wr = ∆WRL
r +∆W SM

r + λ∆WLA
r . λ is a new hyperparameter

that controls how much the weights in the core network are influenced by the look-

ahead error loss.

The look-ahead error loss of Equation 6.3 may also be interpreted as an un-

supervised regularizer on the classification objective of Equation 6.1 and 6.2. This

regularizer encodes the hypothesis that good features for the active recognition task

must respond in learnable, systematic ways to camera motions.

This is related to the role of “equivariant” image features in Chapter 4, where

we showed that regularizing image features to respond predictably to observer ego-

motions improves performance on standard static image categorization tasks. The

look-ahead module in this chapter differs from the equivariant feature idea of Chap-

ter 4 in several important ways. First, we explore the utility of look-ahead for the
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active categorization problem, not recognition of individual static images. Second,

the proposed look-ahead module is conceptually distinct. In particular, we propose

to regularize the aggregate features from a sequence of activity, not simply per-view

features. Whereas in Chapter 4 the effect of a discrete egomotion on one image

is estimated by linear transformations in the embedding space, the proposed look-

ahead module takes as input both the history of views and the selected motion when

estimating the effects of hypothetical motions.

Proprioceptive knowledge Another useful feature of our approach is that it

allows for easy modeling of proprioceptive knowledge such as the current position pt

of a robotic arm. Since the actor module is trained purely through REINFORCE

rewards, all other modules may access its output mt without having to backpropagate

extra gradients from the softmax loss. For instance, while the sensor module is fed

mt as input, it does not directly backpropagate any gradients to train actor. Since

pt is a function solely of (m1...mt), this knowledge is readily available for use in other

components of the system without any changes to the training procedure described

above. We append appropriate proprioceptive information to the inputs of actor

and lookahead, detailed in experiments.

Greedy softmax classification loss We found it beneficial at training time to

inject softmax classification gradients after every timestep, rather than only at the

end of T timesteps. To achieve this, the classifier module is modified to contain a

bank of T classification networks with identical architectures (but different weights,
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since in general, aggregator outputs at at different timesteps may have domain

differences). Note that the REINFORCE loss is still computed only at t = T . Thus,

given that softmax gradients do not pass through the actor module, it remains free

to learn non-greedy motion policies.

6.2 Experiments

We evaluate our approach for object and scene categorization. In both cases,

the system must choose how it will move in its 3D environment such that the full

sequence of its actions leads to the most accurate categorization results.

6.2.1 Experimental setup

While active vision systems have traditionally been tested on custom robotic

setups [132] (or simple turn-table-style datasets [140]), we aim to test our system

on realistic, off-the-shelf datasets in the interest of benchmarking and reproducibil-

ity. To this end, we work with two publicly available datasets, SUN360 [178] and

GERMS [110]. We additionally perform direct comparison against two recently pro-

posed active recognition methods on a synthetic 3D model dataset, ModelNet10 [176].

Our SUN360 [178] experiments test a scenario where the agent is exploring

a 3D scene and must intelligently turn to see new parts of the scene that will en-

able accurate scene categorization (bedroom, living room, etc.). SUN360 consists of

spherical panoramas of various indoor and outdoor scenes together with scene cate-

gory labels. We use the 26-category subset (8992 panoramic images) used in [178].

Each panorama by itself represents a 3D scene instance, around which an agent
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Figure 6.4: (Best seen in color) An “airplane interior” class example showing how SUN360
spherical panoramas (equirectangular projection on the left) are converted into 12 × 12
45◦FOV view grid. As an illustration, the view at grid coordinates x = 4, y = 6 outlined in
green in the view grid on the right corresponds approximately to the overlap region (also
outlined in green) on the left (approximate because of panorama distortions—rectangles in
the panorama are not rectangles in the rectified views present in the grid). The 5× 7 red
shaded region in the view grid (right) shows the motions available to actor when starting
from the highlighted view.

“moves” by rotating its head, as shown in Figure 6.4. For our experiments, the agent

has a limited field of view (45◦) at each timestep. We sample discrete views in a

12 elevations (camera pitch) × 12 azimuths (camera yaw) grid. The pitch and yaw

steps are both spaced 30◦apart (12×30=360), so that the entire viewing sphere is

uniformly sampled on each axis. Starting from a full panorama of size 1024× 2048,

each 45◦ FOV view is represented first as a 224 × 224 image, from which 1024-

dim. GoogLeNet [158] features are extracted from the penultimate layer. At each

timestep, the agent can choose to move to viewpoints on a 5×7 grid centered at the

current position. We set T = 5 timesteps.2 Proprioceptive knowledge in the form

of the current camera elevation angle is fed into actor and lookahead. We use

a random 80-20 train-test split. Our use of SUN360 to simulate an active agent in

2Episode lengths were set based on learning time for efficient experimentation.
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a 3D scene is new and offers a realistic scenario that we can benchmark rigorously;

note that previous work on the dataset does a different task, i.e., recognition with

the full panorama in hand at once [178], and results are therefore not comparable to

our setting.

Our GERMS [110] experiments consider the scenario where a robot is hold-

ing an object and must decide on its next best motion relative to that object, e.g.,

to gain access to an unseen facet of the object, so as to recognize its instance la-

bel. GERMS has 6 videos each (3 train, 3 test) of 136 objects being rotated around

different fixed axes, against a television screen displaying moving indoor scenes (see

Figure 6.5). Each video frame is annotated by the angle at which the robotic arm

is holding the object. Each video provides one collection of views that our active

vision system can traverse at will, for a total of 136 × 6 = 816 train/test instances

(compared to 8992 on SUN360). While GERMS is small and targets instance rather

than category recognition, aside from SUN360 it is the most suitable prior dataset

facilitating active recognition. Each frame is represented by a 4096-dim. VGG-net

feature vector [149], provided by the authors [110]. We set episode lengths to T = 3

steps. As proprioceptive knowledge, we feed the current position of the robotic hand

into actor and lookahead. We use the train-test subsets specified by the dataset

authors.

Finally, our ModelNet10 [176] experiments also consider an active object

recognition setup, but with synthetic 3D object models. ModelNet10 contains 4899

synthetic models of 10 household furniture categories (such as “bathtub”, “bed”,

and “chair”). We use the pre-specified train-test split (3991 training and 908 testing
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Figure 6.5: The GERMS active object instance recognition dataset [110] contains videos
of a single-axis robotic hand rotating 136 toys against a moving background.

models). In our experimental setup, the active agent views one 2D projection of the

3D model at each timestep, and can choose to rotate the object to access neighboring

2D views, replicating the setup of [83] for direct comparison. Specifically, we capture

84 views of each model (7 elevations × 12 azimuths) in a viewing grid surrounding

the object. At each timestep, the agent can choose to rotate the object to access one

of the eight “adjacent” views within this grid. As in SUN360, elevation is available to

the agent as proprioceptive information. To represent each view, we use the publicly

available ImageNet-pretrained VGG16 model [149] and finetune it on ModelNet10

single view classification, before extracting fc7 features. While this dataset is syn-

thetic unlike SUN360 and GERMS, we use it for direct comparison against two very

recently proposed deep learning-based active recognition approaches [83, 176]. Some

examples of 3D models from ModelNet10 are shown in Figure 6.6.

Figure 6.6: Examples of synthetic 3D models from ModelNet10, used in our active object
recognition experiments.

Baselines: We extensively evaluate our “Look-ahead active RNN” (Section 6.1.3)

and simpler “Active RNN” (Section 6.1.2) against eight baselines, including pas-
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sive single-view methods, random view sampling, and traditional prior active vision

approaches upgraded to be competitive in our setting, and recent work in the liter-

ature [83, 176].

• single view (neural net): has access to only one view, like the starting

view provided to the active systems. A feed-forward neural network is used for

this baseline, composed from the appropriate components of the sensor and

classifier modules of our system. This baseline is entirely pose-agnostic, i.e.,

the same classifier is applied to views from all object poses.

• random views (average): uses the same architecture as “single view

(neural net)”, but has access to T views, with successive views being re-

lated by randomly selected motions from the same motion set M available to

the active systems. Its output class likelihood at t = T is the average of its

independent estimates of class likelihood for each view.

• random views (recurrent): uses the same core architecture as our Active

RNN method, except for the actor module. In its place, random motions

(from M) are selected. Note that this should be a strong baseline, having

nearly all aspects of the proposed approach except for the active view selection

module. In particular, it has access to its selected motions in its sensor

module, and can also learn to intelligently aggregate evidence over views in its

aggregator RNN module.

• transinformation: is closely based on [140], in which views are selected greed-

ily to reduce the information-theoretic uncertainty of the category hypothesis.

183



We make modifications for our setting, such as using 1024-D CNN features in

place of the original receptive field histogram features, and using Monte Carlo

sampling to approximate information gain. Each view is classified with pose-

specific classifiers. When the class hypothesis is identical between consecutive

views, it is emitted as output and view selection terminates. Like most prior

approaches, this method relies on a canonical world coordinate space in which

all object instances can be registered. Since this is infeasible in the active cat-

egorization setting, we treat each instance’s coordinates as world coordinates.

• seqDP: is closely based on [36], and extends [140] using a sequential decision

process with Bayesian aggregation of information between views. It runs to a

fixed number of views.

• transinformation + seqDP: combines the strengths of [140] and [36]; it uses

Bayesian information aggregation across views, and terminates early when the

predicted class remains unchanged at consecutive timesteps.

• Depth-ShapeNets [176]: assumes access to depth information for all observed

views, unlike our method, which only sees RGB information. It hallucinates

unobserved entries in the voxel grid using 3D convolutional deep belief net-

works, and uses a mutual-information-based metric inspired by seqDP [36] to

select next-best views. We compare against this method on ModelNet10 data

using published numbers from [83].

• RGBD-Pairwise [83]: decomposes the sequence of observed views into pairs,

classifies each pair using a CNN, and averages those pairwise classifications
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Method↓/Dataset→ SUN360 GERMS
Performance measure→ T=2 acc. T=3 acc. T=5 acc. T=2 acc. T=3 acc.

Passive approaches Chance 14.08 14.08 14.08 0.74 0.74
single view (neural net) 40.12±0.45 40.12±0.45 40.12±0.45 40.31±0.23 40.31±0.23

Random view (ablation) random views (average) 45.71±0.29 50.47±0.37 54.21±0.57 45.71±0.30 46.97±0.43
random views (recurrent) 47.74±0.27 51.29±0.21 55.64±0.28 44.85±0.40 44.24±0.24

Prior active approaches
transinformation [140] 40.69 40.69 44.86 28.83 31.02
seqDP [36] 42.41 42.91 42.08 28.83 28.10
transinformation + seqDP 44.69 46.91 48.19 29.93 29.56

ours
Active RNN 50.76±0.41 57.52±0.46 65.32±0.42 47.30±0.73 46.86±0.97
Look-ahead active RNN 51.72±0.29 58.12±0.43 66.01±0.34 48.02±0.68 47.99±0.79
Look-ahead active RNN+average 49.62±0.43 55.43±0.38 62.61±0.33 47.00±0.45 48.31±0.72

Table 6.1: Recognition accuracy on SUN360 and GERMS (neural net-based methods’ scores
are reported as mean ± standard error over 5 runs with different initializations)

over the full sequence to perform information fusion. For view selection, it

trains a second CNN in supervised manner to directly map the current view

to the best next viewpoint. Aside from the RGB information that our method

accesses, RGBD-Pairwise assumes additional access to depth information. We

compare directly against this method’s published results on ModelNet-10.

Hyperparameters for all methods were optimized for overall accuracy on a

validation set through iterative search over random combinations [16].

6.2.2 Results

Table 6.1 shows the recognition accuracy results for scene categorization

(SUN360) and object instance recognition (GERMS). Figure 6.7 and Figure 6.8

plot the results as a function of timesteps, comparing against ablated variants of

our approach and against classic prior approaches (transinformation, seqDP and

transinformation+seqDP) respectively. Both variants of our method outperform

the baselines on both datasets, confirming that our active approach successfully
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Figure 6.7: Evolution of accuracy over time for various ablated variants of our method, on
SUN360 (left) and GERMS (right). Our methods show steady improvement with additional
views, and easily outperform the best baselines. Also see Table 6.1.

learns intelligent view selection strategies. Passive baselines, representative of the

current standard approaches to visual categorization that classify Web photos, per-

form uniformly poorly, highlighting the advantages of the active setting. In addition,

our Look-ahead active RNN outperforms our Active RNN variant on both datasets,

showing the value in simultaneously learning to predict action-conditional next views

at the same time we learn the active vision policy. By “looking before leaping” our

look-ahead module facilitates beneficial knowledge transfer for the active vision task.

On SUN360, even though it represents a much harder active category recog-

nition problem, the margins between our method and the random view baselines are

pronounced. Furthermore, while the traditional active baselines do show significant

improvements from observing multiple views, they fall far short of the performance

of our method despite upgrading them in order to be competitive, such as by using

CNN features, as described above.

On GERMS, our method is once again easily superior to prior active methods.

The margins of our gains over random-view baselines are smaller than on SUN360.
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Figure 6.8: Evolution of accuracy over time for our method, vs. transinformation [140],
seqDP [36], and transinformation+seqDP. Our integrated end-to-end solution strongly out-
performs these well-known and widely used classic information-theoretical approaches to active
recognition implemented with state-of-the-art CNN features, identical to our method. Also see
Table 6.1.

Upon analysis, it becomes clear that this is due to GERMS being a relatively small

dataset. Not only is (1) the number of active recognition instances small compared

to SUN360 (816 vs. 8992), but (2) different views of the same object instance are

naturally closer to each other than different views from a SUN360 panorama view-

grid (see Figure 6.4 and Fig 6.5) so that even single view diversity is low, and (3) there

is only a single degree of motion compared to two in SUN360. As a result, the number

of possible reinforcement learning episodes is also much smaller. Upon inspection,

we found that these factors can lead our end-to-end network to overfit to training

data (which we countered with more aggressive regularization). In particular, it is

problematic if our method achieves zero training error from just single views, so

that the network has no incentive to learn to aggregate information across views

well. Our active results are in line with those presented as a benchmark in the

paper introducing the dataset [110], and we expect more training data is necessary
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to move further with end-to-end learning on this challenge. This lack of data affects

our prior active method baselines even more since they rely on pose-specific instance

classifiers, so that each classifier’s training set is very small. This explains their poor

performance.

As an interesting upshot, we see further improvements on GERMS by av-

eraging the classifier modules’ outputs, i.e., class likelihoods estimated from the

aggregated features at each timestep t = 1, .., T (“Look-ahead active RNN + aver-

age”). Since the above factors make it difficult to learn the optimal aggregator

in an end-to-end system like ours, a second tier of aggregation in the form of av-

eraging over the outputs of our system can yield improvements. In contrast, since

SUN offers much more training data, averaging over per-timestep classifier out-

puts significantly reduces the performance of the system, compared to directly using

the last timestep output. This is exactly as one would hope for a successful end-to-

end training. This reasoning is further supported by the fact that “random views

(average)” shows slightly poorer performance than “random views (recurrent)”

on GERMS, but is much better on SUN360.

Indeed, the significant gains of “random views (recurrent)” over “random

views (average)” on SUN360 points to an important advantage of treating ob-

ject/scene categorization as a grounded, sequence-based decision process. The ability

to intelligently fuse observations over timesteps based on both the views themselves

and the camera motions relating them offers substantial rewards. In contrast, the

current computer vision literature in visual categorization is largely focused on cate-

gorization strategies that process individual images outside the context of any agent
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motion or sequential data, much like the “Single view” or “random views (average)”

baselines. We see our empirical results as an exciting prompt for future work in this

space. They also suggest the need for increased efforts creating large 3D and video

benchmark datasets (in the spirit of SUN360 and GERMS and beyond) to support

such vision research, allowing us to systematically study these scenarios outside of

robot platforms.

The result on SUN360 in particular is significant since no prior active recog-

nition approach has been shown to successfully handle any comparably complex

dataset. While active categorization is technically challenging compared to instance

recognition as discussed in Section 2.2, datasets like SUN360 that contain complex

visual data with ambiguous views may actually be most suited to showing the ad-

vantages of the active recognition paradigm.

Figure 6.9 and Figure 6.10 show some qualitative examples of the view selec-

tion behavior of our approach on SUN360 and GERMS respectively.
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GT likelihood: 6.28% 11.95% 68.38%
restaurant, train interior, shopTop guesses: theater, restaurant, plaza courtyard plaza courtyard, street, theater

GT likelihood: 0.53% 5.00% 37.89%
forest, cave, beachTop guesses: street, cave, plaza courtyard church, lobby atrium, street

Figure 6.9: (Best viewed in color on pdf with zoom) Views selected using our approach on
SUN360. Each row, corresponding to a scene, contains three red panels corresponding to the
selected views at t = 1, 2, 3. Each panel shows the current view (left) and position on view grid
(pink highlight is current position). In the top row, given the first view, our method makes
reasonable but wrong guesses, but corrects itself within two moves, by observing the crowd and
following their gaze.

Figure 6.10: Views selected using our approach for a GERMS object. The three red panels
correspond to the selected views at t = 1, 2, 3. The predicted instance at each timestep is depicted
along the top. In this case, our approach manages to manipulate from poorly lit, side-on views
to a more frontal, well-lit view to correctly recognize the object instance.
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Active object recognition with synthetic CAD models: The above experi-

ments establish the advantages of our method over traditional active recognition ap-

proaches in realistic settings using panoramic scenes (SUN360) and object manipula-

tion videos (GERMS). Next, we use synthetic ModelNet10 object models in an active

object recognition experiment to allow direct comparison against two recently pub-

lished deep learning-based active recognition approaches: Depth-ShapeNets [176]

and RGBD-Pairwise [83], both of which use the VGG-M CNN architecture, same as

ours, to represent input images. We exactly reproduce the settings described in [83]

and compare against the Depth-ShapeNets and RGBD-Pairwise results presented

there. Figure 6.11 plots the performance of our method against these baselines.

Both these methods use 2.5D information, i.e., they have additional access to depth

while our method uses only 2D projections. Despite this handicap, our method

significantly outperforms these baselines.

Table 6.2 presents the precise accuracy results and includes a comparison

against other baselines: random views (recurrent), single-action, and single-action+.

As before, random views (recurrent) uses the same architecture as out method,

except that it selects random motions at each timestep. We define single-action

and single-action+ below:

• single-action: This represents a policy that rotates the object by a fixed

amount along a fixed direction at every time-step. We exhaustively test all

valid rotation actions and only present results for the action that works best

on the test set.
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Method↓/Dataset→ ModelNet10
Performance measure→ T=3 acc. T=6 acc.

Chance 11.02 11.02
single view (neural net) 85.65±0.09 85.65±0.09

random views (recurrent) 89.23±0.03 90.10±0.08
single-action 89.81±0.05 90.99±0.08
single-action+ 90.25±0.06 91.77±0.04

Depth-ShapeNets [176] 78.7 81.0
RGBD-Pairwise [83] 88.8 91.6

ours 91.01±0.14 92.50±0.07

Table 6.2: Recognition accuracy on ModelNet, including recently published benchmarks.

• single-action+: In our setup, since elevation is limited to [−90◦,+90◦], a

single-action policy that moves upwards could get stuck at the highest ele-

vation, for instance. At this point, single-action+ avoids this by switching

directions to move downwards.

random views (recurrent), single-action, and single-action+ are all ablated

variants of our method which replace the actor module of our system with heuristic

action policies while retaining the rest of our pipeline. As Table 6.2 shows, our learned

action policy does significantly better than these heuristic policy baselines. At the

same time, it is worth noting that even these ablated variants outperform the best

previously published approaches [83, 176], suggesting that aside from the learned

action policy, our approach’s sensing and aggregation pipelines are also key to its

superior performance
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Figure 6.11: Evolution of accuracy over time for our method vs. two other recently proposed deep
learning-based approaches, Depth-ShapeNets [176] and RGBD-Pairwise [83], both of which use depth
information. Our integrated end-to-end solution strongly outperforms both approaches with significant
margins despite using only RGB information (no depth). While RGBD Pairwise is the strongest
baseline, our method’s performance after seeing only three views (T = 3) is nearly on par with the
strongest baseline’s performance after selecting 6 views (T = 6). Also see Table 6.2.

Comparison against an agent with access to all views at once: We now

compare against an imaginary agent all-views, that sees all possible views at the

same time (during training as well as testing), and thus has access to all the infor-

mation about its environment by definition. This is not practical or even possible

in most active settings, but it is of value to study this imaginary agent as a useful

point of comparison. Our active recognition systems sequentially select and aggre-

gate information from a few carefully chosen views. Comparing against all-views

helps us answer: how close do these limited views get to capturing the discriminative

information in the entire environment?

For SUN360 scene recognition, our all-views model is as follows. We train a
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feedforward convolutional neural network with the GoogLeNet architecture to clas-

sify full panoramas of the scenes into the 26 SUN-360 categories. All panoramas

are represented as equirectangular projections. At training time, the network is ini-

tialized with ImageNet-pretrained weights and trained for panorama classification

until validation error increases. Besides having access to all views, all-views also

implicitly knows both the elevation and azimuth of each view, which is an additional

advantage over our approach, which can only access elevations. The training splits

are identical to those used in the experiments above. We study two variants:

• all-views-pretrained: For this variant, we freeze ImageNet-pretrained weights

until the penultimate layer, and only train a linear classifier on top using a

softmax loss. This corresponds to using the pretrained network as a feature

extractor. This is in keeping with the settings used in all our previous experi-

ments, where we extracted ImageNet-pretrained GoogLeNet features from the

penultimate layer.

• all-views-finetuned: For this variant, we finetune ImageNet-pretrained weights

with reduced learning with reduced learning rate (0.001). Unlike the network

in all-views-pretrained, the network in all-views-finetuned is allowed to

adapt to the equirectangular projections. The ImageNet-pretrained GoogLeNet

features also adapt to the SUN360 domain, thus putting methods that use only

pretrained GoogLeNet features at a disadvantage.

Recall from Table 6.1 that our active agent “Look-ahead active RNN” us-

ing ImageNet-pretrained GoogLeNet features achieves 66.01% accuracy at T = 5,
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having seen merely 5 out of 144 possible views (12 elevations, 12 azimuths). This

is on par with the performance of all-views-pretrained, which achieves 66.29%

accuracy using the same features but with access to all 144 views at the same time.

all-views-finetuned also has access to all 144 viewpoints, but uses different fea-

tures that are more finetuned for SUN360 data, allowing improved scene recognition.

It achieves 71.71% accuracy. These results establish that the policies learned by our

approach allow the selection of nearly all the discriminative information in the scene

within just 5 views.

In similar spirit to these SUN360 scene recognition experiments, we report

results for ModelNet-10 active object recognition from [83] for a method that sees

all 12 views at zero elevation, both at training and at test time. This method

uses the multi-view convolutional neural network (MVCNN) architecture of [156] to

fuse information across all views. With these 12 canonical views, MVCNN achieves

92.2% accuracy for classification. In comparison, recall from Table 6.2 that our

approach achieves 92.5% accuracy with only T = 6 views selected using a learned

policy. Similar to SUN360 scene recognition, these results suggest that our method

is able to strategically select discriminative viewpoints for object recognition and

fuse information across them so that only a small number of views suffice to capture

nearly all of the discriminative information about the object.

Visualizing the impact of motion policies: Next we analyze the motion poli-

cies learned by our method. Recall that in our setup, the first view is selected at

random and presented to the agent. Some views of an object or scene are less dis-
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criminative than others, but good active recognition agents should be able to recover

from poor starting views very quickly, by steering the camera or manipulating the

object intelligently to reach better viewpoints.

To assess whether our approach does in fact demonstrate speedy recovery, we

visualize the impact of the starting viewpoint on active recognition accuracy as a

function of time on SUN360 and ModelNet10 in Figure 6.12. At T = 1, accuracy is

a strong function of starting position on both SUN360 and ModelNet. On SUN360,

azimuth has no discernible impact as expected since panoramas in scenes have no

canonical forward direction. Interestingly however, elevations near the horizontal

(middle band in the plots of Figure 6.12) produce the highest accuracies, suggesting

that the maximum discriminative information for scene categorization exists at ap-

proximately eye level. On ModelNet10, there is a grid-like structure to the position

dependence at T = 1, every 90 degrees along both elevation and azimuth. Upon

examination, this has an interesting explanation. ModelNet10 has several approxi-

mately cuboidal object categories like table, bed, and dresser. For such objects, at

every 90◦rotation, a majority of the faces of the object are occluded from view, and

only one or two faces are visible, which makes recognition difficult.

There are thus strong position dependencies in both datasets for individual

view discriminativeness. For both ours and random views (recurrent), the spread

of accuracies is therefore large at T = 1, and accuracies consistently improve over

time. However, the key observation from this visualization is that for ours, the

accuracies converge to an approximately uniform distribution over starting position

(i.e., negligible dependence on starting position) much more quickly on both datasets.
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Our intelligent action selection approach is better able to overcome the disadvantage

of bad starting positions.

6.3 Conclusion

We presented a new end-to-end approach for active visual categorization.

Our framework simultaneously learns (1) how the system should move to improve

its sequence of observations, and (2) how a sequence of future observations is likely

to change conditioned on its possible actions. We show the impact on object and

scene recognition, where our active approach makes sizeable strides over single view

and passively moving systems. Furthermore, we establish the positive impact in

treating all components of the active recognition system simultaneously. All together,

the results are encouraging evidence that modern visual recognition algorithms can

venture further into unconstrained, sequential data, moving beyond the static image

snapshot labeling paradigm.

Our treatment of the active recognition problem leaves open a few directions

for follow-up work. While our model refreshes its category beliefs after every ob-

servation, it does not have the option of terminating. Instead, we trained fixed

time-budgeted models, and in our experiments, we tested accuracy as a function of

time with fixed numbers of observations. An important future challenge is for the

agent to decide when to observe another view and when that is unnecessary. This

could be accomplished by setting a confidence threshold on the agent’s current beliefs

at inference time. A more interesting option would be to include a termination action

to learn when to terminate the observation of an object or scene. A small negative
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reward with each elapsed timestep could provide an agent the incentive to terminate

observation early. Other situations may demand movement or energy-budgeted ex-

ploration, which could be modeled by negative rewards that are proportional to the

magnitude of the selected motion.

As observed in our experiments, the look-ahead regularizer proved substan-

tially useful only when training data was limited. This raises the question: are

there better ways to utilize the look-ahead ability within an active recognition sys-

tem rather than as just a regularizer? The look-ahead module is at its essence a

model of state transitions within the system (considering the aggregator output as

the “state”), since it models the next state conditional on current state and action.

This view of the look-ahead module brings into focus the connection to model-based

reinforcement learning [157], which aims to more explicitly use models of the state

transition and reward dynamics of the environment in reinforcement learning sys-

tems. This is a promising direction for potential future investigation.

In the context of this dissertation’s larger focus on embodied vision, this

chapter represents a first step towards learning not only how to infer predictions

(like category labels) based on observations but also how to intelligently acquire

those observations in the first place. In the next chapter, we will continue along this

direction, seeking to learn exploratory “look around” behaviors useful for general

visual perception tasks.
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SUN360 Plots (Starting position dependency as a function of time)
Method: ours

Method: random views (recurrent)

ModelNet10 Plots (Starting position dependency as a function of time)
Method: ours

Method: random views (recurrent)

Figure 6.12: (Best seen in color) Accuracy as a function of starting position, over time. For
each timestep t, a color-coded viewgrid (12×12 on SUN360, 7×12 on ModelNet) presents the
accuracy after t views, when starting from each position in the viewgrid. At early timesteps,
accuracy is strongly dependent on starting position since some views are more discriminative
than others. However, good action policies must quickly recover from poor starting views, so
that active recognition accuracies become less dependent on starting position over time. On
both SUN360 active scene recognition and ModelNet10 active object category recognition, our
approach achieves this much more efficiently than random views (recurrent).
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Chapter 7

Learning to look around

1As we saw in Chapter 6, visual perception requires not only making in-

ferences from observations, but also making decisions about what to observe. Ex-

ploratory behaviors can be useful for perception in many varied contexts: an agent

with a view of a television screen in front of it may not know if it is in a living room

or a bedroom. An agent observing a mug from the side may have to move to see

it from above to know if it is empty. An agent surveying a rescue site may need to

explore at the onset to get its bearings. As introduced before in Section 1.5, in this

final component of my thesis, I ask: can an agent learn generic exploratory “look

around” behaviors in the absence of any supervision, and which are not specific to

any one task, but instead generically useful?

More concretely, in the last chapter, we were concerned with making decisions

about what to observe given a specific end-goal—object or scene categorization for a

known lexicon of categories. Since this is a supervised problem, the agent at training

time simultaneously uses the category label supervision to learn both the classifier as

well as the observation policy tuned for that one specific task. In the real world, the

task of an active visual agent is itself usually defined by previous observations—an

1The work in this chapter was supervised by Prof. Kristen Grauman.
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agent observing its environment for the most part may have no specific end goal other

than to gather as much information as possible about it, and new tasks may present

themselves dynamically. How may such an agent efficiently observe its environment

to acquire a correct internal model of it?

In this chapter, I pose observation selection as an independent problem in

itself, with the aim of learning generic exploratory policies that gather information

potentially useful to many perception tasks. An agent ought to be able to enter a

new environment or pick up a new object and intelligently (non-exhaustively) look

around it. This capability would be valuable in both task-driven scenarios (e.g., a

drone searches for signs of a particular activity) as well as scenarios where the task

itself unfolds simultaneously with the agent’s exploratory actions (e.g., a search-and-

rescue robot enters a burning building and dynamically decides its mission).

I present our solution to this problem of learning to actively “look around”.

We formulate this as the “active observation completion” problem: an agent must

intelligently acquire a small set of observations optimally so that it can then hal-

lucinate all other possible observations. We then develop a reinforcement learning

solution for active visual completion. Our approach uses recurrent neural networks

to aggregate information over a sequence of views. The agent is rewarded based on

its predictions of unobserved views.

We explore two applications of our idea. See Figure 7.1. In the first, the agent

scans an omnidirectional natural scene through its limited field of view camera; here

the goal is to select efficient camera motions so that after a few glimpses, it has

modeled unobserved portions of the scene well. In the second, the agent manipulates
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Where to

look next? ?

Figure 7.1: Looking around efficiently is a complex task requiring the ability to reason
about regularities in the visual world using cues like context and geometry. (Left) An
agent that has observed limited portions of its environment can reasonably hallucinate
some unobserved portions (e.g., water near the ship), but is much more uncertain about
other portions. Where should it look next? (Right) An agent inspecting a mug. Having
seen a top view and a side view, how must it rotate the mug now to get maximum new
information?

a 3D object to inspect it; here the goal is to select efficient manipulations so that

after only a small number of actions, it has a full model of the object’s 3D shape.

In both cases, the system must learn to leverage visual regularities (such as shape

primitives and context) that suggest the likely contents of unseen views, focusing

actions on portions that are difficult to hallucinate.

In the rest of this chapter, Section 7.1 presents our approach, and Section 7.2

presents our experiments and results.
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7.1 Approach

For ease of presentation, we present the problem setup as applied to a 3D

object understanding task. With minor modifications (detailed in Section 7.2) our

framework applies also to the panoramic scene understanding setting depicted in

Figure 7.1. Both will be tested in our experiments.

7.1.1 Problem setup

The problem setting is as follows: At timestep t = 1, an active agent is

presented with an object X in a random, unknown pose2. At every timestep, it can

perform one action to rotate the object and observe it from the resulting viewpoint.

Its objective is to make efficient exploratory rotations to understand the object’s

shape. It maintains an internal representation of the object shape, which it updates

after every new observation. After a budget of T timesteps of exploration, it should

have learned a model that can produce a view of the object as seen from any specified

new viewing angle.

In practice, we discretize the space of all viewpoints into a “viewgrid” V (X).

To do this, we evenly sample M azimuths from 0◦ to 360◦ and N elevations from

-90◦ to +90◦ and form all MN possible pairings. Each pairing of an azimuth and

an elevation corresponds to one viewpoint θi on a viewing sphere focused on the

object. Let x(X,θi) denote the 2D image corresponding to the view of object X

2As in Chapter 6, we assume the elevation angle alone is known, since this is true of real-world
settings due to gravity.
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from viewpoint θi. The viewgrid V (X) is the table of views x(X,θi) for 1 ≤ i ≤

MN . During training, the full viewgrid of each object is available to the agent as

supervision. During testing, the system must predict the complete viewgrid, having

seen only a few views within it.

Observe that for the special case of 3D objects, the viewgrid completion prob-

lem is identical to the image-based shape reconstruction problem tackled in Chap-

ter 5. However, whereas Chapter 5 restricted itself to 1 randomly selected view,

we now tackle the problem of view acquisition over a sequence of timesteps. Fur-

ther, while Chapter 5 only deals with 3D object models, the more general active

observation completion framework of this chapter also applies to other settings, like

panoramic scene completion. Finally, while Chapter 5 focuses on image represen-

tation learning, the work in this chapter uses pretrained image representations and

focuses instead on exploratory policy learning.

At each timestep t, the agent observes a new view xt and updates its predic-

tion for the viewgrid V̂t(x1, · · · ,xt). Simplifying notation a little, the problem now

reduces to sequentially exploring the viewgrid V to improve V̂t — in other words,

actively completing the observation of the viewgrid V (X) of object X. Given the

time budget T << MN , the agent can see a maximum of T views out of all MN

views. We choose to complete the viewgrid in the pixel-space so as to maintain

generality. Our formulation is easily adaptable to more specialized settings—e.g., if

the end goal only requires perceiving poses of people, the predictions could be in the

keypoint space instead.

This active observation completion task poses three major challenges. Firstly,
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Figure 7.2: Architecture of our active observation completion system. While the input-
output pair shown here is for the case of 360◦ scenes, we use the same architecture for
ModelNet 3D objects. See Section 7.1.2 for details.

to predict unobserved views well, the agent must learn to understand 3D from very

few views. Classic geometric solutions (structure-from-motion/SLAM) do not work

under these conditions. Instead, reconstruction must draw on semantic and contex-

tual cues. Secondly, intelligent action is critical to this task. Given a set of past

observations, the system must act based on which new views are likely to be most

informative, i.e., determine which views would most improve its model of the full

viewgrid. Finally, the task is highly underconstrained—after only a few observa-

tions, there are typically many possibilities, and the agent must be able to handle

this multimodality.
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7.1.2 Active observation completion framework

Our solution to these challenges is a recurrent neural network, whose archi-

tecture naturally splits into five modules with distinct functions: sense, fuse, ag-

gregate, decode, and act. We first present these modules and their connections;

Section 7.1.3 below defines the learning objective and optimization. Architecture

details for all modules are given in Figure 7.2.

Encoding to an internal model of the target First we define the core modules

with which the agent encodes its internal model of the current environment. At each

step t, the agent is presented with a 2D view xt captured from a new viewpoint

θt. We stress that absolute viewpoint coordinates θt are not fully known, and ob-

jects/scenes are not presented in any canonical orientation. All viewgrids inferred

by our approach treat the first view’s azimuth as the origin. We assume only that

the absolute elevation can be sensed using gravity, and that the agent is aware of the

relative motion from the previous view. Let pt denote this proprioceptive metadata

(elevation, relative motion).

The sense module processes these inputs in separate neural network stacks to

produce two vector outputs, which we jointly denote as st = sense(xt,pt) (see Fig-

ure 7.2, top left). fuse combines information from both input streams and embeds

it into ft = fuse(st) (Fig 7.2, top center). Then this combined sensory information

ft from the current observation is fed into aggregate, which is a long short term

memory module (LSTM) [73]. aggregate maintains an encoded internal model at
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of the object/scene under observation to “remember” all relevant information from

past observations. At each timestep, it updates this code, combining it with the

current observation to produce at = aggregate(f1, · · · ,ft) (Fig 7.2, top right).

sense, fuse, and aggregate together may be thought of as performing the

function of “encoding” observations into an internal model. This code at is now

fed into two modules, for producing the output viewgrid and selecting the action,

respectively.

Decoding to the inferred viewgrid decode translates the aggregated code into

the predicted viewgrid V̂t(x1, · · · ,xt) = decode(at). To do this, it first reshapes at

into a sequence of small 2D feature maps (Figure 7.2, bottom right), before upsam-

pling to the target dimensions using a series of learned up-convolutions. The final

up-convolution produces MN maps, one for each of the MN views in the viewgrid.

For color images, we produce 3MN maps, one for each color channel of each view.

This is then reshaped into the target viewgrid (Fig 7.2, bottom center). Seen views

are pasted directly from memory to the appropriate viewgrid positions.

Acting to select the next viewpoint to observe Finally, act processes the

aggregate code at to issue a motor command δt = act(at) (Figure 7.2, middle

right). For objects, the motor commands rotate the object (i.e., agent manipulates

the object or peers around it); for scenes, the motor commands move the camera

(i.e., agent turns in the 3D environment). Upon execution, the observation’s pose

updates for the next timestep to θt+1 = θt + δt. For t = 1, θ1 is randomly sampled.
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Internally, act first produces a distribution over all possible actions, and

then samples δt from this distribution. Motions in the real world are constrained

to be continuous, so we restrict act to select “small” actions (details below). Due

to the sampling operation, act is a stochastic neural network [122]. Once the new

viewpoint θt+1 is set, a new view is captured and the whole process repeats. This

happens until T timesteps have passed, involving T − 1 actions.

Observe that our architectural choices are largely similar to the active recog-

nition architecture choices in Chapter 6, with the primary difference being in the

decoder module. The decode module in this chapter involves upconvolutions to

produce a full viewgrid, whereas for the active categorization task of Chapter 6, it

suffices to use a small classifier network with many fewer parameters for decoding

the aggregated feature vector.

7.1.3 Objective function and model optimization

All modules are jointly optimized end-to-end to improve the final recon-

structed viewgrid V̂T , which contains predicted views x̂T (X,θj) for all viewpoints

θj, 1 ≤ j ≤MN .

A simple objective would be to minimize the distance between predicted and

target views at the same viewpoint coordinate at time T : for each training object X,

LT (X) =
∑

i d(x̂T (X,θi),x(X,θi)), where d(.) is a distance function. However, this

loss function requires viewpoint coordinates to be registered exactly in the input and

target viewgrids, whereas the agent is given no external knowledge of the object’s

pose and thus must output viewgrids assuming the azimuth coordinate of the first
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view to be the origin. Therefore, output viewgrids are shifted by an angle ∆0 from

the target viewgrid, and ∆0 must be included in the loss function:

LT (X) =
MN∑
i=1

d(x̂T (X,θi +∆0),x(X,θi)). (7.1)

We set d(.) to be the per-pixel squared L2 distance. With this choice, the agent

expresses its uncertainty by averaging over the modes of its beliefs about unseen

views. In principle, d(.) could be replaced with other metrics. In particular, a

GAN-style loss [61] would force the agent to select one belief mode to produce a

photorealistic viewgrid, but the selected mode might not match the ground truth.

Rather than one plausible photorealistic rendering, we aim to resolve uncertainty

over time to converge to the correct model.

To minimize this loss, we employ a combination of stochastic gradient descent

(using backpropagation through time to handle recurrence) and REINFORCE [172],

as in [117]. Specifically, the gradient of the loss in Equation 7.1 is backpropagated

via the decode, aggregate, fuse, and sense modules. If act were a standard

deterministic neural network module, it could receive gradients from sense. How-

ever, act is stochastic as it involves a sampling operation. To handle this, we use

the REINFORCE technique: we compute reward R(X) = −LT (X), and apply it to

the outputs of act at all timesteps, backpropagating to encourage act behaviors

that led to high rewards. To backpropagate through time (BPTT) to the previ-

ous timestep, the reward gradient from act is now passed to aggregate for the

previous timestep. BPTT for the LSTM module inside aggregate proceeds nor-

mally with incoming gradients from the various timesteps—namely, the decode loss

gradient for t = T , and the act reward gradients for previous timesteps.
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In practice, we find it beneficial to penalize errors in the predicted viewgrid

at every timestep, rather than only at t = T , so that the loss LT (X) of Equation 7.1

changes to:

L(X) =
T∑
t=1

MN∑
i=1

d(x̂t(X,θi +∆0),x(X,θi)). (7.2)

Note that this loss L(X) would reduce to the loss LT (X) of Equation 7.1 if, instead

of the summation over t, t were held fixed at T . Since there are now incoming

loss gradients to decode at every timestep, BPTT involves adding reward gradi-

ents from act to per-timestep loss gradients from decode before passing through

aggregate. BPTT through aggregate is unaffected. Our approach learns a

non-myopic policy to best utilize the budget T , meaning it can learn behaviors more

complex than simply choosing the next most promising observation. Accordingly, we

retain the reward R(X) = −LT (X) for REINFORCE updates to act, based only on

the final prediction; per-timestep rewards would induce greedy short-term behavior

and disincentivize actions that yield gains in the long term, but not immediately.

Further, we find it useful to pretrain the entire network with T = 1, before

training aggregate and act with more timesteps, while other modules are frozen

at their pretrained configurations. This helps avoid poor local minima and enables

much faster convergence.

7.2 Experiments
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7.2.1 Experimental setup

For benchmarking and reproducibility, we evaluate active settings with two

widely used datasets, SUN360 and ModelNet. Recall that these datasets were used

in previous chapters too. Examples from the datasets are depicted in Figure 6.4 and

Figure 5.3.

On SUN360 [178], our limited field-of-view (45◦) agent attempts to complete

an omnidirectional scene. SUN360 has spherical panoramas of diverse categories. We

use the 26-category subset used in [76, 178]. The viewgrid has 32x32 views from 5

camera elevations (-90,-45,…,90◦) and 8 azimuths (45,90,…,360◦). At each timestep,

the agent moves within a 3 elevations×5 azimuths neighborhood from the current

position. We set training episode length T = 6 for training speed.

On ModelNet [176], our agent manipulates a 3D object to complete its

image-based shape model of the object. ModelNet has two pre-specified subsets of

object CAD models: ModelNet-40 (40 categories) and ModelNet-10 (10 category-

subset of ModelNet-40). To help test our ability to generalize to previously unseen

categories, we train on categories in ModelNet-40 that are not in ModelNet-10. We

then test both on new instances from the seen categories, and on the unseen cate-

gories from ModelNet-10. The viewgrid has 32x32 views from 7 camera elevations

(0,±30,±60,±90) and 12 azimuths (30,60,…,360◦). Per-timestep motions are allowed

within the 5×5 neighboring angles of the current viewing angle. The training episode

length is T = 4.
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Baselines We test our active completion approach “ours” against a variety of

baselines:

• 1-view is our method trained with T = 1. No information aggregation or

action selection is performed by this baseline.

• random is identical to our approach, except that the action selection module is

replaced by uniformly randomly selected actions from the pool of all possible

actions.

• large-action chooses the largest action repeatedly. This tests if “informative”

views are just far-apart views. Since there is no one largest action, we test all

actions along the perimeter of the grid of allowable actions, and report results

for the best-performing action on the test set.

• large-action+ is the same as large-action, except that it chooses a different

action at the highest/lowest elevation to avoid getting stuck. For example, if

large-action repeatedly chose to go up by 30◦, it would get stuck at 90◦.

large-action+ would instead change direction to go down.

• peek-saliency moves to the most salient view within reach at each timestep,

using a popular saliency metric [66]. To avoid getting stuck in a local saliency

maximum, it does not revisit seen views. peek-saliency tests if salient views

are informative for observation completion. Note that this baseline “peeks” at

neighboring views prior to action selection to measure saliency, giving it an

unfair and impossible advantage over ours and the other baselines.
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Table 7.1: Per-pixel mean-squared error (MSE×1000) with episode length set to training
length T (6 on SUN360, 4 on ModelNet), and corresponding improvement over 1-view
baseline. Lower error and higher improvement is better. RGB (luminance) values in color
(gray) images are normalized to [0,1], so error values are on scale of 0 to 1000.

Dataset→ SUN360 ModelNet (seen classes) ModelNet (unseen classes)
Method↓ | Metric→ MSE(x1000) Improvement MSE(x1000) Improvement MSE(x1000) Improvement
1-view 39.40 - 3.83 - 7.38 -
random 31.88 19.09% 3.46 9.66% 6.22 15.72%
large-action 30.76 21.93% 3.44 10.18% 6.16 16.53%
large-action+ 28.91 26.62% 3.38 11.75% 6.00 18.70%
peek-saliency [66] 27.00 31.47% 3.47 9.40% 6.35 13.96%
ours 23.16 41.22% 3.25 15.14% 5.65 23.44%
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Figure 7.3: Active observation completion: per-pixel mean-squared error versus time for
the three test datasets. Vertical black dotted line signifies the “look around budget” T
targeted during training.

These baselines all use the same network architecture as ours, differing only in the

exploration policy which we seek to evaluate.

7.2.2 Active observation completion results

Table 7.1 shows the scene and object completion mean-squared error on

SUN360 and ModelNet (seen and unseen classes). For these results, episode lengths

are held constant to T timesteps (6 on SUN360, 4 on ModelNet), same as during
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training. While all the multi-view methods improve over 1-view, our method out-

performs all baselines by large margins. To isolate the impact of view selection,

we report improvement over 1-view for all methods. Compared to random, ours

consistently yields approximately 2x improvement; our gains over large-action are

also substantial in all cases, meaning that simply looking at well-spaced views is

not enough. Both outcomes highlight the major value in learning to intelligently

look around. Improvements are larger on more difficult datasets, where errors are

larger (SUN360 > ModelNet unseen > ModelNet seen). This is as expected, since

additional views are most critical where one view produces very poor results. On

SUN360, peek-saliency, which has unfair access to neighboring views for action

selection, is the strongest baseline, but still falls short of ours. On ModelNet data,

peek-saliency performs poorly, likely because saliency fails to differentiate well be-

tween the synthetic CAD model views; what is informative about an object’s shape

is much more complex than what low-level unsupervised saliency can measure.

The plots in Figure 7.3 further show how error behaves as a function of time,

including at time t > T , never experienced in training. With perfect information

aggregation, all methods should asymptotically approach zero error at high t, which

diminishes the value of intelligent exploration.3 In practice, all methods show con-

sistent improvement up to t = T , with sharpest error drops for ours. For t > T ,

behavior is more unpredictable since the LSTM cell in aggregate is operating

outside its training range, and may not effectively aggregate information. Despite

3This fact, together with training speed considerations, is why we limit the training time budget
to T = 4.
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this, ours shows strong improvement on SUN360. On ModelNet unseen classes, er-

ror flattens, and on ModelNet-seen classes, error begins to rise. In all cases, ours

outperforms all baselines significantly at all t.

Figure 7.4 and Fig 7.5 present some completion episodes. As our system

explores, the rough “shape” of the target scene or object emerges in its viewgrid pre-

dictions. We stress that the goal of our work is not to obtain photorealistic images.

Rather, the goal is to learn policies for looking around that efficiently resolve model

uncertainty in novel environments; the predicted viewgrids visualize the agent’s be-

liefs over time. The key product of our method is a policy, not an image.

7.2.3 Unsupervised policy evaluation

In Chapter 6, we learned supervised policies for end-to-end active categoriza-

tion (in this section, we will refer to this method as “ours-sup-policy”). In this

chapter, we trained unsupervised exploratory policies for efficient generic informa-

tion acquisition using our active observation completion framework (in this section,

“ours-unsup-policy”). We now test how well ours-unsup-policy transfers to a

new task with new data from unseen categories: the ModelNet-10 active categoriza-

tion setting of ours-sup-policy.

The experimental setup is identical to the setup described in Section 6.2.1

of the last chapter, except that we use T = 4 and neighborhood size 5 × 5 to be

consistent with the settings of this chapter, described in Section 7.2.1. The methods

compared are as follows:

• ours-sup-policy is a full end-to-end active categorization system trained us-
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ing our “Lookahead active RNN” approach of Chapter 6 on ModelNet-10 train-

ing data.

• 1-view is a passive feed-forward neural network which only processes one ran-

domly presented view and predicts its category. Its architecture is identical

to ours-sup-policy minus the action selection and information aggregation

modules.

• ours-random-policy is an active categorization system that selects random

actions (same as baseline “random views (recurrent)” of Chapter 6). This

uses the same core architecture as ours-sup-policy, except for the action

selection module. In place of learned actions, it selects random legal motions

from the same motion neighborhood as ours-sup-policy. This is trained on

ModelNet-10 training data.

• ours-unsup-policy plugs in our unsupervised active observation completion

policies into the active categorization system of Chapter 6. We then train an ac-

tive observation completion model on ModelNet-30 training data, disjoint from

the target ModelNet-10 dataset classes. At test time, we run forward passes

through two models simultaneously: (i) the random actions model trained for

baseline ours-random-policy above (model “A”), and (ii) the observation

completion model (model “B”). At every timestep, both models observe the

same input view. They then communicate as follows: the ModelNet-30 ob-

servation completion model B selects actions to complete its internal model

of the ModelNet-10 samples. At each timestep, this action is transmitted to
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model A, in place of the randomly sampled actions that it was trained with.

Recall that Model A is trained to aggregate information and make predictions

on ModelNet-10 data, so it outputs ModelNet-10 class labels at each timestep.

Observe that ours-unsup-policy thus effectively transfers policies trained on

an unsupervised task, to a supervised active task on disjoint data from novel

classes.

Figure 7.6: Evolution of ModelNet-10 active object categorization accuracy over time.
ours-unsup-policy represents our unsupervised generic exploratory policy applied to the
active categorization task. As seen here, it performs on par with ours-sup-policy, which
is our end-to-end supervised policy trained specifically for active categorization using the
approach of Chapter 6.

Figure 7.6 shows the results. Our unsupervised policy transfer approach

ours-unsup-policy performs on par with our earlier end-to-end active categoriza-

tion policy on this task, easily outperforming ours-random-policy and 1-view.

This is remarkable because the policy being employed in ours-unsup-policy is not

only trained for the separate, unsupervised active observation completion task but
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it was also trained on data from disjoint classes. This suggests that unsupervised

exploratory tasks such as active observation completion could facilitate policy learn-

ing on massive unlabeled datasets in the future. Since policy learning is expensive in

terms of data, computation and time, such exploratory policies once trained could

be transferred to arbitrary new tasks with much smaller datasets. Performance may

further improve if instead of directly transferring the policy, the policy could be fine-

tuned for the new task, analogous to feature finetuning which is widely employed in

the passive setting.

7.3 Conclusion

In this chapter, we posed and tackled a new problem: how can a visual

agent learn to look around, independent of a recognition task? We present a new

active observation completion framework for general exploratory behavior learning.

Our reinforcement learning-based solution builds on the approach of Chapter 6 and

demonstrates consistently strong results across very different settings for realistic

scene and object completion, compared to multiple strong baselines.

Where Chapter 6 was concerned with learning supervised behaviors learned

with supervision using category labels, in this chapter, we instead focus on learn-

ing unsupervised exploratory behaviors. Our results show the promise of general

curiosity-driven exploration, an important step towards autonomous embodied vi-

sual agents.

Many of the potential improvements of the approach pointed out in Chap-

ter 6 carry over to this chapter, such as learning termination policies or working in
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movement-budgeted settings. Aside from this, another common observation about

the work in both chapters is that there is in general no one optimal or correct policy

that our approach converges on, over multiple runs. Instead, every new initialization

produces an equivalent policy with near-similar performance, and it is usually diffi-

cult to understand or evaluate what is learned within these policies. In the vein of

recent work on visualizing the rationales behind predictions of feed-forward neural

networks [109, 188, 191], there is an opportunity for fruitful follow-up work on policy

visualization to expose the rationales behind action decisions made by RNN-based

active agents such as ours to allow better understanding of the training process and

final model behavior.

Finally, our results in Section 7.2.3 show the promise of unsupervised ex-

ploratory policy transfer to new tasks. While this is exciting, these results may only

be treated as preliminary since they have been demonstrated on only one synthetic

image dataset, and when testing policy transfer to only one task (object categoriza-

tion). It would be of great value to reproduce this result on more realistic datasets,

testing transfer to a suite of diverse exploratory active tasks.

This chapter marks the end of my exposition of the completed technical work

of my PhD. Throughout this dissertation, I have demonstrated how various avenues

exist for embodied agents to acquire much of visual intelligence without manual

supervision. Chapters 3, 4, and 5 showed how it is possible to learn static im-

age representations without manual supervision through constant observation and

knowledge of proprioception. Chapters 6 and 7 have shown that it is possible to

employ end-to-end deep learning to acquire exploratory behaviors with or without
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a specified and supervised target task. At the end of each of these chapters, I have

pointed out potential directions for immediate follow-up work and improvements.

Next, in Chapter 8, I will zoom out to conclude my dissertation, highlighting some

promising research themes that could build upon and extend the ideas described in

this manuscript in the next several years.
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Chapter 8

Conclusions and Future Work

In the preceding chapters, I have presented my thesis on embodied learning

methods for recognition, in five stages:

• Learning steady representations encoding visual dynamics from video, in Chap-

ter 3 [77]

• Learning image representations tied to observer motion, in Chapter 4 [75, 78]

• Unsupervised learning through one-shot image-based shape reconstruction, in

Chapter 5 [80]

• End-to-end active visual category recognition, in Chapter 6 [76]

• Learning to look around, in Chapter 7 [79]

Through working on my thesis and thinking about these ideas, I have grown

convinced that this nascent idea of embodied, exploratory, self-taught learning by a

machine could have great long-term impact. Embodied machines of the future will

have the capacity to acquire their knowledge of most aspects of the visual world,

such as depth, geometry, context, objectness, saliency, and intuitive physical dy-

namics, entirely through unsupervised exploration. Eventually, such machines will
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use supervision merely as a bridge between their self-acquired concepts and human

language. These general ideas may even apply to domains other than vision.

In fact, replacing the continuous human-provided external supervision require-

ment of standard learning methods with self-acquired internal supervision (for ex-

ample, the motor signals on a robot in my research) could prove critical to any

independent artificial intelligences that may be deployed in real world situations

where continuous supervision is impractical, so that, say, a robot dropped onto an

unknown, unexplored planet may still have the ability to adapt to its own environ-

ment by learning through self-initiated exploration.

Having described these long term objectives, in the rest of this chapter, I

describe directions for future work that I believe will be critical in making progress

towards them.

Inter-task relationships Much of the work in this dissertation has been moti-

vated by the idea that the quest for artificial intelligence must not limit itself to

matching human performance on select pre-specified tasks for which large manu-

ally supervised datasets exist. Instead, we should attempt to also match biological

vision in the efficiency of the learning process itself, and the ability to generalize

easily to a wide variety of tasks. With this in mind, I believe that research questions

surrounding inter-task relationships are important to future progress.

In particular, the computer vision community is working to make progress

on many types of tasks, which have been identified and evolved over the years. All

of our research is motivated by some “end goal” applications, such as web search,
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Figure 8.1: What is the nature of relationships among various types of computer vision
tasks? If each task is a node in a graph, then edges between nodes correspond to relation-
ships between tasks. Several interesting questions about these relationships remain to be
investigated.

self-driving, physical object search, object grasping and manipulation. However, the

community has also identified a long list of potentially useful “intermediate goal”

tasks. Examples include: edge detection, segmentation, attribute recognition, object

and scene categorization, and so on. Solutions for these tasks may in theory be

composed together into solutions for end goal tasks. And finally, many of the tasks

introduced in this dissertation fall into a third category of tasks, best classified as

“self-supervised/unsupervised” tasks, which are designed to induce the ability to

perform various intermediate and/or end goal tasks while not requiring any manual

supervision. A system trained on these tasks must be able to learn other tasks more

easily than a system that is starting from scratch. This category includes egomotion-

equivariance (Chapter 4), future prediction (Chapter 3), one-shot reconstruction
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(Chapter 5), jigsaw puzzle solving, and grayscale image colorization.

Having broadly classified visual tasks in this manner, we can ask many basic

questions about the relationships between them. For instance, which unsupervised

tasks induce the abilities to perform which supervised tasks? We could even ask

broader questions about where researchers should invest their efforts: are all the

intermediate goal tasks actually useful to our end goal tasks, and should we even

be trying to solve all of them? For instance, which end goal tasks are enabled by

modeling context, say, or saliency? Finally, is there some subset of these tasks that

if a system can perform well, then it will be able to perform all the other tasks of

interest? Or are there perhaps many such independent subsets? For a system that

is to be trained on one such subset of tasks one after another in some ordering, are

some task orderings better than others? Figure 8.1 schematically depicts our task

classification within a graphical view of inter-task relationships, where each node is

a task and edges correspond to relationships between pairs of tasks.

Simulated environments for sophisticated visual tasks In Chapters 6 and 7,

we saw how simulated environments allow repeatable and benchmarkable evaluation

of active embodied systems. While our simulated environments were set up to allow

simple interactions that were sufficient for our tasks (e.g., moving a normal field

of view camera over a panoramic scene or rotating a synthetic 3D object model for

active scene or object recognition), more complex environments could allow simulated

agents many more degrees of interaction with the environment and subsequently

permit the study of more sophisticated interactive tasks. Other researchers have
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recently begun efforts to create such simulated environments [131, 145, 194] or use

pre-existing video game environments [136, 144].

My interest in simulated environments stems from the variety of opportuni-

ties they offer for researchers. Firstly, they can provide training sandboxes for active

agents for sophisticated visual tasks such as semantic object search or driving. Unlike

in the real world, hardware-level details are abstracted away, and there is virtually

no limit on the amount of training experience that is possible. Secondly, they open

up avenues for investigating questions about inter-task relationships, such as those

introduced above. For instance, since the environment is completely human-designed

and therefore contains rich annotations, it may be possible in a simulated car racing

game to simulate 90% semantic segmentation and assess its impact on self-driving

performance. Finally, these environments allow systematic perturbations of the un-

derlying elements of image formation (such as object presence, occlusions, shading,

camera positioning, and lighting) to better understand perception algorithms and

address their shortcomings.

Figure 8.2: Which long-term unsupervised end goals would induce visual intelligence in
computational agents, analogous to survival and reproduction for biological agents?
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Unsupervised and self-supervised learning Finally, a common thread running

through this dissertation is the idea of learning without manual labels. Including the

work described in this thesis, there has recently been much activity on this topic,

and I believe that many opportunities remain for further investigation.

In particular, my optimism for unsupervised learning stems from the observa-

tion that animal intelligence is the by-product of an evolutionary process that opti-

mizes for unsupervised, long-term end goals like survival and reproduction. The key

shortcoming in today’s unsupervised learning approaches including those introduced

in this thesis appears to be that they focus on myopic, short-term visual prediction

tasks for unsupervised learning, which may not require sufficient visual reasoning to

effectively induce visual abilities. I believe that for successful unsupervised learning,

we must instead attempt to formulate long-term end goals that could induce visual

intelligence in computational agents (See Figure 8.2 for a schematic representation).

In this context, embodied agents have a critical advantage over passive agents in

that they can voluntarily probe their environments in many diverse ways to acquire

supervisory signals. Through the work described in my thesis and the concurrent

efforts of other researchers, I have come to believe that any solution for truly effective

unsupervised visual learning must involve embodied visual agents.
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