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Visual recognition research develops algorithms and representations to autonomously recog-

nize visual entities such as objects, actions, and attributes. The traditional protocol involves

manually collecting training image examples, annotating them in specific ways, and then

learning models to explain the annotated examples. However, this is a rather limited way

to transfer human knowledge to visual recognition systems,particularly considering the im-

mense number of visual concepts that are to be learned.

I propose new forms of active learning that facilitate large-scale transfer of human knowl-

edge to visual recognition systems in a cost-effective way.The approach is cost-effective in

the sense that the division of labor between the machine learner and the human annotators

respects any cues regarding which annotations would be easy(or hard) for either party to

provide. The approach is large-scale in that it can deal witha large number of annotation

types, multiple human annotators, and huge pools of unlabeled data. In particular, I consider

three important aspects of the problem:
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(1) cost-sensitive multi-level active learning, where theexpected informativeness of any can-

didate image annotation is weighed against the predicted cost of obtaining it in order to

choose the best annotation at every iteration. (2) budgetedbatch active learning, a novel

active learning setting that perfectly suits automatic learning from crowd-sourcing services

where there are multiple annotators and each annotation task may vary in difficulty. (3) sub-

linear time active learning, where one needs to retrieve those points that are most informative

to a classifier in time that is sub-linear in the number of unlabeled examples, i.e., without

having to exhaustively scan the entire collection.

Using the proposed solutions for each aspect, I then demonstrate a complete end-to-end active

learning system for scalable, autonomous, online learningof object detectors. The approach

provides state-of-the-art recognition and detection results, while using minimal total man-

ual effort. Overall, my work enables recognition systems that continuously improve their

knowledge of the world by learning to ask the right questionsof human supervisors.
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Chapter 1

Introduction

Computer vision research is aimed at developing algorithmsand representations that will

enable a computer system to autonomously analyze visual information. One of the primary

challenges in this research is the problem of recognizing generic object categories. It is

challenging on a number of levels: objects of the same class may exhibit wide variability

in appearance, real-world images naturally contain large amounts of irrelevant background

“clutter”, and subtle context cues can in many cases be crucial to proper perception of objects.

Nonetheless, recent advances have shown the feasibility ofusing statistical machine learning

techniques to build accurate models for a number of well-defined object categories.

However, some form of human supervision is required to trainsuch models. Figure 1.1(a)

illustrates the traditional protocol for providing supervision for object recognition systems.

Training data containing a large number of examples of the categories to be learned are first

manually collected. Depending on the requirement of the model being learned, the collected

examples are annotated in specific ways. This may range from tagging images with category

labels to outlining object boundaries to marking landmark points on objects and cropping,

aligning and normalizing the pose of objects. Unfortunately, the accuracy of most current

approaches relies heavily on the amount of such labeled training examples available for each

1



(a) The current protocol for learning classi-
fiers. Training data is manually collected,
and annotated to train a classifier.

(b) The active learning protocol for learn-
ing classifiers. Training data is manually or
automatically collected, and the system re-
peatedly chooses examples to request anno-
tations from a human annotator.

Figure 1.1: Contrast between the traditional protocol of training classifiers for visual recog-
nition (left) and the proposed active learning framework (right).

class of interest, which effectively restricts existing results to relatively few categories of

objects (often on the order of 10s).

Considering that recognition research aims at learning visual representations of about 30,000

nouns (objects) notwithstanding the innumerable verbs (actions) and adjectives (attributes),

the standard protocol of learning models from carefully gathered and annotated images is

unsuitable as a means of transferring human knowledge. In particular,

• Collecting such hand-crafted training examples is an expensive endeavor in terms of

manual effort. While recent work in vision has considered reducing this reliance on

supervision, there is no direct measure of the amount of manual effort that is being

expended.

• Allowing a human to select examples for training a system will inadvertently introduce

biases in the collected data. In addition, there is an obvious disconnect between what a

2



human considers as “useful” and what a vision system will consider as “useful”.

• Data collection is treated as a one-time preprocessing stage. However, realistically any

learning system must be expected to continuously perceive its environment and identify

concepts that it finds unclear in order to expand its horizon of knowledge.

The vision community is well aware of the challenge of reducing the reliance of object recog-

nition methods on well-annotated datasets. Recent methodshave considered reducing the

“level” of supervision by using weakly labeled images whichare easier to obtain [119, 32,

73, 125, 115], re-using knowledge across categories [94, 40] and leveraging the free but noisy

tagged images on the Web [31, 70, 106]. In an effort to reduce the “amount” of supervi-

sion, approaches have been devised for labeling and utilizing unlabeled examples effectively

through active learning strategies [18, 75, 123, 54, 77, 48,52, 21] or semi-supervised meth-

ods [16, 40, 43, 68]. Working in the other direction, some research seeks to ease the “effort”

required to provide supervision by tempting users with games or nice datasets [116, 83] or

compensation [96].1

While the results are encouraging, existing techniques fail to address the following key in-

sights about cost-effective large-scale transfer of humanknowledge:

• The division of labor between the machine learner and the human labelers ought to

respect any cues regarding which annotations would be easy (or hard) for either party

to provide. This means that there should be a definitive notion of both howinformative

1I will discuss these methods in more detail and provide contrasts with my approach in Chapter 2.
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a particular annotation is to the learner and how mucheffort it requires from a human

supervisor. Also, to use a fixed amount of manual effort most effectively may call for a

combination of annotations at multiple supervision levels(e.g., a full segmentation on

some images and a present/absent flag on others).

• With the availability of multiple human annotators workingsimultaneously the ma-

chine learner must be able to distribute the labor across different annotators in the most

effective way. This means that the learning system must be able to generate large

batches of annotation queries simultaneously that not onlyminimize the total annota-

tion cost but also provide as much non-overlapping information as possible.

• Finally, since obtaining annotations from a human is an interactive process, any large-

scale learning system must be able to quickly generate annotation questions without

wasting the annotators’ time. Therefore, the learner must also be able to pinpoint the

most informative label requests among a large pool of unlabeled examples without

having to exhaustively scan the entire dataset.

My thesis “Active Visual Category Learning” successfully incorporates these insights in or-

der to provide a cost-effective approach for learning visual concepts such as object categories.

Figure 1.1(b) illustrates the proposed active learning protocol where the learned model itself

selects the most informative examples to obtain labels for from a human annotator. While

traditional active learning has been shown to reduce the total number of labels to train classi-

fiers, there are several distinct unsolved problems when choosing informative data to annotate

for visual recognition. Through my thesis work I address these important problems:

4



• How can a classifier learn from annotations at multiple levels of granularity? (Chap-

ter 3)

• How do we define a principled way to compare every candidate annotation both in

terms of how much effort it might require and how much information it might provide?

(Chapter 3)

• Can we predict an image’s annotation costs directly from itsfeatures so as to compute

its true worth? (Chapter 3)

• How do we utilize multiple annotators at once so that the total annotation cost is re-

duced? (Chapter 4)

• Can we design active selection methods that do not need to exhaustively scan all avail-

able annotations in order to pick a question to ask? (Chapter5)

Solutions to these problems fundamentally enhance active learning as a cost-effective large-

scale means for learning various visual concepts. I demonstrate this by developing the first

system capable of scalable, automatic online learning of object detectors with crowd-sourced

labels (Chapter 6).

Through extensive experiments on several challenging datasets I demonstrate that my ap-

proach can learn visual classifiers with a lower expenditureof manual effort when compared

to the state-of-the-art and several relevant baseline techniques. In particular, I demonstrate a

large-scale system for autonomous online learning that improves the state-of-the-art for the

most difficult objects in the PASCAL dataset, a widely accepted challenging benchmark for

object detection, thus showing that the proposed frameworkis a more effective protocol for

learning visual models.
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1.1 Overview of Thesis

This section previews the main components of my thesis, to provide the reader a compact

summary of the chapters ahead. In the following subsections, I provide a summary of the

problems I have addressed, expanding the themes introducedabove with a bit more detail.

The following chapters provide technical ideas and resultsfor each component.

1.1.1 Cost-sensitive Active Learning with Multi-level Queries

Traditional active learning methods design selection criteria for choosing an unlabeled exam-

ple on which to request asingletype of label from an oracle (e.g., which category the example

belongs to, or whether a particular object exists in the image example so as to improve the

category model [124, 54, 21, 77, 107]). However, to use a fixedamount of manual effort

resources most effectively the category learner must be allowed to choose from a mixture of

annotations at different levels of granularity (strongly labeled and weakly labeled) depend-

ing on how confidently the model can explain the example. Thisis because strongly labeled

examples are less ambiguous but more expensive in terms of manual effort, while weakly

labeled examples are more ambiguous in their labels but easier to obtain. Take for example, a

full segmentation on images as opposed to a present/absent flag. It might be easier to provide

a present/absent flag on an image compared to object outlines; however, a full segmentation

provides unambiguous information to the classifier. Similarly, the longer the video, the longer

it will take to watch it and annotate its contents; the more sophisticated or time-consuming

the image query, the more we may need to pay a human labeler to answer it.

The learning algorithm must therefore be able to accommodate the multiple levels of gran-
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Figure 1.2: The problem setting of
our cost-sensitive active learning ap-
proach. Useful image annotations
can occur at multiple levels of granu-
larity, and each individual image ex-
ample can require different amounts
of manual effort. The main chal-
lenge is to design an active selec-
tion function that can compare anno-
tations based on both how informa-
tive they are and how much manual
effort they require.

ularity that may occur in image annotations, and to compute which itemat which of those

levelsappears to be most fruitful to have labeled next. Additionally, while most approaches

assume that all unlabeled examples require the same annotation cost, the actual manual effort

required to provide an annotation varies both according to the annotation type as well as the

particular image example. Hence, an active learner must notonly incorporate the variable

cost of an annotation into its selection function, but it should also be able to predict the cost

of an image example even before obtaining it. Finally, most real-world images consist of

multiple objects, and so should be associated withmultiple labels simultaneously. Note that

multi-label is thus more general thanmulti-class, where usually each example is assumed to

represent an item from a single class. Therefore, ideally anactive learner must be able to

both learn from and assess the value of images containing some unknown combination of

categories. Figure 1.2 illustrates the problem setting.

In order to handle these issues, I consider an active learning framework where the expected

informativeness of any candidate image annotation is weighed against the predicted cost of

7



obtaining it. I devise amultiple-instance, multi-label learning (MIML)formulation that al-

lows the system itself to choose which annotations to receive, based on the expected benefit

to its current object models. After learning from a small initial set of labeled images, my

method surveys any available unlabeled data to choose the most promising annotation to

receive next. After re-training, the process repeats, continually improving the models with

minimal manual intervention.

Critically, our active learner chooses both which image example as well as whattype of

annotation to request: a complete image segmentation, a segmentation of a single object, or

an image-level category label naming one of the objects within it. Furthermore, since any

request can require a different amount of manual effort to fulfill, we explicitly balance the

value of a new annotation against the time it might take to receive it. Even for the same

type of annotation, some images are faster to annotate than others (e.g., a complicated scene

vs. an image with few objects). Humans can easily glance at animage and roughly gauge

the difficulty. But can we predict annotation costs directlyfrom image features? Learning

with data collected from annotators on the Web, we show that active selection gains actually

improve when we account for the task’s variable difficulty.

Our results demonstrate that (1) the active learner obtainsaccurate models with much less

manual effort than typical passive learners, (2) we can fairly reliably estimate how much a

putative annotation will cost given the image content alone, and (3) our multi-label, multi-

level strategy outperforms conventional active methods that are restricted to requesting a

single type of annotation.
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Figure 1.3: The problem setting for
budgeted batch active selection. With
the availability of multiple simulta-
neous annotators it is often preferable
to farm out a batch of good queries at
once. Since examples have variable
annotation costs, the main challenge
is to select the most useful set of
examples without overspending the
given annotation budget.

1.1.2 Selection under a Budget for Multiple Simultaneous Annotators

The previous section dealt with choosing asingleannotation from a large pool of multiple

types of annotation queries. Such an approach can be used to train classifiers when a single

human annotator is available to interact with the system. However, in many applications

multiple annotators are available simultaneously (e.g., Mechanical Turk[96], LabelMe[83]).

An active learning system that needs to repeatedly go offlineand compute the next annotation

request cannot take advantage of such resources. Therefore, it may be preferable to farm out

a batchof good queries at once. There are a few recent active learning methods that try to

select afixed batch of examples at each iteration [12, 57, 42]. However, such techniques

typically assume that all examples require the same amount of manual effort to label, and

thus aim to minimize the total number of queries made. In reality, the cost associated with

labeling different examples often varies, sometimes significantly, discussed above.

Therefore, I formalize the problem of far-sighted active learning with a budget. Figure 1.3

shows the problem setting of this approach. At each iteration the active learner is allowed to

choose a set of examples to get labeled, provided the total sum of costs associated with the
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selected examples is under a given budget. I propose a novel method for optimally selecting a

set of examples for a support vector machine (SVM) classifierunder these conditions. Given

a large unlabeled pool of data where each example has an associated cost, we introduce a

set of instance selection variables. I formulate an optimization problem to learn the maxi-

mum margin hyperplane along with the instance variables that minimize the empirical risk

(on both the labeled data and selected unlabeled points), while satisfying the given budget

constraint. We then relax it to a continuous optimization problem that can be decomposed

into two strictly convex optimization problems loosely coupled in the hyperplane parame-

ters and selection variables. We devise a monotonically convergent alternating minimization

algorithm to compute the solution.

To my knowledge, the proposed approach is the first batch active selection strategy that is

sensitive to the costs of labeling, and the first method to allow sets of training examples to

be chosen so as to meet a prescribed budget. The efficiency of the component optimization

steps also makes it rather scalable to large unlabeled data pools. Furthermore, in contrast to

previous methods, our approach considers how much the classifier objective changes if we

were to obtain the most probable labels on the candidate examples for selection. We find that

this aspect is critical to performance, particularly in thepractical scenario where one wants

to set a large budget at each iteration.

I validate my method on benchmark datasets for three recognition applications: object recog-

nition, activity recognition, and content-based image retrieval. I demonstrate the advantages

of our approach compared to passive, myopic greedy, and batch selection baselines, and show

its effectiveness across a range of budgets. Our results indicate that budgeted batch selection
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is crucial for efficient active learning in practical scenarios, clearly outperforming conven-

tional myopic selection techniques.

1.1.3 Sub-linear Time Active Learning for Web-scale Data

So far, I considered actively selecting annotations from multiple types and for multiple an-

notators, assuming throughout that human effort is more expensive than machine cycles.

However, when one considers applying active learning on very large “unprepared” unlabeled

datasets the expense of selecting the annotation to requestbecomes equally important. Gen-

erally methods today are tested in somewhat canned scenarios: the implementor has a mod-

erately sized labeled dataset, and simply withholds the labels from the learner until a given

point is selected, at which point the “oracle” reveals the label. In reality, one would like to de-

ploy an active learner on atruly massive unlabeled data pool (e.g., all documents on the Web)

and let it crawl for the instances that appear most valuable for the target classification task.

The problem is that a scan of millions of points is rather expensive to compute exhaustively,

and thus defeats the purpose of improving overall learning efficiency.

Therefore, we consider the problem of performing active selection on large-scale datasets

where the computational cost of selection outweighs other considerations as shown in Fig-

ure 1.4. For active selection, we use the “simple margin” selection criterion for a linear SVM

classifier. Given a hyperplane classifier and an unlabeled pool of vector data, the point that

minimizes the distance to the current decision boundary is selected for labeling. This is a

widely used margin-based selection criterion [98, 85, 15] and it has been shown to substan-

tially reduce total human annotation effort. However, for large-scale active learning, even
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Figure 1.4: The problem setting for our
sub-linear time active learning approach.
In order to deploy an active learner on the
large amounts of unlabeled data that are
available through web based resources,
one must be able to select informative
examples with minimal computational
costs. The main challenge is therefore to
design a selection algorithm that requires
sub-linear selection time, i.e., it does not
have to exhaustively scan the entire unla-
beled pool.

with such a simple albeit effective criterion it is impractical to exhaustively apply the classi-

fier to all unlabeled points at each round of learning. Therefore, to exploit massive unlabeled

pools, a fast (sub-linear time) search method to identify the closest points to a given hyper-

plane is needed.

To this end, I consider the novel Nearest Neighbor to a Query Hyperplane (NNQH) problem

and propose two approximate solutions. For each, I introduce randomized hash functions that

offer query times sub-linear in the size of the database, andprovide bounds for the approx-

imation error of the neighbors retrieved. Our first approachdevises a two-bit hash function

that is locality-sensitive for the angle between the hyperplane normal and a database point.

Our second approach embeds the inputs such that the Euclidean distance reflects the hyper-

plane distance, thereby making them searchable with existing approximate nearest neighbor

algorithms for vector data. While the preprocessing in our first method is more efficient, our

second method has stronger accuracy guarantees.

Our two NNQH solutions supply exactly the hash functions needed to rapidly identify the
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most uncertain examples for a linear SVM classifier according to the “simple margin” se-

lection criterion. Therefore, our algorithms make it possible to benefit fromboth massive

unlabeled collections as well as actively chosen label requests. I demonstrate our algorithms’

significant practical impact for large-scale active learning with SVM classifiers. Our results

show that our method helps scale-up active learning for realistic problems with massive un-

labeled pools on the order of millions of examples.

1.1.4 A Large-scale System for Autonomous Online Visual Learning

My goal in defining and solving the problems described in the previous sections is to enable

large-scale transfer of human knowledge for learning visual concepts such as objects and

activities. In order to demonstrate the effectiveness of our solution as a viable protocol for

learning visual models, as the final component of this thesis, I built the first complete end-to-

end system for scalable, autonomous online learning of object detectors.

I chose object detection as a suitable setting to demonstrate aspects of our solution because

(1) object detection typically requires identifying a single tight-fitting window among thou-

sands of windows within an image, an ideal setting for our large-scale selection approach; (2)

state-of-the-art methods for detection typically requirelarge numbers of training examples

annotated using bounding boxes, an expensive process whoseexpense, we believe, can be

significantly reduced using our active approach; (3) it is anextremely challenging problem

where any progress is diligently recorded and encouraged [23, 30, 103, 62, 29].

I present an approach forlive learningof object detectors, in which the system autonomously

refines its models while iteratively feeding annotation requests to crowd-sourced human la-
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belers. Rather than fill the data pool with some canned dataset, the system itself gathers

possibly relevant images via keyword search. It repeatedlysurveys the data to identify un-

labeled sub-windows that are most uncertain according to the current model, and generates

tasks on Mechanical Turk to get the corresponding bounding box annotations. After an an-

notation budget is spent, we obtain a category model which can be used to detect instances

of the category on novel test images. Notably, throughout the procedurewe do not intervene

with what goes into the system’s data pool, nor the annotation quality from the hundreds of

online annotators.

In order to handle the technical challenges such a large-scale system entails, I propose a

novel part-based detector amenable to linear classifiers, and show how to identify its most

uncertain instances in sub-linear time with our hashing-based solution. Our detector strikes a

good balance between speed and accuracy, with results competitive with and even exceeding

the state-of-the-art on the PASCAL VOC. Most importantly, Ishow successful live learning

in an uncontrolled setting. The system learns accurate detectors with much less human effort

than strong baselines that rely on human-verified keyword search results.

1.2 Main Contributions

My thesis makes several important contributions for visualrecognition and active learning.

I provide a method to actively learn categories from a mixture of weakly and strongly la-

beled examples. We are the first to identify and address the problem of active visual category

learning with multi-level annotations. My approach acknowledges the variable manual effort

costs of different images and provides a unified framework for predicting both the informa-
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tion content and the cost of different types of image annotations for the multi-label learning

setting. I also define a novel active learning problem, budgeted batch active learning, where

there are multiple annotators and each example requires a different annotation cost depend-

ing on its difficulty, and propose an efficient solution for choosing a set of examples that fit

under an annotation budget. I demonstrate the application of our approach for learning three

different tasks: object recognition, activity recognition, and content-based image retrieval. I

then provide two hashing-based solutions for the novel approximate nearest neighbor to a hy-

perplane query problem which enables large-scale pool-based active learning. I empirically

demonstrate that our solutions make it practical to performactive selection with millions of

unlabeled points. Tying all these together, I develop the first complete end-to-end solution

for scalable, automatic online learning of object detectors in which the system autonomously

refines its models by actively requesting crowd-sourced annotations on images crawled from

the Web.

1.3 Road Map

In the following chapter I discuss some background materialand related work to the thesis.

In Chapter 3 I consider the problem of learning effectively from annotations occurring at

multiple levels of granularity. In Chapter 4, I consider theproblem of selecting a batch of

examples that provide the most improvement in a classifier objective without overspending

a given annotation budget. In Chapter 5, I consider the problem of retrieving the examples

that are most informative to a hyperplane classifier withouthaving to exhaustively scan the

entire database. In Chapter 6, I explain our approach forlive-learningof object detectors

15



by autonomously querying annotations on select examples from crowd-sourcing services.

Finally, Chapter 7 discusses the main contributions of my thesis.
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Chapter 2

Related Work

In this chapter I review work related to the research presented in this thesis. The fundamental

aim of this thesis is to provide a systematic way of introducing supervision while learning

object models. Given the expense of labeled image data, researchers have explored various

ways to reduce supervision requirements. The relevant previous work aimed at reducing su-

pervision requirements can be broadly grouped into three different threads. The first thread

aims at reducing the “level” of supervision, coarsely corresponding to the difficulty of pro-

viding a particular type of annotation. The second line of research tackles the “amount” of

supervision in terms of the number of training examples thatneed to be annotated. A third

line of research tackles the “effort” involved in providingannotations.

I describe each strategy in turn, and conclude the subsections with a brief overview of impor-

tant relationships and contrasts with my work.

2.1 Reducing the Level of Supervision

Most approaches to object recognition require some form of human supervision. This may

range from identifying parts of objects [128, 22] to cropping and aligning images of objects to

be learned [114, 100], to providing complete image segmentations [67] and bounding boxes
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(a) Individual object parts (eyes)
are outlined in training images of
faces.

(b) Landmark points are marked
on training objects (resistor).

(c) Images are cropped, aligned
and normalized for training a face
detector.

(d) All objects in the image are
outlined and labeled.

(e) A bounding box is provided
around the object of interest.

(f) Image level tag specifying the
type of object present.

Figure 2.1: Figure illustrating the different kinds of supervision that can be provided on image
data.
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[28] to weak image level tags [14] and auxiliary data indicating an object’s identity [94, 40]

as shown in Figure 2.1 (approximately ordered in decreasinglevels of supervision). In the

following we review some of these approaches.

2.1.1 Weakly Supervised Recognition

Some of the earliest work in object recognition and detection require considerable human

effort in collecting training examples for learning classifiers. Features of faces are detected

and described using deformable templates in [128] using hand-crafted parts based on the

knowledge of the object category being modeled (e.g. eyes, noses, ears, etc for describing

faces). Active shape models are learned for different objects using hand-labeled landmark

points on different views of training objects in [22]. In [114], a state-of-the-art face detector

is built using training data that consists of cropped, frontal, normalized images of a large

number of faces.

Given the expense of collecting such hand-labeled examplesfor generic objects, computer

vision research has since explored the paradigm ofweakly supervisedrecognition. These

approaches assume that each image contains a single object of interest, and the only super-

vision required is an image level label saying whether it contains the object of interest or

not. Robust models are then built using these “weak” labels to categorize and localize ob-

jects in novel images. Using weakly labeled images to learn categories was first proposed

in [119, 32]. Similarly, in [5], a joint distribution of image regions and words is learned using

only tags on images. These approaches learn to associate or emphasize features on certain

image regions based on their repeated occurrence in a large number of training images. In
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contrast, “stronger” labels such as bounding boxes requiremore manual effort, but directly

provide these regions of interest to the classifier.

Several researchers have since shown that multiple instance learning (MIL) can accommodate

the weak or noisy supervision often available for image data[106, 73, 125, 115]. Multiple-

instance learning considers a particular form of weak supervision where the learner is given

a set ofpositive bags, which are sets of instances containing at least one positive instance

and negative bags, which are sets of instances none of which are positive. Compared to

traditional supervised learning, the labels available in the MIL setting are ambiguous or weak

as they do not specify which among the instances in a positivebag are positive. The multiple-

instance learning setting was first identified in [25], who represented ambiguously labeled

examples using axis-parallel hyper-rectangles and demonstrated applications for drug activity

prediction. More recently MIL has received various treatments within the machine learning

community [132, 2, 37, 79, 13]. In [13] for example, a large-margin MIL formulation that

addresses the possibility of very sparse positive bags is proposed, and it is demonstrated on

several machine learning datasets.

There are several instances of MIL in vision targeting different tasks using a similar setting.

In this setting, an image consisting of a set of regions/component blobs/segments is a positive

bag, and only a subset of the component blobs are true positive examples (i.e., correspond to

foreground). Labels are available only at the image level specifying if the image contains at

least one component blob that belongs to a particular class.In [73], for example, MIL is used

in this setting to classify natural scenes using very low resolution images. Content-based im-

age retrieval is solved using an MIL based approach in [125, 130]. Weakly supervised object

20



localization is performed using an MIL approach in [36] where multiple stable segmentations

represent the set of instances in a bag.

Multi-label variants of MIL, Multiple-Instance Multi-Label Learning (MIML), are proposed

in [133, 129], where instances within a bag can belong to any number of classes (as opposed

to {+1,-1} for MIL), but in a similar spirit to MIL only image level labels are available

to the classifier. Hence, an image can be associated with any number of classes, which is

the case for truly unprepared images. In [133], the MIML problem is transformed into a

traditional supervised task by clustering instances within bags and computing abag of words

representation of the instances. More recently, the authors of [129, 131] model the relation

between instances and labels more explicitly using hidden variables or class-specific feature

representations, with the goal of exploiting category co-occurrence cues. In [77], the authors

introduce an active approach to select sample-label pairs based on the idea that for multi-label

data, only a part of labels need to be annotated while others can be inferred by exploring

correlations between labels.

Discussion.

While it is commendable that a lot of research in computer vision is concentrated on low su-

pervision recognition, we must exercise some caution before completely discarding stronger

annotations such as bounding boxes or segmentations. The approach of [114] is still the

state-of-the-art face detection method even though it utilizes stronger supervision. Therefore,

it may be that a single strong annotation could be worth the value of a very large number of

weak annotations in some cases. To further reinforce this thesis, the current best approaches

on the PASCAL VOC dataset utilize the bounding box information provided around the ob-
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jects in training images. Though on fairly regular datasetssuch as Caltech101 weak supervi-

sion (image tags) may provide more than sufficient information to learn accurate models, on

harder datasets such as the PASCAL VOC stronger informationseems essential.

Therefore, instead of completely ignoring stronger annotations, what we need is a principled

way of comparing annotations at different levels both in terms of how much manual effort

they consume and how much information they provide to the classifier to best utilize the

manual effort resources that are available to us. This is oneof the major problems that I

tackle in this thesis.

In particular, MIL provides a way of learning simultaneously from strongly and weakly la-

beled examples, which I show in later chapters to be a crucialfunctionality for minimizing

supervision requirements. As part of this thesis, I also propose a kernel-based approach for

solving the MIML problem that produces state-of-the-art results in order to tackle object

recognition in the multi-label setting. Further, I identify an additional setting where a weak

form of supervision is available in object recognition and show how MIL can be used in

conjunction with keyword based search results to obtain a method to learn object categories

without any human supervision.

2.1.2 Unsupervised Recognition

Apart from utilizing weak forms of supervision, recent methods have also shown the possibil-

ity of learning visual patterns from unlabeled image collections [78, 94, 40, 66]. In this group

of methods the only supervision the user is required to provide is to identify a single object’s

or a cluster’s identity once the images have been automatically organized. Several of these

22



approaches are based on image clustering techniques that accommodate local image feature

representations. A number of authors have studied probabilistic clustering methods originally

used for text—such as probabilistic Latent Semantic Analysis (pLSA), Latent Dirichlet Anal-

ysis, and Hierarchical Dirichlet Processes—to discover the hidden mixture of visual themes

(“topics”) in a collection of unorganized [94, 82] or semi-organized [31, 70] image data.

Alternatively, several approaches have considered clustering algorithms such as normalized

cuts and affinity propagation [40, 66, 26, 56]. Given an unlabeled collection of images these

approaches typically organize the images into different groups that have a semantic meaning

with respect to an underlying similarity matrix. These methods demonstrate excellent results

on datasets such as Caltech101 where the images belonging toa category are highly regular.

However, clustering methods are most appropriate for mining image data, but not necessarily

for learning categories: they may sometimes elicit themes associated with semantic cate-

gories, but there is no way to guarantee it. A common flaw of such methods, frequently

referred to, is that they are themselves not equipped to provide models to classify novel ex-

amples. For example, pLSA requires some way to select which topic to use for each class

model, and must resort to a “folding-in” heuristic. Many of the clustering approaches require

a large number of constantly repeating patterns to produce effective clusters, and therefore

may not be appropriate when such data is scarce.

2.1.3 Alternative Sources of Training Data

In addition to reducing the level of supervision, vision researchers have also identified in-

novative ways to take advantage of data sources where text naturally accompanies images.
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These methods exploit the weak connection between the text surrounding images and the

semantic meaning of the image to essentially obtain “free” training data with which they can

learn classifiers. For example, in [8], news captions occurring alongside photographs are used

to cluster faces occurring in the pictures. Annotated stockphoto libraries have been used by

a number of approaches such as [27] to automatically annotate novel examples. Several au-

thors use the information present in generic web pages to filter and mine useful images for

categories [127, 9, 86].

In particular, several methods try to download images of a category through keyword searches

and learn visual category models straight from the automatically collected image data. Such

approaches attempt to deal with the images’ lack of homogeneity indirectly, either by using

clustering techniques to establish a mixture of possible visual themes [94, 31, 70], or by

applying models known to work well with correctly labeled data to see how well they stretch

to accommodate “noisily” labeled data [33, 86]. Unfortunately, the variable quality of the

search returns and the difficulty in automatically estimating the appropriate number of theme

modes make such indirect strategies somewhat incompatiblewith the task.

Discussion. With the advent of more search functionalities through several online portals

such as Flickr which provide high quality image data, utilizing such “free” data becomes

imperative if the goal is to minimize supervision requirements. As part of the thesis, I out-

line a method that exploits text-based indexing to gather image examples, however thereafter

it learns categories from the image content alone. In contrast to previous approaches, this

allows categories of interest to be directly specified, and produces a large-margin classifier

to recognize novel instances. In later chapters, I also develop a large-scale system that au-
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tonomously learns category models by collecting image examples through keyword searches

and obtains annotations using crowd-sourcing services.

2.2 Reducing the Amount of Supervision

A parallel line of research aimed at reducing the supervision requirements looks at minimiz-

ing the number of labeled examples. Semi-supervised learning methods accomplish this by

supplementing the limited amount of labeled data with a large number of easily available

unlabeled data. Active learning approaches, on the other hand, reduce the number of labels

required to learn a classifier by allowing the classifier to query labels on only the most in-

formative examples. Notably, prior to the research in my thesis, there is little work in visual

recognition exploiting active learning strategies.

2.2.1 Semi-supervised Visual Learning

Semi-supervised learning approaches build classifiers by using a large amount of unlabeled

data, together with a small amount of labeled data. The earliest work in semi-supervised

learning utilize unlabeled data based on the “cluster” assumption that points of a class tend to

form clusters. Based on this assumption, unlabeled data canthen be used as an aid in finding

the boundary of each cluster, following which the labeled points can be used to assign a class

to each cluster [97]. Because semi-supervised learning requires less human effort and gives

higher accuracy, several researchers have considered applying such techniques for problems

in recognition.

In [16, 40] the possibility of learning visual patterns frompartially labeled image collections
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is explored in a semi-supervised setting for image classification. Using partially annotated

data, the authors augment the model with constraints to handle weak supervision and achieve

performance comparable to the fully supervised setting.

In [70], a form of semi-supervised learning, self-training, is used to learn from a combination

of labeled seed examples and unlabeled images downloaded from the web. In self-training the

classifier is first trained using the small amount of labeled data available. The most confident

unlabeled points, together with their predicted labels, are then added to the training set and

the classifier is re-trained. Co-training, another form of semi-supervised learning where two

or more independent classifiers train each other by classifying disjoint sets of unlabeled data,

is explored for action recognition in [43] and for object detection in [68].

One known difficulty with semi-supervised learning is that bad matching of problem struc-

ture with the semi-supervised model assumption could lead to degradation in classifier per-

formance [134]. For example, many semi-supervised approaches assume that the density of

points near the decision boundary is low. When data is sampled from two overlapping Gaus-

sian distributions, such an assumption becomes invalid which could lead to poor performance.

Therefore, detecting the problem structure in advance and applying the right semi-supervised

technique is important in such cases.

2.2.2 Active Learning

In contrast, active learning strategies use unlabeled points to instead select informative ex-

amples on which labels are obtained from a human oracle (see Figure 2.2). Therefore, active

learning directly targets the number of labeled examples that need to be provided to the clas-
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Figure 2.2: In active learning the classifier is initially trained on a small set of examples, and
the classifier chooses informative examples from an unlabeled pool of data to request labels.
In the figure points in black are unlabeled data points, and the classifier is most uncertain
about the examples that fall between the positive and negative planes. Therefore, requesting
labels on these examples would provide the most benefit to theclassifier. Note that this
figure shows one particular form of active learning based on margin-based selection [98] as
an intuitive example.

sifier to learn a good model. There are several active learning strategies introduced in the

machine learning literature for choosing the right exampleto query. See [87] for a detailed

survey of active learning approaches.

Uncertainty sampling is a popular method that selects the examples over which the current

classifier is least confident on a label assignment. A straightforward uncertainty sampling

approach for probabilistic classifiers or support vector machines would be to choose points

that have probabilities close to 0.5 [69], or that are along the margin of the separating hyper-

plane. For multi-label classifiers the classification entropy of an unlabeled instance provides

a more general uncertainty measure and several approaches propose to select the point with

the largest entropy for labeling [46].
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A more theoretically motivated framework for active learning considers choosing points that

reduce the version space of the classifier the most. The version space of a classifier is the

set of all hypotheses that are consistent with the current set of labeled examples. If training

a classifier is viewed as a search for the best model within theversion space, then the goal

of such methods is to constrain the size of the version space as much as possible using few

labeled instances. In [98], a simple margin-based selection method for SVMs is proposed

which attempts to minimize the version space of the SVM at every iteration. In [90], a query

by committee approach for active learning is proposed, where a competing committee of

models is initially trained on some labeled data, followingwhich the unlabeled instance that

disagrees most with the committee is selected for labeling.Theoretical justifications showing

that such an approach reduces the version space is provided in [35].

Another general active learning approach is to query the instance that would impart the great-

est change to the current model if its label were known. For example, decision-theoretic

measures that compute the expected model change have been explored in [71, 55], where

they were applied to classify synthetic data and voicemail.A common result of all these

approaches is that random or passive learning tends to wastea large amount of labeled train-

ing data which are either uninformative or already correctly classified, while active learning

strategies instead choose only a small subset of the training data to reach similar accuracies.

Given the advantages of such techniques and the expense of obtaining labeled image data, a

few authors have begun to apply active learning methods for different problems in vision.

Relevance feedbackin content based image retrieval was first identified as a possible applica-

tion of active learning in [18, 75], where image retrieval results are refined to match a user’s
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subjective query concept. In [123], relevance feedback is considered for video annotations

in an active learning framework taking into account the higher expense of annotating video

data.

Active learning with Gaussian Process classifiers is introduced in [54] for the task of image

recognition. An active criterion for instance-level queries is suggested in [89] and applied

within an MI learner for an image categorization task where an image is a weakly labeled

bag of segments. More recently, [48, 52] consider active learning for multi-class object

recognition using nearest neighbor and support vector machine classifiers. In [77] the au-

thors propose a two dimensional active selection approach that selects along both the label

dimension and the instance dimension, which applies to the multi-label setting where an ex-

ample is associated with multiple labels. Dataset creationusing active selection is explored

in [21]. These approaches are examples of traditional active learning, which we also refer

to asflat-cost active learningsince they assume unifom cost for obtaining labels and try to

reduce the total number of labels.

However, in reality, the amount of effort required to provide labels could vary significantly

across different unlabeled examples and labels depending on a number of factors. A few

studies in the learning community try and quantify manual effort on a per example basis

for different learning tasks in order to performcost-sensitive active learning. In [55, 4], the

length of a voice mail or sentence is used to approximately identify examples that could take

more or less manual effort to annotate. Budgeted learning for active classifiers, which work

on constrained budgets while querying attributes on a test example, is explored in the work of

[41] for medical diagnosis. In [80], regressors are learnedbased on sentence length, number
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of characters, etc to predict annotation time for document classification. While the length of a

voice mail or the cost of a medical diagnosis directly provides the cost of an example, no such

direct measure exists to quantify the effort involved in providing an image annotation. Thus

far, no existing approaches in object recognition attempt to quantify or predict the amount of

effort required to provide annotations on image examples.

The above approaches focus on selecting a single unlabeled instance to label, retraining the

classifier at each iteration. However, retraining can be expensive and even disruptive to the

learning process; in fact, when one has access to multiple “labelers” at once (e.g., on Me-

chanical Turk [96, 24]), abatchselection would be more effective. A fewbatch-mode active

learningapproaches have been proposed recently [12, 57, 42], including one that targets a

computer vision application [45]. Batch selection calls for more than a selection of theN-

best queries at a given iteration, since such a greedy strategy does not account for possible

overlap in information. Instead, researchers design selection functions that balance infor-

mativeness with the so-calleddiversityamong the selected set [12, 45]. In [57], the authors

provide bounds on the advantage of myopic active learning over batch-mode selection meth-

ods when using the maximum entropy criterion, which is an important result for batch-mode

selection approaches. Using this bound they design an algorithm that switches between se-

quential active learning (exploration) and batch-mode learning (exploitation) depending on

the tightness of the bounds on the current classifier.

Discussion.Active learning approaches so far considered for object recognition are based on

what we refer to as the traditional active learning paradigmfor binary or multi-class classifi-

cation. In traditional active learning each example has only one type of label associated with
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it, and the idea is to select the example that should be labeled next. We also refer to this type

of active learningsingle-levelactive learning to emphasize the fact that labels are obtained

at a single level of granularity. However, the active selection problem for object recognition

is more complex. Most real world images typically contain multiple objects belonging to

different categories, and users can provide annotations atdifferent levels depending on the

classifier’s knowledge. Moreover, the amount of manual effort required to provide a partic-

ular annotation could vary significantly depending on both the type of annotation and the

particular image example.

In addition, most approaches are myopic in the sense that they choose a single example

to label at an iteration. The few batch-mode active learningapproaches ignore the cost of

labeling examples and rely on the current classifier to estimate uncertainty. As a result, these

functions’ performance can degrade with very large batchesand when the examples have

variable costs.

Finally, previous active learning methods in vision focus on image classification, and no work

addresses the more complex problem of object detection where one needs to not only name

objects but also localize their extent in the images. Existing approaches demonstrate results

under the “sandbox” setting where fixed datasets of modest scale have already been selected

and labeled. I address these issues in this thesis.

2.3 Reducing the Effort of Providing Supervision

Collecting benchmark datasets and training examples for testing various object recognition

methods has been largely the responsibility of the vision researchers trying to build category
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models. The Caltech 101 dataset for 101 different categories was, for example, collected

from the web and manually pruned by a group of researchers at Caltech. This places a huge

burden on the researchers and could further introduce biases in the dataset. Thus, some

research seeks to facilitate or ease the “effort” involved in collecting and providing annotated

examples using innovative interfaces for images and videos.

2.3.1 Labeling Services

A few distributed labeling services that target the large number of users in the world wide

web have been successfully utilized for obtaining image annotations efficiently. The La-

belme dataset [83] targets vision researchers by providingcleanly labeled data in return for

providing annotations using their free web annotation tool(see Figure 2.3). More recently,

the possibility of directly compensating annotators with cash in a distributed framework has

arisen with crowd sourcing services such as Mechanical Turk[96].

These methods provide nice web-based interfaces where the user is shown an image along

with possibly one or more existing annotations, which are drawn on the image. The user has

the option of annotating a new object by clicking along the boundary of the desired object

and indicating its identity, or editing an existing annotation. The user may annotate as many

objects in the image as they wish. Most users work either for direct compensation or as a

constructive way of entertaining themselves.
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Figure 2.3: A screenshot of the labeling tool in use. The useris shown an image along with
possibly one or more existing annotations, which are drawn on the image. The user has the
option of annotating a new object by clicking along the boundary of the desired object and
indicating its identity, or editing an existing annotation. The user may annotate as many
objects in the image as they wish. Image from [83].

2.3.2 Image Annotation Games

In the work of Luis Von Ahn [116, 117, 44], the process of providing annotations is posed

as innovative games which are targeted at the large community of online users. When users

play the game they help determine the contents of images and user preferences by providing

meaningful labels for them. Briefly, the games are played by two partners and is meant to

be played online by a large number of pairs at once. Partners are randomly assigned from

among all the people playing the game.

In [116], the goal of the game is to guess what their partner istyping for each. Once both

players have typed the same string, they move on to the next image. The words that two

players agree on are treated as valid labels for the image. InPeekaboom[117], one of the

33



partners (Boom) gets an image along with a word related to it,and must reveal parts of

the image for the other partner (Peek) to guess the correct word. Similarly, Matchin [44]

measures user preferences by making people guess which images their partners would prefer.

2.3.3 Interactive Segmentation

Interactive segmentation algorithms make it easier for an annotator to specify a region of

interest. Such tools require very little user interaction to segment complex foreground objects

without having to trace the outline of the entire object. Intelligent Scissors [74] allows a user

to choose minimum cost paths by roughly tracing the object’sboundary with the mouse.

As the mouse moves, the minimum cost path from the cursor position back to the point is

shown. In graph Cut [11], the interface allows users to mark certain pixels as belonging to

the foreground or background. Graph cut algorithms are thenused to find a globally optimal

segmentation using boundary and region information. Grabcut [81] extends the graph-cut

segmentation tool using a robust algorithm for “border matting” to estimate simultaneously

the alpha-matte around an object boundary and the colors of foreground pixels.

Discussion. The above approaches provide nice interfaces for collecting annotations with

the goal of making the annotation process less cumbersome ormore interesting to the user.

However, they select image queries in a random fashion without a notion of which example

might be useful to a classifier. Integrating an active learning framework with these techniques

could provide more direction to the image queries enabling the construction of small but

extremely informative datasets for learning categories.

Having summarized related work in this area, I will next detail my approach to address these
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issues in the following chapters. The next chapter introduces one of the central ideas of my

thesis, that ofmulti-level active learning.
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Chapter 3

Cost-sensitive Active Learning with Multi-level Queries

Active learning strategies provide a way to reduce the reliance on labeled training data by

minimizing the number of labeled examples required to learnclassifiers. They typically do

this by allowing the classifier to choose which example needsto be labeled next from a large

pool of unlabeled examples, reducing supervision without sacrificing much accuracy in the

final model. The assumption is that while unlabeled examplescan be collected with little

or no effort, providing annotations on the examples entailsnon-trivial effort. Such methods

are therefore appealing for object recognition because of the abundance of unlabeled images

(available, for example, on the Web) and the substantial effort required to provide detailed

annotations.

However, in the general case, visual category learning doesnot fit the mold of traditional

active learning approaches, which primarily aim to reduce the number of labeled examples

required to learn a classifier, and almost always assume a binary decision task. When trying to

choose informative image data to label for recognition, there are three important distinctions

we ought to take into account.

First, while many of today’s manually collected datasets assume that the class to be learned

occurs prominently in the foreground and therefore can be associated with a single label,
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(a) Most real-world images contain
multiple objects and can therefore be
associated with multiple labels.

(c) The actual manual effort required to
label varies according to annotation type
and image example.
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(b) Useful image annotations can occur
at multiple levels of granularity. For ex-
ample, a learner may only know whether
the image contains a particular object or
not (top row, dotted boxes denote object
is present), or it may also have segmented
foregrounds (middle row), or it may have
detailed outlines of object parts (bottom
row).

Figure 3.1: Three important problems that need to be addressed while choosing informa-
tive image data to label for recognition, none of which are considered by traditional active
learning approaches.

most naturally occurring images consist of multiple objects. Therefore, an image can be

associated withmultiple labelssimultaneously as shown in Figure 3.1(a).1 This means that

an active learner must assess the value of an image containing some unknown combination

of categories.

Second, whereas in conventional learning tasks the annotation process consists of simply

assigning a class label to an example, image annotation can be done at different levels—

1Multi-label is thus more general thanmulti-class, where usually each example is assumed to represent an
item from a single class.
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by assigning class labels, drawing a segmentation of objectboundaries, or naming some

region (Figure 3.1(b)). Richer annotations such as segmentations provide more information

from which to infer class membership, but require more effort on the part of the person

providing supervision. While recent work has begun to explore ways to reduce the level of

supervision ([119, 94, 78, 6, 31, 70, 116, 83, 105]), such techniques fail to address a key

issue: to use a fixed amount of manual effort most effectivelymay call for a combination of

annotation at different supervision levels. Therefore, instead of ignoring annotations such as

segmentations, which require more effort to obtain, we needa principled way of predicting

the tradeoff between the effort and information gain associated with any candidate image

annotation. This means an active learner must be able to choose from annotations at multiple

levels of granularity and specify not only which example butalso whattypeof annotation is

currently most helpful.

Third, while previous methods implicitly assume that all annotations cost the same amount

of effort (and thus minimize the total number of queries), the actual manual effort required to

label images varies both according to the annotation type aswell as the particular image ex-

ample. For example, completely segmenting an image and labeling all objects requires more

time and effort than providing an image-level tag specifying object presence. Even for the

same type of annotation, some images are faster to annotate than others (e.g., a complicated

scene versus an image with few objects, as seen in Figure 3.1(c)).

In this chapter, I incorporate these insights and propose a unified framework for predicting

both the information content and the cost of different typesof image annotations, for the

Multiple-instance Multi-label learning (MIML) setting. Figure 3.2 provides an overview of
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Figure 3.2: Overview of the proposed approach. (a) We learn object categories from multi-
label images, with a mixture of weak and strong labels. (b) The active selection function
surveys unlabeled and partially labeled images, and for each candidate annotation, predicts
the tradeoff between its informativeness versus the manualeffort it would cost to obtain. (c)
The most promising annotations are requested and used to update the current classifier.

our proposed approach. After learning from a small initial set of labeled images, our method

evaluates all available unlabeled data using a novel Value of Information (VOI) based se-

lection function in order to choose the most promising annotation to receive next. After

re-training, the process repeats, continually improving the models with minimal manual in-

tervention.2

3.1 Multi-level Active Prediction of Useful Image Annotations for Recog-
nition

The goal of this work is to learn category models with minimumsupervision under the real-

world setting where each potential training image can be associated with multiple classes.

Throughout, our assumption is that human effort is more scarce and expensive than machine

2The contents of this chapter were published in [106, 107, 108, 110].
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cycles; thus our method prefers to invest in computing the best queries to make, rather than

bother human annotators for an abundance of less useful labelings.3

We consider image collections consisting of a variety of supervisory information: some im-

ages are labeled as containing the category of interest (or not), some have both a class label

and object outlines, while others have no annotations at all. We derive an active learning cri-

terion function that predicts how informative further annotation on any particular unlabeled

image or region would be, while accounting for the variable expense associated with different

annotation types. Specifically, we show how to continually assess the value of three different

types of annotations: a label on an image region, an image-level tag, and a complete segmen-

tation of the entire image (see Figure 3.6). We also refer to these types as “levels”, since they

correspond to different levels of detail in the annotation.As long as the information expected

from further annotations outweighs the cost of obtaining them, our algorithm will request the

next valuable label, re-train the classifier, and repeat.

In the following, I introduce the multiple-instance learning (MIL) and multiple-instance

multi-label learning (MIML) frameworks and define a discriminative kernel-based classifier

that can deal with annotations at multiple levels (Section 3.1.1). Then, I derive a decision-

theoretic function to select informative annotations in this multi-label setting, leveraging the

estimated costs (Section 3.1.2.3). Finally, I develop a novel method to predict the cost of an

annotation (Section 3.1.2.4).

3Later in Chapter 5, I will return to the issue of how to also minimize the machine effort (selection time).
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3.1.1 Multiple-instance Multi-label Learning

An arbitrary unlabeled image is likely to contain multiple objects. At the same time, typically

the easiest annotation to obtain is a list of objects presentwithin an image. Both aspects

can be accommodated in the multiple-instance multi-label learning setting, where one can

provide labels at multiple levels of granularity (e.g., image-level or region-level), and the

classifier learns to discriminate between multiple classeseven when they occur within the

same example.

In the following, I extend support vector machine based MIL to the multi-label case. The

main motivation of our design is to satisfy both the multi-label scenario as well as the needs

of our active selection function. Specifically, we need classifiers that can rapidly be incre-

mentally updated, and which produce probabilistic outputsto estimate how likely each label

assignment is given the input.

3.1.1.1 Multiple-instance Learning

In the MIL setting, as first defined by [25], the learner is given sets(bags) of instances and

told that at least one example from a positive bag is positive, while none of the members in a

negative bag is positive. The goal of MIL is to induce the function that will accurately label

individual instances such as the ones within the training bags in spite of the label ambiguity:

the ratio of negative to positive instances within every positive bag can be arbitrarily high.

Specifically, there is a set of labeled training bagsXL, which is itself comprised of a set of

positive bagsXp and a set of negative bagsXn. Let X be a bag of instances, andXp =
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{X ∈ Xp} andX̃n = {x|x ∈ X ∈ Xn} be the set of positive bags and negative instances,

respectively. The goal is to determine the functionf : ℜdN → {+1,−1} that best predicts

labels for new input patterns drawn from the same distribution as the training examples, such

that the probability of error is minimized.

(a) (b)

Figure 3.3: Example scenarios where MIL is suitable for image classification. (a) In this
scenario training images are represented by a bag of regionsand a positive image contains at
least one of the regions containing the object of interest. (b) Groups of images downloaded
from keyword searches from multiple search engines are positive bags and individual images
are the instances.

MIL is well-suited for the following two image classification scenarios as illustrated in Fig-

ure 3.3:

• In the first scenario, training images are labeled as to whether they contain the category

of interest, but they also contain other objects and background clutter. Every image is

represented by a bag of regions, each of which is characterized by its color, texture,

shape, etc. [73, 125] as shown in Figure 3.3(a). For positivebags, at least one of the

regions contains the object of interest. The goal is to predict when new image regions

contain the object—that is, to learn to label regions as foreground or background. Since

a positive instance is a positive bag containing a single instance, MIL can accommodate
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both region labels (instance-level) and image tags (bag-level). This is a form of “weak”

supervision.

• In the second scenario, the keyword associated with a category is used to download

groups of images from multiple search engines in multiple languages. Each down-

loaded group is a bag, and the images within it are instances (Figure 3.3(b)). For each

positive bag, at least one image actually contains the object of interest, while many

others may be irrelevant. The goal is to predict the presenceor absence of the category

in new images. We first proposed this scenario in [106].

In both cases, an instance-level decision is desirable, butbag-level labels are easier to obtain.

While it has been established that MIL is a valuable classification paradigm in such cases,

previous methods do not consider how to determine what labels would be most beneficial to

obtain.

3.1.1.2 Multiple-instance Multi-label Learning

While in the MIL setting described so far each bag is labeled as positive or negative, in the

more general MIML setting, each instance within a bag can be associated with one ofC

possible class labels; therefore each bag is associated with multiple labels—whichever labels

at least one of its instances has.

Formally, let{(X1, L1), (X2, L2), . . . , (XN , LN)} denote a set of training bags and their as-

sociated labels. Each bag consists of a set of instancesXi = {xi
1, x

i
2, . . . , x

i
ni
}, and a set

of labelsLi = {li1, li2, . . . , limi
}, whereni denotes the number of instances inXi, andmi
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(a) unlabeled (b) bag-level labels

(d) fully labeled & segmented

Contains cow, water, grass

(c) partial instance-level label

water

(d) fully labeled & segmented(c) partial instance level label

water

cow

grass

Contains cow, water, grass

Figure 3.4: In our MIML scenario, images are multi-label bags of regions (instances). Un-
labeled images are oversegmented into regions (a). For an image withbag-levellabels, we
know which categories are present in it, but we do not know in which regions (b). For an
image with someinstance-levellabels, we have labels on some of the segments (c). For a
fully annotatedimage, we have true object boundaries and labels (d).
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denotes the number of labels inLi. Note that often a bag has fewer unique labels than in-

stances (mi ≤ ni), since multiple instances may have the same label. Every instancexi
j is

associated with a descriptionϕ(xi
j) in some kernel embedding space and some class label

lik ∈ L = {1, . . . , C}, but with only the bag-level labels it is ambiguous which instance(s)

belongs to which label. A bagXi has labell if and only if it contains at least one instance

with label l. Note that a labeled instance is a special case of a bag, wherethe bag contains

only one example (ni = 1), and there is no label ambiguity.

We first consider the first scenario defined above: an image is abag, and its instances are

the oversegmented regions within it found automatically with a segmentation algorithm (see

Figure 3.4). A bag’s labels are tags naming the categories present within the image; a region

(instance) label names the object in the particular region.Each region has a feature vector

describing its appearance. This follows the common use of MIL for images ([73, 129, 107]),

but in the generalized multiple-instance multi-label case.

Our MIML solution has two components: first, we decompose themulti-class problem into

a number of binary problems, in the spirit of standard one-vs-one classification; second,

we devise aMulti-label Set Kernelthat performs a weighting in kernel space to emphasize

different instances within a bag depending on the category under consideration.

Each one-vs-one binary problem is handled by an SVM trained to separate bags contain-

ing label li from those containinglj, for all i, j. For the single-label case, one can average

a bag’s features to make a single feature vector summarizingall its instances:ϕ(Xi) =

1
|Xi|

∑ni

j=1 ϕ(x
i
j), and then train an SVM with instances and bags; this is the Normalized Set

Kernel (NSK) approach of [37]. The NSK is a kernel for sets, and is derived from the defi-
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Figure 3.5: The intuition behind our multi-label kernel function. Left: In MIML, if an im-
age’s representation is independent of its label, two different labels could map to the same
point in feature space.Right: Our Multi-label Set Kernel weighs instances based on the
predicted class membership, thereby associating specific regions within the image to the pro-
vided labels. In the top image the region containing a building (lighter shading) contributes
more to the overall image representation given the label “building”, while in the bottom image
the region containing a tree contributes more for the label “tree”.

nition of convolution kernels using the set-membership function. In order to correct for the

cardinality of the sets, a normalization factor based on the1 or 2-norm is introduced. For

the MIL setting, every instance in a bag can be seen as a memberof the bag, and the NSK

corresponds to an averaging process carried out in feature space. The NSK approach can be

construed as a balancing constraint on the positive bags as shown in [13]. Intuitively, this

means thaton averagewe expect the label on a positive bag to be greater than zero.

However, in the multi-label case, some bags could be associated with both labels li and

lj. Simply treating the image as a positive example when training both classes would be

contradictory (see Figure 3.5 (left)). Intuitively, when training a classifier for classli, we

want a bag to be represented by its component instances that are most likely to have the label

li, and to ignore the features of its remaining instances. Of course, with bag-level labels only,

the assignment of labels to instances is unknown.
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I therefore propose a Multi-label Set Kernel (MSK) that weights the feature vectors of each

instance within the bag according to the estimated probability that the instance belongs to

the class. That way if an instance has a high chance of belonging to the given class, then its

feature vector will dominate the representation (Figure 3.5 (right)). To this end, we design

a class-specific feature representation of bags. LetX = {x1, . . . , xn} be a bag containing

labelsL = l1, . . . , lm (where here we drop the example indexi for brevity). We define the

class-specific feature vector ofX for classlk as

ϕ
(

X(lk)
)

=

n
∑

j=1

Pr(lk|xj)ϕ(xj), (3.1)

which weights the component instances by their probabilityof being associated with the

class label under consideration. HerePr(lk|xj) denotes thetrue probability that instancexj

belongs to categorylk, which we approximate asPr(lk|xj) ≈ p(lk|xj), wherep(lk|xj) is the

posterior probability output by the classifier using the training data seen thus far. For a single

instance (or equivalently, a single-instance bag), there is no label ambiguity, so the instance

is simply represented by its feature vector.

For generic kernels, we may not know the feature space mapping ϕ(x) needed to explicitly

compute Equation (3.1). Instead, we can apply the same feature weights via the kernel value

computation. LetX1 andX2 be bags associated with labelsl1 andl2, respectively, that are

currently being used to construct a classifier separating classesl1 and l2. Then the MSK

kernel value between bagsX1, X2 is given by

K(X
(l1)
1 , X

(l2)
2 ) =

n1
∑

i=1

n2
∑

j=1

p(l1|x1
i ) p(l2|x2

j) K(x1
i , x

2
j ),

whereK(x1
i , x

2
j) = ϕ(x1

i )
Tϕ(x2

j) is the kernel value computed for instancesx1
i andx2

j , and

p(l1|x1
i ), p(l2|x2

j) are the posteriors from the current classifiers. Note that because the kernel
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is parameterized by the label under consideration, a multi-label bag can contribute multiple

different〈feature,label〉 pairs to the training sets of a number of the one-vs-one classifiers.

Our Multi-label Set Kernel can be seen as a generalization ofthe NSK [37], which is re-

stricted to single-label binary classification. It is also related to the kernel in [61], where

weights are set using a Diverse Density function. In contrast, we estimate the class condi-

tional probabilities using the classifier constructed withthe currently available training data.

The proposed kernel is valid for both instances and bags, andthus can be used to build SVMs

for all required component binary problems. Each SVM can accept novel instances or bags:

the feature for an input instance is unchanged, while an input bag is weighted according to

Equation (3.1). Given a new inputXnew, we (a) run it through all1
2
C × (C − 1) classifiers,

(b) compute the1
2
C × (C − 1) resulting two-class posteriors using the method of [76], and,

finally, (c) map those posteriors to the multi-class posterior probabilitiesp(l|Xnew) for each

labell ∈ {1, . . . , C}. For this last step we use the pairwise coupling approach of [122], where

the pairwise class probabilities are used to solve a linear system of equations to obtain the

multi-class probabilities.

While in our implementation we combine one-vs-one binary problems to obtain a multi-class

classifier, our method is not restricted to this setting. Since our approach defines a kernel

for the multi-label problem, it can be used with other kernel-based multi-class approaches,

including one-vs-all SVMs.
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(a) Name an object in the im-
age (unlabeled bag).

(b) Label the specified region
(unlabeled instance).

TreeSky

Building

People Grass

(c) Segment the image and
name all objects (label all in-
stances).

Figure 3.6: The three candidate annotation types (or “levels”) that our approach chooses from
when formulating a request.

3.1.2 Active Multi-level Selection of Multi-label Annotations

Thus far we have defined the multi-label learner, the basic classifier with which we want to

actively learn. Next we describe our strategy to do active selection among candidate annota-

tions.

There are three possible types of annotation request: the classifier can ask for a label on a

bag, a label on an instance within a bag, or a label on all instances within a bag. A label

on a bag serves as a “flag” for class membership, which is ambiguous because we do not

know which of the instances in the bag are associated with thelabel. A label on an instance

unambiguously names the class in a single image region, while labeling all instances within

a bag corresponds to fully segmenting and labeling an image.Figure 3.6 illustrates each of

these three types.

In the following subsections, I will first motivate the need for using multiple types of an-

notations (Section 3.1.2.1). Then I will define the value of information based criterion for

scoring candidate annotations (Section 3.1.2.2) based on the expected reduction in risk (Sec-
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tion 3.1.2.3) and the manual effort cost (Section 3.1.2.4) and summarize the active learning

algorithm (Section 3.1.3).

3.1.2.1 Illustration: Need for Comparing Multiple Types of Annotations

Traditional active learning methods assume equal manual effort per label, and thus try to

minimize the total number of queries made to the annotator. In reality annotation costs will

vary substantially from image to image, and from type to type. Thus, the standard “flat cost”

implied by traditional active learners is inadequate.

To illustrate this idea more concretely, we ran an experiment where we measured both the

reduction in misclassification risk produced by adding an annotation with its correct label

from an unlabeled pool of images and the time to obtain the annotation. The misclassification

risk is defined in the standard way, as the probability of classifying each example with an

incorrect label, summed over all examples. Figure 3.7 showsthis result for all examples in

the unlabeled pool with the three annotation types (segmentations, image tags and region

labels) for two different sizes of the initial training set (5 and 100 image tags respectively).

The figures suggest that neither more expensive nor less expensive examples are regularly

more useful than the other. Similarly, the annotation that provides the best reduction in

risk might not be the most effective in terms of the cost of obtaining it. For example, in

Figure 3.7 (right) there are examples from all three annotation types with reductions in risk

above 200 units. While a standard “flat cost” active learner would choose the more expensive

segmentation (because of the marginally higher reduction in risk) a cost-sensitive learner

might choose the less expensive one.
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Figure 3.7: This figure shows the reduction in risk for each example in the unlabeled pool
plotted against the time required to provide an annotation after training with 5 image tags
(left) and 100 image tags (right ). There is not an absolute correlation between the cost of an
annotation and how informative it is, motivating the use of cost-sensitive active learning.

The figures also illustrate that while segmentations are indeed more expensive to obtain, the

larger reductions in risk can effectively mitigate the costfor several examples. In addition,

the relative risk reduction versus the annotation time required is a function that continually

changes as more annotated data is acquired, as evident when we compare the total shape of

the scatter plots on the left (where only 5 examples have beenseen per class) and on the right

(where 100 examples have been seen per class). Hence, to bestreduce human involvement,

the active learner needs a quantitative measure of the effort required to obtain any given

annotation.

3.1.2.2 Defining the Value of Information for an Annotation

Thus, inspired by the classic notion of thevalue of information(VOI), and by previous binary

single-label active learners ([55]), we derive a measure togauge the relative risk reduction a

new multi-label annotation may provide. The main idea is to evaluate the candidate images
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and annotation types, and predict which combination (of image+type) will lead to the greatest

net decrease in risk for the current classifier, when each choice is penalized according to its

expected manual effort. In contrast to previous VOI methods, our measure enables the multi-

label setting and considers multiple types of annotations to select from.

At any stage in the learning process the dataset can be divided into three different pools:XU ,

the set of unlabeled examples (bags and instances);XL, the set of labeled examples; andXP ,

the set of partially labeled examples, which contains all bags for which we have only a partial

set of bag-level labels (refer back to Figure 3.4). If the label on an image is considered to be a

binary vector of lengthC, then the images inXL are examples where the binary label vector

is completely known. Images inXU are examples where none of the labels are known, and

images inXP are examples where some of the elements in the vector and labels on some of

its instances are known. An example is moved fromXU to XP when any one of its unknown

labels is requested. An example is moved fromXP to XL only when the labels on all its

instances have been obtained.

The total costT (XL,XU ,XP ) associated with a given snapshot of the data is the total mis-

classification risk, plus the cost of obtaining all the labeled data thus far:

T (XL,XU ,XP ) = R(XL) +R(XU ) +R(XP ) +
∑

Xi∈XB

∑

l∈Li

C(X l
i), (3.2)

whereXB = XL ∪ XP , andC(·) is defined in Section 3.1.2.4.

We measure the utility of obtaining a particular annotationby predicting the change in total

cost that would result from the addition of the annotation toXL. Therefore, the value of
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information for an annotationz is:

V OI(z) = T (XL,XU ,XP )− T
(

X̂L, X̂U , X̂P

)

(3.3)

= R(XL) +R(XU) +R(XP )−
(

R(X̂L) +R(X̂U ) +R(X̂P )
)

− C(z),(3.4)

whereX̂L, X̂U , X̂P denote the set of labeled, unlabeled and partially labeled data after obtain-

ing annotationz. Note thatz could be any one among the three annotation types described

in Figure 3.6. If all the labels on the example have been obtained throughz then the example

is moved to the labeled pool, i.e.,̂XL = XL ∪ z. On the other hand, if the example contains

instances (regions) with no label information even after obtaining annotationz then the ex-

ample is moved to the set of partially labeled data, i.e.,X̂P = XP ∪ z. Similarly, the example

associated withz is removed fromXU orXP as appropriate.

Thus, for each candidate, the selection function measures its expected informativeness and

subtracts its predicted cost. A high VOI for a given input denotes that the total cost would

be decreased by adding its annotation and is therefore most useful given its cost. So at every

iteration our approach computes the VOI of all candidate image annotations present inXP

andXU and chooses the example with the largest VOI for querying. Once the annotation is

obtained it is moved fromXP/XU to XL/XP as appropriate and the classifier is retrained.

Thus far we have defined our VOI based selection function to doactive selection among can-

didate annotations. In the following sections, we first address how to predict informativeness

(Section 3.1.2.3) followed by cost (Section 3.1.2.4).
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3.1.2.3 Predicting the Informativeness of an Annotation

Let rl denote the risk associated with misclassifying an example belonging to classl. The

risk associated withXL is:

R(XL) =
∑

Xi∈XL

∑

l∈Li

rl (1− p(l|Xi)) , (3.5)

wherep(l|Xi) is the probability thatXi is classified with labell. Here,Xi is again used to

denote both instances and bags andLi its label(s). IfXi is a training instance it has only one

label, and we can computep(l|Xi) via the current MIML classifier.

If Xi is a multi-label bag in the training set, we compute the probability it receives labell as

follows:

p(l|Xi) = p
(

l|xi
1, . . . , x

i
ni

)

= 1−
ni
∏

j=1

(1− p(l|xi
j)). (3.6)

For a bag tonot belong to a class, it must be the case that none of its instances belong to the

class. Thus the probability of a bagnot having a label is equivalent to the probability that

noneof its instances have that class label.

The MIML classifier implicitly assumes that every image/instance can be classified into one

ofC labels. However, in the more general case, the dataset can also contain images that do not

necessarily belong to theC classes. Such images are given a “negative” label, which specifies

that none of the instances/regions in the image belong to anyof the classes in{1, . . . , C},

similar to the “negative” label in a standard MIL formulation. In this case, we weightp(l|Xi)

with the probability ofXi belonging to any one of theC classes as against the “negative”

class, which is obtained by training a standard MIL classifier. Note that whenC = 1, a single
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foreground class, the above reduces to the standard MIL solution sincep(l|Xi) is trivially 1.

Similarly, in the absence of a “negative” class the above reduces to the MIML solution.

The corresponding risk for the unlabeled data is:

R(XU) =
∑

Xi∈XU

C
∑

l=1

rl(1− p(l|Xi)) Pr(l|Xi), (3.7)

where we compute the probabilities for bags using Equation 3.6, andPr(l|Xi) is the true

probability that unlabeled exampleXi has labell, approximated asPr(l|Xi) ≈ p(l|Xi).

For the partially labeled data, the risk is:

R(XP ) =
∑

Xi∈XP

∑

l∈Li

rl (1− p(l|Xi)) +
∑

l∈Ui

rl (1− p(l|Xi)) p(l|Xi), (3.8)

whereUi = L \ Li.

The valuerl is the risk associated with misclassifying an example belonging to classl, spec-

ified in the same units as the cost function in Section 3.1.2.4. Intuitively, it should reflect

the real cost of a classification mistake, as our algorithm directly trades off the cost of the

manual labeling against the damage done by misclassification. While this can be set based

on realistic system requirements, we interpret it as the cost of manually fixing a classification

error (e.g., an average segmentation requires 50 seconds).If one preferred to avoid errors on

a particular class, that could be encoded with variablerl values per class labell. Note thatrl

is not a parameter that needs to be optimized for performance; rather, it gives flexibility for

situations that have real costs associated with the task.

The VOI function relies on estimates for the risk of yet-unlabeled data, so we must predict

how the classifier will change given the candidate annotation, without actually knowing its
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label(s). We estimate the total risk induced by incorporating a candidate annotationz using

the expected value:

R(X̂L) +R(X̂U) +R(X̂P ) ≈ E[R(X̂L) +R(X̂U ) +R(X̂P )] (3.9)

If the annotationz will label an unlabeled instance (Figure 3.6(b)), computing the expectation

is straightforward, since that instance can simply be removed fromXU and added toXL to

evaluate the risk were it assigned each of theL possible labels in turn:

E[R(X̂L) +R(X̂U ) +R(X̂P )] =
∑

l∈L

(

R(XL ∪ z
(l)) +R({XU ,XP}r z)

)

Pr(l|z), (3.10)

whereL = {1, . . . , C} is the set of all possible label assignments forz. The valuePr(l|z)

is obtained by evaluating the current classifier onz and mapping the output to the associ-

ated posterior, and risk is computed based on the (temporarily) modified classifier withz(l)

inserted into the labeled set. Similarly, if the candidate annotationz will add an image-level

label to an unlabeled or partially labeled bag (Figure 3.6(a)), thenPr(l|z) is calculated using

Equation 3.6.

However, if the annotationz entails fully segmenting and labeling an image withM au-

tomatically segmented regions (Figure 3.6(c)), we need to calculate the utility of obtain-

ing the joint set of labels for all of a bag’s instances. Sincethere areCM possible la-

belings: L = {1, . . . , C}M , a direct computation of the expectation is impractical. In-

stead we use Gibbs sampling to draw samples of the label assignment from the joint dis-

tribution over theM instances’ descriptors. Letz = {z1, . . . , zM} be the bag’s instances,

and letz(a) =
{

(z
(a1)
1 ), . . . , (z

(aM )
M )

}

denote the label assignment we wish to sample, with

aj ∈ {1, . . . , C}. To sample from the conditional distribution of one instance’s label given
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the rest—the basic procedure required by Gibbs sampling—were-train the classifier with

the given labels added, and then draw the remaining label according toaj ∼ Pr(l|zj), for

l ∈ {1, . . . , C}, wherezj denotes the one instance currently under consideration. For bagz,

the expected total risk is then the average risk computed over all samples:

E[R(X̂L) +R(X̂U ) +R(X̂P )] =
1

S

S
∑

k=1

(R({XL r z} ∪ {z(a1)k1 , . . . , z
(aM )k
M })

+ R(XU r {z1, z2, . . . , zM}) +R(XP )), (3.11)

wherek indexes theS samples. We compute the risk onXL for each fixed sample by remov-

ing the bagz from the unlabeled or partially labeled pool, and insertingits instances with

the label given by the sample’s label assignment. Note that while computing the VOI of a

candidate annotation we have no supervision information onthat example, including the ob-

ject outlines. Hence, the computation of VOI is performed using segments/regions generated

using an automatic segmentation algorithm. Once we obtain acomplete segmentation of an

image from the annotator, we use the actual region outlines and labels to retrain the classifier.

Computing the VOI values for all unlabeled data, especiallyfor the positive bags, requires

repeatedly solving the classifier objective function with slightly different inputs; to make this

manageable we employ incremental SVM updates [17].

3.1.2.4 Predicting the Cost of an Annotation

Given the expected reduction in risk defined in the previous section, we still need to define the

cost of an annotation in order to compute its VOI as defined in Section 3.1.2.2. We define the

cost of an annotation based on how much time a human annotatormight require to provide
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Figure 3.8: Which image would you rather annotate? Humans can easily glance at an image
and roughly gauge the difficulty. This appears to be true evenwithout prior knowledge about
the specific objects present in the image (second row).

it. However, since we cannot directly obtain an annotation’s cost without first obtaining the

annotation itself, we require a method to predict the cost ofan annotation given an image.

Thus, the goal in this section is to accurately predict annotation time based on image content

alone—that is, without actually obtaining the annotation,we need to estimate how long it will

take a typical annotator to complete it. As Figure 3.8 suggests, humans are able to predict the

difficulty of annotating an image even without prior knowledge about the objects occurring

in the image (second row) or other high-level cues. Therefore, it seems plausible that the

difficulty level of an image could be predicted based on the image’s low-level features. For

an extreme example, if an image contains a single color it most likely contains only one

object, and so it should not be difficult to segment. If the image has significant responses to

a large number of filters, then it may be highly cluttered, andso it could take a long time.

Thus, we propose to use supervised learning to estimate the difficulty of segmenting an im-
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age. It is unclear what features will optimally reflect annotation difficulty, and admittedly

high-level recognition itself plays some role. We select candidate low-level features, and then

use multiple kernel learning to select those most useful forthe task. Multiple kernel learning

approaches automatically select the weights on the variousfeatures (kernels) by posing the

problem as an optimization of the coefficients of such a combination. This reduces to a con-

vex optimization problem known as a quadratically-constrained quadratic program (QCQP)

as shown in [63]. In [3], a novel dual formulation of the corresponding QCQP as a second-

order cone programming problem is proposed to yield a formulation for which the sequential

minimal optimization (SMO) algorithm can be applied. We usethis SMO algorithm to select

cost-predictive features, since it allows efficient solutions for large-scale problems.

We begin with some generic features that may be decent indicators of image complexity: a

histogram of oriented gradients, a gray-scale histogram, and two new features based on the

edge density and color uniformity. The features are designed to exploit the fact that more

objects could lead to more annotation time.

• The edge density feature divides the image into a hierarchical grid of cells and con-

catenates the edge density within each cell into a feature vector. We reason that edge

density could be a good indicator of the number of objects, since with a larger number

of objects in an image there are bound to be more edges separating them. The hier-

archy, by capturing edge densities at multiple scales, helps in dealing with objects of

different scales.

• The color uniformity feature computes the standard deviation of the r, g, b values of

every pixel in the image based on a small neighborhood surrounding it, and obtains
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Figure 3.9: Our interface on Mechanical Turk to collect annotation times for segmenting
images from anonymous users. The system times the responsesas users use a polygon-
drawing tool to superimpose object boundaries, and name andoutline every major object.

a histogram of the standard deviations. With more objects weexpect larger standard

deviations in a neighborhood compared to a small number of smoothly varying regions

such as sky or grass.

We gather the data online, using Amazon’s Mechanical Turk system, where we can pay

anonymous users to segment images of our choosing. The usersare given a polygon-drawing

tool to superimpose object boundaries, and are instructed to name and outline every major

object (see Figure 3.9). The system times their responses. Thus the labels on the training

images will be the times that annotators needed to complete afull annotation. To account for

noise in the data collection, we collect a large number of user responses per image. Even if

users generally have the same relative speeds (faster on easy ones, slower on harder ones),

their absolute speeds may vary. Therefore, to make the values comparable, we normalize

each user’s times by his/her mean and use the average time taken on an image to be its target

label.

60



Current

category

models

Issue request: 

“Get a full 
segmentation 
on image #32 ”

Effort

prediction

functionmodels on image #32.function

?

Human

annotatorSelection

?

Unlabeled

images

Partially and 

weakly labeled 

images

Labeled,

segmented

imagesg images

Figure 3.10: The summary of our multi-level active learningapproach. After learning from
a small initial set of labeled images, our method surveys anyavailable unlabeled and par-
tially labeled data. The VOI of every candidate annotation among three different types of
annotations is computed using the expected change in risk and the predicted effort of obtain-
ing the annotation given by our cost predictor. The annotation and example with the largest
VOI is then selected and a human provides the annotation, after which the example is moved
from the unlabeled/partially labeled pool to the partially/fully labeled pool as appropriate.
The process repeats until there are no more examples with positive VOI, or once the allowed
annotation cost limit has been reached.
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We construct aχ2 RBF kernel over the training examples per image feature. Based on the

timing obtained from the anonymous users we divide the set oftraining images into a dis-

crete range of “easy” and “hard” images using the mean time over all the images. We then

use the MKL approach of [3] to learn the weights on the image features for the binary classi-

fication problem of classifying images into “easy” and “hard” categories. Using the obtained

combined kernel, we also learn a cost predictor function using Support Vector Regression

(SVR).

From this we can build a cost functionC(z) that takes a candidate annotationz as input, and

returns the predicted time requirement (in seconds) as output. Whenz is a candidate full

segmentation, we apply the learned function to the image. Whenz is a request for a tag (bag-

level label), we setC(z) as the cost estimated using similar time-based experiments. Finally,

whenz entails outlining a single object, we estimate the cost as the full image’s predicted

time, divided by the number of segments in the image.

3.1.3 Summary of the Algorithm

We can now actively select multi-label, multi-level image annotations so as to maximize the

expected benefit relative to the manual effort expended. TheMIML classifier is initially

trained using a small number of tagged images. To get each subsequent annotation, the

active learner surveys all remaining unlabeled and partially labeled examples, computes their

VOI, and requests the label for the example with the maximal value. After the classifier is

updated with this label, the process repeats. Figure 3.10 provides a high-level summary of

the approach. The final classifier can predict image- and region-level labels, in binary or
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multi-class settings.

3.2 Results

In the following subsections, we evaluate five aspects of ourapproach: (1) its accuracy when

learning from multi-label examples, (2) its ability to accurately predict annotation costs, (3)

its effectiveness as an active learner when selecting from three different types of annotations

on both binary and multi-label problems, (4) the effect of introducing the cost predictor in

the active selection function, and (5) the robustness of ourapproach with respect to the initial

training set.

3.2.1 Datasets and Implementation Details

To validate our method we use three publicly available datasets, the SIVAL4 dataset, the

Google dataset [31] and the MSRC5 dataset, since they have been used to evaluate previous

MIL and MIML based approaches, which allows us to compare with state-of-the-art methods

in the two settings. Additionally, the MSRC is a common benchmark for multi-class object

segmentation.

• The SIVAL dataset contains about 1500 images from 25 objects. The cluttered images

contain objects in a variety of positions, orientations, locations, and lighting conditions.

See Figure 3.11 for examples. The images have been oversegmented into about 30

4http://www.cs.wustl.edu/accio/
5http://research.microsoft.com/en−us/projects/objectclassrecognition/
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apple bluescrunge banana spritecan dirtyworkgloves

Figure 3.11: Example images from the SIVAL dataset. Each column illustrates one of the 25
objects.

airplane car face guitar leopard bike watch

Figure 3.12: Example images from Google downloaded dataset. Each column shows images
downloaded using a particular category name. Since the images are from keyword search not
all images belong to the category of interest (e.g. row 4, column 1 is not an airplane).
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regions (instances) each, each of which is represented by a 30-dimensional feature

capturing the average color and texture values of the segment and each of its cardinal

neighbors. These features are provided with the SIVAL dataset 6.

• The MSRC v2 contains 591 images from 21 classes and a variablenumber of objects

per image, with 240 images and 14 classes in the (subset) v1. See Figure 3.13 for

examples. In all MSRC experiments we use an RBF kernel withγ = 10, and set the

SVM parameters (including the sigmoid parameters for the SVM probabilistic outputs

given by the method of [76]) based on cross-validation. We ignore all “void” regions

in the MSRC images. We segment the images with Normalized Cuts into a small

number of segments (10 in our experiments). For each segmentwe then obtain texton

and color histograms, as in [92]. We learn a dictionary of textons by convolving the

images with a 38-dimensional filter bank and running K-meansclustering to obtain 420

textons. For color histograms we obtain a 120-dimensional vector by concatenating a

40-dimensional histogram of each channel of the LUV representation of the image.

• The Google dataset [31] contains on average 600 examples each for seven object cat-

egories. Since the images are from a keyword search, the truenumber of training

examples for each class are sparse: on average 30% contain a “good” view of the class

of interest, 20% are of “ok” quality (extensive occlusions,image noise, cartoons, etc.),

and 50% are completely unrelated “junk”, as judged in [31]. Some example images

from this dataset are shown in Figure 3.12; each column is a sample of images from a

different keyword. To form positive bags from these images,we must group them into

6http://www.cs.wustl.edu/∼sg/accio/SIVAL.html
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Figure 3.13: Example images from the MSRC dataset. The MSRC dataset contains 21 cat-
egories, and most images have multiple categories in them (e.g.: “building”, “road”, “sky”,
“tree”).

multiple sets. Given the percentage of true positives, random selections of bags of size

25 are almost certain to contain at least one.

The SIVAL and MSRC datasets handle the main scenario discussed above; multi-label object

segmentation and recognition. The Google dataset handles the second MIL scenario (see

Section 3.1.1.1).

3.2.2 Multi-label Visual Category Learning with the MSK

In our first experiment, we evaluate our proposed Multi-label Set Kernel (MSK) classifier’s

effectiveness in learning using only image-level labels onimages containing multiple objects.

We divide the MSRC v2 into five folds containing about an equalnumber of images, as is

done by [129]. We choose one part as the test set, one to set parameters, and train on the rest.

Each image is a bag, and each segment is an instance. To learn the MIML classifier, we use

only image-level (bag-level) labels, i.e., we withhold allthe pixel-level labels during classifier
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Approach
Ave. AUROC Ave. AUROC

(img) (region)
Ours 0.896± 0.00 0.91± 0.01

Zha et al. 2008 [129] 0.902 0.863

Table 3.1: Five-fold cross-validation accuracy when training with only image-level labels.

training. We first compare against the approach of [129], whoprovide state-of-the-art results

on the MSRC dataset while learning from image-level labels.

Table 3.1 shows the average AUROC when predicting labels on new images(second column)

or newregions(third column). We use AUROC to evaluate accuracy because itis the most

appropriate measure for binary classification and it allowsus to compare our results with

existing state-of-the-art methods such as [129]. For image-level prediction our results are

comparable to the state-of-the-art for MIML [129], whereasfor region-level prediction we

achieve a notable improvement (0.91 vs. 0.86). This appearsto be a direct consequence of

our Multi-label Set Kernel, which weighs the region descriptors so as to represent an image

by its most relevant instances for each image-level label. As a result, we are able to directly

separate novel regions from each class within a new image, and not just name objects that

occur in it.

Approach Supervision Accuracy (%)
Winn et al. 2005 [121] Pixel-level 67.6
Shotton et al. 2006 [92] Pixel-level 70.5

Ours Image-level 64.1± 2.9
Ours Region-level 66.3

Table 3.2: Region-level multi-class classification accuracies compared to state-of-the-art ap-
proaches that use pixel-level information for training.

Next we compare against the approaches of [92] and [121], which use pixel-level labels (full
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segmentations) to train multi-class classifiers. We evaluate all approaches using the region-

level multi-class classification accuracy. While [121] learn a generative model of texton

histograms, [92] learn a discriminative CRF model incorporating appearance, shape and con-

text information. A comparison with these approaches wouldtell us how important stronger

supervision is on this dataset and how effectively our multi-label classifier is able to utilize

image-level labels. Table 3.2 compares the region-level multi-class accuracies obtained over

five trials of approximately equal train-test splits. Thus with much less manual training ef-

fort (image tags), our method performs quite competitivelywith methods trained with full

segmentations; this illustrates the advantage of the multi-label multi-instance learner in ef-

fectively utilizing weaker supervision. Using both region- and bag-level labels we obtain

an accuracy of66.3%. This seems to suggest that selectively obtaining region-level labels

should further improve our classifier.

Finally, using the NSK ([37]), which essentially removes our kernel weight mapping, the

accuracy for this test would only be55.95% ± 1.43. This result indicates that the proposed

method to map different regions to the image-level labels ismore effective.

3.2.3 Multi-level Active Selection for Learning Object Categories

In this section we demonstrate our approach to actively learn visual categories for both the

binary setting, where an image contains a single object of interest in a cluttered background

as well as the multi-label setting, where an image contains multiple familiar objects that must

be segmented and classified. We test all three datasets described above.

We provide results by simulating the active learning process: when the system requests an
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annotation on an image example, we satisfy the request usingthe ground truth labels. For

instance, when the request is to outline all the objects in the image, we use the ground truth

segmentation provided with the dataset (SIVAL/MSRC) to obtain all the objects and their

labels. However, recall that when calculating the VOI of a region/image, the system uses an

automatic low-level segmentation of the image.

3.2.3.1 Active Selection from MIL Data

For the binary MIL setting, we provide comparisons with single-level active learning (with

both the method of [89], and where the same VOI function is used but is restricted to actively

label only instances), as well as passive learning. For the passive baseline, we consider

random selections from amongst both single-level and multi-level annotations, in order to

verify that our approach does not simply benefit from having access to more informative

possible labels.

For Gibbs sampling, we generateS = 25 samples with an initial burn-in period of 50 samples.

This number was set arbitrarily; later experiments increasing the sample size to 50 did not

improve results significantly, though in general larger samples should yield more accurate

VOI estimates. The risk parameter (rl) and the cost of labeling a single instance are all set to

1, meaning we have no preference for false positives or falsenegatives, and that we view a

misclassification to be as harmful as requiring a user to label one instance.

We evaluate our approach for the two MIL classification scenarios explained in Figure 3.3.

To recall, in the first scenario training images are represented by a bag of regions and a

positive image contains at least one of the regions containing the object of interest. The goal
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is to predict when new image regions contain the object—thatis, to learn to label regions

as foreground or background. In the second scenario, groupsof images downloaded from

keyword searches from multiple search engines are positivebags and individual images are

the instances. The goal is to predict the presence or absenceof the category in new images.

Actively Learning Visual Objects and their Foreground Regions. We use the SIVAL

dataset for evaluating the first MIL scenario. Thus each image is a bag containing both

positive and negative instances (segments). Labels on the training data specify whether the

object of interest is present or not, but the segments themselves are unlabeled (though the

dataset does provide ground truth segment labels for evaluation purposes). We again report

accuracy using the AUROC measure since classification on SIVAL is a binary task.

As the SIVAL dataset contains exactly one object per image (see Figure 3.11), we do not

expect the segmentation costs to vary on a per example basis.Therefore, for this dataset

we attribute a single cost to all annotations of a particulartype. To determine how much

more labeling a positive bag costs relative to labeling an instance, we performed a user study.

Users were shown oversegmented images and had to click on allthe segments belonging to

the object of interest. The baseline task was to provide a present/absent flag on the images.

For segmentation, obtaining labels on all positive segments took users on average four times

as much time as setting a flag. Thus we set the cost of labeling apositive bag to 4 for

the SIVAL data. The value agrees with the average sparsity ofthe dataset: the SIVAL set

contains about 10% positive segments per image. The users who took part in the experiment

were untrained but still produced consistent results.

The initial training set is comprised of 10 positive and 10 negative images per class, selected
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Figure 3.14: Results on the SIVAL dataset. Sample learning curves per class, each averaged
over five trials. Our method corresponds to the “Multi-levelactive” curves. First six are
best examples, last three are worst. For the same amount of annotation cost, our multi-level
approach learns more quickly than both traditional single-level active selection as well as
both forms of random selection.
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Figure 3.15:Left: Summary of the average improvement over all 25 SIVAL categories after
half of the annotation cost is used.Right: Comparison with [89] on the SIVAL data, as
measured by the average improvement in the AUROC over the initial model for increasing
labeling cost values.

at random. Our active learning method must choose its queries from among 10 positive

bags (complete segmentations), 300 unlabeled instances (individual segments), and about

150 unlabeled bags (present/absent flag on the image). We usea quadratic kernel,K(x, y) =

(1 + αϕ(x)Tϕ(y))2, with a coefficient ofα = 10−6, and average results over five random

training partitions.

Figure 3.14 shows representative (best and worst) learningcurves for our method and the

three baselines, all of which use the same MIL classifier (NSK-SVM). Note that the curves

are plotted against the cumulativecost of obtaining labels—as opposed to the number of

queried instances—since our algorithm may choose a sequence of queries with non-uniform

cost. All methods are given a fixed amount of manual effort (40cost units) and are allowed

to make a sequence of choices until that cost is used up. Recall that a cost of 40 could

correspond, for example, to obtaining labels on40
1
= 40 instances or40

4
= 10 positive bags,

or some mixture thereof. Figure 3.15 (left) summarizes the learning curves for all categories,

in terms of the average improvement at a fixed point midway through the active learning
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phase.

All four methods steadily improve upon the initial classifier, but at different rates with respect

to the cost. (All methods fail to do better than chance on the ‘dirty glove’ class, which we

attribute to the lack of distinctive texture or color on thatobject.) In general, a steeper learning

curve indicates that a method is learning most effectively from the supplied labels. Our multi-

level approach shows the most significant gains at a lower cost, meaning that it is best suited

for building accurate classifiers with minimal manual effort on this dataset. As we would

expect, single-level active selections are better than random, but still fall short of our multi-

level approach. This is because single-level active selection can only make a sequence of

greedy choices while our approach can jointly select bags ofinstances to query. Interestingly,

multi- and single-level random selections perform quite similarly on this dataset (see boxplots

in Figure 3.15 (left)), which indicates that having more unambiguous labels alone does not

directly lead to better classifiers unless the right instances are queried.

At a cost of24 units the mean AUROC over all 25 classes for active selectionturned out to

be0.723, which is92% of the accuracy achievable if usingall the labels and examples in the

unlabeled pool. To reach the same accuracy random selectionrequires44 units of cost. This

means that to reach92% of the upper-bound accuracy, active selection requires45.5% less

annotation cost than the passive learner.

The table in Figure 3.15 compares our results to those reported in [89], in which the authors

train an initial classifier withmultiple-instance logistic regression, and then use the MI Un-

certainty (MIU) to actively choose instances to label. To our knowledge this is the only other

existing approach to perform active selections with MIL data, making it a useful method to
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compare to. Following [89], we report the average gains in the AUROC over all categories at

fixed points on the learning curve, averaging results over 20trials and with the same initial

training set of 20 positive and negative images. Since the accuracy of the base classifiers

used by the two methods varies, it is difficult to directly compare the gains in the AUROC.

The NSK-SVM we use consistently outperforms the logistic regression approach using only

the initial training set; even before active learning our average accuracy is 68.84, compared

to 52.21 in [89]. Therefore, to aid in comparison, we also report the percentage gain relative

to random selection, for both classifiers. The results show that our approach yields much

stronger relative improvements, again illustrating the value of allowing active choices at mul-

tiple levels (the method of [89] only allows active queries for instance-level labels). For both

methods, the percent gains decrease with increasing cost; this makes sense, since eventually

(for enough manual effort) a passive learner can begin to catch up to an active learner.

Actively Learning Visual Categories from Web Images. Next we evaluate the scenario

where each positive bag is a collection of images, among which only a portion are actually

positive instances for the class of interest. Previous methods have shown how to learn from

noisy Web images, with results rivaling state-of-the-art supervised techniques [106, 31, 70].

We show how to boost accuracy (AUROC) with these types of learners while leveraging

minimal manual annotation effort.

To re-use the publicly available dataset from [31], we randomly group Google images into

bags of size 25 to simulate multiple searches as in [106], yielding about 30 bags per category.

We randomly select 10 positive and 10 negative bags (from allother categories) to serve as the

initial training data for each class. The rest of the positive bags of a class are used to construct
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(a) Example learning curves per class
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Figure 3.16:Results on the Google dataset, in the same format as Figure 3.14. Our multi-level active
approach outperforms both random selection strategies andthe single-level active method.
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the test sets. All results are averaged over five random partitions. We represent each image

as a bag of “visual words”, and compare examples with a linearkernel. Our method makes

active queries among 10 positive bags (complete labels) andabout 250 unlabeled instances

(images). There are no unlabeled bags in this scenario, since every downloaded batch is

associated with a keyword.

Figure 3.16 shows the learning curves and a summary of our active learner’s performance.

Our multi-level approach again shows more significant gainsat a lower cost relative to all

baselines, improving accuracy with as few as ten labeled instances. On this dataset, random

selection with multi-level annotations actually outperforms random selection on single-level

annotations (see the boxplots). We attribute this to the distribution of bags/instances: on

average more positive bags were randomly chosen, and each addition led to a larger increase

in the AUROC.

3.2.3.2 Active Selection from MIML Data

In the previous section we considered active selection in the binary setting when the image

contains a single object among background clutter or with sets of noisy images obtained by

keyword searches. Next we use the MSRC dataset to demonstrate the impact of using our

multi-label active selection function in the more general multi-label setting, where an image

contains multiple objects of interest plus clutter, and selections can be made from different

types of annotations.

We divide the examples into five folds containing an equal number in each and use the first

part for training and the rest for testing. We construct the initial training set such that each

76



class appears in at least five images, and use image-level labels. The rest of the training set

forms the unlabeled pool of data. The active learner can request either complete segmenta-

tions or region-level labels from among the initial training examples, or image-level labels

from any unlabeled example. We setrl = 50 for all classes, which means that each mis-

classification is worth 50s of user time. The parameterrl should reflect the real cost of a

classification mistake. Our choice of the value ofrl is based on the fact that an error made

by the automatic labeling would take around 50s to manually fix for the average image. For

this experiment we fix the costs per type using the mean times from real users: 50s for com-

plete segmentations, 10s for a region outline, and 3s for a flag. We compare our approach

to a “passive” selection strategy, which uses the same classifier but picks labels to receive

at random, as well as a single-level active baseline (traditional active learning) that uses our

VOI function, but only selects from unlabeled regions. All methods are given a fixed cost and

allowed to make a sequence of label requests until the cost isused up.

Figure 3.17 shows the resulting learning curves for the MSRCv2. Accuracy is measured as

the average value of the diagonal of the confusion matrix forregion-level predictions on the

test set since the task is multi-class classification. All results are averaged over five random

trials. The proposed multi-level active selection yields the steepest learning curves. Random

selection lags behind, wasting annotation effort on less informative examples. As before,

single-level active is preferable to random selection, yetwe get best results when our active

learner can choose between multiple types of annotations, including segmentations or image

flags. The total gains after 1800 secs are significant, given the complexity of the 21-way

classification problem with a test set containing 1129 imageregions. Note that the random

selection curve is probably an over-estimate of its quality; since we limit the unlabeled pool
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Figure 3.17: Learning curves when actively or randomly selecting multi-level and single-level
annotations.Left: Region-level accuracy for the 21-class MSRC v2 dataset plotted against
ground truth cost.Right: Region-level accuracy when 80 random images were added to the
unlabeled pool. Our multi-level active selection approachyields the steepest learning curves
while random selection lags behind, wasting annotation effort on less informative examples.
When 80 random images are added to the unlabeled pool, randomselection lags even further,
since there are more uninformative images that it can choose.

to only images from the MSRC, any example it requests is goingto be fairly informative.

Figure 3.17 (right) shows results for the same setting when 80 random images are added to

the unlabeled pool with the “negative” class label, indicating that the more uninformative

images that are present, the more random selection will lag behind.7

When active and random selection are run to completion on alllabels, both methods reach

an accuracy of59.5% 8; random selection requires 5776 units of manual effort to reach the

upper-bound while active selection requires only 3075 units. Thus with active selection we

reach the upper bound using46.7% less cost than the passive learner requires.

7In Chapter 6 I explore this notion further with live learningexperiments in which training images, obtained
automatically by querying web-based photo collections, naturally contain a mixture of useful and uninformative
examples.

8Note that since we use a different train-test split for experiments in this section, this upper-bound is not
comparable to the accuracy reported in Section 3.2.2

78



aeroplane bicycle bird boat body book building car

cat chair cow dog face flower grass road

sheep sign sky tree water aeroplane bicycle bird

boat body book building car cat chair cow

dog face flower grass road sheep sign sky

(a) Initial training set.

Learner: A building label would produce the 
largest reduction in risk.

Learner: Name an object.
Oracle: building.

Learner: A sky label would produce the 
largest reduction in risk.

Learner: Name an object.
Oracle: water.

Learner: A sky label would produce the 
largest reduction in risk.

Learner: Name an object.
Oracle: sky.

Learner: A grass label would produce the 
largest reduction in risk.

Learner: Name an object.
Oracle: grass.

Learner: A cow label would produce the 
largest reduction in risk.

Learner: Name an object.
Oracle: cow. Learner: Segment this fully.

Learner: A grass label would produce the 
largest reduction in risk.

Learner: Name an object.
Oracle: grass.

Learner: What class is this region?
Oracle: building

Learner: What class is this region?
Oracle: grass

Learner: What class is this region?
Oracle: tree

Learner: A water label would produce the 
largest reduction in risk.

Learner: Name an object.
Oracle: water.

Learner: A building label would produce the 
largest reduction in risk.

Learner: Name an object.
Oracle: building.

(b) Annotations selected by the active learner in order (rowmajor).

Figure 3.18: (a) Initial training set containing two examples per class. (b) Annotation queries
selected by our method in subsequent iterations. Each image(from left to right) represents the
example with the largest VOI as selected by our active learner on a sequence of iterations. The
active learning query (one among a region label, an image tag, or a complete segmentation) is
displayed at the bottom of the image along with the oracle’s answer. For a query on a region,
the corresponding region is highlighted in the image; for animage tag, the text on the top of
the image represents what label is expected to produce the best reduction in risk.
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Figure 3.19: The cumulative number of la-
bels acquired for each type with increasing
number of queries. Our method tends to re-
quest complete segmentations or image labels
early on, followed by queries on unlabeled
segments later on. This agrees with the intu-
ition that fewer segmentations are worth their
higher annotation costs as the classifier be-
comes stronger.

3.2.3.3 Active Selection Examples

In this section we look at the types of annotation queries that our approach requests based on

some qualitative and quantitative results. Figure 3.18 shows annotation queries selected by

our approach during the first 12 iterations of an example run starting from a small training set

consisting of two image tags per class. The initial trainingset is displayed in Figure 3.18(a),

and Figure 3.18(b) shows the first 12 queries selected by our approach in row major order.

The type of query and the result from the oracle are displayedat the bottom of the image.

We also highlight the region being queried in the case of a region label; text on the top of the

image shows which image tag our approach thinks would produce the biggest reduction in

the risk (thel with the largest value in the summation in Equation 3.10).

The annotations requested by our approach are dominated by image tags, which is reasonable

considering they are the least expensive labels among the three types. At the same time, the

images for which tags are requested appear to consist of a small number of clearly defined

objects (‘sky’, ‘water’ in the second and third images, ‘water’, ‘building’ in the first image,

etc.). On more complex images, such as the sixth image of the airplane, a complete segmen-
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tation is requested. Also a region label on the ‘tree’ regionis requested on the tenth image,

even though a tree image tag is already available on the same image in the training set. This

illustrates that in some cases stronger annotations might be required, even when the classifier

already contains weaker information about a class.

The examples selected by our approach are also diverse in their appearance and class labels.

For example, in the images selected by our approach that contain the region ‘sky’, the ap-

pearance of the region is distinct from the examples of ‘sky’already available in the training

set. This is also the case for classes ‘building’ and ‘water’.

Figure 3.19 shows the cumulative number of labels acquired for each type of annotation with

increasing number of queries on the SIVAL dataset for the case of binary classification. Our

previous observation on the larger proportion of image tagsholds true in this dataset too.

In addition, on this dataset our approach appears to select complete segmentations early on,

followed by queries on unlabeled segments later on. Intuitively, as the classifier becomes

stronger it may be that fewer segmentations can provide adequate risk reductions to mitigate

their higher costs, and hence the less expensive image tags become favorable.

3.2.3.4 Effect of Initial Training Set Size

A well-known concern when performing active selection is that a faulty initial model might

select uninformative examples to label and thus never converge to the most general hypothe-

sis. Thus, we next consider the robustness of our approach byvarying the number of training

labels used to train the initial classifier. For the MSRC dataset we train the initial classi-

fier with two, four, and eight image tags per class (42, 84, and125 image tags overall) and
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Figure 3.20: Effect of the initial training set size on the active selection on the MSRC dataset.
The classifier is initialized with two (left), four (middle), and, eight (right) image tags per
class, and active selection is compared with a random baseline and the best possible selection
criterion based on the actual VOI. On the MSRC dataset our active selection criterion is
robust to the initialization and performs much better than random selection on all three initial
training sets. Nonetheless, we can expect the quality of theinitial model to influence the
reliability of the VOI in general.

then perform active selection with each model. In Figure 3.20, we compare our multi-level

active selection approach against a multi-level random baseline and the best possible selec-

tion criterion. The best possible selection is obtained by computing the actual VOI of an

example using its ground truth label. This is to compare how closely our expected VOI can

approximate the actual VOI. We average results over five random trials.

On all three initializations, particularly for the smallersets, our active selection approach has

a larger slope than random selection. In addition, our active selection follows the trend of

the best possible selection criterion. This illustrates the robustness of the approach to the

initialization on this particular dataset. Also, since ourmulti-class classifier is an ensemble

of a large number of binary classifiers, even with two image tags per class the final classifier

could have enough examples to discriminate between the classes.

We show results for the same experiment for binary classification on the SIVAL dataset in
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Figure 3.21: Effect of the initial training set size on active selection on the SIVAL dataset. We
initialize the classifier with two, six, and twenty image tags equally distributed across positive
and negative classes. The figure shows some representative (best and worst) learning curves
for our active selection approach and a random baseline. On this dataset a small training set
composed of only two examples produces sub-optimal selections for some classes.
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Figure 3.21. The figure shows some representative (best and worst) learning curves compar-

ing our selection function and a random baseline starting with two, six and twenty examples

equally distributed across the positive and negative classes. The results are averaged over six

random trials. Note that the three curves start at differentpoints on the cost axes because

they start with a different number of training examples. However, accuracies at a particular

cost on the different curves are not necessarily comparablesince the random initialization

selects an equal number of positive and negative examples, while active and random selec-

tion approaches select from an unbalanced pool of positive and negative examples due to the

one-vs-all binary setting.

The more variable results, as seen in the figure, could point to a harder dataset or the ex-

tremely low number of examples used in the binary setting as compared to the multi-class

setting. The first row of learning curves show examples wherea good initialization (larger

number of examples) helps the active selection criterion. On these examples it appears that

with smaller number of examples the active selection criterion could be misled into regions

of the hypothesis space that do not necessarily correspond to the most general solution for the

given training set. The first two curves in the second row are examples where even with very

few training examples the active selection criterion is able to match results with a larger ini-

tial set. The final curve in the second row shows an example where active selection performs

worse than random on all three initializations.

These results suggest that active learning could be affected by the initialization on certain

problems. However, note that we deliberately chose an extremely small initial training set

(two, six examples) to illustrate this point. Arguably, formost real applications one can
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User Number Accuracy
of images (%)

User 1 160 68.75
User 2 188 72.34
User 3 179 70.95
User 4 151 72.85
User 5 167 59.88
User 6 164 63.41
User 7 169 67.46
User 8 179 79.33

All users 210 73.81

Figure 3.22: Accuracy of our cost function in predicting “easy” vs. “hard”, both for user-
specific and user-independent classifiers.

reasonably expect to initialize the model with at least 10’sof labeled examples.

3.2.4 Annotation Costs and Active Selection

In the following sections we evaluate how well we can learn topredict the difficulty of seg-

menting images using image features and the impact of using the predicted cost when making

an active selection.

3.2.4.1 Annotation Cost Prediction

First, we isolate how well we can learn to predict the difficulty of segmenting images based

on image features. To train our cost function, we gather datawith Amazon’s Mechanical

Turk. Users are required to completely segment images from the 14-class MSRC v1 dataset

while a script records the time taken per image. We collect 25-50 annotations per image

from different users. Users could skip images they preferred not to segment; each user was
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Figure 3.23: The easiest and hardest images to annotate based on actual users’ timing data
(top), and the predictions of our cost function on novel images (bottom).

allowed to label up to 240 images. However, no user completedall 240 images. The fact that

most users skipped certain images (Figure 3.22, column: Number of images) supports our

hypothesis that segmentation difficulty can be gauged by glancing at the image content.

We train both classifiers that can predict “easy” vs. “hard”,and regressors that can predict

the actual time in seconds. To divide the training set into easy and hard examples, we simply

use a threshold at the mean time taken on all images. Using thefeature pool described in

Section 3.1.2.4, we perform multiple-kernel learning [3] to select feature types for both the
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user-specific data and the combined datasets. The edge density measure and color histograms

received the largest weights (0.61, 0.33 respectively), with the rest near zero.

Figure 3.22 shows the leave-one-out cross validation (loo-cv) result when classifying images

as easy or hard, for the users for whom we had the most data. Forthe majority, accuracy is

well above chance. Most of the errors may largely be due to ourarbitrary division between

what is easy or hard based on the mean.

To train a regressor we use the raw timing data and the same setof features. Figure 3.23

shows examples that were easiest and hardest to segment, as measured by the ground truth

actual time taken for at least eight users. Alongside, we show the examples that our regressor

predicts to be easiest and hardest (from a separate partition of the data). These examples are

intuitive, as one can imagine needing a lot more clicks to draw polygons on the many objects

in the “hardest” set. Figure 3.24 (left) plots the actual time taken by users on an image

against the value predicted by our cost function, as obtained with loo-cv for all 240 images

in the MSRC v1 dataset. The root mean square difference between the actual and predicted

times is 11.1s, with an average prediction error of 22%. In comparison, predicting a constant

value of 50s (the mean of the data) yields an average prediction error of 46%. Given that the

actual times vary from 8 to 100s, and that the average cross-annotator disagreement was 18

s, an average error of 11s seems quite good.

In order to verify that we were not simply learning a category-based level of effort, we looked

at the actual and predicted times split across different classes. Figure 3.24 (right) shows a

plot of the actual and predicted times broken across the different scene settings in the MSRC

dataset. The x-axis shows the most dominant foreground class label in that particular scene
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Figure 3.24:Left: Scatter-plot of the actual time taken by users to segment an image vs. the
value predicted by our cost function, for the 240 images in the MSRC v1. The predicted and
actual times are highly correlated, implying that our cost predictor has learned how difficult
an image is to segment using only low-level image features.Right: The actual and predicted
times split across the different categories of images in theMSRC dataset. The plot shows that
most classes have images with varying difficulties, and assures that the difficulty measure we
have learned is not class-specific.

layout. This figure shows that every class/scene layout contains images with varying difficulty

in terms of the annotation effort required by users. While some categories have more variation

than others (cow vs car), there is no direct connection between the image class and the time

taken to provide annotations. The plot also shows that for most of the examples our cost

predictor provides fairly accurate predictions of the annotation costs.

3.2.4.2 Active Selection with a Learned Cost Function

Thus far we have fixed the costs assigned per annotation type;now we show the impact

of using the predicted cost while making active choices. We train a binary multi-instance

classifier for each MSRC category using image labels on4
5
-th of the data per class, in five

different runs. The rest is used for testing. We compare two MIL active learners: one using
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Figure 3.25: Representative learning curves when using active selection with the learned
cost predictor, as compared to a baseline that makes active selections using a flat cost value.
For classes like Tree, Cow, and Airplane (shown here), the cost prediction produces more
improvement per unit cost, while for a few like Sky there is nosignificant difference—most
likely because the images within the class are fairly consistent and equally informative and
easy to label.

cost prediction, and one assigning a flat cost to annotations. At test time, both learners are

“charged” the ground truth cost of getting the requested annotation.

Figure 3.25 shows representative (good and bad) learning curves, with accuracy measured

by the AUROC value. For Tree, Cow, and Airplane, using the predicted cost leads to better

accuracies at a lower cost, whereas for Sky there is little difference. This may be because

most ‘sky’ regions look similar and take similar amounts of time to annotate.
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% acc imp. Cost(secs) % Cost
Cost prediction Flat cost saved

5 11.40 11.52 +1.07
10 24.52 31.41 +21.94
15 45.25 63.24 +28.45
20 165.85 251.10 +33.95
25 365.73 543.69 +32.73

Table 3.3: Savings in cost when using cost prediction withinthe active learner. Overall, our
active selection takes less effort to attain the same level of accuracy as a cost-blind active
learner.

Table 3.3 shows the cost required to improve the base classifier to different levels of accuracy.

The fourth column shows the relative time savings our cost prediction enables over a cost-

blind active learner that uses the same selection strategy.For larger improvements, predicting

the cost leads to noticeably greater savings in manual effort—over 30% savings to attain a

25% accuracy improvement.

3.2.5 Computation Time

With our implementation of the incremental SVM technique of[17] it takes on average0.5

secs to evaluate a single region and20 secs to evaluate a bag (image) on a1.6 GHz PC.

This corresponds to about15 minutes to choose which annotation to request when the dataset

contains∼ 100 bags (images) for∼ 20 classes. Once an annotation is selected it takes less

than0.1 secs to retrain the classifier. The most expensive step in selecting an annotation is

the Gibbs sampling procedure coupled with the need to updatea large number of classifiers

in the one-vs-one setting.

Since the complexity of the Gibbs sampling procedure depends on the number of segmented
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regions within an image one way to reduce computational costs would be to avoid overseg-

menting an object into multiple regions. In [109], we proposed a novel top-down segmenta-

tion approach by defining pairwise potential functions for agglomerative grouping that mea-

sure how the classification entropy of the object-level classifiers changes when considering

the combined appearance description of adjacent regions. Starting from an initial overseg-

mentation, we then iteratively merge regions which are better classified together. Such a

technique could significantly improve the running time of our active selection scheme since

it would avoid splitting adjacent regions if they are betterclassified when they are merged.

3.3 Discussion

This chapter addressed a new problem: how to actively choosenot only which instance to

label, but also what type of image annotation to acquire in a cost-effective way. Through

extensive experiments I have validated several aspects of my initial thesis.

I showed that compared to traditional active learning, which restricts supervision to yes/no

questions, a richer means of providing supervision and a method to effectively select super-

vision based on both information gain and cost to the supervisor is better-suited for building

classifiers with minimal human intervention. Specifically,on the MSRC dataset we can save

up to50% of manual effort by choosing from multiple levels of annotations. Interestingly,

our approach appears to select stronger supervision near the beginning of the active learning

phase when the classifier is weak and switches to weaker supervision as it improves with

more labels.

I showed that annotation effort, computed in terms of time toprovide annotations, varies
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widely across images and annotators, from as little as10 seconds to more than2 minutes.

By utilizing such user responses collected through an online crowd-sourced labeling service,

I then showed that one could learn a function to predict image-specific cost based on image

features alone to a fair degree (22% prediction error). A large portion of the error could be

attributed to disagreement across annotators due to differing skill and attention levels. This

suggests that extending the approach to target specific annotators and build user-specific cost

functions could provide more accurate predictions.

I also showed that our approach is fairly robust to the initial classifier as long as the model

is initialized with 10’s of examples. With fewer than6 labels the results obtained for active

learning are more variable. It appears that with smaller number of examples to start with, the

selection function could be misled into regions of the hypothesis space that do not necessarily

correspond to the most general solution for the given training set. Although, note that we

deliberately chose an extremely small initial training set(two, six examples) to illustrate this

point. Nonetheless, this is a common concern of all active selection approaches and results

depend on the exact data distribution and the difficulty of the task being learned.

Our method is general enough to accept other types of annotations or classifiers, as long

as the cost and risk functions can be appropriately defined. Specifically, this would require

defining classifiers that can provide posterior probabilities for different types of annotations

being considered and a way to measure the cost of each type of annotation. For example,

for a part-based object detector/classifier one could use annotations at the part-level or treat

object parts as latent variables when given object-level annotations and apply my technique

to learn from a combination of the two.
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While we have concentrated mostly in the domain of object recognition, the problem of

comparing different types of annotations in a unified framework is potentially applicable to

several other domains both in vision and machine learning such as video annotation, tracking,

or document classification. For example, in document classification a web document would

be a bag of paragraphs and one could obtain annotations on documents as a whole or on indi-

vidual paragraphs while learning a particular concept. Similarly, videos could be considered

as bags of frames where annotations can be obtained either ona video as a whole or on its

individual frames.

So far, I considered selecting a single annotation from multiple levels in order to reduce

total human effort. In the next chapter I will address the problem of selecting examples for

multiple simultaneous annotators so as to improve the speedof the annotation process by

posting annotation questions in parallel.
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Chapter 4

Selection under a Budget for Multiple Simultaneous
Annotators

The previous section dealt with choosing asingleannotation from a large pool of multiple

types of annotation queries. Such methods can be used to train classifiers when a single hu-

man annotator is available to interact with the system. However, in some real applications

we may have access to multiple simultaneous annotations. For example, systems such as

Mechanical Turk or LabelMe provide access to a large number of annotators on the web. An

active learning system that needs to repeatedly go offline and compute the next annotation re-

quest cannot take advantage of such resources. Therefore, it may in some cases be preferable

to farm out abatchof good queries at once.

In this chapter, I formalize the problem offar-sighted active learning under a budget. At each

iteration the active learner is allowed to choose a set of examples to get labeled, provided the

total sum of costs associated with the selected examples is under a given budget. The techni-

cal problem of selecting a good set of examples at once is challenging, since one must take

care to avoid overlapping information, i.e., it is wastefulto ask a batch of similar questions.

Furthermore, it is risky to formulate a large selection based only on the current model’s view

of the data: some examples within large sets may lead to significant changes to the classifier

that ultimately invalidate the perceived value of others that were selected.
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The result of [57] is of particular interest for any non-myopic or batch-mode active learning

algorithm that tries to make a large selection based on the current classifier. Central to their

analysis is a theoretical bound which quantifies the performance difference between sequen-

tial active learning (myopic) and a priori design strategies or batch-mode selection methods.

Using Gaussian processes (GP) and a maximum entropy based selection scheme, they show

that if there is low uncertainty over the classifier parameters the predictive distribution should

be independent of additional observed values and there should bealmostno benefit from se-

quentially (one at a time) obtaining label information on unlabeled examples. However, the

result requires that the probability distribution of the classifier parameters is highly peaked,

which is not always true in active selection where the initial classifier is trained on a small

number of examples and is therefore quite uncertain.

While a few “batch-mode” active learning strategies have been proposed in the machine learn-

ing literature [85, 12, 45, 42], none consider how to balancethe joint selection with cost re-

quirements. Meanwhile, current active selection approaches that do account for labeling cost

lead to a myopic selection of a single request at a time [55, 4,41, 107, 108].

I propose a novel method for optimally selecting a set of examples for a support vector ma-

chine (SVM) classifier under these conditions. Given a largeunlabeled pool of data where

each example has an associated cost, we introduce a set of instance selection variables. We

formulate an optimization problem to learn the maximum margin hyperplane along with the

instance variables that minimize the empirical risk (on both the labeled data and selected

unlabeled points), while satisfying the given budget constraint. We then relax it to a con-

tinuous optimization problem that can be decomposed into two strictly convex optimization
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problems loosely coupled in the hyperplane parameters and selection variables. We devise a

monotonically convergent alternating minimization algorithm to compute the solution.

In the following, I will formally define the problem setting for our approach and explain

our alternating optimization solution and provide an algorithm for the same. I then provide

validation for our approach on benchmark datasets for threerecognition applications: object

recognition, activity recognition, and content-based image retrieval. I demonstrate the ad-

vantages of our approach compared to passive, myopic greedy, and batch selection baselines,

and show its effectiveness across a range of budgets.1

4.1 Budgeted Batch Active Learning (BBAL)

Given a preliminary recognition model and a budget for annotations to improve the training

set, our method considers all the available unlabeled imagedata and computes the set of

recommended requests that are jointly most informative andfall within the budget. Below,

we first formally define the problem of budgeted selection, and overview the main idea of our

approach. In Section 4.1.2 we present the detailed formulation and algorithm.

4.1.1 Problem Definition and Overview

We consider the problem of actively selecting a batch of examples to label, where the contents

of the batch must be constrained by some budget. Formally, letL = {(x1, y1), (x2, y2), ...(xl, yl)}

denote a set ofl initially labeled examples, whereyi ∈ {+1,−1}. LetU = {xl+1, xl+2, ...xl+u}

1The contents of this chapter were published in [112].
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Figure 4.1: The problem setting of budgeted batch active learning. At each iteration the active
learner can select a set of examples to label whose total costmeets a given budget of super-
vision for the iteration. The selected examples can then be labeled by multiple annotators
working in parallel (for example, by using services such as Mechanical Turk).

denote an unlabeled pool from which examples can be selectedand given to human labelers.

Each unlabeled examplexi is associated with a costci, which measures the manual effort

required to obtain a label forxi. Note that the cost varies per example, as in Chapter 3.

At each iteration, a set of examplesS = {xk1 , xk2, ...xkn} ⊆ U can be selected for labeling,

as long as the total cost of the selection does not exceed a specified budgetT . That is,
∑n

j=1 ckj ≤ T . Since costs vary, the number of selected examplesn is not fixed. The goal

is therefore to maximally utilize the given budgetT by selecting the setS that is expected to

produce the most gain in the classifier’s performance. Afterobtaining labels for the chosen

set, the classifier will be retrained, and the process can repeat, one batch at a time. Figure 4.1

provides an overview of the problem setting.

A naive approach to this problem, which we refer to asMyopic Active Batch Learning, would

be to greedily choose the top most uncertain examples according to the current classifier that
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fit under the given budget—in other words, to rank the points in descending order by their

uncertainty, and start adding them to the setS until the total budget is exhausted. However,

such an approach ignores the information overlap between the selected examples.

Existing methods counter this problem by choosing a set thatcontains both examples that

are uncertain and that are mutually diverse [12, 45]. Aside from needing good heuristics

to balance the two properties, estimating uncertainty based on thecurrent classifier(e.g.,

using the distance from the margin for an SVM) also fails to capture how uncertainty will

change once the selected examples are added to the labeled set and the model’s parameters

are retrained. For large batches of examples this can be especially problematic. In addition,

existing methods are specifically targeted at choosing a fixed number of examples at each

iteration, but a variable-sized batch may be able to more optimally use labeling resources

(i.e., a fixed-size batch must taken total examples, whereas a more effective selection might

entail choosing a couple of the more expensive examples together with a set of<< n cheaper

ones).

Therefore, we propose an approach that directly targets theamount of reduction in the SVM

objective that is to be expected by choosing a given set of examples under a budget. We call

thisbudgeted batch selection. The main idea is as follows: we introduce an indicator variable

over the unlabeled examples, and formulate a continuous optimization problem to determine

which subset of possible queries should maximize the improvement to the classifier’s objec-

tive, without overspending the budget. When fixing the selection variables, the optimization

reduces to that of a standard SVM objective function, which can be solved efficiently; when

fixing the model parameters, the selection variables are computed via linear programming.
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Because we incorporate the predicted change in the model that the candidate examples will

induce, the method is “far-sighted” in terms of the effects of the entire batch.

4.1.2 Formulation and Algorithm

Given a set of labeled examplesL, the SVM objective seeks the optimal separating hyper-

plane defined by parameters(w, b):

argmin
w,b,ǫ

1

2
||w||2 + C

∑

(xi,yi)∈L
ǫi,

s.t. yi(w
Txi + b) ≥ 1− ǫi, (xi, yi) ∈ L,

ǫi ≥ 0, (4.1)

where eachǫi denotes the hinge loss onxi, andC denotes the constant regularization penalty.

This familiar SVM objective simultaneously minimizes the classification error on the training

examples while maximizing the margin of separation betweenthe positives and negatives.

LetA andB be two (possibly distinct) sets of labeled examples. To aid in notation below, we

define an intermediate cost function, which takes parametersfA andB:

g(fA, B) =
1

2
||wA||2 + CR̂A

B, (4.2)

wherefA denotes the SVM hyperplane parametersfA = (wA, bA) obtained by training on set

A, andR̂A
B =

∑

(xi,yi)∈B ǫAi denotes the empirical loss incurred by modelfA over the setB,

and

ǫAi = max(0, 1− yi(w
T
Axi + bA)) (4.3)

denotes the hinge loss onxi resulting from the modelfA. Note that the cost measured by

g(fA, B) evaluates a margin term1
2
||wA||2 (which reflects generalization ability) using the
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solution according to labeled dataA, whereas it evaluates losses (which reflect misclassifica-

tions) on examples inB using the modelfA.

We want both the labels on the candidate selection sets as well as the existing labeled data

to simultaneously influence the batch selection. As the points in a candidate setS are as yet

unlabeled, we can only estimate the most “optimistic” cost reduction by maximizing over all

possible labels onS. In the following, we use the termoptimistic labels(borrowed from [42])

to refer to a label assignment for unlabeled points under which cost is maximally reduced.

Let Y ∗ = {yk1, . . . , ykn}, be the set of optimistic labels associated with the examples in

the optimal selectionS∗ ⊆ U , whereY ∗ ∈ {+1,−1}n, for n = |S∗|. We want to select

(S∗, Y ∗) such that together they yield the maximal cost reduction, asmeasured by the cost

producedbeforetheir addition to the labeled set versus the cost producedafter they are added.

Specifically, we want:

(S∗, Y ∗) = arg min
S⊆U,Y

g (fL′, L′)− g (fL, L ∪ (S, YL)) ,

s.t.
∑

xi∈S
ci ≤ T, (4.4)

whereL′ = L∪ (S, Y )—that is, the labeled set expanded with some label assignment onS—

andYL denotes the labels obtained by classifyingS usingfL. The last inequality reflects the

budget constraint limiting total annotation cost among selected examples toT . Note that the

first term in the above objective measures the classificationerror onL∪(S, Y ) and the margin

when training using bothL and(S, Y ), while the second term measures both the margin and

the classification error for the selected examples under the“old” model fL, which is trained

only onL. Thus, the optimal(S∗, Y ∗) results in the maximal reduction in the SVM objective

when considering optimistic labels.
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To solve this optimization problem, we first expand the representation of the unlabeled set

so that each unlabeled example appears as two examples labeled with both possible classes.

Formally, we expandU to also include:

xi = xi−u, for i ∈ [l + u+ 1, . . . , l + 2u],

yi = +1, for i ∈ [l + 1, . . . , l + u],

yi = −1, for i ∈ [l + u+ 1, . . . , l + 2u]. (4.5)

From here on,U represents the expanded unlabeled set. We then introduce a vector of indi-

cator variablesq ∈ [0, 1]2u, whereqj = 1 denotes that examplexl+j ∈ S, andqj = 0 denotes

that it is not. LetYU denote the set of labels on all unlabeled examples, which includes the

labelsY for selectionS. Now redefiningL′ = L ∪ (S, YU) we can rewrite the firstg term

from Equation 4.4 as:

g(fL′, L′) =
1

2
||wL′||2 + CR̂L′

L′

=
1

2
||wL′||2 + CR̂L′

L + CuR̂
L′

(S,YU ),

=
1

2
||wL′||2 + CR̂L′

L + Cu

2u
∑

j=1

qjǫ
L′

l+j, (4.6)

whereCu is a constant regularization penalty for the selected unlabeled examples. HerefL′

is obtained by solving the optimization problem in Equation4.1 with the setL ∪ (S, Y ), and

the values for eachǫi are also based on this modelfL′ (and hence the labelsYU ), as denoted

by theǫL
′

l+j terms.

Substitutingg(fL′, L′) from Equation 4.6 into Equation 4.4, the desired selection problem
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can now be written as:

min
w,b,q

1

2
||w||2 + C

∑

xi∈L
ǫi + Cu

2u
∑

j=1

ǫl+jqj − Cu

2u
∑

j=1

ǫLl+jqj ,

s.t. yi(w
Txi + b) ≥ 1− ǫi, ǫi ≥ 0, 1 ≤ i ≤ l + 2u,

2u
∑

j=1

qjcj ≤ T,

qj + qu+j ≤ 1, 1 ≤ j ≤ u,

qj ∈ {0, 1}, 1 ≤ j ≤ 2u, (4.7)

whereL′ = L∪(S, YU). Note that our encoding of the indicator means thatq∗ itself represents

(S∗, Y ∗) from Equation 4.4, and similarly the expanded labeled setL′ is a function ofq. We

drop the superscriptsL′ for the ǫi variables for clarity sinceL′ is now a parameter that we

are optimizing over. Note that the first two terms of Equation4.6 for g(fL, L ∪ (S, Y )) are

constant w.r.t. the optimization variables and thus are ignored. The last term reflects the loss

incurred for examples inS using a modelL that doesnot account for labelsYU , whereas the

middle two reflect errors after its inclusion.

Although Equation 4.7 includes a constraint for every unlabeled examplexl+j ∈ U , since the

penalty for the corresponding slack variableǫl+j is zero wheneverqj is zero, the constraint

only affects the cost for examples with non-zeroqj , that is, forxl+j ∈ S. Finally, the con-

straint on pairs ofq variables (qj + qu+j) reflects that only one of the labels (+1 or −1) can

be chosen for an unlabeled example.

The optimization problem defined above is an integer programming problem which in general

is NP-hard. Hence, we first relax it to a continuous optimization problem by allowing theq

variables to take values between(0, 1). Now the above objective can be seen as two different
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optimization problems loosely coupled by the termCu

∑2u
j=1 ǫl+jqj : one on(w, b) and the

other onq, both of which are convex. Fixingq, the minimization overw can be done by

standard convex quadratic programming. Fixingw, the minimization overq is a convex

linear programming problem.

To solve the relaxed problem, we devise an iterative alternating minimization procedure that

is guaranteed to converge to a local optimum of the objectivefunction. Assumingq to be

constant, Equation 4.7 reduces to

(w∗, b∗) = argmin
w,b

1

2
||w||2 + C

∑

(xi,yi)∈L
ǫi + Cu

2u
∑

j=1

ǫl+jqj ,

s.t. yi(w
Txi + b) ≥ 1− ǫi, ǫi ≥ 0, (xi, yi) ∈ L,

yi(w
Txl+j + b) ≥ 1− ǫl+j,

ǫl+j ≥ 0, xl+j ∈ U, yl+j ∈ YU . (4.8)

Note that this objective has a very similar form to that of thetransductive SVM, as first

proposed in [50]. Importantly, unlike the transductive SVM, in this case the inclusion of the

indicator vectorq means we penalize labeling errors on unlabeled data inS only, which is a

subset of all unlabeled examples. Moreover, for a fixedq the problem reduces to that of the

standard SVM problem, where the cost terms for the unlabeledexamples are a function of

the q variables. Hence, for a givenq, we can efficiently optimize the SVM parameters and

their optimistic labels for the selected batch.

On the other hand, fixing the model parameters(w, b) and relaxing the indicator vector as

103



q ∈ (0, 1)2u, Equation 4.7 reduces to

q∗ = argmin
q

Cu

2u
∑

j=1

ǫl+jqj − Cu

2u
∑

j=1

ǫLl+jqj,

s.t.
2u
∑

j=1

qjcj ≤ T,

qj + qu+j ≤ 1, 1 ≤ j ≤ u,

0 ≤ qj ≤ 1, 1 ≤ j ≤ 2u. (4.9)

The above problem is a linear programming problem inq and can be solved using standard

methods like an interior point method.2 Theǫl+j variables depend on the current solution for

(w∗, b∗) from Equation 4.8, whereasǫLl+j is a function of the parameters(wL, bL)—which are

obtained by training onL alone—andYL, the true labels obtained so far.

Finally, by alternating between Equation 4.8 and 4.9, we cancompute the batch selection

meeting the given budget that is expected to most improve theclassifier. We always initialize

theǫ values to 0, which corresponds to initializing our method with the myopic solution. We

formS∗ by choosing the examples with the largestqi that fit the given budgetT . Algorithm 1

provides pseudo-code for the procedure.

Note that the constraints on{w, b, ǫ} in Equation 4.7 are independent ofq. Similarly, con-

straints onq are independent of{w, b, ǫ}. Hence, fixingq and optimizing for{w, b, ǫ} de-

creases the objective function (Step 5 in Alg. 1). Similarly, Step 6 also decreases the objective

function. Hence, our algorithm converges monotonically. In fact, with a stronger analysis, it

2In the implementation, we need to add slack onT since with varying costs per example one can only hit
the budgetT as closely as possible, but for clarity of presentation we omit it in the notation above.
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Algorithm 1 Budgeted Batch Active Learning (BBAL)
Require: Labeled data -L, Unlabeled data -U ,

Current loss on unlabeled data -ǫLi ,
Labeling costs -c = [c1, . . . , cu], Budget -T ,
Parameters -C, Cu, ζ .

1: Initialize ǫl+j = 0, for j = 1, . . . , 2u.
2: YU = {y1, . . . , y2u}, set as in Equation 4.5.
3: C(qold) = ∞, whereC(·) denotes objective in Equation 4.7
4: repeat
5: q = solvelinear program (ǫ, ǫL, c, T ) // Equation 4.9
6: [w, b] = svm(L ∪ (U, YU), C ∪ qCu) // Equation 4.8
7: Computeǫ usingYU , w, andb.
8: C(qnew) = q.
9: until convergence.

Setqj = max(qj , qj+u), for j = 1, . . . , u.
10: return SetS∗ = ∪qj>0 xl+j , for j = 1, . . . , u.

is easy to show that our algorithm converges to a local optimal of the objective function. In

our experiments the algorithm converges quickly, requiring typically only 10-15 iterations.

4.1.3 Summary: Using BBAL

Our approach can be used for active training of any SVM classification problem. The inputs

are an initial training set containing some labeled examples of the categories of interest,

the number of selection iterations, an unlabeled pool of data, and the available budget. In

practice, one would set this budget according to the resources available—for example, the

money one is willing to spend on Mechanical Turk to get a training set for the next object

recognition challenge. We construct the initial classifier, and then for each iteration, solve for

the indicator vector specifying which set of unlabeled dataobjects should be annotated next.

For unlabeled data with non-uniform costs, each resulting request will consist of a variable
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number of items (images, video clips). Once these tasks are completed (either sequentially,

or in parallel by a team of annotators), the labeled set is expanded accordingly, the classifier

is updated, and budgeted selection repeats. The final outputis the trained classifier.

4.2 Results

I demonstrate my approach for active budgeted selection within multiple visual recognition

applications. The main goal of our experiments is to demonstrate the advantage of maxi-

mally utilizing budgets of any size, and to validate the importance of using the change in the

classifier objective when choosing large batches. To show these things, we consider three

baselines:

• Passive selection: randomly chooses examples to label. To implement this on a budget,

we randomly draw from the unlabeled pool until the budget is exhausted.

• Myopic active batch learner (MAB): greedily takes the top most informative examples

whose summed costs come in under budget.

• Batch-mode activelearner (BMAL): a state-of-the-art approach that selects batches

of a fixed size [45]. Like our method, it considers an SVM objective, but unlike ours

it does not include the model’s expected change during selection, and it ignores per-

example costs.

We emphasize that, to our knowledge, no existing method allows batch selection on a budget,

making these the best three baselines to analyze.
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Dataset
Cost (secs)

min max mean median total
SIVAL 4 202 31.9 32 6752

Hollywood 1.64 92.7 15.4 8.7 2476.7

Table 4.1: Distribution of manual effort costs on SIVAL and HOHA.

4.2.1 Datasets and Implementation Details

We use three publicly available benchmark datasets: SIVAL for object recognition, Holly-

wood for activity recognition, and Corel for CBIR. The first two consist of examples that

require variable effort to annotate, allowing us to study the advantages of selecting requests

to meet a budget. The third allows us to make direct comparisons with a state-of-the-art batch

selection method for image retrieval.

• The SIVAL dataset contains 1500 images, each labeled with one of 25 object labels

(e.g., gloves, apple, etc.). The cluttered images contain objects in a variety of poses

and lighting conditions. We use the color and texture features provided by the dataset

creators3, which gives a 30-dimensional descriptor for each of 30 regions per image.

For this dataset, the annotation cost per image is the time required for manual segmen-

tation; we use the cost data provided by [88], though one could predict annotation costs

using image features alone with sufficient training as we showed in Chapter 3. Note

that this data was also used in the VOI experiments in Chapter3.

• The Hollywood dataset (HOHA) contains 444 video samples with human actions from

32 movies [65]. Each sample is labeled according to one or more of 8 action classes

3http://www.cs.wustl.edu/accio/
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(e.g., AnswerPhone, GetOutCar, HandShake, etc.). We use the “clean” training set.

For features, we use the authors’ code4 to extract HoG-HoF descriptors around space-

time Harris interest points. The space-time Harris detector [64] detects local structures

in a video where the image values have significant local variations in both space and

time. The HoG-HoF descriptors compute histograms of oriented gradients and optical

flow inside a space-time volume surrounding the interest points. We then convert each

action clip into a bag-of-words representation with 1000 words. For this dataset, we use

the length of a video-clip to measure the annotation effort,since a human will watch

the entire clip in order to identify which of the actions are performed in it. Table 4.1

shows the distribution of manual effort costs on the two above datasets.

• The Corel dataset contains 5,000 images from 50 different categories (e.g., antelope,

butterfly, car, cat), as selected by the authors of [45]. Eachcategory contains 100

images. We use the features provided on the authors’ website5, which consist of color

moments, edge histograms, and a wavelet-based texture feature.

For SIVAL, we use an RBF kernel with the coefficient of10−5, which we set based on the

feature space dimension. For HOHA, we use aχ2 RBF kernel on HoG and HoF, with param-

eters as specified in [65]. We set the SVM penalty parameters as C = 100 andCu = 100

for all approaches, a large value intended to emphasize correct classification of the selected

examples. We train and test all approaches in the one-vs-allbinary classification setting, and

use the standard provided train-test splits. For SIVAL and Hollywood datasets, we use the

4http://www.irisa.fr/vista/Equipe/People/Laptev/download.html
5http://www.cais.ntu.edu.sg/∼chhoi/SVMBMAL/
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Figure 4.2: Results on the Hollywood dataset: example per-category learning curves (first
two are best, third is worst) and the average results over alleight categories (bottom right
plot) when actively learning categories of human activity from video clips.

area under the ROC curve (AUROC) as the evaluation metric as it is the most appropriate

metric for binary classification. For COREL, we report results using precision and recall

since the task is image retrieval and it will also allow us to compare our results with other

state-of-the-art approaches such as [45].

For SIVAL and HOHA, our active learner’s initial training set consists of five positive and

five negative images per class, selected at random; we use theremainder as the unlabeled

pool. We average all results over five such random selections.
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4.2.2 Learning Activities on a Budget

Figure 4.2 shows representative (best and worst) learning curves for our method and the pas-

sive and myopic baselines plotted against the cost (annotation time) of the selected examples

on the Hollywood dataset. The budgetT is set such that all the unlabeled examples would

be exhausted in about 20 batch iterations. About 10-15 examples on average get chosen per

iteration. Note that average precision (AP) accuracy is plotted against the effort required to

obtain annotations on the selected examples—not the numberof queries—since the videos

vary in length and require variable time to annotate.

All three methods steadily improve upon the initial classifier, but at different rates with re-

spect to the cost. In general, a steeper learning curve indicates that a method is learning most

effectively from the supplied labels. For most classes, ourapproach shows the most signifi-

cant gains at a lower cost, meaning that it is best suited for maximally utilizing a budget. The

myopic active batch baseline (MAB) is a bit better than random selection for most cases, but

is weaker than our method due to its failure to account for theexamples’ cost and potential

redundancy. Our results on some actions (e.g., “get out of car”) are more variable than oth-

ers, which we attribute to the fact that the training and testclips are from distinct movies, and

therefore vary a lot in terms of lighting, appearance, characters, etc. Overall, however, our

approach consistently produces better accuracy for lower annotation cost, and outperforms

the baselines on average over all eight actions (bottom right plot in Figure 4.2).
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Figure 4.3: Results on the SIVAL dataset: example learning curves (first two are best, third
is worst) and the average over all 25 categories (bottom right plot) when actively learning
object categories from image examples.

4.2.3 Learning Objects on a Budget

Figure 4.3 shows corresponding results on the SIVAL dataset. The budgetT is set to 300

secs, again so that all unlabeled data would be exhausted in∼20 iterations. Our approach

is consistently better than both baselines, as seen in the bottom right plot above. For some

categories (such as “dirtyworkgloves”), none of the approaches improve with more labels,

apparently due to those objects’ non-descript texture/color. While the differences between

the approaches may appear to be smaller that what we see for HOHA, they are consistent and
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(a) SIVAL dataset, category - “bluescrunge”

Our Approach Myopic Active Batch Random

Label:-1, Cost: 1.6 secs Label:-1, Cost: 4.8 secs Label:-1, Cost: 4.8 secs Label:-1, Cost: 12.6 secs

Label:-1, Cost: 1.6 secs Label:+1, Cost: 3.7 secs Label:+1, Cost: 4.6 secs

(b) Hollywood dataset, category - “stand up”

Figure 4.4: (a) Example batch selections made by our approach (left) and the myopic baseline
(right) for the SIVAL “bluescrunge” object on the first iteration, with a budget of 60 secs. (b)
Selections made by our approach and the two baselines on Hollywood “stand up” category
for a budget of 13 seconds. Our approach is able to select bothless expensive and more
informative examples, while sticking within the allowed budget as closely as possible.
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significant considering that the results are averaged over five random initializations and 25

categories. Moreover, to achieve about 90% of the ultimate accuracy level possible on this

dataset (0.7 AUROC), our method requires notably less cost:about 43% less annotation cost

than the passive selector, and 20% less than the myopic selector.

Figure 4.4 shows example batch selections made by our approach and the baseline techniques

on the two datasets. The examples illustrates the main advantage of our approach: we are

able to select both less expensive and more informative examples, while sticking within the

allowed budget as closely as possible.

4.2.4 Effect of the Budget Size

Next we study the impact of increasing budget sizes. We expect the far-sightedness of our

approach to offer particular advantages for larger budgets. This is because when a large num-

ber of examples is selected we expect the classifier to changea lot and baselines techniques

that depend on the unchanged current classifier to choose examples might not be able to in-

corporate this change. For this experiment, we vary the sizeof the budget, and measure the

accuracy of our method and the baselines at a fixed cost for each budget (approximately1
4

of

the total unlabeled pool’s cost). The range of budget sizes tested was set so as to exhaust all

unlabeled data in about10, . . . , 40 iterations.

Figure 4.5 shows the results, for two example categories from SIVAL and HOHA. We in-

clude a minimal budget size to illustrate that for a budget allowing only ≈a single item to

be selected, MAB and our approach would be almost equivalent(see leftmost points on both

plots). As expected, for larger budgets, the myopic choicesdrop in accuracy, sometimes be-
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Figure 4.5: Active learning performance as a function of increasing budget size. The quality
of our far-sighted selections remains more stable for larger budgets.

low the random baseline. Passive selection’s accuracy is stable across budget sizes since it

is simply random. Our approach shows the least degradation—a consequence of considering

how the classifier changes if we were to obtain the most probable labels on the candidate

examples for selection. This is a key result, given that realrecognition systems drawing on a

pool of annotators must be able to pick a large batch of jobs wisely in order to farm them out

in parallel.

4.2.5 Comparison to State-of-the-Art Batch Selection

Next we provide comparisons with the state-of-the-art batch-mode active learning (BMAL)

method of [45] on a CBIR task with Corel. The approach of [45] considers a min-max view

of the SVM objective function and derives a selection criterion for batches that minimizes

both the total classification uncertainty and the redundancy among the selected examples.

The two BMAL variants use quadratic programming (SVMSS(QP )
BMAL ) and combinatorial opti-
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Precision
Batch Size

5 10 15 20 25 30
Ours 0.620 0.734 0.809 0.853 0.888 0.905

SVMSS(QP )
BMAL 0.640 0.718 0.798 0.835 0.860 0.886

SVMSS(CO)
BMAL 0.622 0.717 0.776 0.835 0.868 0.889

Recall
Batch Size

5 10 15 20 25 30
Ours 0.321 0.371 0.417 0.452 0.477 0.503

SVMSS(QP )
BMAL 0.332 0.373 0.423 0.452 0.468 0.490

SVMSS(CO)
BMAL 0.321 0.377 0.412 0.447 0.471 0.493

Table 4.2: Corel results.Top: The average precision of the top 20 retrievals with different
batch sizes.Bottom: The average recall of the top 100 retrievals with different batch sizes
(evaluation done as prescribed in [45]).

mization (SVMSS(CO)
BMAL ). While their approach is intended for fixed-size batches, and ours

allows variable-sized batches, we can still test our methodin this setting since it is a special

case (i.e., budget=batch size). We replicate the experimental setup given by the authors, us-

ing 200 random queries, and applying the same kernel [93], SVM parameters, and scoring

criteria (see [45] for details).

Table 4.2 shows the results. Our results are comparable, if not better, than the state-of-the-art,

and the gains are a bit more apparent with larger batch sizes.We attribute our gains to our

method’s inclusion of the expected classifier change. See [45] for more results from other

active selection baselines (including [98, 12]), all of which generally underperform BMAL,

and thus our method, for this data. Moreover, our method provides a more general solution

for the batch selection problem since it can better handle variably sized batches given a fixed

budget as we show in the next section.
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Figure 4.6: Comparison of active batch selections when using our budgeted approach versus
restricting selections to a fixed batch size.

4.2.6 Impact of Budgets versus Fixed-Size Batches

Finally, we examine the impact of being able to select variable-sized batches according to a

fixed budget, as compared to fixing a batch size. We implement aQP-solver for the BMAL

approach ([45]) and run experiments on SIVAL and HOHA. Sincethe BMAL baseline must

choosek examples at each iteration (regardless of the cost), we setk to the budgetT divided

by the dataset’s mean cost. We set the BMAL regularization parameter asλ = 1, as suggested

by the authors [45]. We found this to be a reasonable choice toillustrate the advantage of

being able to choose variable-sized batches under budgetedlearning.

Figure 4.6 shows the results. On both datasets, our budgetedselection performs better than

a fixed-batch choice. This reinforces our claim that the higher the cost variability among the

unlabeled data, the more crucial it is to optimize selections for the given budget. Our method

essentially picks a mixture of less/more expensive examples so as to best utilize the allowed

annotation budget, whereas a method limited to choosing fixed-size batches is misled into
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choosing a seemingly informative batch that may be overly expensive in reality.

4.2.7 Computation Time

Our solution is quite efficient since it uses an LP and QP for which several efficient solvers

exist. In our experiments, convergence typically occurs in∼ 10 − 15 iterations. Our Matlab

code takes about 0.6 seconds per batch selection for 200 unlabeled examples, and 4 minutes

for 5000 examples on a2.8 GHz processor.

4.3 Discussion

In this chapter, I formalized the problem of far-sighted active learning on a budget, and pro-

posed a new method for optimally selecting a set of examples for a support vector machine

classifier under these conditions. I provided an efficient iterative minimization technique

that balances candidate examples’ costs and value when selected in batches. Experiments on

two benchmark datasets show the practical advantages when compared to passive and greedy

myopic alternatives, as well as an existing active batch selection baseline. Overall the results

are quite encouraging and suggest that the proposed approach enables wise use of budgeted

supervision.

In contrast to previous methods, our approach considers howmuch the classifier objective

changes if we were to obtain the most probable labels on the candidate examples for selection.

We find that this aspect is critical to performance, particularly in the practical scenario where

one wants to set a large budget at each iteration. Note that the VOI based criterion used in

Chapter 3 also considered the change in classifier objectiveby computing the expected value
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of reduction in risk over all possible labels for a single unlabeled example. In contrast, in

this chapter we considered the mostoptimisticchange in the classifier objective possible by

a set of labels. This is because when selecting a large batch of examples the expected value

would be more noisy since it would incorporate VOI values from a combinatorial number of

possible labels, out of which only a small subset will be useful.

Furthermore, the proposed approach is the first batch activeselection strategy that is sensitive

to the costs of labeling, and the first method to allow sets of training examples to be chosen

so as to meet a prescribed budget. The efficiency of the component optimization steps also

makes it rather scalable to large unlabeled data pools sinceit solves an LP and a QP for which

several efficient solvers exist.

While I have shown applications of our budgeted active learning approach for visual recog-

nition tasks, our method is general enough to apply to several other domains both in vision

and machine learning since we directly learn an SVM classifier under a given budget of su-

pervision. For example, one could use our approach for learning to classify news documents

into high-level categories given an annotation budget. In this setting the cost of annotating a

news document could similarly be obtained based on the totallength of the document or by

setting up user experiments. Similary, we could train classifiers under an annotation budget

to differentiate between urgent versus non-urgent voicemails, where the cost of providing

annotations is proportional to the length of the voicemail.

Like most existing active selection methods our batch selection approach has a time com-

plexity that is cubic in the size of the unlabeled pool. In thenext chapter, I address the

problem of large-scale active selection where there are millions of unlabeled examples and
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even approaches that are linear in the size of the unlabeled pool are not practical.
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Chapter 5

Sub-linear Time Active Selection for Web-scale Data

A practical paradox with pool-based active learning algorithms is that their intended value—

to reduce learning time by choosing informative examples tolabel first—conflicts with the

real expense of applying them to very large unlabeled datasets. Generally methods today

are tested in somewhat canned scenarios: the implementor has a moderately sized labeled

dataset, and simply withholds the labels from the learner until a given point is selected, at

which point the “oracle” reveals the label. In reality, one would like to deploy an active

learner on a massivetruly unlabeled data pool (e.g., all documents on the Web) and let it crawl

for the instances that appear most valuable for the target classification task. The problem is

that a scan of millions of points is rather expensive to compute exhaustively, and thus defeats

the purpose of improving overall learning efficiency.

In this chapter, I consider the problem of performing activeselection on large-scale datasets

where the computational cost of selection outweighs other considerations. To exploit such

massive unlabeled pools, a fast (sub-linear time) search method to identify the most infor-

mative points to a given classifier is required. Approximateheuristic solutions such as the

‘59-trick’ [95], where59 examples are randomly chosen and ranked using the selectionfunc-

tion, exist for lowering the computational cost of active selection. However, such techniques
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do not provide approximation guarantees except for trivialsituations such as when the ex-

amples are uniformly distributed and it is unclear if they would work for any general data

distribution.

Thus, I address the followinghyperplane-to-pointsearch problem: given a database of points,

which examples are nearest to a novel hyperplane query? We call this thenearest neighbor

to a query hyperplane(NNQH) problem. The NNQH search problem ties in with pool-based

active learning through the simple-margin selection criterion for linear SVM classifiers. In

this active selection scheme, given a hyperplane classifierand an unlabeled pool of vector data

U = {x1, . . . ,xN}, the most informative point (in terms of reduction in version space) is the

one that minimizes the distance to the current decision boundary:x∗ = argmin
xi∈U |wTxi|.

This is a widely used margin-based selection criterion [98,85, 15] and it has been shown to

substantially reduce total human annotation effort.

A large number of existing algorithms provide efficient datastructures for point-to-point

retrieval tasks with various useful distance functions, producing either exact or approximate

near neighbors while forgoing a brute force scan through alldatabase items, e.g., [34, 101,

38, 1, 19, 120, 59]. By comparison, much less work considers how to efficiently handle

hyperplane to point search, which is useful for active learning in the context of the margin-

based selection criterion of [98].

Locality-sensitive hashing (LSH) methods devise randomized hash functions that map similar

points to the same hash buckets, so that only a subset of the database must be searched after

hashing a novel query [38, 1, 19]. A related family of methodsdesign Hamming space

embeddings that can be indexed efficiently (e.g., [91, 84, 120]).
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However, in contrast to our goal, all such techniques are intended for vector/point data. A few

researchers have recently examined approximate search tasks involving subspaces. In [7], a

Euclidean embedding is developed such that the norm in the embedding space directly reflects

the principal angle-based distance between the original subspaces. Another method to find

the nearest subspace for a point query is given in [72], though it is limited to relatively low-

dimensional data due to its preprocessing time/space requirements.

Therefore, I propose two solutions for approximate hyperplane-to-point search. For each,

I introduce randomized hash functions that offer query times sub-linear in the size of the

database, and provide bounds for the approximation error ofthe neighbors retrieved. The first

approach devises a two-bit hash function that is locality-sensitive for the angle between the

hyperplane normal and a database point. The second approachembeds the inputs such that

the Euclidean distance reflects the hyperplane distance, thereby making them searchable with

existing approximate nearest neighbor algorithms for vector data. While the preprocessing in

our first method is more efficient, our second method has stronger accuracy guarantees.

The two NNQH solutions supply exactly the hash functions needed to rapidly identify the

most uncertain examples for a linear SVM classifier according to the simple-margin selection

criterion. Therefore, our algorithms make it possible to benefit frombothmassive unlabeled

collections as well as actively chosen label requests.

In the following, I will formally define the problem and provide background definitions for

Locality-Sensitive Hashing (LSH), which is critical to oursolution. Then I will provide two

hashing based solutions for the NNQH problem and explain howthese can be applied for

pool-based active learning. Finally, in Section 5.2, I demonstrate our algorithms’ significant
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practical impact for large-scale active learning with SVM classifiers. Our results show that

our method helps scale-up active learning for realistic problems with massive unlabeled pools

on the order of millions of examples.1

5.1 Hashing Hyperplanes to Near Points

We consider the following retrieval problem. Given a databaseD = [x1, . . . ,xN ] of N

points inRd, the goal is to retrieve the points from the database that areclosest to a given

hyperplanequery whose normal is given byw ∈ R
d. We call this thenearest neighbor

to a query hyperplane(NNQH) problem. Without loss of generality, we assume that the

hyperplane passes through origin, and that eachxi, w is unit norm. We see in later sections

that these assumptions do not affect our solution.

The Euclidean distance of a pointx to a given hyperplanehw parameterized by normalw is:

d(hw,x) = ‖(xTw)w‖ = |xTw|. (5.1)

Thus, the goal for the NNQH problem is to identify those points xi ∈ D that minimize

|xT
i w|. Note that this is in contrast to traditional proximity problems, e.g., nearest or far-

thest neighbor retrieval, where the goal is tomaximizexTw or −xTw, respectively. Hence,

existing approaches are not directly applicable to this problem.

We formulate two algorithms for NNQH. Our first approach mapsthe data to binary keys

that are locality-sensitive for the angle between the hyperplane normal and a database point,

thereby permitting sub-linear time retrieval with hashing. Our second approach computes a

1The contents of this chapter were published in [49].
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sparse Euclidean embedding for the query hyperplane that maps the desired search task to

one handled well by existing approximate nearest-point methods.

In the following, I will first provide necessary background on Locality-Sensitive Hashing

(LSH). The subsequent two sections describe each approach in turn, and Section 5.1.5 re-

views their trade-offs. Finally, in Section 5.1.6, I will explain how either method can be

applied to large-scale active learning.

5.1.1 Background: Locality-Sensitive Hashing

Informally, LSH [38] requires randomized hash functions guaranteeing that the probability

of collision of two vectors is inversely proportional to their “distance”, where “distance” is

defined according to the task at hand. Since similar points are assured (w.h.p.) to fall into

the same hash bucket, one need only search those database items with which a novel query

collides in the hash table.

Formally, letd(·, ·) be a distance function over items from a setS, and for any itemp ∈ S,

letB(p, r) denote the set of examples fromS within radiusr from p.

Definition 5.1.1. [38] Let hH denote a random choice of a hash function from the familyH.

The familyH is called(r, r(1 + ǫ), p1, p2)−sensitive ford(·, ·) when, for anyq, p ∈ S,

• if p ∈ B(q, r) thenPr[hH(q) = hH(p)] ≥ p1,

• if p /∈ B(q, r(1 + ǫ)) thenPr[hH(q) = hH(p)] ≤ p2.

For a family of functions to be useful, it must satisfyp1 > p2. A k-bit LSH function
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computes a hash “key” by concatenating the bits returned by arandom sampling ofH:

g(p) =
[

h
(1)
H (p), h

(2)
H (p), . . . , h

(k)
H (p)

]

. Note that the probability of collision for close points

is thus at leastpk1, while for dissimilar points it is at mostpk2. During a preprocessing stage, all

database points are mapped to a series ofl hash tables indexed by independently constructed

g1, . . . , gl, where eachgi is ak-bit function. Then, given a queryq, an exhaustive search is

carried out only on those examples in the union of thel buckets to whichq hashes. These

candidates contain the(r, ǫ)-nearest neighbors (NN) forq, meaning ifq has a neighbor within

radiusr, then with high probability some example within radiusr(1 + ǫ) is found.

In [38] an LSH scheme using projections onto single coordinates is shown to be locality-

sensitive for the Hamming distance over vectors. For that hash function,ρ = log p1
log p2

≤ 1
1+ǫ

, and

usingl = Nρ hash tables, a(1+ ǫ)-approximate solution can be retrieved in timeO(N
1

(1+ǫ) ).

Related formulations and LSH functions for other distanceshave been explored (e.g., [19,

1, 47]). Our contribution is to define two locality-sensitive hash functions for the NNQH

problem.

5.1.2 Hyperplane Hashing based on Angle Distance (H-Hash)

Recall that we want to retrieve the database vector(s)x for which |wTx| is minimized. If the

vectors are unit norm, then this means that for the “good” (close) database vectors,w andx

are almost perpendicular (see Figure 5.1). Letθx,w denote the angle betweenx andw. We

define the distanced(·, ·) in Definition 5.1.1 to reflect how far from perpendicularw andx

are:

dθ(x,w) = (θx,w − π/2)2. (5.2)
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Figure 5.1: In order to retrieve those points for which|wTx| is small, we want probable
collision for perpendicular vectors.

Consider the following two-bit function that maps two inputvectorsa, b ∈ ℜd to {0, 1}2:

hu,v(a, b) = [hu(a), hv(b)] = [sign(uTa), sign(vTb)], (5.3)

wherehu(a) = sign(uTa) returns1 if uTa ≥ 0, and 0 otherwise, andu andv are sampled

independently from a standardd-dimensional Gaussian, i.e.,u, v ∼ N (0, I).

We define ourhyperplane hash(H-Hash) function familyH as:

hH(z) =

{

hu,v(z, z), if z is a database point vector,

hu,v(z,−z), if z is a query hyperplane vector.

The idea behind our H-Hash solution is that we generate two hash bits using independent

random vectorsu andv: one for comparing the angle betweenw andx and the other for

−w andx. If x andw are almost parallel to each other (see Figure 5.2(a)), random vector

v has a large probability of assigning different bits tox and−w because of the large angle

betweenx and−w. On the other hand, ifx andw are perpendicular to each other as

shown in Figure 5.2(b)), then neitheru norv have a high chance of assigning different bits.
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Unlikely to split xj and w
+

= xj and w unlikely to collide

Likely to split xj and -w

(a) For parallel vectors

Unlikely to split x and w

= x and w likely to collide

Unlikely to split xj and w

Unlikely to split xj and -w
+

= xj and w likely to collide

(b) For perpendicular vectors

Figure 5.2: The basic intuition behind our H-Hash solution.We generate two independent
random vectorsu andv: one to capture the angle betweenx andw, and the other forx and
−w. The probability that the vectors do not split the corresponding angles is highest whenx
andw are perpendicular, as seen in the figure.

Therefore, when considering bits assigned by the two randomvectors together, the probability

of collision is highest for vectors that are perpendicular.

5.1.2.1 Proof of Locality-sensitivity for Hyperplane Hashing

Next, we formally prove that this family of hash functions islocality-sensitive (Definition 5.1.1).

Claim 5.1.2.The familyH is
(

r, r(1 + ǫ), 1
4
− 1

π2 r,
1
4
− 1

π2 r(1 + ǫ)
)

-sensitive for the distance

dθ(·, ·), wherer, ǫ > 0.

Proof. Since the vectorsu, v used by hash functionhu,v are sampled independently, then for

a query hyperplane vectorw and a database point vectorx,

Pr[hH(w) = hH(x)] = Pr[hu(w) = hu(x) andhv(−w) = hv(x)],

= Pr[hu(w) = hu(x)] Pr[hv(−w) = hv(x)]. (5.4)

Next, we use the following fact proven in [39],

Pr[sign(uTa) = sign(uTc)] = 1− θa,c
π

, (5.5)
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whereu is sampled as defined above, andθa,c denotes the angle between the two vectorsa

andc.

Using 5.4 and 5.5, we get:

Pr[hH(w) = hH(x)] =
θx,w
π

(

1− θx,w
π

)

=
1

4
− 1

π2

(

θx,w − π

2

)2

.

Hence, when
(

θx,w − π
2

)2 ≤ r, Pr[hH(w) = hH(x)] ≥ 1
4
− r

π2 = p1. Similarly, for anyǫ > 0

such that
(

θx,w − π
2

)2 ≥ r(1 + ǫ), Pr[hH(w) = hH(x)] ≤ 1
4
− r(1+ǫ)

π2 = p2.

We note that unlike traditional LSH functions, ours are asymmetric. That is, to hash a

database pointxwe usehu,v(x,x), whereas to hash a query hyperplanew, we usehu,v(w,−w).

The purpose of the two-bit hash is to constrain the angle withrespect to bothw and−w, so

that we do not simply retrieve examples for which we know onlythatx is π/2 or lessaway

fromw.

With these functions in hand, we can now form hash keys by concatenatingk two-bit pairs

from k hash functions fromH, store the database points in the hash tables, and query witha

novel hyperplane to retrieve its closest points (see Section 5.1.1).

5.1.2.2 Approximation Guarantees for Hyperplane Hashing

We next derive the approximation guarantees and prove the correctness of this scheme by

adapting the proof of Theorem 1 in [38]. We first recall the data-structure used for LSH.

We storel-hash tables and every hash table containsk-bit hash keys. So, thes-th hash table

has a corresponding functiongs : R
d → 0, 1k that given a vector, maps the vector tok-
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bit hash keys. Each functiongs is obtained by randomly samplingH with replacement:

gs = (hs1 , hs2, . . . , hsk).

Here, we show that using locality-sensitive hash functionsfor the distancedθ(·, ·) along with

hash tables, we can get a(1 + ǫ)-approximate solution to our hyperplane-to-point search

problem in sub-linear time.

In particular, we prove the following theorem:

Theorem 5.1.3.LetH be a family of(r, r(1 + ǫ), p1, p2)-locality hash functions (see Defini-

tion 3.1 (Main Text)), with p1 > p2. Now given a database ofN points, we setk = log1/p2 N

and l = Nρ, whereρ = log p1
log p2

. Now usingH along with l-hash tables overk-bits, given a

hyperplane queryw, with probability at least1
2
− 1

e
, the algorithm solves the(r, ǫ)-neighbor

problem, i.e., if there exists a pointx s.t.dθ(x,w) ≤ (1 + ǫ)r, then the algorithm will return

the point with probability≥ 1/2− 1/e. The retrieval time is bounded byO(Nρ).

Proof. Our proof is a simple adaption of the proof of Theorem 1 in Gionis et al. [38]. We

present it here for the sake of completeness.

Following [38] we prove two properties:

P1: Let x∗ be a point such thatdθ(x∗,w) ≤ r, thengj(x∗) = gj(w) for some1 ≤ j ≤ l

with probability1/2− 1/e.

Proof: Now we know that

Pr[gj(x
∗) = gj(w)] ≥ pk1 = p

log1/p2 N

1 = N−ρ.
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Hence,

Pr[gj(x
∗) 6= gj(w), ∀j] = Πj Pr[gj(x

∗) 6= gj(w)] ≤ (1−N−ρ)l = (1−N−ρ)N
ρ ≤ 1/e.

Thus, P1 holds with probability> 1− 1/e.

P2: Consider the setS = {y s.t., dθ(y,w) > r(1+ǫ) andgj(y) = gj(w) for somej}. Then

|S| ≤ cl with probability at least1− 1/c.

Proof: Now if dθ(y,w) > r(1 + ǫ), thenPr[h(y) = h(w)] ≤ p2. Hence, for anyj,

Pr[gj(y) = gj(w)] ≤ pk2 = p
log1/p2 n

2 = 1/N.

Thus the expected number of collisions for a singlej isN ·Pr[gj(y) = gj(w)] = 1 and hence

E[|S|] = l. Therefore, by Markov’s inequality:

Pr(|S| > cl) ≤ 1/c.

Hence, P2 holds with probability> 1− 1/c.

The theorem now immediately follows from P1 and P2, as by P1 weare assured of retrieving

the pointx∗ with probability> 1/2− 1/e, and by P2 we are assured of not looking at more

thancl = O(Nρ) points.

In summary, we have shown that with high probability our LSH scheme will return a point

within a distance(1 + ǫ)r, wherer = mini dθ(xi,w), in time O(Nρ), whereρ = log p1
log p2

.

As p1 > p2, we haveρ < 1, i.e., the approach takes sub-linear time for all values ofr, ǫ.

Furthermore, asp1 = 1
4
− r

π2 , andp2 = 1
4
− r(1+ǫ)

π2 , ρ can also be bounded asρ ≤ 1−log(1− 4r
π2 )

1+ ǫ

1+π2
4r log 4

.

Note that this bound forρ is dependent onr, and is more efficient for larger values ofr.

130



5.1.2.3 Improved Hyperplane Hashing based on Angle Distance (IH-Hash)

We can further improve the approximation guarantees of H-Hash based on the observation

that the bits computed usingu andv need not be ordered. Recall that in H-Hash bits com-

puted usingu always comparex with w and those computed usingv comparex with −w,

which is too restrictive. Therefore, by mapping the2-bit vectors obtained through the ran-

dom hyperplanes to a single bit using the logical exclusive or function (⊕), we can double

the probability ofp1 for H-Hash.

We define ourimproved hyperplane hash(IH-Hash) function familyI as:

hI(z) =

{

hu(z)⊕ hv(z), if z is a database point vector,

hu(z)⊕ hv(−z), if z is a query hyperplane vector.

Claim 5.1.4. The familyI is
(

r, r(1 + ǫ), 1
2
− 1

π2 r,
1
2
− 1

π2 r(1 + ǫ)
)

-sensitive for the distance

dθ(·, ·), wherer, ǫ > 0.

Proof. Since the vectorsu, v used by hash functionhu,v are sampled independently, then for

a query hyperplane vectorw and a database point vectorx,

Pr[hI(w) = hI(x)]) = Pr[(hu(w)⊕ hv(−w)) = (hu(x)⊕ hv(x))],

= Pr[(hu(w) = hu(x) andhv(−w) = hv(x))

or (hu(w) 6= hu(x) andhv(−w) 6= hv(x))]

= Pr[hu(w) = hu(x)] Pr[hv(−w) = hv(x)]

+Pr[hu(−w) = hu(x)] Pr[hv(w) = hv(x)] (5.6)
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Using 5.6 and 5.5, we get:

Pr[hI(w) = hI(x)] =
θx,w
π

(

1− θx,w
π

)

+

(

1− θx,w
π

)

θx,w
π

=
1

2
− 1

π2

(

θx,w − π

2

)2

. (5.7)

Hence, when
(

θx,w − π
2

)2 ≤ r, Pr[hH(w) = hH(x)] ≥ 1
2
− r

π2 = p1. Similarly, for anyǫ > 0

such that
(

θx,w − π
2

)2 ≥ r(1 + ǫ), Pr[hH(w) = hH(x)] ≤ 1
2
− r(1+ǫ)

π2 = p2.

Note that thep1 obtained above for IH-Hash is exactly twice thep1 obtained using H-

Hash. Hence, the factorρ = log p1
log p2

improves upon H-Hash, remaining lower for lower

values ofǫ leading to better approximation guarantees. Specifically,ρ can be bounded as

ρ ≤ 1−log(1− 2r
π2 )

1+ ǫ

1+π2
2r log 2

.

5.1.3 Embedded Hyperplane Hashing based on Euclidean Distance (EH-Hash)

Our second approach for the NNQH problem relies on a Euclidean embedding for the hy-

perplane and points. Figure 5.3 illustrates the basic intuition behind our solution. It offers

stronger bounds than H-Hash, but at the expense of more preprocessing.

Given ad-dimensional vectora, we compute an embedding inspired by [7] that yields a

d2-dimensional vector by vectorizing the corresponding rank-1 matrixaaT :

V (a) = vec(aaT ) =
[

a21, a1a2, . . . , a1ad, a
2
2, a2a3, . . . , a

2
d

]

, (5.8)

whereai denotes thei-th element ofa. Assuminga andb to be unit vectors, the Euclidean

distance between the embeddingsV (a) and−V (b) is given by ||V (a) − (−V (b))||2 =
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Figure 5.3: The basic intuition behind our EH-Hash solution. We compute an embedding on
both points and hyperplanes such that the distance between apoint and a hyperplane in the
original space is proportional to the Euclidean distance between their embeddings. In the left
figure points in green are close to the hyperplane and points in red are far from the hyperplane
in terms of the hyperplane to point distance. Correspondingly the points in green on the right
are close to the hyperplane in Euclidean distance in the embedded space.
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2 + 2(aTb)2. Hence, minimizing the distance between the two embeddingsis equivalent to

minimizing |aTb|, our intended function.

Given this, we define ourembedding-hyperplane hash(EH-Hash) function familyE as:

hE(z) =

{

hu (V (z)) , if z is a database point vector,

hu (−V (z)) , if z is a query hyperplane vector,

wherehu(z) = sign(uTz) is a one-bit hash function parameterized byu ∼ N (0, I).

Claim 5.1.5.The family of functionsE defined above is
(

r, r(1 + ǫ), 1
π
cos−1 sin2(

√
r), 1

π
cos−1 sin2(

√

r(1 +

sensitive fordθ(·, ·), wherer, ǫ > 0.

Proof. Using the result of [39], for any vectorw,x ∈ R
d,

Pr
[

sign
(

uT (−V (w))
)

= sign
(

uTV (x)
)]

= 1− 1

π
cos−1

( −V (w)TV (x)

‖V (w)‖ ‖V (x)‖

)

, (5.9)

whereu ∈ R
d2 is sampled from a standardd2-variate Gaussian distribution,u ∼ N (0, I).

Note that for any unit vectorsa, b ∈ R
d2 , V (a)TV (b) = Tr(aaTbbT ) = (aTb)2 = cos2 θa,b.

Using 5.9 together with the definition ofhE above, given a hyperplane queryw and database

pointx we have:

Pr[hE(w) = hE(x)] = 1− 1

π
cos−1

(

− cos2(θx,w)
)

= cos−1
(

cos2(θx,w)
)

/π (5.10)

Hence, when(θx,w − π
2
)2 ≤ r,

Pr[hE(w) = hE(x)] ≥ 1

π
cos−1 sin2(

√
r) = p1, (5.11)

Similarly, for anyǫ > 0 such that
(

θx,w − π
2

)2 ≥ r(1 + ǫ)

Pr[hE(w) = hE(x)] ≤ 1

π
cos−1 sin2(

√

r(1 + ǫ)) = p2, (5.12)
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Figure 5.4: Comparison of the probability of collision for our EH-Hash method,p1 =
1
π
cos−1 sin2(

√
r), with that of IH-Hash,p1 = 1

2
− 2r

π2 , which is also twice thep1 for H-Hash.
The two functions are very close to each other and therefore the approximation guarantees of
EH-Hash are similar to IH-Hash.

We observe that thisp1 behaves similarly to2(1
4
− r

π2 ). That is, asr varies, EH-Hash’sp1

returns values close to those returned by IH-Hash’sp1 or twice those returned by H-Hash’s

p1 (See Figure 5.4)). Hence, the factorρ = log p1
log p2

improves upon that of the previous sec-

tion, remaining lower for lower values ofǫ, and leading to better approximation guarantees.

Section 5.1.4 provides a more detailed comparison of the twobounds.

On the other hand, EH-Hash’s hash functions are significantly more expensive to compute.

Specifically, it requiresO(d2) time, whereas H-Hash requires onlyO(d). To alleviate this

problem, we use a form of randomized sampling when computingthe hash bits for a query

that reduces the time toO(1/ǫ′2), for ǫ′ > 0. Our method relies on the following lemma,

which states that sampling a vectorv according to the weights of each element leads to good

approximation tovTy for any vectory (with constant probability). Similar sampling schemes

have been used for a variety of matrix approximation problems (see [53]).

Lemma 5.1.6.Let v ∈ R
d and definepi = v2i /‖v‖2. Constructṽ ∈ R

d such that thei-th
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element isvi with probabilitypi and is0 otherwise. Selectt such elements using sampling

with replacement. Then, for anyy ∈ R
d, ǫ > 0, c ≥ 1, t ≥ c

ǫ′2
,

Pr[|ṽTy − vTy| ≤ ǫ′‖v‖2‖y‖2] > 1− 1

c
. (5.13)

Proof. Let ik denote the randomly sampled index (using probability distributionp defined in

the lemma) at thek-th round, i.e.,ik is indexj with probabilitypj. Next, we define a random

variableGk as,

Gk = vikyik/pik .

Note that,

E[Gk] =
∑

j

pjvjyj/pj = vTy, (5.14)

V ar(Gk) =
∑

j

pj(vjyj/pj)
2 − (vTy)2 ≤ v2j t

2
j

t2j/‖y‖2
= ‖v‖2‖y‖2 = 1. (5.15)

(5.16)

Now, our final approximation forvTy is obtained by averaging random variablesGk, i.e.,

ṽTx =
1

t

∑

k

Gk.

Now, using Bernstein’s inequality:

Pr(|
t

∑

k=1

(Gk − vTy)| ≥ tǫ) < exp(−tǫ2).

Hence, if we selectt = c
ǫ2

, then with probability at least1− log(1/c),

|ṽTy − vTy| ≤ ǫ.
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The lemma implies that at query time our hash functionhE(w) can be computed while incur-

ring a small additive error in timeO( 1
ǫ′2
), by sampling its embeddingV (w) accordingly, and

then cycling through only the non-zero indices ofV (w) to computeuT (−V (w)). Note that

we can substantially reduce the error in the hash function computation by samplingO( 1
ǫ′2
)

elements of the vectorw and then using vec(ww̃T ) as the embedding forw. However, in

this case, the computational requirements increase toO( d
ǫ′2
).

While one could alternatively use the Johnson-Lindenstrauss (JL) lemma to reduce the di-

mensionality of the embedding with random projections, doing so has two major difficulties:

first, thed − 1 dimensionality of a subspace represented by a hyperplane implies the ran-

dom projection dimensionality must still be large for the JL-lemma to hold, and second, the

projection dimension is dependent on the sum of the number ofdatabase pointsand query

hyperplanes. The latter is problematic when fielding an arbitrary number of queries over time

or storing a growing database of points—both properties that are intrinsic to our target active

learning application. In contrast, our sampling method is instance-dependent and incurs very

little overhead for computing the hash function.

Comparison to [7]. Basri et al. define embeddings for finding nearest subspaces [7]. In

particular, they define Euclidean embeddings for affine subspace queries and database points,

which could be used for NNQH, although they do not specifically apply it to hyperplane-

to-point search in their work. Also, their embedding is not tied to LSH bounds in terms

of the distance function in Equation 5.2, as we have shown above. Finally, our proposed

instance-specific sampling strategy offers a more compact representation with the advantages
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discussed above.

5.1.4 Comparison of Approximation Guarantees

In this section we compare the bounds on retrieval for both ofour hashing methods. To

recall, our H-Hash method guarantees the(1 + ǫ)-approximate solution in timeNρ, where

ρ ≤ 1−log(1− 4r
π2 )

1+ ǫ

1+π2
4r log 4

andρ ≤ 1−log(1− 2r
π2 )

1+ ǫ

1+π2
2r log 2

using the improved hash-bit computation in IH-Hash.

Similarly, our EH-Hash method guarantees the(1 + ǫ)-approximate solution in timeNρ,

whereρ ≤ log cos−1 sin2(
√
r)−log π

log cos−1 sin2(
√
r(1+ǫ/2))−log π

. Note that the functioncos−1 sin2(
√
r) behaves simi-

larly to 1
2
− 2r

π2 , which is equal to the probability of collision for IH-Hash and twice the prob-

ability of collision for H-Hash method when the points are within distancer (Figure 5.4).

This indicates that the bounds for EH-Hash and IH-Hash methods should be similar and

significantly stronger than the corresponding bounds for H-Hash.

Figure 5.5 compares the values ofρ obtained for EH-Hash and H-Hash for different values

of ǫ. We can clearly see that for our EH-Hash method the value ofρ is always smaller than

the corresponding value for H-Hash method. Now, we give a concrete example. Letǫ = 3.5.

Then it can be easily computed that if the closest point to thehyperplane is at angle of around

5o, then H-Hash will return a point within9o in timeN0.97 while the corresponding bound

for EH-Hash method will beN0.89, a significant gain.
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Figure 5.5: Comparison of the values ofρ, which is the parameter that determines the number
of examples to search (Nρ), for our H-Hash and EH-Hash methods with different values of
ǫ = {3.0, 3.5, 4.0}

5.1.5 Recap of the Hashing Approaches

To summarize, I presented two locality-sensitive hashing approaches for the NNQH prob-

lem. Our first H-Hash approach defines locality-sensitivityin the context of NNQH, and

then provides suitable two-bit hash functions together with a bound on retrieval time. Our

second EH-Hash approach consists of ad2-dimensional Euclidean embedding for vectors of

dimensiond that in turn reduces NNQH to the Euclidean space nearest neighbor problem,

for which efficient search structures (including LSH) are available. While EH-Hash has bet-

ter bounds than H-Hash, its hash functions are more expensive. To mitigate the expense for

high-dimensional data, we use a well-justified heuristic where we randomly sample the given

query embedding, reducing the query time to linear ind.

Note that both of our approaches attempt to minimizedθ(w,x) between the retrievedx and

the hyperplanew. Since that distance is only dependent on theanglebetweenx andw, any

scaling of the vectors do not effect our methods, and we can safely treat the provided vectors

to be unit norm.
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Figure 5.6: Our hashing based solution to run active selection on millions of unlabeled ex-
amples efficiently. Offline, we hash unlabeled data into a table using the locality-sensitive
hash functions proposed in Section 5.1.5 for the NNQH problem. During the active selection
loop we hash the current classifier as the query vector to directly retrieve next examples for
labeling. By virtue of our hash function design, these examples are guaranteed to be close to
the hyperplane margin, and the retrieval process has a time complexity that is sub-linear in
the size of the unlabeled pool.

5.1.6 Application to Large-scale Active Learning

The NNQH problem, which is to obtain database vectors that minimize the distance to a

query hyperplanex∗ = argmin
xi∈U |wTxi|, directly corresponds to the “simple margin”

selection criterion for linear SVM classifiers [98, 85, 15].Thus, our two NNQH solutions

supply exactly the hash functions needed to rapidly identify the next point to label: first we

hash the unlabeled database into tables, and then at each active learning loop, we hash the

current classifierw as a query. Figure 5.6 provides a flowchart of this procedure for running

approximate active selection on large unlabeled pools.
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5.2 Results

I demonstrate our approach applied to large-scale active learning tasks. I compare our meth-

ods (H-Hash in Section 5.1.2 and EH-Hash in Section 5.1.3) totwo baselines: 1) passive

learning, where the next label request is randomly selected, and 2) exhaustive active selec-

tion, where the margin criterion in Equation 5.1 is computedover all unlabeled examples

in order to find the true minimum. The main goal is to show our algorithms can retrieve

examples nearly as well as the exhaustive approach, but withsubstantially greater efficiency.

5.2.1 Datasets and Implementation Details

We use three publicly available datasets.

• The 20 Newsgroups consists of 20,000 documents from 20 newsgroup categories. We

use the provided 61,118-dimensional bag-of-words features, and a test set of 7,505.

• The CIFAR-10 [58] dataset consists of 60,000 images from 10 categories. It is a man-

ually labeled subset of the 80 Million Tiny Image dataset [99], which was formed by

searching the Web for all English nouns and lacks ground truth labels. We use the

provided train and test splits of 50K and 10K images, respectively.

• The Tiny-1M dataset consists of the first 1,000,000 (unlabeled) images from [99]. For

both CIFAR-10 and Tiny-1M, we use the provided 384-dimensional GIST descriptors

as features.
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Figure 5.7: Newsgroups results. (a)Improvements in prediction accuracy relative to the
initial classifier, averaged across all 20 categories and runs. (b) Time required to perform
selection.(c) Value of|wTx| for the selected examples. Lower is better. Both of our approx-
imate methods (H-Hash and EH-Hash) significantly outperform the passive baseline; they are
nearly as accurate as ideal exhaustive active selection, yet require 1-2 orders of magnitude
less time to select an example. (Best viewed in color.)

For all datasets, we train a linear SVM in the one-vs-all setting using a randomly selected

labeled set (5 examples per class), and then run active selection for 300 iterations. We report

results using the area under the ROC curve (AUROC) metric andaverage results across five

such runs. We fixk = 300, Nρ = 500, ǫ′ = 0.01.

5.2.2 Document Classification: Newsgroups Results

Figure 5.7 shows the results on the 20 Newsgroups, starting with the learning curves for all

four approaches (a). The active learners (exact and approximate) have the steepest curves,

indicating that they are learning more effectively from thechosen labels compared to the

random baseline. Both of our hashing methods perform similarly to the exhaustive selection,

yet require scanning an order of magnitude fewer examples (b). Note that Random requires

∼ 0 time for selecting a point. Figure 5.7(c) shows the actual values of|wTx| for the selected

examples over all iterations, categories, and runs; in linewith our methods’ guarantees, they
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Figure 5.8:CIFAR-10 results. (a)-(c)Example learning curves.(d)-(f) Plotted as in above
figure. Our methods compare very well with the significantly more expensive exhaustive
baseline. Our EH-Hash provides more accurate selection than our H-Hash, though requires
noticeably more query time.

select points close to those found with exhaustive search. We also observe the expected trade-

off: H-Hash is more efficient, while EH-Hash provides betterresults (only slightly better for

this smaller dataset).

5.2.3 Object Recognition: CIFAR-10 Results

Figure 5.8 shows the same set of results on the CIFAR-10. The trends are mostly similar

to the above, although the learning task is more difficult on this data, narrowing the margin

between active and random. Averaged over all classes, we happen to outperform exhaustive

selection (Figure 5.8(d)); this can happen since there is noguarantee that the best active
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Figure 5.9: First 15 examples selected per method when learning the CIFAR-10 Airplane
class.

choice will help test accuracy, and it also reflects the widervariation across per-class results.

The boxplots in (f) more directly show the hashing methods are behaving as expected. Both

(e) and (f) illustrate their trade-offs: EH-Hash has stronger guarantees than H-Hash (and thus

retrieves lowerwTx values), but is more expensive.

Figure 5.9 shows example image selection results when learning the Airplane class. Both

exhaustive search and our hashing methods manage to choose images useful for learning

about airplanes/non-airplanes. This shows that we can efficiently obtain relevant training

data using our approach for large-scale datasets.

5.2.4 Minimizing both Selection and Labeling Times

Figure 5.10 shows the prediction accuracy plotted against the total time taken per iteration,

which includes bothselectionandlabeling time, for both datasets. This requires knowledge

of the time required to label a single example on both datasets (label cost), which is not avail-

able for these benchmark datasets. Therefore, we provide results for a range of values for this

parameter in order to study the trade-offs involved in minimizing both selection and labeling
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Figure 5.10: Improvements in prediction accuracy as a function of the total time taken, in-
cluding both selection and labeling time. We provide results for different values of the cost of
labeling a single example on both datasets. By minimizingbothselection and labeling time,
our methods provide the best accuracy per unit time.
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costs. A large value for this parameter indicates that minimizing labeling time is more impor-

tant and therefore could favor exhaustive active selection. On the other hand, a small value

for this parameter indicates that the computational cost ofselection is more important and

hence could favor fast selection schemes. We show results for representative labeling costs

of {1, 10, 50} seconds, which are reasonable estimates for annotating documents and images.

As expected, exhaustive selection performs better for larger labeling costs, whereas random

selection fares better for lower labeling costs. These results best show the advantage of our

approximate methods: accounting for both types of cost inherent to training the classifier,

they outperform both exhaustive and random selection in terms of the accuracy gains per unit

time for most values on either dataset. While exhaustive active selection suffers because of

its largeselectiontime, random selection suffers because it wastes expensivelabeling time

on irrelevant examples. Thus, our algorithms provide the best accuracy gains by minimizing

both selection and labeling time.

5.2.5 Active Section from 1 Million Images

Finally, to demonstrate the practical capability of our hyperplane hashing approach, we per-

form active selection on the one million tiny image set. We initialize the classifier with 50

examples from CIFAR-10. The 1M set lacks any labels, making this a “live” test of ac-

tive learning (we ourselves annotated whatever the methodsselected). We use our EH-Hash

method, since it offers stronger performance.

Even on this massive collection, our method’s selections are very similar in quality to the

exhaustive method (see Figure 5.11(a)), yet require ordersof magnitude less time (b). The
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Figure 5.11:Tiny-1M results. (a) Error of examples selected.(b) Time required.(c) Exam-
ples selected by EH-Hash among 1M candidates in the first nineiterations when learning the
Airplane and Automobile classes.

images (c) show the selections made from this large pool during the “live” labeling test;

among all one million unlabeled examples (nearly all of which likely belong to one of the

other 1000s ofclasses) our method retrieves seemingly relevant instances. To ourknowledge,

this experiment exceeds any previous active selection results in the literature in terms of the

scale of the unlabeled pool.

5.2.6 Comparison with the 59-trick Heuristic

So far, we have provided results comparing our approach withexhaustive and random selec-

tion, which are the most relevant baselines for our approximate selection schemes. Nonethe-

less, one could design a simple heuristic to improve upon random selection by considering

T randomly selected examples from the unlabeled pool and ranking them based on the ac-

tive selection criterion. Depending on the size of the subset T , such an approach could be

computationally fast and at the same time outperform passive selection since it selects the

most informative example from a small subset of the unlabeled pool. In [95], the authors
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Figure 5.12: Comparison with the ‘59-trick’, an approximate heuristic proposed in [95].(a)-
(e) Representative learning curves on CIFAR-10.(f) The distances to the hyperplane of the
unlabeled examples selected by all approaches. Our approach outperforms the baseline on
some categories (a-c) and is worse on others (d-e). However,our approximate method always
selects points that are close to the margin (f) which is precisely the guarantee that we provide.

outline such a heuristic and further provide approximationguarantees when the examples

are uniformly distributed. In particular, they show that bychoosing justT = 59 examples,

one could obtain an estimate that is with probability0.95 among the best5% of the ranking

function. We refer to this technique as the ‘59-trick’.

The weakness of this approximation is that it assumes that the unlabeled pool is uniformly

distributed, which is seldom true in realistic applications. Particularly for active learning,

one would expect the number of useful examples for a categoryto be a small fraction of all

possible unlabeled data. If not, random selection should perform as well as active learning.
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In order to justify this claim, we provide some empirical results comparing the 59-trick.

Figure 5.12 shows representative learning curves obtainedon different categories in CIFAR-

10 for our approach and 59-trick, for which we randomly choose 59 examples and select

the one that is closest to the hyperplane for labeling. For some categories our approach

clearly outperforms the heuristic (a-c), whereas it is slightly worse on (d-e). However, our

approximate selection scheme always selects points that are close to the margin as seen in

Figure 5.12(f). There is no such guarantee for the baseline.This suggests that the efficacy

of the baseline approximation would depend on the exact distribution of the set of useful

examples, which is not known in general.

5.3 Discussion

In this chapter, I introduced two methods for the NNQH searchproblem. Both permit effi-

cient large-scale search for points near to a hyperplane, and experiments with three datasets

clearly demonstrate the practical value for active learning with massive unlabeled pools. My

approach is the first to perform efficient active selection onunlabeled pools in the scale of

millions of examples.

In addition, most existing active learning techniques assume that human effort is more scarce

and expensive than machine cycles and thus effectively minimize just the number of examples

to label or the total annotation time. In contrast, my approach minimizes bothannotation

time, by adopting an active learning strategy, andselectiontime, by using an efficient hashing

based approach. Thus when considering the total time expended per iteration my approaches

produce the largest improvement in the classifier.
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The previous chapters considered active selection functions that computed the expected change

in misclassification risk on unlabeled data or in the classifier objective. In contrast, in this

chapter, we used an active selection function that depends only on the unlabeled point under

consideration. We chose such a function out of necessity because the former functions would

require at least quadratic time complexity for performing active selection, which would be

impractical for the large-scale datasets that we have considered here. Nevertheless, the selec-

tion function used in this chapter has strong theoretical guarantees in terms of the reduction

in the size of the version space as shown in [98] and therefore, it can reduce overall manual

effort compared to passive learning.

My approach makes two assumptions regarding the data and theclassifier which we believe

are well justified. First, we assume that the data is normalized, which is the case for most

image representations. For example, even for the popular bag of visual words representation it

has been shown that normalizing with theL2-norm results in better generalization than using

unnormalized data [103]. Nonetheless, we would like to further explore other hash-functions

for our H-hash scheme and data structures that could enable faster selection for the sake of

generality. Second, we assume that the classifier is a hyperplane, which is the case for a linear

SVM. This is not too limiting as recent research in image classification shows that with a

non-linear representation such as sparse coding, even a linear classifier can outperform more

expensive kernel based methods [118]. At the same time, it would be interesting to investigate

sublinear time methods for kernel based active learning. Recent work on embeddings for the

χ2 RBF kernel [104] and solutions to the kernel LSH problem [60]might provide some

insight into extending our hashing schemes for non-linear classifier functions.

150



In the next chapter, I show that our approximate active learning scheme is suitable for large-

scale problems by building a large-scale, autonomous, online learning system for training

object detectors.
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Chapter 6

A Large-scale System for Autonomous Online Visual
Learning

In the previous chapters, I defined and provided solutions toseveral problems that will enable

large-scale transfer of human knowledge for learning visual concepts. In this chapter, I will

demonstrate the effectiveness of our solution as a viable protocol for learning visual models,

by building the first complete end-to-end system for scalable, automatic online learning of

object detectors. We introduce the concept oflive learningof object detectors where both

examples and annotations are autonomously collected usingweb-based resource, and the

learning of the detector proceeds in a live manner.

Object detection is a suitable setting to demonstrate aspects of our solution because (1) it typ-

ically requires identifying a single tight-fitting window among thousands of windows within

an image, an ideal setting for our large-scale selection approach; (2) state-of-the-art methods

for detection typically require large numbers of training examples annotated using bound-

ing boxes, whose expense can be significantly reduced using our active approach; (3) it is

an extremely challenging problem where any progress is diligently recorded and encour-

aged [23, 30, 103, 62, 29].

The system design and large-scale experimental setup I present in this chapter addresses three
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limiting factors of current methods to train object detectors: first, the vision researcher has

already determined the dataset’s source and scope, meaningwhich images will even be con-

sidered for labeling is fixed (and possibly biased), for boththe training and test sets. Second,

active learning methods have only been tested on “sandbox” data for which the true labels are

really known, and merely temporarily withheld from the selection algorithm. In fact, nearly

all work targets the activeimage classificationproblem—not detection—and so images in

the unlabeled pool are artificially assumed to contain only one prominent object. These com-

mon simulations likely inflate the performance of both the active and passive learner, since

anything chosen for labeling is relevant. Third, most crowd-sourced collection processes re-

quire iterative manual fine-tuning by the algorithm designer (e.g., revising task requirements,

pruning responses, barring unreliable Mechanical Turkers) before the data is in usable form.

Thus, it is unknown to what extent current approaches could translate to real settings, where

the designer of the recognition algorithm is not in the loop.

Rather than fill the data pool with some canned dataset, our system itself gathers possibly

relevant images via keyword search (we use Flickr). Keyword-based search is often used

for dataset creation [116, 83, 24, 21] followed by manual pruning. In contrast, our system

repeatedly surveys the data to identify unlabeled sub-windows that are most uncertain accord-

ing to the current model, and generates tasks on Mechanical Turk to get the corresponding

bounding box annotations without further human involvement. After an annotation budget is

spent, we evaluate the resulting detectors both on benchmark data, as well as a novel test set

from Flickr. Notably, throughout the procedurewe do not intervene with what goes into the

system’s data pool, nor the annotation quality from the hundreds of online annotators.
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To make the above a reality requires handling some importanttechnical issues. Active selec-

tion for window-based detection is particularly challenging since the object extents (bounding

boxes) are unknown in the unlabeled examples; naively one would need to evaluate all possi-

ble windows within the image in order to choose the most uncertain. This very quickly leads

to a prohibitively large unlabeled pool to evaluate exhaustively. Thus, we introduce a novel

part-based detector amenable to linear classifiers, and show how to identify its most uncertain

instances in sub-linear time with the hashing-based solution I proposed in Chapter 5.

We show that our detector strikes a good balance between speed and accuracy, with results

competitive with and even exceeding the state-of-the-art on the PASCAL VOC, a widely

accepted challenging benchmark for object detection. Mostimportantly, we show successful

live learning in an uncontrolled setting. The system learnsaccurate detectors with much less

human effort than strong baselines that rely on human-verified keyword search results.1

6.1 Live Learning of Object Detectors

Our goal is to enable online active crowd-sourced object detector training. Given the name

of a class of interest, our system will produce a detector to localize novel instances using

automatically obtained images and annotations. In order tomake this feasible, we first pro-

pose a part-based linear SVM detector, and then show how to identify its uncertain examples

efficiently using a hashing scheme.

1The contents of this chapter were published in [111].
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6.1.1 Object Representation and Linear Classifier

We first introduce our part-based object representation. Our goal is to design the representa-

tion such that a simple linear classifier will be adequate forrobust detection. A linear model

has many complexity advantages important to our setting: i)SVM training requires time

linear in the number of training examples, rather than cubic[51], ii) classification of novel

instances requires constant time rather than growing linearly with the number of training ex-

amples, iii) exact incremental classifier updates are possible, which makes an iterative active

learning loop practical, and iv) my hashing based algorithm(Chapter 5) enables sub-linear

time search to map a queryhyperplaneto its nearest points according to a linear kernel.

Inspired by recent findings in sparse coding for image classification [126, 118, 10], we ex-

plore a detection model based on sparse coding of local features combined with a max pooling

scheme. Previous representations pool coded SIFT featuresin a single global window or in a

fixed class-independent hierarchy of grid cells (i.e., a spatial pyramid structure). While suf-

ficient for whole-image classification, we instead aim to represent anobjectseparately from

its context, and to exploit its part-based structure withclass-dependentsubwindow pooling.

To this end, we propose an object model consisting of a root window r, multiple part win-

dows{p1, . . . , pP} that overlap the root, and context windows{c1, . . . , cC} surrounding it.

See Figure 6.1. LetO = [r, p1, . . . , pP , c1, . . . , cC ] denote a candidate object configuration

within an image, and letϕ(W ) denote the sparse feature encoding for local image descriptors

extracted from a given subwindowW (to be defined below). The detector scores a candidate
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Sparse Max Pooling

[ (r),        (p1)  …  (pP) ,   (c1)  …  (cC)]
Root Parts Context

Figure 6.1: Proposed part-based object representation.

configuration as a simple linear sum:

f(O) = wTϕ(O) (6.1)

= wrϕ(r) +

P
∑

i=1

wpiϕ(pi) +

C
∑

i=1

wciϕ(ci),

wherew denotes the learned classifier weights, which we obtain withSVM training. We

next flesh out the window descriptions; Section 6.1.2 explains how we obtain candidate root

placements.

6.1.1.1 Window Descriptions

Given a novel test image, we first extract local image descriptors; we use a dense multi-

scale sampling of SIFT in our implementation. Each window type (r, pi, or cj) uses these

features to create its encodingϕ(·). Theroot windowprovides a global summary of the object

appearance, and is invariant to spatial translations of features within it.

Similarly, eachpart windowsummarizes the local features within it, discarding their posi-
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tions; however, the location of each part is defined relativeto the current root, and depends

on the object class under consideration (i.e., bicycles andcars each have a different configu-

ration of thepi windows). Thus, they capture the locations and spatial configurations of the

most important parts of the object. We train with the part locations and bounds output by the

detector in [30]; alternatively, they could be requested once directly from annotators.

Thecontext windowsincorporate contextual cues surrounding the object, such as the presence

of “sky”, “ground”, “road”, etc., and also help discard poorer candidate windows that cover

only parts of objects (in which case object features spill into the context window). We create

the context windows using a3 × 1 partition ofr’s complement, as shown in the top right of

Figure 6.1. We find that providing this context strengthens certain categories, which agrees

with recent findings [102].

6.1.1.2 Feature Encoding

Each window is represented using a nonlinear feature encoding based on sparse coding and

max-pooling, which we refer to as Sparse Max Pooling (SMP). The SMP representation is

related to the well-known bag-of-features (BoF); however,unlike BoF, each component local

descriptor is first encoded as a combination ofmultiplevisual words, and the weights are then

pooled within a region of interest using the max function.

Offline, we cluster a large corpus of randomly selected features to obtain a dictionary of

|V | visual words:V = [v1, . . . , v|V |], where each columnvi ∈ ℜ128 is a cluster center in

SIFT space. For any windowW (whether root/part/context), letF = {fi}|F |
i=1 be the set of

local features falling within it, where eachfi ∈ ℜ128 is a SIFT descriptor. We represent this
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Figure 6.2: Sketch to illustrate contrasts with related existing models. See text for details.

window with a sparse|V |-dimensional vector, as follows.

First, each featurefi is quantized into a|V |-dimensional sparse vectorsi that approximates

fi using some existing sparse coding algorithm and the dictionary V , that is,fi ≈ siV .

Taking this encoding for everyfi as input, the SMP representation ofW is given by:

ϕ(W ) = [ ϕ1, . . . , ϕ|V | ],where (6.2)

ϕj = max (si(j)) , i = 1, . . . , |F |,

for j = 1, . . . , |V |, andsi(j) is the j-th dimension of the sparse vector encoding thei-th

original feature,fi. Finally, we normalizeϕ(W ) by itsL2 norm.2

The rationale behind the SMP window encoding is twofold: thesparse coding gives a fuller

representation of the original features by reflecting nearness to multiple dictionary elements

(as opposed to BoF’s usual hard vector quantization), whilethe max pooling gives better dis-

criminability amidst high-variance clutter [10]. See [10,126] for useful comparisons between

various sparse coding approaches, which shows their clear advantage when combined with a

linear kernel as compared to the popular BoF.

2We use Locality-constrained Linear Coding (LLC) [118] to obtain the sparse coding, though other algo-
rithms could also be used for this step.

158



6.1.1.3 Relationship to Existing Detection Models

Our model intentionally strikes a balance between two recent state-of-the-art detection mod-

els: i) a nonlinear SVM with a spatial pyramid (SP) in which each grid cell is a histogram

of unordered visual words [103], and ii) a latent SVM (LSVM) with a root+deformable part

model in which each part is a rigid histogram of ordered oriented gradients [30]. See Fig-

ure 6.2.

On the one hand, the SP model is robust to spatial translations of local features within each

grid cell. On the other hand, its nonlinear kernels (required for good performance [103])

makes the classifier quite expensive to train and test, and rigid class-independent bins may

fail to capture the structure of the best parts on an object (see Figure 6.2(a)). In contrast, the

LSVM model can robustly capture the parts, since it learns multiple part filters that deform

relative to the root. However, its dynamic programming stepto compute parts’ alignment

makes it expensive to train. Furthermore, its use of the spatially dense gradient histograms

for both the root and parts make them less tolerant tointernal shifts and rotations (see Fig-

ure 6.2(b)).

Our model attempts to incorporate positive aspects of the above two models, while maintain-

ing a much lower computational cost. In particular, we have class-specific part configurations,

like [30], but they are fixed relative to the root, like [103].Our SMP-based encoding is robust

to shifts within the part and object windows, thereby tolerating some deformation to the exact

part placement without needing the additional DP alignmentstep during detection. In short,

by utilizing a part-based representation and a linear classifier, our approach provides a very

good trade-off in terms of model complexity and accuracy.
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6.1.2 Generating Candidate Root Windows

So far we have defined a representation and scoring function for any candidate window. Now

we discuss how to generate the candidates, whether in novel test images or unlabeled images

the system is considering for annotation. A thorough but prohibitively expensive method

would be the standardsliding windowapproach; instead, we use a grid-based variant of the

jumping windowmethod of [20, 113].

The jumping window approach generates candidate windows ina Hough-like projection us-

ing visual word matches, and prioritizes these candidates according to a measure of how

discriminative a given word and coarse location is for the object class (see Figure 6.3). First,

each root window in the training images is divided into anN ×M grid. LetWloc(r) denote a

root window’s position and scale. Given a training windowr and a visual wordv occurring

at grid positiong ∈ {1, . . . , NM}, we record the triplet(v, g,Wloc(r)). We build a lookup

table indexed by thev entries for all training examples. Then, given a test image,for each

occurrence of a visual wordv, we use the lookup table to retrieve all possibleWloc(r)’s, and

project a bounding box in the test image relative to thatv’s position. Note, candidates can

vary in aspect ratio and scale.

The grid cell componentg in each triple is used to assign a priority score to each candidate,

since we may not want to examine all possible candidates mapped from the lookup table.

Specifically, we score a given pair(v, g) based on how predictive it is for the true object

bounding box across the training set:P (v, g) is the fraction of the occurrences of wordv

that appear at grid locationg. This function gives a higher score to bounding boxes where

the visual word occurs consistently across positive training examples at a particular position
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Figure 6.3: Illustration of jumping window root candidates. Grid cells serve to refine the
priority given to each box (but do not affect its placement).

(see Figure 6.3).

Given a test image, we take the topK candidate jumping windows based on their priority

scores. The detector is run only on these boxes. In experiments, we obtain95% recall on

most categories when taking justK = 3, 000 candidates per test image. The same level of

recall would require up to105 bounding boxes if using sliding windows (see [103]).

6.1.3 Active Selection of Object Windows

We initialize the online active learning system with a linear SVM trained with a small num-

ber of labeled examples for the object. Then, it crawls for a pool of potentially relevant

unlabeled data using keyword search with the object name (i.e., it downloads a set of images

tagged ‘dog’ when learning to detect dogs). We want to efficiently determine which images

among those retrieved should be labeled next by the human annotators. As an active learn-

ing criterion, we use the “simple margin” selection method for SVMs [98], a widely used

criterion that seeks points that most reduce the version space. This is the same criterion I
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dealt with in Chapter 5. Given an SVM with hyperplane normalw and an unlabeled pool of

dataUO = {ϕ(O1), . . . , ϕ(On}), the point that minimizes the distance to the current decision

boundary is selected for labeling:O∗ = argminOi∈UO
|wTϕ(Oi)|.

As discussed in Chapter 5, a naive application of this criterion entails computing the classi-

fier response on all unlabeled data, ranking them by|wTϕ(Oi)|. However, even with a linear

classifier, exhaustively evaluating all unlabeled examples at each iteration is prohibitively ex-

pensive. Whereas previous active learning work is generally unconcerned about the amount

of time it actually takes to compute the next labeling request, it becomes a real issue when

working out of the sandbox, since we have live annotators awaiting the next labeling jobs

and massive unlabeled data pools. In particular, since we need to apply the active selection

function at the level of theobject, not the entireimage, we have an enormous number of

instances—all bounding boxes within the unlabeled image data. Even using jumping win-

dows, thousands of images yield millions of candidates. Thus, a simple linear scan of all

unlabeled data is infeasible.

Therefore, we use ourhyperplane-hashingalgorithm defined in Chapter 5 to identify the most

promising candidate windows in sub-linear time. Recall that the algorithm maps inputs to

binary keys using a randomized hash function that is locality-sensitive for the angle between

the hyperplane normal and a database point. Given a “query hyperplane”, one can hash

directly to those points that are nearest to the hyperplane,with high probability.

Formally, letUI denote the set of unlabeled images, andUO denote the pool of candidate

object windows obtained using the jumping window predictoron UI . Note that|UO| =

K × |UI |. The locality-sensitive hash familyH generates randomized functions with two-bit
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outputs:

hH(z) =

{

hu,v(ϕ(Oi), ϕ(Oi)), if z is a database vector,

hu,v(w,−w), if z is a query hyperplane,

where the component function is defined as

hu,v(a, b) = [sign(uTa), sign(vTb)], (6.3)

sign(uTa) returns1 if uTa ≥ 0, and 0 otherwise, andu andv are sampled from a standard

multivariate Gaussian,u, v ∼ N (0, I). These functions guarantee high probability of col-

lision for a query hyperplane and the points nearest to its boundary. The two-bit hash limits

the retrieved points’ deviation from the perpendicular by constraining the angle with respect

to bothw and−w.

We use these functions to hash the crawled data into the table.3 Then, at each iteration

of the active learning loop, we hash the current classifier asa query, and directly retrieve

examples closest to its decision boundary. We search only those examples, i.e., we compute

|wTϕ(Oi)| = |f(Oi)| for each one, and rank them in order of increasing value. Finally, the

system issues a label request for the topT images under this ranking. Since we only need

to evaluate the classifier for examples that fall into a particular hash bucket—typically less

than0.1% of the total number of unlabeled examples—this strategy combined with our new

detector makes online selection from large datasets feasible.

3Hyperplane hashes can be used with existing approximate near-neighbor search algorithms; we use
Charikar’s formulation, which guarantees the probabilitywith which the nearest neighbor will be returned.
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Figure 6.4: MTurk interface to obtain bboxes on actively selected examples.

6.1.4 Online Annotation Requests

To automatically obtain annotations on the actively selected examples, our system posts jobs

on Mechanical Turk, where it can pay anonymous workers to provide labels. The system

gathers the images containing the most uncertain bounding boxes, and the annotators are

instructed to use a rectangle-drawing tool to outline the object of interest with a bounding

box (or else to report that none is present). We ask annotators to further subdivide instances

into “normal”, “truncated”, or “unusual”, consistent withPASCAL annotations, and to flag

images containing more than 3 instances. Figure 6.4 shows the annotation interface.

While MTurk provides easy access to a large number of annotators, the quality of their labels

varies. Thus, we design a simple but effective approach to account for the variability. We

issue each request to 10 unique annotators, and then clustertheir bounding boxes using mean

shift to obtain a consensus. We keep only those clusters withboxes from more than half of

the annotators. Finally, we obtain a single representativebox from each cluster by selecting

the one with the largest mean overlap with the rest.
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6.1.5 Training the Detector

Training our detector entails learning the weights in Equation 6.1; we use a linear SVM

trained to discriminate between windows that do and do not contain the object of interest. All

regions that do not overlap the target object are potential negatives; to limit the number used to

train, we mine for “hard” negatives, a common approach that converges to the optimal SVM

classifier [30]. At each active iteration, we use the updatedclassifier to extract candidate

windows from only the newly obtained training images. We then add the10 top-scoring

windows as negatives if they overlap the target class by lessthan 20%.

We can now actively train an object detector automatically using minimal crowd-sourced

human effort. To recap, the main loop consists of using the current classifier to generate

candidate jumping windows, storing all candidates in a hashtable, querying the hash table

using the hyperplane classifier, giving the actively selected examples to online annotators,

taking their responses as new ground truth labeled data, andupdating the classifier. See

Figure 6.5 for a summary of the complete system.

6.2 Results

The goal of our experiments is three-fold. First, we comparethe proposed detector to the

most closely related state-of-the-art techniques. Second, we validate our large-scale active

selection approach with benchmark data. Third, we deploy our complete live learning system

with crawled images, and compare to strong baselines that request labels for the keyword

search images in a random sequence.
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Figure 6.5: Summary of our system for live learning of objectdetectors. The system au-
tonomously gathers unlabeled examples by querying web-based image collections. We then
generate candidate object windows using our jumping windowscheme and store all unlabeled
windows in a large hash-table using our hyperplane hashing approach. During active selec-
tion we use the current classifier as a query to directly retrieve the most uncertain windows
and autonomously post them for labeling on Mechanical Turk.

bird boat chair dog pottedplant sheep
Flickr-crawled 2936 3138 2764 1831 1566 1570

Flickr-test 655 628 419 780 364 820

Table 6.1: Number of images in the crawled data and the new Flickr test set.
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Figure 6.6: Some randomly chosen example images from PASCAL2007 testset (top) and
Flickr testset (bottom) for the categoriesboat, chair, dog.

6.2.1 Datasets and Implementation details

We use two datasets: the PASCAL VOC 2007, and a new Flickr dataset (details below).

• The PASCAL VOC 2007 dataset contains about 5000 training andan equal number of

test images from 20 classes selected from the broad categories: animals, vehicles and

indoor objects. Since the dataset was downloaded from Flickr and manually pruned the

images contain a large number of objects in varying scales, locations, viewpoints and

significant background clutter. Figure 6.6(top) shows somerandom images from the

dataset.

• The new Flickr dataset contains about 3000 images per class for six of the most dif-

ficult categories in the PASCAL dataset. To form the Flickr test set, we download

images tagged with the class names dated in 2010 and for training images, our sys-
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tem is restricted to images dated in 2009. The Flickr test setwas not manually pruned

and therefore it should contain a more general sample of images available on the web

than the PASCAL test set. Annotations on the Flickr test set were obtained using the

same interface used for the live learning process (see Section 6.1.4). Table 6.1 provides

some data statistics. Figure 6.6(bottom) shows some randomly chosen examples from

the Flickr test set.

We use dense SIFT at three scales (16, 24, 32 pixels) with gridspacing of 4 pixels, for 30,000

features per image. We obtain|V | = 56, 894 visual words with two levels of hierarchical

k-means on a sample of training images. We use the fast linear SVM codesvm perf [51],

with C = 100. For the LLC coding, we use code by [118], settingk, the number of non-zero

values in the sparse vectorsi to 5, following [118]. We useP = 6 parts per object from each

of a 2-mixture detector from [30], takeT = 100 instances per active cycle, and setN,M = 4.

We fixNρ = 500 andǫ′ = 0.01 for the hash table as reported in the previous chapter. During

detection we perform non-max suppression on top ranked boxes and select 10 per image.

6.2.2 Comparison to State-of-the-Art Detectors

First we compare our detector to the algorithms with the current best performance on VOC

2007 benchmark of 20 objects, as well as our own implementation of two other relevant

baselines. All methods are trained and tested with the same PASCAL-defined splits. We re-

port accuracies using the PASCAL benchmark metric, which computes the average precision

of detected instances where an instance is said to be detected if its overlap score (intersec-

tion/union) with the ground truth is≥ 0.5. Average precision is the average of precision
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classif parts feats candsaero. bicyc. bird boat bottl bus car cat chair cow dinin. dog horse motor. person potte. sheep sofa train tvmon.Mean
Ours linear yes single jump48.4 48.3 14.1 13.6 15.3 43.9 49.030.7 11.6 30.3 13.321.8 43.6 45.0 18.2 11.128.8 33.0 47.7 43.0 30.5

BoF SP linear no single jump30.4 43.1 6.9 3.5 10.8 35.8 45.0 17.7 11.5 24.6 3.5 18.0 43.5 44.0 15.3 1.5 19.1 14.7 35.7 34.923.0
LLC SP linear no single jump35.9 46.7 6.4 6.3 16.5 45.6 49.8 26.7 12.5 27.3 6.8 18.2 44.9 45.0 18.2 4.6 23.2 22.6 41.3 42.027.0

LSVM+HOG [30] nonlinear yes single slide32.8 56.8 2.5 16.8 28.539.751.621.3 17.9 18.5 25.9 8.8 49.2 41.2 36.8 14.6 16.2 24.4 39.2 39.1 29.1
SP+MKL [103] nonlinear no multiple jump37.6 47.8 15.315.3 21.950.750.6 30.0 17.333.0 22.5 21.5 51.2 45.5 23.3 12.4 23.9 28.5 45.348.5 32.1

Table 6.2: Average precision compared to a spatial pyramid BoF baseline (BoF SP), a sparse
coding max pooling spatial pyramid baseline modeled after [118] (LLC SP), and two state-
of-the-art approaches [30, 103] on the PASCAL VOC, where allmethods are trained and
tested on the standard benchmark splits.

values computed at a set of uniformly sampled recall levels.It emphasizes ranking relevant

detections higher and is therefore appropriate for object detection.

Table 6.2 shows the results. The first three rows all use the same original SIFT features,

a linear SVM classifier, and the same jumping windows in the test images. They differ,

however, in the feature coding and pooling. TheBoF SPbaseline maps the local features to

a standard3-level spatial pyramid bag-of-words descriptor withL2-normalization. TheLLC

SP baseline applies sparse coding and max pooling within the spatial pyramid grid cells.

LLC SP is the method of [118]; note, however, we are applying it for detection, whereas the

authors propose their approach for image classification.

The linear classifier with standard BoF coding is the weakest. The LLC SP baseline performs

quite well in comparison, but its restriction to a global spatial pyramid structure does appear

to hinder accuracy. In contrast, our detector improves overLLC SP noticeably for most

objects (compare rows 1 and 3), likely due to its part windows.

Our detector is competitive with both of the state-of-the-art approaches discussed in Sec-

tion 6.1.1:SP+MKL [103], which uses a cascade of classifiers that culminates with a learned

combination of nonlinear SVM kernels over multiple featuretypes, andLSVM+HOG [30],
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Figure 6.7: Example detections on the PASCAL dataset obtained by our detector for five
representative categories (bicycle, car, cat, bottle, chair). Our detector provides accurate
localization despite large variations in appearance, poseand number of objects. Top scoring
false positives are mainly from similar categories (e.g. cat vs. dog, bicycle vs. motorbike) or
due to the presence of a large number of similar objects (row 6column 1, row 7 column 4) or
inaccurate localization.
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which uses the latent SVM and deformation models for parts. In fact, our detector outper-

formsall existing results for 6 of the 20 objects, improving the state-of-the-art. At the same

time, it is significantly faster to train (about 50 to 600 times faster; see Table 6.5).

The classes where we see most improvements seem to make sense, too: our approach outper-

forms the rigid spatial pyramid representation used in [103] for cases with more class-specific

part structure (aeroplane, bicycle, train), while it outperforms the dense gradient parts used

in [30] for the more deformable objects (dog, cat, cow).

This is a very promising result, given our algorithm’s majorcomplexity advantages during

both training and testing, as well as its reliance on only a single feature type. For compar-

ison, the nonlinear stage of [103] takes 50 seconds on 100 candidates, whereas our linear

detector requires only 5 seconds, giving us a speed-up of roughly an order of magnitude at

detection. The advantage is greater during training; the LSVM model requires about 4 hours

to train [30], while ours requires only∼5-10 minutes.

Figure 6.7 shows some example detections (high-scoring true and false positives) by our

detector for five representative categories.

6.2.3 Active Detector Training on PASCAL

We next compare our active selection scheme to a passive learning baseline that randomly

selects images for bounding box annotation. We select six representative categories from

PASCAL: we take two each from those that are “easier” (>40 AP), “medium” (25-40 AP)

and “hard” (0-25 AP) according to the state-of-the-art result (max of rows 4 and 5 in Ta-
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Figure 6.8: Active detector training on PASCAL. Our large-scale active selection yields
steeper learning curves than passive selection, and reaches peak state-of-the-art performance
using only∼30% of the data.

ble 6.2).4 We initialize each object’s classifier with 20 examples, andthen let the remainder

of the training data serve as the unlabeled pool, a total of 4.5 million examples. At each itera-

tion, both methods select100 examples, add their true bounding boxes (if any) to the labeled

data, and retrain. This qualifies as learning in the “sandbox”, but is useful to test our jumping

window and hashing-based approach. Furthermore, the natural cluttered images are signifi-

cantly more challenging than data considered by prior active object learning approaches, and

our unlabeled pool is orders of magnitude larger.

Figure 6.8 shows the results. We see our method’s clear advantage; the steeper learning

4In spite of our method’s efficiency,evaluatingthis experiment on a single category is quite costly: each
point on the learning curve requires running the detector on5,000 test images and re-doing hard negatives.
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Annotations added, out of 3 million examples
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Figure 6.9: Live learning results on PASCAL test set.

curves indicate it improves accuracy on the test set using fewer labels. In fact, in most cases

our approach reaches state-of-the-art performance (see markers above 5000 labels) using only

one-third of the available training data.

6.2.4 Online Live Learning on Flickr

Finally, we deploy our complete live learning system, wherenew training data is crawled on

Flickr, and apply it to both PASCAL and a new Flickr test set. We consider all object classes

for which state-of-the-art AP is less than 25.0 (boat, dog, bird, pottedplant, sheep, chair)

in order to provide the most challenging case study, and to seek improvement through live

learning where other methods have struggled most. To form the Flickr test set, we download

images tagged with the class names dated in 2010; when running live training, our system is
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restricted to images dated in 2009. See Table 6.1 for the datastatistics. Figure 6.6 shows the

diversity and difficulty of randomly chosen examples from the Flickr test set in comparison

with the PASCAL 2007 testset.

We compare to (1) aKeyword+image baselinethat uses the same crawled image pool, but

randomly selects images to get annotated on MTurk, and (2) aKeyword+window baseline

that randomly picks jumping windows to get labeled. These are strong baselines since most

of the images will contain the relevant object. In fact,Keyword+image exactly represents

the status quo approach, where one creates a dataset by manually pruning keyword search

results. We initialize all methods with the PASCAL-trainedmodels, and run for 10 iterations.

6.2.4.1 Live Learning Applied to PASCAL Test Set

Figure 6.9 shows the results for the PASCAL test set. Note that the learning curves start

at x = 5000 because the training set consists of the5000 PASCAL training examples in

addition to annotations requested on the Flickr training set. For four of the six categories, our

system improves test accuracy, and outperforms the keywordapproaches. The final AP also

exceeds the current state-of-the-art for three categories(see Table 6.3). This is an important

and exciting result, given the size of the unlabeled pools (∼3 million examples), and the fact

that the system learned its refined models completely automatically.

However, for two classes (chair, sheep), live learning decreases accuracy. Of course, more

data cannot always guarantee improved performance on a fixedtest set. We suspect the

decline is due to stark differences in the distribution of PASCAL and Flickr images, since the

PASCAL dataset creators do some manual preparation and pruning of all PASCAL data. Our
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aeroplane bird boat cat dog sheep sofa train
Ours 48.4 15.8∗ 18.9∗ 30.7 25.3∗ 28.8 33.0 47.7

Previous best 37.6 15.3 16.8 30.0 21.5 23.9 28.5 45.3

Table 6.3: Categories for which our method yields the best APon PASCAL VOC 2007,
compared to any result we found in the literature. (∗means extra Flickr data automatically
obtained by our system was used to train.)

next result seems to confirm this.

In addition, on further examination of the training images obtained for “chair” we noticed

that the examples were particularly challenging with heavyocclusion (due to tables, people,

etc.) and had several ambiguous annotations on similar categories such as sofa and couch.

The unreliability of the automatically collected annotations due to the ambiguous category

definition could have affected the accuracy to a fair extent.

6.2.4.2 Live Learning Applied to Flickr Test Set

Figure 6.10 shows the results on the new Flickr test set, where we apply the same live-learned

models from above. Again, the x-axis starts at5000 since we initialize the classifier with

PASCAL training examples. The accuracy of the models trained on PASCAL examples (at

x = 5000) is poor for most categories possibly because this test set is more challenging and

diverse than PASCAL(see Figure 6.6). However, the improvements made by our approach

with additional Flickr data are dramatic—both in terms of its absolute climb, as well as

its margin over the baselines. In all, the results indicate that our large-scale live learning

approach can autonomously build models appropriate for detection tasks with realistic and

unbiased data.
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Annotations added, out of 3 million examples
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Figure 6.10: Live learning results on Flickr test set.

Figure 6.11 shows selections made by either method when learning “boat”, illustrating how

ours focuses human attention among the crawled tagged images. Most of the regions selected

by our approach correspond roughly to the category being learned. In addition, the selected

images are diverse since there is large variability in the pose, scale and illumination of the

object of interest. On the other hand, examples that are randomly selected either do not

contain the category of interest or contain instances that are not particularly useful (note the

extremely small scale of the boats in images selected by the baseline in Figure 6.11). This

shows the importance of obtaining a few useful annotations over a large number of irrelevant

examples.

Table 6.4 provides a quantitative measure of the relevance of the selected windows by com-

puting the mean overlap scores of the windows selected for querying by either approach with
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Figure 6.11: Selections by our live approach (top), Keyword+image (bottom).

bird boat chair dog pottedplant sheep
Live active (ours)38.4 29.5 23.4 43.2 33.2 34.3
Keyword+window21.8 17.5 12.6 26.7 14.8 18.8

Table 6.4: Mean overlap scores of the windows selected by ourapproach and the key-
word+window baseline with the ground truth bounding box provided by Mechanical Turk
annotators. The higher scores for live active (by up to 200% for some categories) indicates
that our approach correctly picks the most relevant object region for querying.

the ground truth bounding box provided by the Mechanical Turk annotators. A higher over-

lap score with the ground truth indicates that the selected windows capture the main region of

interest better. Our approach has up to 200% higher values ofthis score and therefore it ends

up picking windows that are highly overlapping with the mostrelevant object in the image

and is thus able to better focus annotator attention on the more relevant images.

6.2.5 Computation Time

Table 6.5 shows the time complexity of various stages of our approach and illustrates our

major advantages for active selection and classifier retraining in comparison to the state-

of-the-art methods of [30, 103]. Our reported times are based on a dual-core 2.8 GHz CPU,

which is comparable to the systems used by [30, 103]. Our jumping window+hashing scheme

177



Active selectionTraining Detection per image
Ours + active 10 mins 5 mins 150 secs

Ours + passive 0 mins 5 mins 150 secs
LSVM [30] 3 hours 4 hours 2 secs

SP+MKL[103] 93 hours > 2 days 67 secs

Table 6.5: Run-time comparisons of different stages of our detector against the passive base-
line and other state-of-the-art detectors. Our detection time is mostly spent pooling the sparse
codes. Active times are estimated for [30, 103] models basedon linear scan. Our approach’s
efficiency in selecting useful images and retraining the classifier makes live learning practical.

requires on average 2-3 seconds to retrieve 2,000 examples nearest the current hyperplane,

and an additional 250 seconds to rank and select 100 images toquery. In contrast, a linear

scan over the entire unlabeled pool would require about 60 hours.

The entire online learning process requires 45-75 minutes per iteration: 5-10 min. to retrain, 5

min. for selection, and∼1 hour to wait for the MTurk annotations to come back (typically 50

unique MTurkers gave labels per task). Thus, waiting on MTurk responses takes the majority

of the time, and could likely be reduced almost arbitrarily with better payment/incentives. In

comparison, direct exhaustive active selection with the detector of [30, 103] would require

about 8 hours to 1 week, respectively, per iteration.

6.3 Discussion

In summary, our contributions in this chapter are i) a novel efficient part-based linear detector

that provides excellent performance, ii) a jumping window and hashing scheme suitable for

the proposed detector that retrieves relevant instances among millions of candidates, and iii)

the first active learning results for which both image data and annotations are automatically
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obtained, with minimal involvement from vision experts. Tying all these parts together, I

demonstrated an effective end-to-end system for learning object detectors that provides state-

of-the-art results on two challenging datasets.

My result is significant for several reasons. First, nearly all active learning work targets the

image classificationproblem and so images in the unlabeled pool are artificially assumed

to contain only one prominent object. This is partly becauseof the significant challenge

of active selection for window-based detection since the object extents (bounding boxes)

are unknown in the unlabeled examples. Therefore, naively one would need to evaluate all

possible windows within the image in order to choose the mostuncertain. I dealt with this

large-scale selection issue by introducing our novel part-based detector amenable to linear

classifiers for which the most uncertain instances can be efficiently obtained in sub-linear

time using our hashing-based solution proposed in Chapter 5.

Second, unlike existing object recognition results where the vision researcher has already

determined which images will even be considered for labeling, our system autonomously ob-

tains both image examples and the most relevant labels through web-based resources without

any involvement from an expert. In addition, while most active learning approaches unreal-

istically simulate the active learning process using datasets that have already been collected

and labeled, we are the first to test our active approach in the“live” setting where multiple

human annotators directly provide requested annotations.We neither intervened with what

went into the data pool nor the annotations returned by the anonymous annotators and yet

obtained state-of-the-art results on the challenging PASCAL VOC 2007 dataset. This is a

significant step towards our goal of transferring human knowledge with as little human effort

179



as possible.
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Chapter 7

Future Work

There are several interesting directions of future work forthis thesis in both choosing the

right examples and questions to ask and the process of collecting supervision information

from humans. I discussed future work for the different components of the thesis at the end

of their corresponding chapters. In this chapter I outline further research along the broader

theme of this thesis.

A known issue with many active learning approaches is that byalways selecting uncer-

tain/informative examples according to thecurrent hypothesisthey might not “explore” other

regions of instance space as effectively. For example, if the concept being learned consists of

multiple modes (e.g. corresponding to different viewpoints of an object), an active learning

system could end up exploring just one of the viewpoints depending on the initially sam-

pled training set. This could be an important issue when learning hundreds and thousands of

object categories found in web images.

It would be interesting to study if active learning schemes in general can provide convergence

guarantees with respect to the optimal classifier trained using all labeled data. One could also

consider balancing exploiting the current hypothesis withexploring other regions of feature

space in order to mitigate this issue. A fairly straightforward approach would be to alternate
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between rounds of exploration, where examples are randomlydrawn, and exploitation, where

an active selection criterion is used. Thus, it would be interesting to investigate how to

correctly balance exploration versus exploitation so thatnear optimal classifiers can be trained

with minimal effort. Our framework provides the best groundwork for such studies because

we can collect large-scale datasets and automatically obtain annotations.

In terms of annotation collection, while a consensus from multiple annotators is an effective

approach for obtaining the true answer amidst unreliable annotators, it is rather wasteful in

terms of overall effort. Therefore, utilizing multiple annotators cost-effectively to obtain the

correct answer with high confidence is an important problem to consider next.

As a possible solution, one could dynamically evaluate the agreement of an annotator with

the consensus and target specific annotators based on their performance and speed on the

task in future iterations. The number of annotators to use for a particular example could also

depend on the difficulty of the example. Our approach for predicting required effort on novel

test images provides one way of measuring a task’s difficulty. Confusion in the answers of

multiple annotators could also mean an example is difficult.One could use such measures

in order to automatically choose the number of annotators required for novel examples. This

could minimize the number of annotators to use in addition tominimizing the number of

training examples.

Thus, further research in this direction could lead to faster and more effective transfer of

human knowledge in the future.
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Chapter 8

Conclusion

In this thesis I discussed research that enables large-scale transfer of human knowledge while

learning visual categories by solving several important problems in active learning.

I first generalized traditional active learning tocost-sensitive multi-levelactive learning where

the learner can pose multiple annotation queries and each annotation question costs a variable

amount of manual effort. My approach provides a cost-effective solution for how to actively

choose not only which instance to label, but also what type ofimage annotation to acquire. I

have shown that compared to traditional active learning which restricts supervision to yes/no

questions, a richer means of providing supervision and a method to effectively select super-

vision based on both information gain and cost to the supervisor is better-suited for building

classifiers with minimal human intervention.

My method is general enough to accept other types of annotations or classifiers, as long as

the cost and risk functions can be appropriately defined. While we have concentrated mostly

in the domain of object recognition, the problem of comparing different types annotations

in a unified framework is potentially applicable to several other domains both in vision and

machine learning such as video annotation, tracking, or document classification.

My work on this problem opens up several interesting directions. Annotators have variable
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capabilities and speeds depending on the specific task and image content. Therefore, one

could extend the approach to target specific annotators and build user-specific cost functions.

This would require designing the VOI criterion to choose notonly what annotation type and

image looks most promising, but also which user ought to be responsible for annotating it.

Allowing further levels of supervision, such as scene layout, contextual cues, or part labels,

would further enable us to improve the way in which human supervisors can interact with

computer vision systems. It would be interesting to pursue probabilistic models that can

integrate such diverse annotation cues.

The above approach provides a solution for choosing asingleannotation from a large pool of

multiple types of annotation queries which is well-suited for the case where a single human

annotator is available to interact with the system. However, it might be preferable to farm

out abatchof good queries at once when one has access to multiple distributed annotators

simultaneously.

Towards this end, I considered the problem ofbudgeted batch active learningwhere at each

iteration the active learner must select a batch of examplesmeeting a given budget of super-

vision that can be parallelly annotated using multiple simultaneous annotators. The budget is

determined by the funds (or time) available to spend on annotation. Solutions to the problem

can directly utilize the multiple annotators that are available through crowd-sourcing services

such as Mechanical Turk.

I formulated the budgeted selection task as a continuous optimization problem where we de-

termine which subset of possible queries should maximize the improvement to the classifier’s

objective, without overspending the budget. I provided an efficient alternating minimization
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procedure in order to find the local optimum of the objective function. Our results indicate

that budgeted batch selection is crucial for efficient active learning in practical scenarios,

clearly outperforming conventional myopic selection and batch techniques. This is because

unlike the baseline techniques, our approach considers howmuch the classifier objective

changes if one were to obtain the most optimistic labels on the selected examples and is

therefore able to utilize large budgets most effectively.

However, like most existing active selection methods our batch selection approach has a time

complexity that is at least quadratic in the size of the unlabeled pool. This could make it

impractical for really large unprepared unlabeled data available on the web.

In order to handle such large-scale selection problems, we considered the problem ofsub-

linear time active learning, where one needs to retrieve the database points that are most

informative to a classifier in time that is sub-linear in the number of unlabeled examples,

i.e., without having to exhaustively scan the entire unlabeled pool. Towards this end, we

introduced two solutions for the nearest neighbor to a queryhyperplane (NNQH) search

problem. The solutions permit efficient large-scale activelearning using the widely used

simple margin criterion for linear SVM classifiers on millions of examples. Our experiments

with three datasets clearly demonstrated the practical value for active learning with massive

unlabeled pools.

Our work opens up several interesting directions includingexploring more accurate hash-

functions for our H-hash scheme, other data structures thatcould enable faster selection. It

would interesting to see if further improvements can be madeon our IH-Hash scheme or

investigate if there are hard upper bounds on the amount of time one can save using such
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approximate hashing schemes. It would also be interesting to consider similar approaches

for performing sublinear time selection when using non-linear kernel based active learning.

Recent work on solutions to the kernel LSH problem [60] mightprovide some insight in this

regard.

Finally, tying all these together I proposed the first approach for live-learningof object de-

tectors using web-based image collections and crowd-sourcing services. Instead of manually

collecting, pruning and annotating training datasets, my system itself gathers possibly rel-

evant images via keyword search and repeatedly identifies unlabeled sub-windows that are

most uncertain according to the current model, and generates tasks on Mechanical Turk to

get the corresponding bounding box annotations without anyinvolvement from the algorithm

designer. Using the system we were able to learn object detectors for several classes and

improved on the state-of-the-art on the challenging PASCALVOC dataset.

The significance of our improvements are further enhanced bythe fact that we neither in-

tervened with what was added to the training set nor fine-tuned the annotations returned by

annotators on Mechanical Turk. This is an important step towards our goal of effectively

transferring human knowledge with as little human effort aspossible.

In summary, my thesis work aids in developing vision systemsthat continuously improve

their knowledge of the world by learning to ask the right kindof questions to a human super-

visor in the most cost-effective way. My work has fundamentally expanded the way in which

visual and other learning systems can obtain information from humans and has opened up

several interesting problems in this sub-field.
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