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Foreground segmentation is defined as the problem of generating pixel

level foreground masks for all the objects in a given image or video. Accurate

foreground segmentations in images and videos have several potential applica-

tions such as improving search, training richer object detectors, image synthe-

sis and re-targeting, scene and activity understanding, video summarization,

and post-production video editing.

One effective way to solve this problem is human-machine collaboration.

The main idea is to let humans guide the segmentation process through some

partial supervision. As humans, we are extremely good at perception and

can easily identify the foreground regions. Computers, on the other hand,

lack this capability, but are extremely good at continuously processing large

volumes of data at the lowest level of detail with great efficiency. Bringing these

complementary strengths together can lead to systems which are accurate

and cost-effective at the same time. However, in any such human-machine
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collaboration system, cost effectiveness and higher accuracy are competing

goals. While more involvement from humans can certainly lead to higher

accuracy, it also leads to increased cost both in terms of time and money.

On the other hand, relying more on machines is cost-effective, but algorithms

are still nowhere near human-level performance. Balancing this cost versus

accuracy trade-off holds the key behind success for such a hybrid system.

In this thesis, I develop foreground segmentation algorithms which ef-

fectively and efficiently make use of human guidance for accurately segmenting

foreground objects in images and videos. The algorithms developed in this

thesis actively reason about the best modalities or interactions through which

a user can provide guidance to the system for generating accurate segmen-

tations. At the same time, these algorithms are also capable of prioritizing

human guidance on instances where it is most needed. Finally, when struc-

tural similarity exists within data (e.g., adjacent frames in a video or similar

images in a collection), the algorithms developed in this thesis are capable of

propagating information from instances which have received human guidance

to the ones which did not. Together, these characteristics result in a substan-

tial savings in human annotation cost while generating high quality foreground

segmentations in images and videos.

In this thesis, I consider three categories of segmentation problems all

of which can greatly benefit from human-machine collaboration. First, I con-

sider the problem of interactive image segmentation. In traditional interac-

tive methods a human annotator provides a coarse spatial annotation (e.g.,
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bounding box or freehand outlines) around the object of interest to obtain a

segmentation. The mode of manual annotation used affects both its accuracy

and ease-of-use. Whereas existing methods assume a fixed form of input no

matter the image, in this thesis I propose a data-driven algorithm which learns

whether an interactive segmentation method will succeed if initialized with a

given annotation mode. This allows us to predict the modality that will be

sufficiently strong to yield a high quality segmentation for a given image and

results in large savings in annotation costs. I also propose a novel interactive

segmentation algorithm called Click Carving which can accurately segment

objects in images and videos using a very simple form of human interaction—

point clicks. It outperforms several state-of-the-art methods and requires only

a fraction of human effort in comparison.

Second, I consider the problem of segmenting images in a weakly super-

vised image collection. Here, we are given a collection of images all belonging

to the same object category and the goal is to jointly segment the common

object from all the images. For this, I develop a stagewise active approach

to segmentation propagation: in each stage, the images that appear most

valuable for human annotation are actively determined and labeled by human

annotators, then the foreground estimates are revised in all unlabeled images

accordingly. In order to identify images that, once annotated, will propagate

well to other examples, I introduce an active selection procedure that oper-

ates on the joint segmentation graph over all images. It prioritizes human

intervention for those images that are uncertain and influential in the graph,
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while also mutually diverse. Building on this, I also introduce the problem of

measuring compatibility between image pairs for joint segmentation. I show

that restricting the joint segmentation to only compatible image pairs results

in an improved joint segmentation performance.

Finally, I propose a semi-supervised approach for segmentation prop-

agation in video. Given human supervision in some frames of a video, this

information can be propagated through time. The main challenge is that the

foreground object may move quickly in the scene at the same time its ap-

pearance and shape evolves over time. To address this, I propose a higher

order supervoxel label consistency potential which leverages bottom-up super-

voxels to enforce long-range temporal consistency during propagation. I also

introduce the notion of a generic pixel-level objectness in images and videos by

training a deep neural network which uses appearance and motion to automat-

ically assign a score to each pixel capturing its likelihood to be an “object” or

“background”. I show that the human guidance in the semi-supervised prop-

agation algorithm can be further augmented with the generic pixel-objectness

scores to obtain an even more accurate foreground segmentation in videos.

Throughout, I provide extensive evaluation on challenging datasets and

also compare with many state-of-the-art methods and other baselines validat-

ing the strengths of proposed algorithms. The outcomes across several different

experiments show that the proposed human-machine collaboration algorithms

achieve accurate segmentation of foreground objects in images and videos while

saving a large amount of human annotation effort.
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Chapter 1

Introduction

Computer vision has made rapid progress in recent years. However,

even the most advanced computer vision systems cannot come close to the

richness of human perception. As humans, we have an unique ability to un-

derstand our environment by processing and interpreting high level visual in-

formation from low level sensory data at an extremely fast rate. Computers

lack this capability, but are extremely good at continuously processing large

volumes of data at the lowest level of detail with great efficiency. Human-

machine collaborative systems can bring these complementary strengths of

the human visual system and computer algorithms together in a way which

can be accurate and cost effective at the same time.

Large scale image and video annotation is one area where human-

machine collaboration has high potential impact. Image and video annotation

can include a variety of tasks: e.g., listing all objects in the scene, drawing

boundaries of objects or describing the scene. While automatic computer vi-

sion algorithms exist for each of these tasks, they are not accurate enough to

be relied upon completely. On the other hand, employing humans alone to do

a task will be prohibitively expensive. Designing computer vision algorithms
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that can actively request human supervision as and when needed have the

potential to achieve far greater accuracies than completely automatic systems

and at a cost far less than employing humans alone. Moreover, partial human

supervision can remove ambiguity for the vision system, and thus can greatly

simplify the design of algorithms, which otherwise have to make several com-

plex decisions regarding scene perception on their own. With the advent of

modern crowd-sourcing techniques, human supervision can be obtained on-

demand and in an economical fashion. Human-machine collaborative systems

can therefore now operate at an extremely large scale, opening up new possi-

bilities of research in this direction.

In recent years, major strides have been made in computer vision by

leveraging large scale annotated datasets to learn powerful predictive models,

most notably for object classification in images [47, 65, 77, 123, 128, 129]. Be-

fore the arrival of crowdsourcing, it was not even practical to create datasets

with millions of annotated examples to facilitate learning. Modern crowd-

powered datasets (e.g, ImageNet [29]) have been instrumental in the success

of current deep learning systems which need a large amount of supervised data

to excel.

However, even with good crowdsourcing tools, image and video anno-

tation for large datasets remains a rather costly undertaking in terms of both

time and money. In particular, gathering high quality spatial annotations—

pixel-level foreground masks—is challenging. First of all, the physical mousing

actions required to delineate objects from background are time intensive (e.g.,
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compared to simply labeling which object is present). Furthermore, non-expert

annotators exhibit inconsistencies in how precisely they mark object bound-

aries, which means leveraging the crowd typically requires some finessing and

“re-dos”.

As a result, datasets with spatial annotations lag seriously behind their

category-labeled counterparts. For example, while ImageNet [29] is comprised

of an impressive 14M labeled images, there are orders of magnitude fewer spa-

tial annotations—only 1M images (7% of the dataset) offer bounding box anno-

tations, and only 4K images (0.03%) have foreground segmentation masks [44].

More recently, another dataset Microsoft COCO[89] with 328,000 images was

collected containing more difficult object instances than ImageNet. Collecting

spatial annotations for 2,500,000 object instances in these images turned out

to be a very time consuming task requiring over 22 worker hours per 1,000

segmentations and about $400,000 in cost. The problem gets even more chal-

lenging for video datasets. The sheer volume of video data available on the

internet can be an incredible source of training data for learning richer ob-

ject representations. However, the cost of annotating them is prohibitively

large; hence, no large-scale video dataset with spatial annotations for objects

currently exists to facilitate this direction of research.

This scarcity of foreground-labeled image and video collections is prob-

lematic given their high potential utility. Apart from being useful in building

training sets for object detectors, good foreground segmentation of objects

can improve visual search by focusing on the region of interest. Further-
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more, several interesting computer graphics applications such as data-driven

image synthesis, 3D reconstruction, and image re-targeting can directly use

a well-segmented image database. Similarly, a good foreground segmentation

in video can be very helpful in activity recognition, video summarization, and

post-production video editing.

In this thesis, I explore the idea of human-machine collaboration for

the problem of foreground object segmentation in images and videos. In my

work, I have developed algorithms which effectively and efficiently make use of

human guidance for accurately segmenting foreground objects in images and

videos. The segmentation problems that I explore in this thesis can be broadly

divided into three categories:

1. Interactive image segmentation: In interactive segmentation algo-

rithms, the human annotator is asked to provide a coarse spatial an-

notation (e.g., draw a bounding box, scribbles, or point clicks) on the

object of interest. This coarse input is then used to guide the underlying

segmentation algorithm which converts the coarse human input into a

fine-grained final segmentation for the object (see Figure 1.1 (top) for

an example).

2. Weakly supervised segmentation of image collections: In this

setting, a pool of images known to contain the same object category

(weak supervision) is considered. Such a collection of images can be

easily obtained from the Web using a simple keyword search. A joint
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Figure 1.1: Overview of the different segmentation problems addressed in this
thesis. Best viewed in color.
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segmentation approach which discovers common patterns in the collec-

tion is typically used (see Figure 1.1 (middle) for an example). A semi-

supervised variant of this problem assumes that human annotations on

a subset of images in the collection are provided.

3. Semi-supervised video segmentation: Given a video as input and

some subset of frames segmented by human annotators, the goal here is

to propagate these region segmentations to all other unsegmented frames,

to obtain a segmentation for the entire video (see Figure 1.1 (bottom)

for an example).

The novel contributions in this thesis for each of the above mentioned

problems come from addressing one or more of the following questions which

naturally arise in a human-machine collaboration system for segmentation:

• How to annotate? Human annotators can provide partial supervision

in many ways. For example in interactive segmentation, the annotator

can initialize the algorithm using a bounding box or a rough outline

around the object. Different forms of human input come with different

costs. Their effectiveness is a function of the image content. Depending

on the complexity of the object of interest, some images may need more

detailed human involvement and some less. While previous methods

assume a fixed form of human input, I show that this cost versus accuracy

trade-off can be exploited by actively choosing the mode of human input

for interactive segmentation.
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Moreover, I also show how can we go beyond the traditional and more

involved forms of human interaction (i.e., bounding boxes and scribbles).

I do this through a novel formulation of the interactive segmentation

problem which results in accurate foreground segmentations yet only

requires human guidance in form of point clicks, which are very simple

to provide and also are very cost effective.

• What to annotate? Depending on the annotation budget, it might

be possible to get annotation only on a subset of data. I show that in

instances where information can be propagated (e.g., weakly supervised

image collections) this subset can be chosen in an active manner depend-

ing on its utility for other unsegmented instances. I show that this active

selection results in large savings in human annotation costs when com-

pared with other naive methods of making these decisions (e.g., random

selection).

• How to propagate? Given some human annotations on a subset of

data (e.g., some frames in a video or a subset of images in a collec-

tion), I show that the structural patterns in the data collection (e.g.,

temporal continuity in video, similarity in related images) can be used

to propagate information to other unsegmented instances. I show that

these propagation algorithms effectively exploit the structural similari-

ties within the data to transfer information which allows us to restrict

human annotation to only a few select data points, thus substantially

reducing annotation costs.
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Addressing the aforementioned questions in each segmentation problem

category will lay the foundations of building computer vision systems which

make an effective use of human machine collaboration to achieve high perfor-

mance but remain cost effective at the same time. Throughout the chapters

in my thesis, I introduce novel contributions of my work in the context of

these important questions and how the proposed algorithms address them. I

compare with existing state-of-the-art algorithms and establish the advantages

our proposed methods have over existing techniques. Next, I provide a brief

overview of the main components of my thesis.

1.1 Overview of Thesis

In this section, I will provide a brief summary of the main ideas and

insights from my thesis. I will first present a technique for actively making an-

notation choices for the problem of interactive image segmentation (Sec. 1.1.1).

I will then discuss a novel formulation for interactive image segmentation which

only makes use of a simple point click based human interaction (Sec. 1.1.2).

Moving on to collections of images or frames, I will present my algorithm

for active annotation and segmentation propagation for segmenting objects in

weakly supervised image collections (Sec. 1.1.3). Building on this concept, I

will also present a technique which enables a data-driven way of predicting

compatibility between image pairs for joint segmentation (Sec. 1.1.4). Finally,

I will introduce my novel algorithms for doing foreground segmentation prop-

agation in videos (Sec. 1.1.5 and 1.1.6).
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1.1.1 Interactive image segmentation with active human input

Research on interactive segmentation considers how a human can work

in concert with a segmentation algorithm to efficiently identify the foreground

region [9, 13, 45, 66, 82, 100, 119]. The idea is to leverage the respective strengths

of both the human and the algorithm. Humans can easily identify the fore-

ground, hence provide high-level guidance—in the form of coarse spatial anno-

tations. Meanwhile, the algorithm can easily assign pixels to objects based on

their low-level properties, converting the high level guidance into a fine-grained

segmentation. Often this is done by constructing a foreground color model

from the user-indicated regions, then optimizing foreground/background la-

bels on each pixel (e.g., using graph cuts [13, 119]).

Existing methods assume that the user always gives input in a partic-

ular form (e.g., a bounding box or a scribble), and so they focus on how to

use that input most effectively. However, fixing the input modality in advance

leads a suboptimal tradeoff in human and machine effort. Each input type has

its own degree of precision, but also has a proportional cost associated with it.

At the same time, depending on its content, an image may be better served

by one form or another. Figure 1.2 illustrates this with an example.

The tradeoffs are clear, but what is a system to do about it? A system

which can determine what tool works best for an image can result in large

savings in human effort. The problem is that it needs to do it before the

human uses the tool! To address this problem, I propose an algorithm which

can leverage image properties to predict how successful a given form of user
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(a) Image (b) Ground Truth (c) Bounding Box (d) Sloppy Contour

Figure 1.2: Interactive segmentation results (shown in red) for three images
using various annotation strengths (marked in green). Note how the most
effective mode of input depends on the image content. My method in Chap-
ter 3 predicts the easiest input modality that will be sufficiently strong to
successfully segment a given image. Best viewed in color.

input will be, once handed to an interactive segmentation algorithm [52]. Using

these predictions, we can optimize the mode of input requested on new images a

user wants segmented. Whether given a single image that should be segmented

as quickly as possible, or a batch of images that must be segmented within a

specified time budget, the proposed algorithm can be used to select the easiest

modality that will be sufficiently strong to yield high quality segmentations.

Chapter 3 introduces the complete approach and also provides experimental

results.
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Figure 1.3: Overview of the ClickCarving algorithm (Chapter 4) for interac-
tively segmenting objects using point clicks. Best viewed in color.

1.1.2 Interactive image and video segmentation with point clicks

Thus far, I have discussed a method using which we can optimize for

the modality of human interaction in the traditional interactive segmentation

pipeline. Regardless of the exact input modality, the common assumption in

all existing methods is to completely rely on the user’s input to learn about

the object’s appearance to generate a segmentation output. Reliably learning

about an object’s appearance requires a reasonable number of data points on

the object. This seemingly precludes the use of simple human interactions

such as point clicks, which provide very little information to learn a complex

appearance model. In this sense, in traditional interactive segmentation algo-

rithms, information flows first from the user to the system and thus far forms

the bottleneck for using simple human interactions such as point clicks.
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To address this problem, I propose a novel formulation [58] of the in-

teractive segmentation problem which reverses this standard flow of informa-

tion. The key idea is for the system itself to first hypothesize plausible object

segmentations in a given image, and then allow the user to efficiently and

interactively prioritize those hypotheses. Such an approach stands to reduce

human annotation effort, since the user can use very simple feedback to guide

the system to its best hypotheses, often just a couple of clicks on the bound-

ary of the true object (see Figure 1.3). This algorithm called Click Carving

essentially uses the clicks to “carve” away erroneous hypotheses whose bound-

aries disagree with the clicks. This process iterates (typically 2-3 times), and

each time the system revises the top ranked hypotheses set, until the user is

satisfied and chooses a final segmentation mask. Chapter 4 introduces the

complete approach and also provides experimental results. Click Carving can

also be effectively used to segment objects in videos. This is achieved by first

segmenting a video frame using Click Carving and then propagating it to all

other frames using the algorithm that I will describe in Chapter 7.

1.1.3 Active segmentation propagation in image collections

There has been a lot of recent interest in jointly segmenting a pool

of images known to contain the same object category (e.g., a collection of

“airplane” images, see Figure 1.4) [2, 30, 44, 64, 121, 122, 124, 131, 140]. While

interactive segmentation (discussed above) works well for segmenting images

individually, a joint segmentation approach that can directly use this weak
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Figure 1.4: Weakly supervised segmentation of an image collection. On the
left side is a collection of “airplane” images and on the right the desired seg-
mentation of the common object “airplane” is shown with a green overlay.
Best viewed in color.

supervision may be more effective here. The main idea is to leverage the weak

supervision by exploiting the repeated patterns to jointly segment out the

foreground per image.

On the one hand, this paradigm is attractive for its low manual effort,

especially since such weakly labeled pools of images are often readily available

on the Web from keyword search. On the other hand, the resulting fully

automatic segmentations are necessarily imperfect. No matter the method,

the foreground masks will hit a ceiling of accuracy since the segmentation task

is underconstrained even with weak supervision.

For this transductive setting, where the goal is to collect spatial anno-

tations for every image in the collection, I propose an intermediate solution.

Rather than relying solely on human-provided segmentations (accurate but

too expensive) or automatic segmentations (inexpensive but too inaccurate),

I propose a semi-automatic segmentation propagation approach [54]. The key
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Figure 1.5: The proposed active image segmentation propagation method
(Chapter 5) alternates between: (1) Actively choosing images which once an-
notated by humans will likely be most useful in propagating segmentations
to other images and (2) Given human annotations on actively chosen images
(marked in pink), propagating them (dark arrows) to generate segmentations
for other unlabeled images. Best viewed in color.

idea is to develop a stagewise active approach: in each stage, the system ac-

tively determines the images that appear most valuable for human annotation,

and then revises the foreground estimates in all unlabeled images by propa-

gating information from the labeled ones (see Figure 1.5). In order to identify

images that, once annotated, will propagate well to other examples, I introduce

an active selection procedure that operates on the joint segmentation graph

over all images. The edges in this graph capture inter-image similarities by

computing distances in a predefined feature space. The active selection algo-

rithm prioritizes human intervention for those images that are uncertain and

influential in the graph, while also mutually diverse. In this way, we neither

restrict ourselves to the saturation point of the fully automatic methods, nor

do we get large volumes of data labeled by humans. Chapter 5 introduces the

complete approach and also provides experimental results.
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Query Cosegmentation Source Query Cosegmentation Source

Success Case Failure Case

Figure 1.6: Motivation for predicting compatibility between image pairs for
joint segmentation (Chapter 6). When an image pair share strong foreground
similarity, their joint segmentation is successful (left). However, when incom-
patible images are used—even from the same object category—joint segmen-
tation fails (right).

1.1.4 Predicting compatibility for joint segmentation of image pairs

Thus far, I have discussed how to jointly segment images in a weakly

supervised image collection by building joint segmentation graphs over images

to perform segmentation propagation and active selection. There, to build

the joint segmentation graph, distances between image features were used to

capture inter-image similarities and assign edge weights. The underlying as-

sumption is that images which look similar in this feature space are structurally

similar and thus should be compatible for joint segmentation.

Nonetheless, this assumption does not hold strongly in all cases. Intra-

class appearance variation remains a major obstacle to accurate joint segmen-

tation. This is problematic, since coupling the “wrong” images together, where

the foreground objects may look quite different can actually deteriorate the

joint segmentation performance (see Figure 1.6 for examples). Instead of as-

suming that all images are compatible for joint segmentation or simply relying

on global image similarity, I propose to predict which pairs of images are likely

to be most compatible when paired together for joint segmentation [53].
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Given an input image and a pool of candidate images sharing the same

weak label (e.g., a batch of “airplane” images like above), the goal is to find

the candidate that, when coupled with the input image, will most boost its

foreground accuracy if they are jointly segmented. To this end, I develop

a learning-to-rank approach that identifies good partners, based on paired

descriptors capturing the amenability to joint segmentation of an image pair. I

show that pairing with the right partners results in an improved segmentation

performance as opposed to pairing with random partners or simply relying

on image similarity. Chapter 6 introduces the complete approach and also

provides experimental results.

1.1.5 Supervoxel consistent foreground propagation in video

Previous sections gave an overview of my proposed approach for ac-

tively seeking human annotation for segmenting single images or a collection

of images. I will now preview my work on semi-supervised segmentation prop-

agation in videos. Different from the algorithms for segmenting images, a video

segmentation algorithm can directly benefit from the temporal continuity in

video data. This temporal prior facilitates propagation of information (e.g.,

human annotations) through time.

In video, the foreground object segmentation problem consists of iden-

tifying those pixels that belong to the primary object(s) in every frame. A

resulting foreground object segment is a space-time “tube” whose shape may

deform as the object moves over time. In the semi-supervised foreground prop-
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Figure 1.7: Automatic propagation of foreground segmentation in videos from
a single/multiple labeled frame(s). Here we see human drawn segmentation
on a single frame being propagated to all the other frames in the video using
my supervoxel based propagation (Chapter 7) algorithm [57]. Best viewed in
color.

agation task, the goal is to take the foreground object segmentation drawn on

few frames by human annotators and accurately propagate it to the remainder

of the frames (see Figure 1.7).

Graph-based methods are commonly used for propagating foreground

regions in video [6, 36, 118, 135, 141]. The general idea is to decompose each

frame into spatial nodes for a Markov Random Field (MRF), and seek the

foreground-background label assignment that maximizes both appearance con-

sistency with the supplied labeled frame(s) as well as label smoothness in

space and (optionally) time. Despite encouraging results, these methods face

an important technical challenge. In video, reliable foreground segmentation

requires capturing long-range connections as an object moves and evolves in

shape over time. However, current methods restrict the graph connectivity to
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local cliques in space and time, thus offer only a myopic view of consistency

and can be misled by inter-frame optical flow errors.

To alleviate these problems, I propose a foreground propagation ap-

proach using supervoxel higher order potentials [57]. Supervoxels—the space-

time analog of spatial superpixels—provide a bottom-up volumetric segmen-

tation that tends to preserve object boundaries [26, 40, 43, 157, 158]. To lever-

age their broader structure in a graph-based propagation algorithm, the pro-

posed method augments the usual adjacency-based cliques with potentials for

supervoxel-based cliques. These new cliques specify soft preferences to assign

the same label (foreground or background) to superpixel nodes that occupy

the same supervoxel. This allows us to enforce long-range temporal constraints

while propagating segmentations in videos. Chapter 7 introduces the complete

approach and also provides experimental results.

1.1.6 Pixel objectness in images and videos

In the previous section, foreground segmentation in the video was pri-

marily driven by the “video-specific” information which was learned from the

human segmented frame. In this section, I explore the idea of a “generic” pixel

level objectness in the context of image and video segmentation that gener-

alizes across large number of object categories. More specifically, I explore

whether it is possible to learn a model which can assign a score to every pixel

in an image or a video frame measuring its likelihood to be a pixel belonging

to any foreground object. The key intuition lies in the idea that there are
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Figure 1.8: Overview of the generic pixel-level objectness (Chapter 8) in images
and videos. The heatmaps below show the per-pixel objectness scores assigned
to the example image and video frame. The red values reflect high objectness,
the blue reflect low objectness. These non-category-specific pixel objectness
scores provide a strong prior on the foreground objects in images and videos
that can be incorporated in other human-machine collaboration algorithms
presented in this thesis. Best viewed in color.

some inherent properties of an object’s appearance and motion which allow

us to separate it from the background. However, the generic objectness signal

from both appearance and motion is complex. Hand-designing rules which

capture these rich signals and generalize to thousands of object categories is

non-trivial.

Instead, I propose an end-to-end trainable model that draws on the

respective strengths of generic (non-category-specific) object appearance and

motion in a unified framework [55, 56]. Specifically, I develop a novel two-

stream fully convolutional deep segmentation network, where individual streams
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encode generic appearance and motion cues and can be trained to predict per-

pixel objectness maps. For images, naturally we rely only on the appearance.

For videos, we rely both on the appearance derived from the video frame and

its corresponding optical flow (see Figure 1.8). The two streams are fused

in the network to produce a per-pixel objectness map for each frame. This

allows us to learn from both the signals in a unified manner, leading to a

true synergy between appearance and motion for segmenting objects in video.

The per-pixel objectness maps can naturally be thresholded to obtain a binary

foreground-background segmentation as well.

Finally, I also introduce a semi-supervised extension to the generic

pixel-level objectness approach. The key idea here is to combine the respective

strengths of the generic pixel-level objectness with the video specific informa-

tion learned from the human segmented frames. This is especially useful when

there is ambiguity about what exactly is the object of interest or the object

undergoes significant changes across time and propagation alone is not suffi-

cient. This is done by incorporating generic pixel-level objectness output as

additional unaries in my supervoxel-based propagation algorithm, augmenting

the unaries derived from the human annotation. Together, it results in an even

better performance than what can be achieved individually by each method.

Chapter 8 introduces the complete approach and also provides experimental

results.
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1.2 Main Contributions

My thesis makes several contributions in bringing humans and ma-

chines together to effectively and efficiently solve the problem of segmenting

foreground objects in images and videos. In particular,

• a method to actively select the input modality which is best suited for a

given image when using traditional interactive segmentation algorithms

(Chapter 3). This acknowledges that a variable amount of manual effort

is required for different inputs and accounting for it leads to a substantial

savings in human annotation costs.

• a batch-extension of the previous method, which when given a fixed

annotation budget for a group of images, can make a collective deci-

sion depending on each image’s suitability for each annotation modality

(Chapter 3).

• a novel formulation of the interactive image segmentation problem called

Click Carving which allows images to be interactively segmented using

a very simple form of human interaction—point clicks (Chapter 4). It

is much more efficient and requires much less annotation effort than

existing algorithms.

• a joint segmentation propagation method for weakly supervised image

collections (Chapter 5). It gives state-of-the-art results in a pure weakly

supervised setting and can also effectively propagate when a subset of

images is already labeled by humans.

21



• an active selection algorithm, which accounts for influence, diversity,

and uncertainty while making annotation choices for joint segmentation

of weakly supervised image collections (Chapter 5).

• a novel learning-to-rank based algorithm for measuring compatibility

between image pairs for joint segmentation (Chapter 6).

• a semi-supervised segmentation propagation method for videos, which

uses supervoxels to define a higher order potential in order to enforce

long term temporal consistencies in the propagation (Chapter 7).

• an end-to-end trainable two-stream fully convolutional deep segmenta-

tion model which captures the generic notion of pixel-level objectness in

images and videos. This results in a state-of-the-art automatic image

and video object segmentation system (Chapter 8).

• a semi-supervised extension to the two-stream model which combines

its generic pixel level objectness (Chapter 8) with the semi-supervised

supervoxel-based segmentation propagation method (Chapter 7).

Overall my thesis realizes the potential of human-machine collaboration

for the problem of segmenting objects in images and videos. The algorithms

presented in this thesis have many potential real-world applications especially

in enabling the large-scale collection of image and video segmentation anno-

tations much more economically along with improving search, summarization,

high level understanding of scenes, and several aspects of computer graphics.
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Throughout, I test the methods on challenging benchmark datasets and show

that the proposed methods outperform several state-of-the-art methods and

relevant baselines.

In the following chapter, I will discuss the background material and

related work for my thesis.

23



Chapter 2

Related Work

In this chapter, I review the literature and discuss existing techniques

related to the research presented in this thesis. I group them into three main

categories. First, I overview the existing work on segmenting objects in individ-

ual images (Section 2.1). Next, I describe existing methods which work with

weakly supervised image collections to jointly segment the common objects

among them (Section 2.2). Finally, I provide an overview of existing methods

for segmenting objects in video (Section 2.3). In each section, I describe dif-

ferent aspects of the problem and how existing methods try to address them.

Simultaneously, I also discuss important similarities and differences that exist

between my work and existing methods.

2.1 Segmenting objects in individual images

In this section, I review the existing work that tries to address the

problem of object segmentation in individual images. Here, I only consider

those methods which segment a single image at one time. There is no propa-

gation of information across images or videos as we will see in the remaining

two sections. Existing methods which fall under this category occupy a wide
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spectrum. These include: 1) Interactive methods: which require a human-

in-the-loop to provide guidance while segmenting an object of interest, 2)

Fully automatic methods: which aim to segment objects without any hu-

man interaction, and 3) Strongly supervised methods: which require a

large amount of training data and can only segment objects from a predefined

set of categories.

Next, I provide a brief review of the existing methods from these cate-

gories and compare them with my proposed work for actively tailoring human

input (Chapter 3) and also the use of point clicks (Chapter 4) for interactively

segmenting individual images.

2.1.1 Interactive image segmentation

Research on interactive segmentation in images considers how a human

can work in concert with a segmentation algorithm to efficiently identify the

foreground region [9, 13, 45, 66, 82, 100, 119]. Early interactive segmentation

methods include active contours [66] and intelligent scissors [100], where a user

draws loose contours that the system snaps to a nearby object. Alternatively,

a user can indicate some foreground pixels—often with a bounding box or

mouse scribble—and then use graph cuts to optimize pixel label assignments

based on a foreground likelihood and local smoothness prior [13, 119]. Building

on this idea, recent work develops co-segmentation [9], topological priors [82],

shape constraints [45], and simulated human user models [72].

In all prior methods, the user’s annotation tool is fixed. No matter
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what is the input image that needs to be segmented, the annotator uses the

same mode of human interaction for all of them. This is sub-optimal, since

different inputs may have varying degrees of complexity, hence may require

human input at different granularities. In my work (Chapter 3), I show that

the user’s input modality can be tailored to the image to achieve best graph

cut segmentation results with minimal effort. In other words, I show that

depending on the content of the image the mode of human interaction can be

actively chosen, which results in large savings for annotation costs.

Active learning also helps in minimizing the annotation costs by reduc-

ing the amount of labeled examples needed to train a recognition system. Most

active learning systems are tied to a particular classifier of interest and typi-

cally try to get class labels for sequentially selected samples based on how they

reduce category uncertainty. In some such cases, region labels [127, 139, 142–

144] have also been explored. In particular Vijayanarasimhan et al. [143, 144]

also considers different levels of granularity of human annotation to build a

reliable classifier. In contrast, my work in Chapter 3 on adapting the granular-

ity of user interaction depending on the input image is class-independent i.e.,

it is not limited to a fixed set of categories, and it is able to segment arbitrary

images and addresses interactive segmentation, not recognition.

Actively optimizing annotation requests for individual images has also

been studied in various other settings. For instance, in video segmentation,

the most useful frames to annotate are found with tracking uncertainty mea-

sures [141, 145, 146]. In object recognition, a human is asked to click on object
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parts, depending on what seems most informative [147]. In interactive co-

segmentation, the system guides a user to scribble on certain areas of certain

images to reduce foreground uncertainty [9, 148]. Like my work in Chapter 3,

all these methods also try to reduce human effort. However, whereas prior

work predicts which images should be annotated (and possibly where) to min-

imize uncertainty, in my work I predict what strength of annotation will be

sufficient for interactive segmentation to succeed.

The way a user interacts with an interactive segmentation system is

the key behind its performance. While traditional interactive segmentation

methods [9, 13, 45, 66, 82, 100, 119] have progressed a lot over the years, the

underlying premise remains the same. They all require the human to first pro-

vide input, before they can generate any segmentation output. In that sense,

the output segmentation is very tightly coupled with the human input and

thus it requires the human to provide a sufficient amount of data points on

the object for these methods to work. Even my proposed method in Chap-

ter 3 which tailors the input granularity based on the image content relies on

bounding boxes as the fastest mode of human interaction.

However, in reality even faster and simpler modes of human interaction

such as point clicks are available. Only limited work explores click supervision

for image annotation. Clicks on objects in images can remove ambiguity to

help train a convolution neural network (CNN) for semantic segmentation from

weakly labeled images [10], or to spot object instances in images for dataset

collection [89]. Clicks on patches are used to obtain ground truth material
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types in [11]. However for interactive segmentation, the tight coupling between

human input and segmentation output in traditional methods [9, 13, 45, 66, 82,

100, 119] thus far precludes the use of point clicks as an annotation modality.

It will require a large number of point clicks for these existing models to

work reliably, which defeats the purpose of using a simpler mode of human

interaction.

In my work (Chapter 4), I show that simple point clicks can be ef-

fectively used for interactively segmenting objects in images and also video

frames. In my work, I flip the underlying premise that exists in traditional

interactive methods [9, 13, 45, 66, 82, 100, 119], by pre-generating thousands of

possible segmentation outputs and then using the human guidance to quickly

find the most accurate ones. This decoupling between human input and object

segmentation allows for an effective use of point clicks which was not possible

to do in existing methods.

There have been only two prior efforts for using clicks to do interactive

segmentation, and their usage is quite different than ours. In one, a click and

drag user interaction is used to segment objects [114]. A small region is first

selected with a click, then dragged to traverse up in the hierarchy until the

segmentation does not bleed out of the object of interest. In contrast, my

proposed user-interaction is much simpler (jut a few mouse clicks or taps on

the touchscreen) and the boundary clicks that I use are discriminative enough

to quickly filter good segmentations.

In the other, the TouchCut system uses a single touch to segment the
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object using level-set techniques [151]. The object contour is grown from the

initial click made by the user. Strong image boundaries can act as false posi-

tives and restrain the evolution of the object contour to reach object bound-

aries. In contrast, my proposed method does not have this disadvantage and

significantly outperforms [151] in experiments.

2.1.2 Fully automatic image segmentation

Next, I discuss a set of methods which aim to segment objects in im-

ages without any human supervision. Note that these methods are generic in

nature and are expected to work on any object category. This makes it differ-

ent from the class-specific image segmentation methods, which I describe in

the next section. Today there are two main strategies for generic foreground

object segmentation in images: saliency and object proposals. Both strategies

capitalize on properties that can be learned from images and generalize to

unseen objects (e.g., well-defined boundaries, differences with surroundings,

shape cues, etc.).

Saliency methods identify regions likely to capture human attention.

They yield either highly localized attention maps [12, 78, 92, 105] or a complete

segmentation of the prominent object [61, 86, 88, 93, 110, 162, 163]. Saliency

focuses on regions that stand out, which is not the case for all foreground

objects. Alternatively, object proposal methods learn to localize all objects in

an image, regardless of their category [5, 22, 33, 51, 74, 113, 137, 165]. Proposal

methods aim to obtain high recall at the cost of low precision, i.e., they must
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generate a large number of object proposals (typically 1000s) to accurately

cover all objects in an image. This usually involves a multi-stage process:

first bottom-up segments are extracted, then they are scored by their degree

of “objectness”. The ideas is that a downstream processing step, such as an

object detector, can look at only the top scored segments and ignore the rest.

The methods in my proposed work for segmenting objects in images

presented in Chapter 3 and 4 have some key advantages over both these tech-

niques. The interactive nature of my proposed algorithms for segmenting

foreground objects eliminates the need of enforcing these other priors such as

the ones used in saliency methods (i.e., the object stands out from the back-

ground). As long as the human provides the required input, they can segment

any foreground object whether “salient” or not.

For object proposal methods, generating thousands of hypotheses helps

ensure high recall, but at the same time, it makes it difficult to automati-

cally filter out accurate proposals from this large hypothesis set without class-

specific knowledge. This is limiting where only a single hypothesis for a fore-

ground object is desired, which my proposed methods for interactive segmen-

tation provide. In fact, I show that this inherent disadvantage of the region

proposal methods turns out to be an advantage for my point click based inter-

active segmentation method in Chapter 4. Object proposal methods on their

own cannot effectively filter out the accurate segmentations from the noisy

ones. However combining it with my point-click based human interaction re-

sults in a system that can filter out the accurate segmentations efficiently.
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2.1.3 Strongly supervised class-specific methods

Finally, I discuss class-specific segmentation methods which require a

large amount of training data from a pre-defined set of object categories. This

is commonly known as semantic segmentation. It refers to the task of jointly

recognizing and segmenting objects, classifying each pixel into one of k fixed

categories. Prior methods in this area have studied this problem in the con-

text of segmenting objects [126] as well as parsing entire scenes [90, 161]. Re-

cent advances in deep learning have fostered increased attention to this task.

Most deep semantic segmentation models include fully convolutional networks

that apply successive convolutions and pooling layers followed by upsampling

or deconvolution operations in the end to produce pixel-wise segmentation

maps [23, 94, 102, 164].

All these methods are limited to segmenting objects from only those

categories which were present during training. These methods do not general-

ize to other unseen categories of objects. Again, in contrast, since our proposed

methods in Chapter 3 and 4 are interactive in nature, they are not limited to

segmenting a fixed set of object categories and can segment any object based

on the human input.

2.2 Segmenting objects in weakly-supervised image col-
lections

Having discussed the existing methods for segmenting objects in in-

dividual images, I next review the existing work that addresses the problem
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of segmenting objects in weakly supervised image collections, where all im-

ages contain objects from the same category. A common method for utilizing

this weak supervision is to jointly segment the weakly supervised collection,

where images can mutually benefit from each other [2, 25, 30, 64, 67, 121, 122,

124, 140]. Another popular approach is to propagate segmentations from a

subset of human segmented images, which can then benefit the unsegmented

images [44, 122].

Next, I provide a brief review of the existing methods from these cat-

egories and compare them with my proposed work on active image segmen-

tation propagation (Chapter 5) and also predicting compatibility (Chapter 6)

for joint segmentation in weakly supervised image collections.

2.2.1 Joint segmentation of weakly-supervised image collections

Here, I discuss several existing methods which jointly segment an image

collection from a known object category. Early works in this area referred to

this problem as co-segmentation and worked with an assumption that a strong

agreement in the foregrounds of all images exists, i.e., that the images in the

collection contain the same exact object against differing backgrounds [120].

This setting continues to be developed, e.g., for greater efficiency [48] and

multi-image collections with interactive user input [9]. However the models

developed in these methods [9, 48, 120] enforce strong constraints about the

appearance similarities across images. This is a restrictive setting. Typically,

it is more likely to have an image collection that contains objects from the
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same class, but with large variations in shapes, sizes and appearance. This

scenario is well-motivated by keyword image search on the Internet, which

can readily return a set of likely candidates containing a named object, albeit

amidst variable backgrounds and scenes.

More recent weakly supervised methods including the work proposed

in this thesis in Chapter 5 are more suitable for jointly segmenting such a

group of images. They segment the foreground object(s) while exploiting the

fact that all input images contain instances of the same object category to

discover repeated patterns [2, 25, 30, 64, 67, 121, 122, 124, 140].1 Depending on

the method, the output segmentation might be pixel-level masks [2, 64, 67,

121, 124, 140] or bounding boxes [30, 131]. Recent advances include ways to

accommodate noisily labeled inputs [121, 131], multi-class data [64, 67], and

object proposal regions [1, 30, 140]. While most methods use only bottom-up

saliency and pairwise matching to discover the common foreground, some re-

cent work bootstraps an appearance model in an iterative localization-learning

procedure [25, 30].

The joint segmentation algorithm proposed in this thesis (Chapter 5)

builds on this rich body of work. The proposed joint segmentation method uses

object-like regions (instead of pixels [2, 64, 121, 122, 124]) as a building block for

segmentation for scalability and efficient propagation. This along with several

1This class of techniques can also be described as co-segmentation or joint segmentation
or object discovery or co-localization methods; in all cases, a set of related images is used to
discover the common foreground.
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other refinements improves the state-of-the-art when applied even without

any manual foreground labels. At the same time, the proposed algorithm can

further request human annotation on images which are most likely to improve

the segmentation performance by propagating new information. This is a

departure from previous methods: existing weakly supervised methods above

use no human intervention.

2.2.2 Segmentation propagation from human segmented examples

Different from the works discussed in the previous section which oper-

ate without any human input, several methods including my work in Chapter 5

have explored the utility of injecting human input during the joint segmenta-

tion process. Most closely related are methods for segmentation propagation,

which use labeled seeds (human drawn segmentations on some seed images) to

propagate foreground masks to other images in the weakly labeled set [44, 122].

In comparison, my proposed active image segmentation propagation

method (Chapter 5) has two key novel aspects. First, it actively selects which

images should next receive foreground labels from human annotators. In con-

trast, existing methods are either opportunistic (and hence passive) about

the labeled seeds, using only existing labeled data [44], or else select them

in a one-shot manner without reacting to the impact of previously annotated

examples [122]. Second, the stagewise procedure constantly re-evaluates the

impact of new labels, revising the current foreground estimates on all images.

In contrast, Guillaumin et al. [44] assume that propagation will proceed best

34



among the closest semantically related classes in an external object hierarchy

(ImageNet), and Rubinstein et al. [122] assume that propagation will proceed

best among each image’s neighbors in a global image descriptor space.

Traditional active learning also relies on several selection strategies such

as reducing the classifier’s expected error [4, 139, 142] or maximizing the di-

versity among the selected images [17, 32, 49]. However, all such methods are

closely coupled to their classifier of interest, and they aim to find good images

to label by category (even those using regions [127, 139, 144]). In contrast, our

task in is to select images from which segmentation will propagate well, and

the aim of my technique in Chapter 5 is to find good images to annotate with

foreground masks.

2.2.3 Compatibility for joint segmentation

Prior methods assume that all the input images are amenable to be

jointly segmented together. In the strict same-object joint segmentation set-

ting [9, 48, 120], this is assured by manually selecting the input pair (or set).

For example, a designer may supply a set of images to be rotoscoped [120], or

an analyst may gather aligned brain images from which to segment patholo-

gies [48], or a consumer may group a burst of photos at an event (e.g., a soccer

game) into a mini-album [9].

In the weakly supervised setting, the related images often originate

from Internet search for an object’s name. In this case, the majority of

methods assume that all images are mutually amenable to a joint segmen-
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tation [2, 21, 63, 64, 67, 133, 140, 154]. However, the intra-class appearance and

viewpoint variations make this assumption rather strong in practice. Some

methods aim to limit the influence of joint segmentation to closely related

images, whether by selecting nearest neighbors [121, 122] or discovering sub-

category clusters [25]. However in all these cases, this is done on the basis of a

manually defined (i.e., non-learned) image similarity metric. The assumption

is that image similarity alone is sufficient to predict joint segmentation success.

In contrast, Chapter 6 in this thesis proposes an approach which learns the

behavior of the joint segmentation algorithm from the training data generated

directly from the joint segmentation algorithm. It does this by developing a

learning to rank approach which predicts the compatibility of image pairs to

be jointly segmented together.

2.3 Segmenting objects in videos

Having discussed the existing approaches for segmenting objects in in-

dividual images and in weakly supervised image collections, I next review the

existing work that addresses the problem of object segmentation in videos.

This is a well studied problem in computer vision and several existing meth-

ods have tried to address the various challenges involved in segmenting objects

from video. There has been a wide range of methods that have been proposed

for solving this problem including: 1) Unsupervised methods: which try

to segment the video without any human supervision, 2) Interactive meth-

ods: which require a human in the loop to constantly guide a segmentation
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algorithm, 3) Semi-supervised propagation methods: which require some

frames a video to be segmented by humans, which are then propagated to other

unsegmented frames and, 4) Supervised methods: which require training

data to learn segmentation models that can classify each pixel in a video as

object versus background.

Next, I provide a brief review of the existing methods from these cat-

egories and compare them with my proposed work for semi-supervised super-

voxel based video propagation (Chapter 7) and also the proposed end-to-end

learning approach for video segmentation (Chapter 8).

2.3.1 Unsupervised video segmentation

Fully automatic or unsupervised video segmentation methods assume

no human input on the video. First we have the unsupervised methods which

simply segment the videos in coherent space-time tubes. They can be grouped

into two broad categories: region based and tracking based. Region based

supervoxel methods [43, 158] oversegment the video volume into space-time

blobs with cohesive appearance and motion. Others group superpixels using

spectral clustering [40] or novel tracking techniques [16, 138]. Distinct from

the region-based methods, tracking methods use point trajectories to detect

cohesive moving object parts [20, 83]. Any such bottom-up method tends to

preserve object boundaries, but “oversegment” them into multiple parts. Their

goal is to generate mid-level video regions useful for downstream processing,

whereas in this thesis the goal for the proposed methods in Chapters 7 and 8
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is to produce space-time tubes which accurately delineate complete object

boundaries.

Next we have the fully automatic methods that generate thousands of

“object-like” space-time segments [38, 103, 155, 156, 159], typically by learning

the category-independent properties of good regions, and employing some form

of tracking. While useful in accelerating object detection, it is not straightfor-

ward to automatically select the most accurate one when a single hypothesis is

desired. Methods that do produce a single hypothesis [35, 50, 81, 96, 107, 130,

136, 160] strongly rely on motion to identify the foreground objects, either by

seeding appearance models with moving regions or directly reasoning about

occlusion boundaries using optical flow. This limits their capability to segment

static objects in video.

In comparison, the semi-supervised video propagation algorithms pro-

posed in my thesis (Chapters 7 and 8) receive human guidance on a subset of

frames and as output produce a single hypothesis in the form of a space-time

object tube. While they do require human guidance, it enables the propaga-

tion methods to be more accurate than the fully automatic methods which

also makes them useful for video data annotation.

2.3.2 Interactive video segmentation

Interactive methods for video segmentation have also been proposed

in the literature. They typically require a human annotator to be constantly

in the loop to correct the algorithm’s mistakes [7, 87, 116, 125, 149], either by
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monitoring the results closely, or by responding to active queries by the sys-

tem [36, 141, 145] until the video is adequately segmented. While such in-

tensive supervision is warranted for some applications, particularly in graph-

ics [7, 87, 116, 149], it may be overkill for others. The interactive video seg-

mentation methods usually have the advantage of greater precision, but at the

disadvantages of greater human effort and less amenability to crowdsourcing.

Hence in this thesis, I focus on using human guidance for video segmen-

tation without requiring the human to be constantly in the loop monitoring

the algorithm. The video segmentation algorithms developed in this thesis

(Chapters 7 and 8) require the humans to only provide few labeled frames for

initialization and everything else remains automated. No human involvement

is required beyond the initialization part. This is much more scalable from

crowdsourcing perspective. One can simply choose to upload video frames on

crowd platforms to collect human segmentations. Uploading entire videos and

creating interfaces which allow for efficient interactive video segmentation on

such crowd platforms is challenging.

2.3.3 Semi-supervised video segmentation propagation

Semi-supervised propagation methods, which are a focus in this thesis,

accept some manually labeled frames with the foreground region and propa-

gate them to the remaining clip [6, 36, 118, 135, 141]. While differing in their

optimization strategies, most prior methods use the core graph based Markov

Random Field (MRF) structure, with i) unary potentials determined by the la-
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beled foreground’s appearance/motion and ii) pairwise potentials determined

by nodes’ temporal or spatial adjacency. Pixel-based graphs can maintain very

fine boundaries, but suffer from high computational cost and noisy temporal

links due to unreliable flow [6, 141]. Superpixel-based graphs form nodes by

segmenting each frame independently [36, 118, 135]. Compared to their pixel

counterparts, they are much more efficient, less prone to optical flow drift, and

can estimate neighbors’ similarities more robustly due to their greater spatial

extent. Nonetheless, their use of per-frame segments and frame-to-frame flow

links confines them to short range interactions.

In contrast, the key idea in my supervoxel based segmentation propa-

gation algorithm (Chapter 7) is to impose a supervoxel higher order potential

to encourage consistent labels across broad spatio-temporal regions. The pro-

posed approach is inspired by higher order potentials (HOP) for multi-class

static image segmentation [71]. There, multiple over-segmentations are used

to define large spatial cliques in the Robust P n model, capturing a label con-

sistency preference for each image segment’s component pixels. I extend this

idea to handle video foreground propagation with supervoxel label consistency.

Two existing unsupervised methods also incorporate the Robust P n

model for video segmentation, but with important differences from my ap-

proach. In [26], the spatial cliques of [71] are adopted for each frame, and

3-frame temporal cliques are formed via optical flow. The empirical impact is

shown for the former but not the latter, making its benefit unclear. In [138],

the Robust P n model is used to prefer consistent labels in temporally adjacent
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superpixels within 5-frame subsequences. Both prior methods [26, 138] rely on

traditional adjacency criteria among spatial superpixel nodes to define HOP

cliques, and they restrict temporal connections to a short manually fixed win-

dow (3 or 5 frames). In contrast, I propose supervoxel cliques and HOPs that

span space-time regions of variable length. The proposed cliques often span

broader areas in space-time—at times the entire video —making them better

equipped to capture an object’s long term evolution in appearance and shape.

2.3.4 Supervised video segmentation

Until now, I have discussed video segmentation methods which are

either completely unsupervised or require human guidance on the target video

itself (the one that needs to be segmented). In this section, I will discuss

methods which make use of human annotated training data to learn video

segmentation models and can then be applied in an automatic fashion on the

target video.

With the advent of deep learning based techniques, end-to-end learn-

ing from fully supervised training data has become one of the most successful

paradigms for designing computer vision systems. Semantic segmentation net-

works for images have seen rapid advances in recent years and have achieved

a lot of success on several benchmark datasets. State-of-the-art semantic seg-

mentation techniques for images rely on fully convolutional deep learning ar-

chitectures that are end-to-end trainable [23, 94, 102, 164].

Unfortunately, video segmentation has not seen such rapid progress.
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We hypothesize that the lack of large-scale human segmented video segmen-

tation benchmarks is a key bottleneck. Recent video segmentation bench-

marks like Cityscapes [28] are valuable, but 1) it addresses category-specific

segmentation, and 2) thus far methods competing on it process each frame

independently, treating it like multiple image segmentation tasks.2

Unlike all these existing methods, this thesis proposes a two-stream

deep segmentation network which is end-to-end trainable and is capable of

accurately segmenting generic objects in video, whether or not they appear

in training data (Chapter 8). This generalization is achieved by leveraging

existing image classification and segmentation datasets to first build a generic

appearance network. This network, when combined with large scale weakly

labeled video datasets (only bounding boxes), opens a path towards training

deep segmentation models that fuse spatial and temporal cues.

The proposed two-stream object segmentation network is not only generic

but it also combines both appearance and motion in a unified framework.

End to end deep learning for combining motion and appearance in videos has

proven to be useful in several other computer vision tasks such as video classi-

fication [65, 101], action recognition [59, 128], object tracking [85, 95, 150] and

even computation of optical flow [31]. While we take inspiration from these

works, the two-stream network I propose is the first to present a unifying deep

framework for segmenting objects in videos.

2https://www.cityscapes-dataset.com/benchmarks/

42



While the network is capable of segmenting objects in videos in a fully

automatic fashion, it can also benefit from some human guidance at test time.

This is similar to the semi-supervised setup we introduced previously. Since

the human pinpoints the object of interest, existing semi-supervised meth-

ods [6, 36, 57, 98, 111, 118, 135, 141, 153] typically focus more on learning object

appearance from the manual annotations. In contrast, I show that combining

the generic objectness cues from the two-stream network with video specific

appearance learned from manual annotations results in a even better perfor-

mance for video object segmentation.

2.4 Roadmap

Having discussed the related work, I next describe my proposed ap-

proach to address these problems. In the next two chapters, I study the prob-

lem of interactively segmenting objects in images and videos. First, I discuss

the proposed technique for actively making annotation choices in traditional

interactive segmentation methods in Chapter 3. The novel point click based

interactive segmentation algorithm will be discussed in Chapter 4. Next, the

proposed active selection and segmentation propagation algorithm for weakly

supervised image collections will be presented in Chapter 5, followed by an al-

gorithm to predict compatibility for joint segmentation in Chapter 6. The next

two chapters will discuss the proposed methods for video segmentation. This

will include the ideas of supervoxel-based semi-supervised propagation (Chap-

ter 7) and an end-to-end learning approach for generic pixel-level objectness
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in images and videos (Chapter 8). The remaining chapters will conclude the

thesis and also discuss possible future directions.

44



Chapter 3

Interactive image segmentation with active

human input

Traditional interactive segmentation algorithms [13, 66, 100, 119] work

by first requesting the user to indicate the foreground object with some mode

of input. The pixels inside and outside the user-marked boundary are used

to initialize the foreground and background appearance models, respectively.

These appearance models are then used to assign likelihoods at each pixel of it

being a foreground or background. These likelihoods are used to define energy

functions which combine these likelihoods with smoothness priors defined over

pixel neighborhoods. Minimizing these energy functions results in the final

foreground/background segmentation (e.g., using graph cuts [13, 119]). Re-

cent work builds on this basic idea by incorporating it into a co-segmentation

problem [9], or applying topological priors [82] and shape constraints [45].

A common assumption in existing interactive segmentation pipelines

is that the way humans guide the underlying segmentation model is fixed in

advance [9, 13, 45, 66, 82, 100, 119]. However, simply fixing the input modality

leads to a suboptimal tradeoff in human and machine effort. The problem is

that each mode of input requires a different degree of annotator effort. The
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(a) Image (b) Ground Truth (c) Bounding Box (d) Sloppy Contour

Figure 3.1: Interactive segmentation results (shown in red) for three images
using various annotation strengths (marked in green). Note how the most
effective mode of input depends on the image content. The method presented
in this chapter predicts the easiest input modality that will be sufficiently
strong to successfully segment a given image. Best viewed in color.

more elaborate inputs take more manual effort, yet they leave less ambiguity

to the system about which pixels are foreground. At the same time, depending

on its content, an image might be better suited to be segmented by different

modes of human input.

For example, Figure 3.1 shows (a) three images, (b) their ground truth

foreground, and their interactive segmentation results (shown in red) using ei-

ther (c) a bounding box or (d) a freehand outline as input (marked in green).

The flower (top row) is very distinct from its background and has a compact

shape; a bounding box on that image would provide a tight foreground prior,
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and hence a very accurate segmentation with very quick user input. In con-

trast, the cross image (middle row) has a plain background but a complex

shape, making a bounding box insufficient as a prior; the more elaborate free-

hand “sloppy contour” is necessary to account for its intricate shape. Mean-

while, the bird (bottom row) looks similar to the background, causing both

the bounding box and sloppy contour to fail. In that case, a manually drawn

tight polygon may be the best solution.

It is clear that the granularity at which the humans need to supervise

the underlying algorithm is clearly a function of the image content. Simpler ob-

jects with distinct foregrounds and plain backgrounds require minimal amount

of human guidance. On the other hand, more complex objects require more

fine-grained guidance from the user. In this chapter, I outline my proposed

algorithm1 to tailor the human input based on the image content, i.e., we

want to request from the human annotator only sufficient supervision which

can lead to a good segmentation for that image. As we will see, the proposed

algorithm can operate in two different modes:

• Single image mode: Given a single image as input, the algorithm will

ask the human user to provide the easiest (fastest) form of input that

the system expects to be sufficiently strong to do the job.

• Batch mode: Given a batch of images as input together with a bud-

1This work originally was published in International Conference on Computer Vision
(ICCV), 2013 [52].
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get of time that the user is willing to spend guiding the system, the

algorithm can optimize the mix of input types that will maximize total

segmentation accuracy, subject to the budget. This allows, for example,

the system to request a tight polygon on one very difficult image, sloppy

contours on three moderately difficult ones, and bounding boxes on the

remaining images.

To this end, I first define the annotation modes and interactive segmen-

tation model my method targets (Sec. 3.1). Then, I define features indicative

of image difficulty and learn how they relate to segmentation quality for each

annotation mode (Sec. 3.2). Given a novel image, I forecast the relative suc-

cess of each modality (Sec. 3.3). This allows my method to select the modality

that is sufficient for an individual image. Finally, I propose a more involved

optimization strategy for the case where a batch of images must be segmented

in a given time budget (Sec. 3.4). The remaining sections in the chapter then

present detailed experimental results and comparisons with other state-of-the-

art methods.

3.1 Interactive segmentation model

I first discuss the input modalities and the segmentation model that

my proposed method targets. My approach chooses from three annotation

modalities, as depicted in Figure 3.2:
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(a) Bounding box (b) Sloppy contour (c) Tight polygon

Figure 3.2: Possible modes of annotation

1. Bounding box: The annotator provides a tight bounding box around

the foreground objects. This is typically the fastest input modality.

2. Sloppy contour: The annotator draws a rough contour surrounding the

foreground. This gives a tighter boundary than a box (i.e., encompassing

fewer background pixels) and offers cues about the object shape. It

typically takes longer.

3. Tight polygon: The annotator draws a tight polygon along the fore-

ground boundaries. Tight polygon is equated with perfect segmentation

accuracy. This is the slowest modality.

All three are intuitive and well-used tools. My method extends naturally to

handle other modalities where a user specifies foreground pixels (e.g., scrib-

bles).

No matter the annotation mode, the pixels inside and outside the user-

marked boundary are used to initialize the foreground and background mod-

els, respectively. Specifically, they are used to construct two Gaussian mixture

models in RGB color space, Gfg and Gbg. Then standard graph-cut based
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interactive segmentation [13, 119] is applied with the mixture models as like-

lihood functions. Each image pixel is a node, and edges connect neighbor-

ing pixels. The objective is to assign a binary foreground/background label

yp ∈ {1, 0} to each pixel p so as to minimize the total energy of all labels L:

E(L) =
∑
p

Ap(yp) +
∑
p,q∈N

Sp,q

(
yp, yq), (3.1)

where Ap(yp) = − logP (Fp|Gyp) is the unary likelihood term indicating the

cost of assigning a pixel as foreground/background, and Fp denotes the RGB

color for pixel p. The term Sp,q(yp, yq) = δ(yp 6= yq) exp(−β‖Fp − Fq‖) is a

standard smoothness prior that penalizes assigning different labels to neigh-

boring pixels that are similar in appearance, where β is a scaling parameter

and N denotes a 4-connected neighborhood.

I use the algorithm of [15] to minimize Eqn. 3.1, and use the GrabCut

idea of iteratively refining the likelihood functions and the label estimates [119].

3.2 Learning segmentation difficulty per modality

Having defined the annotation choices and the basic engine for segmen-

tations, I can now explain my algorithm’s training phase. The main idea is

to train a discriminative classifier that takes an image as input, and predicts

whether a given annotation modality will be successful once passed to the in-

teractive graph cuts solver above. In other words, one classifier will decide if

an image looks “easy” or “difficult” to segment with a bounding box, another

classifier will decide if it looks “easy” or “difficult” with a sloppy contour.
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To compose the labeled training set, we require images with ground

truth foreground masks. For each training example, we want to see how it

would behave with each user input mode. For the bounding box case, we

simply generate the bounding box that tightly fits the true foreground area.

For the sloppy contour case, we dilate the true mask by 20 pixels to simu-

late a coarse human-drawn boundary.2 After running graph cuts (optimizing

Eqn. 3.1) for each one in turn, we obtain two estimated foreground masks per

training image: fgbox and fgcon.

These masks are used to extract a series of features (defined next),

which are then used to train two Support Vector Machine (SVM) based clas-

sifiers. Let O denote the normalized overlap between an estimated mask and

the true foreground. Let Ōbox and Ōcon denote the median overlap among all

training images for the two modes. The ground truth label on an image is

positive (“easy”, “successful”) for an annotation modality x if O > Ōx. That

is, the image is easy for that particular form of user input if its accuracy is

better than at least half of the examples.3

Next I define features that reveal image difficulty. Graph cut segmen-

tation performance is directly related to the degree of separation between the

foreground and background regions. It tends to fail if the two are similar in

2In a user study, I find these masks are a good proxy; on average, they overlap with
actual hand-drawn contours by 84%.

3While a regression model would also be a reasonable choice here, I found classification
more effective in practice, likely because of the large spread in the overlap scores obtained
through graph cuts segmentation.
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appearance, or if the foreground object has a complex composition. Further-

more, the notion of separability is tied to the form of user input. For example,

a bounding box input can fail even for an object that is very distinct from

its background if it contains many background pixels. The features take these

factors into account.

Let IFG be an estimated foreground (as specified by either mask fgbox

or fgcon in a training image), and let IBG denote its complement. I define the

following features:

Color separability: Since the segmentation model depends on foreground

and background appearance, dissimilarity measures between them is computed

and used as a feature. The χ2 distance between the color histograms computed

from IFG and IBG in RGB (16 bins per channel) and Lab (21 bins per channel)

color space is recorded. The local color dissimilarity is also considered by

computing the χ2 distance between the RGB color histogram from IFG and

from a small 40-pixel region around IFG. This captures how distinct the region

is from its neighboring pixels. Finally, the KL-divergence between Gaussian

mixture models estimated with IFG and IBG is also used as a feature.

Edge complexity: We expect edges to reflect the complexity of a foreground

object. For this, a 5-bin edge orientation histogram from IFG is recorded. It

is done only for the foreground, as we do not want the annotation choice to

be affected by background complexity. Next, as a measure of image detail,

the sum of gradient magnitudes for IFG and IBG are computed, normalized
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by their areas. The ratio between foreground and background image detail is

used as a feature.

Label uncertainty: The next feature directly captures how uncertain the

segmentation result is. For this, the dynamic graph cuts approach proposed

in [73] to compute the min-marginal energies associated with each pixel’s graph

cut label assignment is used. The energies are mapped to uncertainty by

computing the change in min marginal energy when a pixel is constrained to

take the non-optimal label, and record a 5-bin histogram of the uncertainty

values within IFG. Intuitively, an easy segmentation will have mostly labels

with low uncertainty, and vice versa.

Boundary alignment and object coherence: We expect easy segments

to align well with strong image boundaries. To estimate the extent of align-

ment, image is first divided into superpixels [37]. For every superpixel that

lies on the boundary between IFG and IBG, the fraction of its area that lies

inside IFG is noted. Its average across all superpixels is used as a feature.

Number of connected components in the resulting segmentation are also used

as a measure of how coherent the object is.

Altogether, this leads to 17 features: four for color separability, six for

edge complexity, five for label uncertainty, and two for boundary alignment

and coherence. I stress that all features are object- and dataset-independent.

This is important so that the algorithm can learn the abstract properties

that reflect segmentation difficulty, as opposed to the specific appearance of
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previously seen objects that were difficult to segment.

3.3 Predicting difficulty on novel images

Given a novel image, they system must predict which of the annota-

tion modes will be successful. To do so, it needs a coarse estimate of the

foreground in order to compute the features above. I use a four step pro-

cess. First, a salient object detector is applied that outputs a pixel-wise bi-

nary saliency map [93]. Second, the saliency map is refined with “superpixel

smoothing”, assigning the foreground label to each superpixel that overlaps a

salient region by more than 50%. This yields a more coherent estimate aligned

with strong image boundaries. Third, if we have multiple input images sim-

ilar in appearance (i.e., the co-segmentation case), each superpixel is further

reclassified using an SVM trained with superpixel instances originating in the

current foreground-background masks. Finally, a bounding box and a sloppy

contour (by dilation) are automatically generated, and then we run graph cuts

to get the estimated masks for either modality. These estimates are used for

IFG (and their complements for IBG) to compute the features defined above.

While often an image has a primary foreground object of interest, my method

(like any graph cuts formulation) can accommodate foregrounds consisting of

multiple disconnected regions.

The foreground estimate in a test image need only give a rough place-

ment of where the user might put the bounding box or sloppy contour. Indeed,

the whole purpose of this work is to get the necessary guidance from a user.
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Nonetheless, the estimates must be better than chance to ensure meaningful

features. I find the saliency-based initializations4 are a reasonable proxy (over-

lapping 47-71% on average for our datasets), though in no way replace the real

human input that we will seek after applying my method.

Now the difficulty classifiers are applied to the test image. Recall that

to properly balance effort and quality, the objective is to predict which mode

is sufficiently strong. Always requesting tight polygons is sure to yield accu-

rate results, but will waste human effort when the image content is “easy”.

Similarly, always requesting a bounding box is sure to be fast, but will produce

lousy results when the image is too “hard”. Therefore, if given a single image

as input, the system uses a cascade to request the fastest annotation that is

likely to succeed. That is, it shows the annotator a bounding box tool if the

bounding box classifier predicts “easy”. If not, it shows the sloppy contour

tool if its classifier predicts “easy”. If not, the system shows the user the tight

polygon tool.

3.4 Annotation choices under budget constraints

In an alternative usage scenario, my system accepts a batch of images

and a budget of annotation time as input. The objective is to select the optimal

annotation tool for each image that will maximize total predicted accuracy,

subject to the constraint that annotation cost must not exceed the budget.

4I also tried to use the saliency based masks during training, but found that training
with ground-truth masks was more robust.
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This is a very practical scenario. For example, today’s data collection efforts

often entail posting annotation jobs to a crowdsourcing service like Mechanical

Turk; a researcher would like to state how much money (i.e., worker time) they

are willing to spend, and get the best possible segmentations in return.

For a high budget, a good choice may be tight polygons on all of the

hardest images, and sloppy contours on the rest. For a low budget, it might be

bounding boxes on all but the most difficult cases, etc. Rather than hand code

heuristics to capture such intuitions, I propose to automatically optimize the

selection. Formulating the problem is possible since my approach explicitly

accounts for the expected success/failure of a particular kind of user input for

a given image.

Suppose we have n images to segment, and a budget of B, which could

be specified in minutes or dollars. Let pbk and pck denote the probability of

successful interactive segmentation for image k with a bounding box or sloppy

contour, as predicted by my model. The easy/difficult classifier outputs are

mapped to probabilities of success using Platt’s method. Let ppk denote the

probability of success when using a tight polygon; by definition, ppk = 1. Let

x = [xb1, x
c
1, x

p
1, . . . , x

b
n, x

c
n, x

p
n] be an indicator vector with three entries for each

image, reflecting the three possible annotation modalities one could apply to

it. That is, xbk = 1 would signify that image k should be annotated with

a bounding box. Let c = [cb1, c
c
1, c

p
1, . . . , c

b
n, c

c
n, c

p
n] be a cost vector, where cak

denotes the cost associated with annotating image k with annotation type a,

specified in the same units as B. That is, cbk = 7 means it will take 7 sec to
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draw a bounding box on image k.

I formulate the following objective to solve for the best batch of suffi-

ciently strong annotations:

x∗ = arg max
x

n∑
k=1

pbkx
b
k + pckx

c
k + ppkx

p
k, (3.2)

s.t. cTx ≤ B,

xbk + xck + xpk = 1, ∀k = 1, . . . , n,

xbk, x
c
k, x

p
k ∈ {0, 1}, ∀k = 1, . . . , n.

The objective says we want to choose the modality per image that will

maximize the predicted accuracy. The first constraint enforces the budget,

the second ensures we choose only one modality per image, and the third re-

stricts the indicator entries to be binary. The objective is maximized using a

linear programming (LP) based branch and bound method for solving integer

programs, which finds the optimal integer solution by solving a series of suc-

cessive LP-relaxation problems. It takes less than a minute to solve for about

500 images and 70 budget values.

While my approach supports image-specific annotation costs ck, the

biggest factor in cost is which annotation type is used. Therefore, cbk, cck and

cpk are each assumed to be constant for all images k, based on real user time

data. One could optionally plug in fine-grained cost predictions per image

when available, e.g., to reflect that high curvature contours are more expensive

than smooth ones.

57



Figure 3.3: Overview of interactive image segmentation datasets. Best viewed
in color.

3.5 Results

In this section, I present the results on different interactive image seg-

mentation baselines and also compare with several state-of-the-art methods.

3.5.1 Datasets and baselines

Datasets: The proposed method is evaluated on three public datasets (see

Figure 3.3) that provide pixel-level labels:

1. Interactive Image Segmentation (IIS) [45] consists of 151 unrelated

images with complex shapes and appearance;
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2. MSRC contains 591 images, and the multi-class annotations [97] were

converted to foreground-background labels by treating the main ob-

ject(s) (cow, flowers, etc.) as foreground. The same object class was

never allowed to appear in both the training and test sets, to prevent

my method from exploiting class-specific information.

3. CMU-Cornell iCoseg [9] contains 643 images divided into 38 groups

with similar foreground appearance, allowing us to demonstrate my

method in the optional co-segmentation setting.

Baselines: The proposed method is compared to the following baselines and

other state-of-the-art methods:

1. Otsu: [104] finds the optimal grayscale threshold that minimizes the

intra-class variance between foreground and background. To use it to es-

timate foreground-background separability, the inter -class variance (at

the optimal threshold) is computed and normalized by total variance.

Higher values indicate higher separability, and hence “easier” segmenta-

tion.

2. Effort Prediction: [144] predicts whether an image will be easy or hard

for a human to segment, using features indicative of image complexity.

I use the authors’ public code. This is a state-of-the-art method for

estimating image difficulty.
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3. Global Features: I train two SVMs (one for bounding box, one for con-

tours) to predict if an image is easy based on a 12-bin color histogram,

color variance, and the separability score from [104]. This baseline illus-

trates the importance of the proposed features in capturing the estimated

foreground’s separation from background.

4. GT-Input: uses the ground-truth box/contour masks as input to my

method, showing the impact of my features in the absence of errors in

the saliency step.

5. Random: randomly assigns a confidence value to each modality in the

budgeted annotation results.

Otsu and Effort Prediction use the same function for both boxes and

contours, since they cannot reason about the different modalities. Note that

methods for active interactive (co-)segmentation [9, 148] address a different

problem, and are not comparable. In particular, they do not predict image

difficulty, and they assume a human repeatedly gives feedback on multiple

images with the same foreground.

All classifiers are linear SVMs, and the parameters are chosen by cross-

validation. I quantify segmentation accuracy with the standard overlap score

(P∩GT
P∪GT

) between the predicted and ground truth masks P and GT .

60



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r
a
te

MSRC (bounding box)

Otsu

Effort Pred. 

Global Features

Ours

GT Input

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r
a
te

iCoseg (bounding box)

Otsu

Effort Pred. 

Global Features

Ours

GT Input

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r
a
te

IIS (bounding box)

Otsu

Effort Pred. 

Global Features

Ours

GT−Input

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r
a
te

Cross dataset (bounding box)

Otsu

Effort Pred.

Global Features

Ours

GT Input

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r
a
te

MSRC (sloppy contour)

Otsu

Effort Pred. 

Global Features

Ours

GT Input

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r
a
te

iCoseg (sloppy contour)

Otsu

Effort Pred. 

Global Features

Ours

GT Input

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r
a
te

IIS (sloppy contour)

Otsu

Effort Pred. 

Global Features

Ours

GT−Input

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r
a
te

Cross dataset (sloppy contour)

Otsu

Effort Pred. 

Global Features

Ours

GT Input

Figure 3.4: Difficulty prediction accuracy for each dataset (first three columns)
and cross-dataset experiments (last column). The proposed method outper-
forms all baselines including Otsu [104], Global Features and Effort Predic-
tion [144].

3.5.2 Predicting difficulty per modality

First we see how well all methods predict the success of each annotation

modality. I test both in a dataset-specific and cross-dataset manner. For the

former, I test in a leave-one-out (IIS, MSRC) or leave-one-group-out (iCoseg)

fashion. For the latter, I test in a leave-one-dataset-out fashion. I use each

method’s confidence on the test images to compute ROC curves.

Figure 3.4 shows the results. My approach consistently performs well

across all datasets, while none of the baselines has uniform performance (e.g.,

Otsu beats other baselines on MSRC, but fails badly on IIS). On MSRC and

iCoseg, my approach significantly outperforms all the baselines, including the

state-of-the-art Effort Prediction [144]. On IIS, it is again better for bounding

boxes, but Global Features is competitive on sloppy contours. I attribute
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Box or Sloppy contour sufficient Sloppy contour sufficient Tight polygon required

Success cases

Failure cases

Figure 3.5: Qualitative results: Left: Example images which can be suc-
cessfully segmented with both bounding box and sloppy contour annotations.
Middle: Example images for which segmentation with bounding box input
fails but sloppy contour is successful. Right: Example images for which both
bounding box and sloppy contour fails. Best viewed in color.

this to the complex composition of certain images in IIS that makes saliency

detection fail.

In the even more challenging cross-dataset setting (Fig. 3.4, right col-

umn), the advantage of my method remains steady. This is a key result.

It shows that the proposed method is learning which generic cues indicate

if a modality will succeed—not some idiosyncrasies of the particular objects

or cameras used in the datasets. Whereas the Global Features and Effort

Prediction [144] methods learn from the holistic image content, my method

specifically learns how foreground-background separability influences graph

cuts segmentation. Analyzing the linear SVM weights, I find label uncertainty,

boundary alignment, and χ2 color distance are the most useful features. The

GT-Input result underscores the full power of the proposed features.
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Figure 3.5 shows some typical success and failure cases. For the left-

most block of images, my method predicts a bounding box or contour would

be sufficient. These images usually have uniform backgrounds, and distinct,

compact foreground regions, which are easy to tightly capture with a box

(e.g., flower, cows). For the center block, my method predicts a bounding

box would fail, but a sloppy contour would be sufficient. These images usually

have objects with complex shapes, for which even a tight box can overlap many

background pixels (e.g., Christ the Redeemer, Taj Mahal). For the rightmost

block, my method predicts neither a box or contour is sufficient. These im-

ages contain objects with intricate shape (e.g., bicycle) or high similarity to

background (e.g., elephant, bird). Notably, the same object can look easy

or difficult. For example, the skaters in the left block are close together and

seem easy to annotate with a box, while the skaters in the right block are far

apart and tight polygons are needed to extract their limbs. This emphasizes

the object-independence of my method; its predictions truly depend on the

complexity of the image.

Failures can occur if the salient region detection fails drastically (e.g.,

in the person image on right, the salient white shirt leads the method to think

the image looks easy). It can also fail by overestimating the difficulty of images

with low color separability (e.g., shadows in Stonehenge and white pixels by

statues in left group), suggesting a more refined edge detector could help.
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3.5.3 Annotation choices to meet a budget

Next I evaluate my idea for optimizing requests to meet a budget. I

apply my method and the baselines to estimate the probability that each

modality will succeed on each image. Then, for each method, the budget

solution defined in Sec. 3.4 is used to decide which image should get which

modality, such that total annotation time will not exceed the budget. For the

cost of each modality in c, I use the average time required by the 101 users in

my user study: 7 sec for bounding box, 20 sec for sloppy contour, 54 sec for

tight polygon. If the solution says to get a box or contour on an image, I apply

graph cuts with the selected modality (Sec. 3.1). If the solution says to get

a tight polygon, I simply use the dataset ground truth, since it was obtained

with that tool. The final accuracy is the overlap in the estimated and ground

truth foregrounds over all images.

Figure 3.6 plots the results as a function of budget size. The budget

values range from the minimum possible (bounding boxes for all images) to

the maximum possible (tight polygons for all images). The proposed method

consistently selects the modalities that best use annotation resources: at al-

most every budget point, it achieves the highest accuracy.5 This means that

the method saves substantial human time. For example, in the cross-dataset

result on 1,351 images, the best baseline needs 2.25 hours more annotation

effort than my method does to obtain 90% average overlap.

5By definition, all methods yield the same solution for the two extremes, and hence the
same accuracy.
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Figure 3.6: Choosing annotation modalities to meet a budget. The proposed
method outperforms all baselines including Random Selection, Otsu [104],
Global Features and Effort Prediction [144].

What choices does my method typically make? I find that as the budget

increases, the bounding box requests decrease. The number of sloppy contour

requests increases at first, then starts decreasing after a certain budget, making

way for more images to be annotated with a tight polygon. For images where

either a box or contour is likely to succeed, my method tends to prefer a box

so that it can get a tight polygon for more images within the budget.
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Object
Avg. overlap (%)

Time saved (%)
All tight Ours

Flower 65.09 65.60 21.2 min (73%)
Car 60.34 60.29 3.9 min (15%)
Cow 72.90 66.53 9.2 min (68%)
Cat 51.79 46.56 13.7 min (23%)
Boat 51.08 50.77 1.4 min (10%)
Sheep 75.90 75.59 17.2 min (64%)

Table 3.1: Accuracy of a recognition system trained using our method and
the baseline. It also shows the amount of annotator time which was saved
in preparing the training images using my method.

3.5.4 Application to recognition

To further illustrate the practical impact of my approach, I next apply

it to train a recognition system for the MSRC recognition challenge [97]. Sup-

pose that we are given a set of images known to contain an object category

of interest amidst a cluttered background. The goal is to learn a classifier

that can differentiate object versus non-object regions. Rather than ask an

annotator to give tight polygons on each training image—the default choice

for strongly supervised recognition systems—I apply my cascaded modality

selection. Meanwhile, the baseline approach simply gets a tight polygon on

each of the images.

The resulting segmented images from either method are used to train

a linear SVM classifier that can predict whether a new image contains the

object or not. I evaluate using leave-one-out cross validation per class, and

score accuracy by normalized overlap with ground truth. Dense SIFT features
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sampled on a regular grid with 30 pixels spacing are extracted, and clustered

into 20 visual words. Each image is divided into regions using [37], and each

region is represented with a histogram of visual words. Each region in a

training image is assigned a label based on either the interactive segmentation

result predicted to be sufficient (for my method) or the tight polygon ground

truth only (for the baseline). I train SVMs with the histograms from the

resulting foreground object regions in the training examples. At test time,

each region in the image is classified as foreground or background to localize

the object.

Table 3.1 shows the results. My approach substantially reduces the

total annotation time required, yet its accuracy on novel images is still very

competitive with the method that gets perfect tight polygons on all images.

3.5.5 User study

Finally, I conduct a user study with Amazon Mechanical Turk workers.

I randomly select one third of the images from each dataset to make a diverse

pool of 420 images. I present users with the necessary tools to do each modal-

ity, and time them as they work on each image. If an object has multiple

foreground objects, they must annotate each one. I collect responses from 5

users for each annotation mode per image, then record the median time spent.

In total, I obtain 2,100 responses per modality, from 101 unique users.

Figure 3.7 (right) shows example user annotations. The most variance

is seen among the sloppy contour inputs, since some users are more “sloppy”
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Figure 3.7: Left: Annotation choices under a budget with real user data.
The proposed method outperforms all baselines including Random Selec-
tion, Otsu [104], Global Features and Effort Prediction [144]. Right: Ex-
ample user annotations for bounding box (top), sloppy contour (middle),
and tight polygon (bottom).

than others. Still, as expected, sloppy contours typically only improve inter-

active segmentation results (85.5% average overlap accuracy) compared to the

faster bounding boxes (82.1% average overlap accuracy).

Figure 3.7 (left) shows the budgeted annotation results with real user

data. The plot is like Figure 3.6, only here 1) The real users’ boxes/contours

are fed to the graph cuts engine, rather than simulate it from ground truth

masks, and 2) The users’ per-image annotation time is incurred at test time

(on x-axis). Across all budgets, my method allocates effort more wisely, and

it even narrows the gap with the GT-Input. This result confirms that even

though the ultimate annotation time may vary not only per modality, but also

per image, using a fixed cost per modality during prediction is sufficient to get

good savings. Overall, this large-scale user study is promising evidence that

by reasoning about the expected success of different annotation modalities,

one can use valuable annotator effort much more efficiently.

68



3.6 Conclusion

In conclusion, this chapter proposed a method to predict sufficient an-

notation strength required for interactively segmenting an image. The pro-

posed method can work on single images and can also jointly optimize the

decision for a collection of images. Extensive experiments including a user

study show that carefully tailoring human input based on the image content

can lead to substantial savings in human annotation effort.

The method proposed in this chapter assumed a fixed underlying seg-

mentation model i.e., graph cuts. However, several other forms of interactive

segmentation algorithms (e.g., higher order potentials, geodesic distance trans-

forms etc.) exist in the literature. While the overall idea of predicting sufficient

annotation strength is fairly generic, how well the current training procedure

generalizes to these other algorithms remains to be explored. Training sep-

arate models for different interactive segmentation algorithms will allow the

system to learn the nuances of different algorithms and will make it more

widely applicable.

Also, in its current form the method makes another key assumption—it

only selects one modality per image; however its possible to relax this assump-

tion by progressively increasing the granularity of the input for a particular

image depending on the annotation budget and also the quality of the seg-

mentation output generated by the currently chosen input modality.

Finally, it might be possible that a fully automatic segmentation algo-
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rithm itself might produce a high quality segmentation for a given image [46].

No human guidance may be required in such cases. The method currently

does not handle this case; an extension which first predicts whether human

interaction is required at all for a given image and requests sufficient input

modality only if needed can lead to further reduction in annotation costs.

In summary, this chapter focused on optimizing the modality requested

from a human annotator for a given input image using graph cuts based inter-

active segmentation algorithm. In the next chapter I will turn my attention to

the formulation of the interactive segmentation engine itself. I will present a

new formulation for interactive segmentation that requires only simple point

clicks to accurately segment objects in images and videos.
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Chapter 4

Interactive image and video segmentation

with point clicks

In the previous chapter, I demonstrated that its possible to optimize

for the granularity of human input required to accurately segment an image

using traditional interactive segmentation models. However there are two fun-

damental issues with the existing interactive segmentation algorithms:

1. Existing methods largely rely on the tried-and-true interaction modes

used for image labeling; namely, the user draws a bounding box or an

outline around the object of interest [13, 66, 100, 119]. These interactions

are still very involved and require a substantial amount of user effort.

2. The output segmentations are very tightly coupled with the user inter-

action. It is essential to have a good number of pixels labeled via human

input to learn sufficiently good appearance models for foreground and

background regions. Only then we can expect to achieve good segmen-

tation results [52].

Regardless of the exact input modality, the common assumption in

traditional methods is to get the user’s input first, and then generate a seg-

mentation hypothesis thereafter [9, 13, 45, 66, 82, 100, 119]. The tight coupling
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between user input and segmentation output makes it difficult to incorporate a

simpler form of human interaction i.e., point clicks within these models. Clicks,

largely unexplored for interactive segmentation, are an attractive input modal-

ity due to their ease, speed, and intuitive nature (e.g., with a touch screen the

user may simply point a finger) [10, 58, 114, 151]. However they carry very lit-

tle information about the appearance of the object or background since only

a single pixel is labeled via a click.

In this chapter, I propose a novel formulation1 of the interactive image

segmentation problem called Click Carving which enables the use of simple

point clicks to perform interactive segmentation. The key idea behind Click

Carving is to reverse the standard flow of information that exists in traditional

interactive segmentation methods. Instead of waiting for the human to give

some input to generate any segmentation output, the Click Carving algorithm

takes the lead by first generating thousands of plausible segmentations for a

given image automatically. Among these thousands of segmentation outputs,

at least a few should be accurate with high probability. The role of the user

is to then efficiently pick out the best segmentation from this pool.

I will show that this indeed can be achieved through a voting algorithm,

which collects user votes on object boundaries via point clicks. These votes

are then used to re-rank the plausible hypotheses and user can pick the most

accurate one once satisfied. I show that my proposed Click Carving algorithm

1This work originally was published in AAAI Conference on Human Computation and
Crowdsourcing (HCOMP), 2016 [58].
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results in large savings in annotation effort and often only requires a couple

of clicks to obtain accurate segmentation. In experiments on six datasets we

tested, only 2-4 clicks are typically required to accurately segment the object

of interest. Note that the novel idea behind Click Carving is not so much

about the “clicking” interface itself; rather it centers around the idea of simple

point supervision as a sufficient cue to perform semi-automatic segmentation

and the carving backend that efficiently discerns the most reliable proposals.

Aside from testing the approach with real users, I have also developed

several simulated user clicking models in order to systematically analyze the

relative merits of different clicking strategies. For example, is it more effective

to click in the object center, or around its perimeter? How should multiple

clicks be spaced? Is it advantageous to place clicks in reaction to where the

system currently has the greatest errors? One interesting outcome of this study

is that the behavior one might assume as a default—clicking in the object’s

interior [10, 151]—is much less effective than clicking on its boundaries. I

show that boundary clicks are better able to discriminate between good and

bad object proposal regions.

I also show that Click Carving can be effectively used to segment videos

as well. This is achieved by first segmenting a video frame using Click Carv-

ing and then combining with my video segmentation propagation algorithm

(Chapter 7). Existing methods also follow a similar process where the first

frame is segmented by a human followed by a propagation step [6, 36, 57, 118,

135, 141]. In all these methods, the initial frame is either segmented manually

73



or using traditional interactive methods [13, 66, 100, 119] which are much more

expensive. In contrast, the proposed method is able to segment the initial

frame using simple point clicks, resulting in a substantial savings in annota-

tion costs for collecting spatio-temporal annotations for videos. Because of

the ease with which this framework can assist even non-experts in making

high quality annotations, it has great promise for scaling up image and video

segmentation.

To this end, I first define the technique we use to automatically gener-

ate thousands of segmentation hypotheses (Sec. 4.1) also known as foreground

region proposals. Then, I define the details of my proposed Click Carving

interactive segmentation algorithm (Sec. 4.2). I then discuss the various click-

ing strategies including details of several simulated clicking algorithms which

were used for detailed experimental evaluation (Sec. 4.3). In the case of a

video frame, after segmenting it using Click Carving, the output needs to be

propagated to all other frames of the video to obtain a complete video segmen-

tation. For this, I make use of my supervoxel-propagation algorithm which I

briefly refer to in Sec. 4.4. The complete discussion of the propagation algo-

rithm is postponed till Chapter 7. The remaining sections in this chapter then

present detailed experimental results and comparisons with other state-of-the-

art methods.
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(a) Video Frame

(b) Static Boundaries (c) Static Proposals (d) Motion Boundaries (e) Motion Proposals

Figure 4.1: Generation of object region proposals using both static and dynamic
cues in a video frame. Best viewed in color.

4.1 Generating foreground region proposals

Existing interactive segmentation methods rely on human input (a

bounding box, contour, or scribble) at the onset to generate results [9, 13,

45, 66, 82, 100, 119]. The key idea behind my Click Carving approach is to flip

this process. Instead of the human annotator providing an input around the

object of interest, the system generates many plausible segmentation mask

hypotheses and the annotator efficiently navigates to the best ones with point

clicks.

Specifically, I use state-of-the-art region proposal generation algorithms

to generate 1000s of possible foreground segmentations for a given image or

a video frame. As discussed in Chapter 2, region proposal methods aim to

obtain high recall at the cost of low precision. Even though this guarantees

that at least a few of these segmentations will be of good quality, it is difficult

to filter out the best ones automatically with existing techniques.
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To generate accurate region proposals, I use the multiscale combinato-

rial grouping (MCG) algorithm [5]. The original algorithm uses image bound-

aries to obtain a hierarchical segmentation, followed by a grouping procedure

to obtain region-based foreground object proposals. In the case of static im-

ages, we use the exact algorithm from [5] which uses static image boundaries

to generate foreground region proposals. However, when Click Carving is em-

ployed to segment a video frame, both static and motion boundaries are used

to generate foreground region proposals. This is very useful for videos, where

due to factors like motion blur etc., static image boundaries are not very re-

liable in many cases. On the other hand, optical flow provides a strong cue

about the objects contours while the object is in motion. Hence also using

motion boundaries [152] to generate per-frame motion region proposals us-

ing MCG is really helpful. The two sources are complementary in nature: for

static objects, the per-frame region proposals obtained using static boundaries

will be more accurate, and vice versa.

Figure 4.1 illustrates this with an example. Both the person and bike

(Figure 4.1a) are in motion. As a result, the static boundaries are weaker

(Figure 4.1b). Figure 4.1c shows the best static proposal for each object; the

proposal quality for the bike is very poor. On the other hand, the motion

boundaries (Figure 4.1d) are much stronger and result in accurate proposals

for both the person and the bike (Figure 4.1e).

In summary, given a video frame, a set of foreground region proposals

(M) is generated for it by taking the union between the static region proposals
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(Mstatic) and motion region proposals (Mmotion), i.e., M = {Mstatic∪Mmotion}.

For static images only static region proposals are computed i.e., M = {Mstatic}.

On average, we obtain a total of about 2000 proposals per image or video

frame, resulting in a very high overall recall. In what follows, I explain how

Click Carving allows a user to efficiently navigate to the best proposal among

these thousands of candidates.

4.2 Click Carving for discovering an object mask

The region proposal step yields a large set of segmentation hypotheses

(1000s), out of which only a few are very accurate object segmentations. A

naive approach that asks an annotator to manually scan through all proposals

is both tedious and inefficient. I now explain how my Click Carving algorithm

effectively and very quickly identifies the quality segmentations. I show that

within a few clicks, it is possible to obtain a very high quality segmentation of

the desired object of interest.

At a high level, my Click Carving algorithm converts the user clicks into

votes cast for the underlying region proposals. The user initiates the algorithm

by clicking somewhere on the boundary of the object of interest. This click

casts a vote for all the proposals whose boundaries also (nearly) intersect with

the user click. Using these votes, the underlying region proposals are re-ranked

and the user is presented with the top-k proposals having the highest votes.

This process of clicking and re-ranking iterates. At any time, the user

can choose any of the top-k as the final segmentation if he/she is satisfied, or
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he/she can continue to re-rank by clicking and casting more votes.

More specifically, each proposal is characterized, Mj ∈ M with the

following four components (Mm
j ,M

e
j ,M

s
j ,M

v
j ):

• Segmentation mask (Mm
j ): This quantity represents the actual region

segmentation mask obtained from the MCG region proposal algorithm

(static or dynamic).

• Contour mask (Me
j): The algorithm requires the user to click on the ob-

ject boundaries, which as I show later is much more discriminative than

clicking on interior points and results in a much faster filtering of good

segmentations. To infer the votes on the boundaries, the segmentation

mask Mm
j is converted into a contour mask. This contour mask only con-

tains the boundary pixels from Mm
j . For error tolerance, the boundary

mask is dilated by 5 pixels on either side. This reduces the sensitivity of

the exact user click location, which need not coincide exactly with the

mask boundary.

• Objectness score (Ms
j): The objectness score from the MCG algorithm [5]

is used to break ties if multiple region proposals get the same number

of votes. This score reflects the likelihood of a given region to be an

accurate object segmentation.

• User votes (Mv
j ): This quantity represents the total number of user votes

received by a particular proposal at any given time. It is initialized to 0.
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As a first step, the algorithm begins by computing a lookup table which

allows us to efficiently account for the votes cast for each proposal by the user.

Let n be the total number of pixels in a given image and m be the total number

of region proposals generated for that image. The lookup table T ∈ {0, 1}n×m

is defined and precomputed as follows:

T(i, j) =

{
1 if Me

j(i) = 1

0 otherwise,
(4.1)

where i denotes a particular pixel and j denotes a particular region proposal.

When the user clicks at a particular pixel location c, the weights for

each of the region proposal are updated as follows:

Mv
j = Mv

j + T(c, j). (4.2)

The updated set of votes is used to re-rank all the region proposals. The

proposals with equal votes are ranked in the order of their objectness scores.

This interactive re-ranking procedure continues until the user is satisfied with

any of the top-k proposals and chooses that as the final segmentation. In my

implementation, k is set such that k copies of the image, one proposal on each,

fit easily on one screen (k = 9).

Figure 4.2 illustrates the user interface and explains this process with

two examples. I show the user interaction on the leftmost column. Red circles

denote clicks. The “ContourMap” column shows the average contour map of

the top-5 ranked proposals after the user click. Here the colors are a heat-map
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User Click ContourMap Top-5 ranked proposals

User Click ContourMap Top-5 ranked proposals

Figure 4.2: Click Carving based foreground segmentation. Best viewed in
color. See text for details.

coding of the number of votes for a boundary fragment. Remaining columns

show the top-5 ranked proposals.

The top two rows show an example “cat” image. The user places the

first click on the left side of the object (top left image). We see that the

resulting top ranked proposals (5 foreground images in top row) align well

to the current user click, meaning they all contain a boundary near the click

point. The average contour map of these top ranked proposals, informs the user

about areas that have been carved well already (red lines) and which areas may

need more attention (blue lines, or contours on the true object that remain

uncolored). The user observes that most current top-k segmentations are

missing the cat’s right leg and decides to place the next click there (second row,

leftmost image). The next ranking of the proposals brings up segmentations

which cover the entire object accurately.

In the next example, I consider a frame from the “soldier” video in the
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Segtrack-v2 dataset [84]. The user decides to place a click on the right side of

the object (third row, leftmost image). This click itself retrieves a very good

segmentation for the soldier. However, to explore further, the user continues

by making more clicks. Each new constraint eliminates the bad proposals from

the previous step, and after just three clicks, all the top-ranked proposals are

of good quality. Please see the project page for video illustrations2.

4.3 User clicking strategies

To quantitatively evaluate Click Carving, I employ both real human

annotators and simulated users with different clicking strategies. I design a

series of clicking strategies to simulate, each of which represents a hypothesis

for how a user might efficiently convey which object boundaries remain miss-

ing in the top proposals. While real users are arguably the best way to judge

final impact of my system (and so I include experiments that use them), the

simulated user models are complementary. They allow us to run extensive

trials and to see at scale which strategies are most effective. Simulated hu-

man users have also been studied in interactive segmentation for brush stroke

placement [72].

The user models in our evaluation are categorized into three groups:

human annotators, boundary clickers, and interior clickers.

2More details and videos can be found at: http://vision.cs.utexas.edu/projects/

clickcarving/
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1. Human annotators: I conduct a user study to analyze the performance

of my method by recruiting three human annotators to work on each

image. The three annotators included a computer vision student and

2 non-expert users. The human annotators were encouraged to click on

object boundaries, while observing the current best segmentations. They

were also given some time to familiarize themselves with the interface,

before starting the actual experiments. They had a choice to stop by

choosing one of the segmentations among the top ranked ones or continue

clicking to explore further. A maximum budget of 10 clicks was used

to limit the total annotation time, after which the annotation process

stops and a final object mask selection had to be made. The target

object was indicated to them before starting the experiment. In the case

of multiple objects, each object was chosen as the target object in a

sequential manner. I recorded the number of clicks, time spent, and the

best object mask chosen by the user during each segmentation. The user

corresponding to the median number of clicks is used for my quantitative

evaluation. The total recorded time includes the time to both place the

clicks and to select the best segmentation mask.

2. Boundary clickers: I design three simulated users which operate by

clicking on object boundaries. To simulate these artificial users, I make

use of the ground-truth segmentation mask of the target object. Equidis-

tant points are sampled from the ground truth object contour to define

object boundaries. Each simulated boundary clicker starts from the same
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initial point. Principal component analysis (PCA) on the ground truth

shape is used to find the axis of maximum shape variation. A ray from

the centroid of the object mask is considered along the direction of this

principal axis. The furthest point on the object boundary where this ray

intersects is chosen as the starting point. The three boundary clickers

that I design differ in how they make subsequent clicks from this starting

point. They are:

(a) Uniform clicker: To obtain uniformly spaced clicks, the total

number of boundary points is divided by the maximum click budget to

obtain a fixed distance interval d. Starting from the initial point and

walking along the boundary, a click is made every d points apart from

the previous click location.

(b) Submod clicker: The uniform user has a high level of redundancy,

since it clicks at locations which are still close to the previous clicks; hence

the gain in information between two consecutive clicks might be small.

Next I design a boundary clicker that tries to impact the maximum

boundary region with each subsequent click. This is done by placing the

click at a boundary point which is furthest away from its nearest user

click among all boundary points. This resembles the sub-modular subset

selection problem [76], where one tries to maximize the set coverage while

choosing a subset. I employ a greedy algorithm to find the next best

point.

(c) Active clicker: The previous two methods only looked at the
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ground truth segmentation to devise a click strategy, without taking into

account the segmentation performance after each click is added. The ac-

tive clicking strategy takes into account the current best segmentation

among the top-k (vs. the ground truth) and uses that to make the next

click decision. It is similar in design to the Submod user, except that it

skips those boundary points which have already been labeled correctly

by the top-ranked proposal. I find that this active simulated user comes

the closest in mimicking the actual human annotators (see results for

details).

3. Interior clickers: A novel insight of my method is the discriminative

nature of boundary clicks. In contrast, default behavior and previous

user models [10, 151] assumes a click in the interior of the object is well-

suited. To examine this contrast empirically, my final simulated user

clicks on interior object points. To simulate interior clicks, object pixel

locations from the entire ground truth segmentation mask (up to the

maximum click budget) are uniformly sampled and then clicks are placed

sequentially on the object of interest.

4.4 Propagating the mask through the video

In the case of video, having discovered a good object mask using Click

Carving in the initial frame, the next step is to propagate this segmenta-

tion to all other frames in the video. This gives us the complete video ob-

ject segmentation. In my experiments, I use my proposed supervoxel based
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video propagation method to propagate the click-carved frame to the entire

video volume. For the sake of brevity, I discuss the algorithmic details of my

supervoxel-propagation approach only in Chapter 7. In this chapter, I just

treat it as a black-box algorithm which allows us to propagate segmentation

from the initial frame to all other frames in the video. Note that this “initial”

segmentation can come from our Click Carving algorithm or can simply be

drawn manually by a human labeler. The propagation algorithm is agnostic

of how this “initial” segmentation was generated. It is only used to propagate

the information.

4.5 Results

In this section, I provide detailed experiments and comparisons with

state-of-the-art methods.

4.5.1 Datasets and metrics

I evaluate on six publicly available video and image datasets: Segtrack-

v2 [84], VSB100 [39, 130], iVideoSeg [125], MSRC [97], CMU-Cornell iCoseg [9]

and Interactive Image Segmentation (IIS) [45]. Out of these, the first three

datasets are standard video datasets which are commonly used to evaluate

video segmentation methods. The remaining datasets are the same as I used

in the last chapter to evaluate interactive segmentation algorithms. Figure 3.3

and 4.3 show some visual examples from the datasets. For evaluating segmen-

tation accuracy I use the standard intersection-over-union (IoU) overlap metric
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Segtrack-v2 Dataset

VSB100 Dataset

iVideoSeg Dataset

Figure 4.3: Example video sequences from Segtrack-v2, VSB100 and iVideoSeg
datasets. (best viewed in color).
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between the predicted and ground-truth segmentations. A brief overview of

the datasets:

• SegTrack-v2 [84]: the most common benchmark to evaluate video ob-

ject segmentation. It consists of 14 videos with a total of 24 objects and

976 frames. Challenges include appearance changes, large deformation,

motion blur etc. Pixel-wise ground truth (GT) masks are provided for

every object in all frames.

• Berkeley Video Segmentation Benchmark (VSB100) [39, 130]:

consists of 100 HD sequences with multiple objects in each video. I use

the “train” subset of this dataset in our experiments, for a total of 39

videos and 4397 frames. This is a very challenging dataset; interacting

objects and small object sizes make it difficult to segment and propagate.

I use the GT annotations of multiple foreground objects provided by [114]

on every 20th frame.

• iVideoSeg [125]: This recent dataset consists of 24 videos from four

different categories (car, chair, cat, dog). Some videos have viewpoint

changes and others have large object motions. GT masks are available

for 137 of all 11,882 frames.

• Interactive Image Segmentation (IIS) [45] consists of 151 unrelated

images with complex shapes and appearance.
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• MSRC contains 591 images, and the multi-class annotations [97] were

converted to foreground-background labels by treating the main ob-

ject(s) (cow, flowers, etc.) as foreground.

• CMU-Cornell iCoseg [9] contains 643 images divided into 38 groups

with similar foreground appearance.

4.5.2 Click Carving for discovering an object mask

In this section, I test the accuracy/speed trade-off in terms of locating

the best available proposal, and compare the simulated user models. Here, I

present results on both video and image datasets. I first present the perfor-

mance of Click Carving for interactively locating the best region proposal for

the object of interest. For video datasets, I apply Click Carving on the first

frame in all videos and average the results over the entire dataset. Evaluating

on image datasets involves segmenting individual images using Click Carving

and then averaging the score over the entire dataset.

In all experiments, I set the total click budget to be a maximum of 10

clicks per object. For simulated users, clicks are placed sequentially depending

on its design, until a proposal which is within 5% overlap of the best proposal

is ranked in the top-k or the click budget is exhausted. For the human user

study, the user stops when they decide that they found a good segmentation

within the top-k ranked proposals or have exhausted the click budget. For

image datasets, 20% images from each dataset were randomly chosen for the

human user study.
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Table 4.1 shows the results for the video segmentation datasets and

compares the performance with all simulated users. I compare both in terms

of the number of clicks and time required3 and also how close they get to

the best proposal available in the pool of ∼2000 (BestProp). As expected,

in all cases real users achieve the best segmentation performance and require

far fewer clicks than all simulated users to achieve it. My simulated Active

user, which takes into account the current state of the segmentation, comes

closest to matching the human’s performance. Also, I see clicking uniformly

on the object boundaries requires more clicks on average than the Active and

Submodular users, which try to impact the largest object area with each subse-

quent click. The Objectness baseline, which first ranks all the proposals using

objectness scores and picks the best proposal among top-k (k=9), performs

the worst. This shows that user interaction is key to picking good quality

proposals among 1000s of candidates.

All users that operate by clicking on boundaries (Human, Uniform,

Submod, and Active), come very close to choosing the best proposal in most

cases. In contrast, clicking on the interior points requires substantially more

clicks—often double the number. More importantly, the best segmentation it

obtains is much worse in quality than the best possible segmentation. This

makes the use of interior clicks impractical here even after accounting for the

fact that they may be faster to provide than boundary clicks. This supports

3I use the average time per click from my human studies as an estimate for simulated
boundary clickers. For interior clicks I use 2.4 seconds per click [10].
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Segtrack-v2
Objectness Interior Box-GC Box-Prop Uniform Submod Active Human BestProp

Clicks 0 6.29 2 2 4.46 3.83 3.34 2.46 -
Time (sec) 0 15.09 7 7 16.98 14.58 12.72 9.37 -

IoU 42.36 52.79 59.55 67.51 75.8 76.76 76.24 78.77 80.74

VSB100
Objectness Interior Box-GC Box-Prop Uniform Submod Active Human BestProp

Clicks 0 7.05 2 2 5.34 5.28 5.23 4.35 -
Time (sec) 0 16.92 7 7 22.81 22.55 22.33 18.58 -

IoU 28.45 46.98 57.81 58.98 64.2 65.67 66.91 69.63 72.82

iVideoSeg
Objectness Interior Box-GC Box-Prop Uniform Submod Active Human BestProp

Clicks 0 5.02 2 2 3.84 3.29 3.15 2.84 -
Time (sec) 0 12.05 7 7 15.20 13.02 12.47 11.24 -

IoU 50.69 72.54 65.43 68.04 77.57 77.84 78.65 78.24 81.34

Table 4.1: Click-carving proposal selection quality for real users (Human), the
different user click models (Interior, Uniform, Submod, Active), Objectness,
and Box baselines on video datasets. The results here show the segmentation
score obtained for the first frame in every video using Click-carving. With an
average of 2-4 clicks to carve the proposal boundaries, users attain IoU accu-
racies very close to the upper bound (BestProp). Objectness, Interior clicks,
and the Box baselines are substantially weaker. IoU measures segmentation
overlap with the ground truth; perfect overlap is 100. Best click based method
is highlighted in bold.

my hypothesis that clicking on boundaries is much more discriminative in

separating good proposals from the bad ones. Whereas a matching between

an object proposal contour and a boundary click will rarely be accidental,

several bad proposals may have the interior click point lie within them.

In fact, selecting the best proposal using an enclosing bounding box

around the true object (Box-Prop, Table 4.1) is more effective than clicking

on interior points. This is likely because a tight bounding box can eliminate

a large number of proposals that extend outside its boundaries. On the other

hand, an interior click cannot restrict the selected proposals to the ones which

align well to the object boundaries. My method outperforms the bounding box

selection by a large margin, showing the efficacy of my approach. My approach
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MSRC
Objectness Interior Box-GC Box-Prop Uniform Submod Active Human BestProp

Clicks 0 3.62 2 2 3.35 2.74 2.86 2.32 -
Time (sec) 0 13.41 7 7 12.42 10.16 10.60 8.6 -

IoU 69.85 73.54 76.54 75.96 75.8 81.33 80.12 81.57 85.96

CMU-Cornell iCoseg
Objectness Interior Box-GC Box-Prop Uniform Submod Active Human BestProp

Clicks 0 4.25 2 2 3.76 2.98 3.24 2.79 -
Time (sec) 0 15.78 7 7 13.96 11.07 12.03 10.36 -

IoU 73.26 77.25 83.14 82.78 77.81 81.26 80.34 82.13 84.31

Interactive Image Segmentation (IIS)
Objectness Interior Box-GC Box-Prop Uniform Submod Active Human BestProp

Clicks 0 7.43 2 2 3.92 3.43 3.29 3.12 -
Time (sec) 0 29.98 7 7 15.81 13.84 13.27 12.59 -

IoU 68.11 65.63 72.28 74.69 70.21 74.46 76.18 76.47 78.68

Table 4.2: Click-carving proposal selection quality for real users (Human), the
different user click models (Interior, Uniform, Submod, Active), Objectness,
and Box baselines on interactive image segmentation datasets. With an aver-
age of 2-3 clicks to carve the proposal boundaries, users attain IoU accuracies
very close to the upper bound (BestProp). Objectness, Interior clicks, and
the Box baselines are substantially weaker. IoU measures segmentation over-
lap with the ground truth; perfect overlap is 100. Best click based method is
highlighted in bold.

also significantly outperforms the standard GrabCut [119] interactive image

segmentation method, initialized with a tight bounding box around the object

(Box-GC, Table 4.1).

On Segtrack-v2 and iVideoSeg, Click Carving requires less than 3 clicks

on average to obtain a high quality segmentation. For the most challenging

dataset, VSB100, it obtains good results with an average of 4.35 clicks. This

shows its potential to collect large amounts of segmentation data economically.

The timing data reveals the efficiency and scalability of my method.

Table 4.2 shows the results for the three interactive image segmentation

datasets and compares the performance with all simulated users and other rel-

evant baselines. The trends here remain very similar to the ones observed for

segmenting frames in the video datasets. These image datasets are relatively
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easier than the video datasets as can be seen by the upper bound scores from

BestProp. Again the proposed Click Carving method only required 2-3 clicks

on average to obtain high quality segmentation. It also significantly outper-

forms the standard GrabCut [119] interactive segmentation method in 2 out

of 3 datasets. On the iCoseg dataset, GrabCut [119] is only slightly better.

The foregrounds in iCoseg are very distinct from the backgrounds, which ex-

plain the strong performance of GrabCut [119]. On IIS dataset which is much

harder, Click Carving outperforms it by more than 4% average overlap score.

Figure 4.4 (top) show qualitative results for Click Carving. In many

cases (e.g., lions, soldier, cat), only a single click is sufficient to obtain a

high quality segmentation. Several challenging instances like the cat (bottom

row) and the lion (middle row), are segmented accurately with a single click.

These objects would otherwise require a large amount of human interaction to

obtain good segmentation (say using a GrabCut like approach). More clicks

are typically needed when multiple objects are close-by or interacting with

each other. Still, I observe that in many cases only a small number of clicks on

each object results in good segmentations. For example, in the car video (top

row), only 5 clicks are required to obtain final segmentations for both objects.

Figure 4.4 (bottom) highlights the key strengths of my method over two

baselines. In the left example, I see that GrabCut [119] segmentation applied

even with a very tight bounding box fails to segment the object. On the other

hand, even with a single click, my proposed approach produces very accurate

segmentation. The example on the right shows the importance of clicking on
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Visual results for Click-Carving

Visual comparisons with baselines

Figure 4.4: Top: Qualitative results for Click Carving. The yellow-red dots
show the clicks made by human annotators. The best selected segmentation
boundaries are overlayed on the image (green). Bottom: Comparisons with
baselines: The left example shows the segmentation I obtain with a single
click as opposed to applying GrabCut segmentation with a tight bounding
box. The example on the right shows the discriminative power of clicking on
boundaries by comparing it with a baseline which clicks in the interior regions.
Best viewed in color.

boundaries. Clicking on the interior fails to retrieve a good proposal, because

several bad proposals also contain those interior clicks. Boundary clicks, which

are highly discriminative, retrieve the best proposal quickly.
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4.5.3 Click Carving for complete video segmentation

In this section I show how Click Carving results in large savings in

annotation costs for full video segmentation. The previous section has already

discussed the performance of Click Carving for efficiently segmenting a video

frame. In this section I evaluate the segmentation performance after this

initial click-carved frame is propagated to the entire video using my supervoxel-

propagation algorithm. Here, I measure average segmentation overlap score

over all the frames for all videos in a dataset. Hence, I compare with several

state-of-the-art video segmentation methods. Here is a brief overview of all

the methods I compare against:

Methods for comparison: I compare with several state-of-the art video

segmentation methods [41, 43, 57, 84, 107, 125, 151, 153] and relevant baselines.

Below I group them into six groups based on the amount of human annotation

effort, i.e., the interaction time between the human and algorithm. In some

cases, a human simply initializes the algorithm, while in others the human is

in the loop always.

(1) Unsupervised: I use the state-of-the-art method of [107], which produces

a single region segmentation result per video with zero human involvement.

(2) Multiple segmentation: Most existing unsupervised video segmenta-

tion methods produce multiple segmentations to achieve high recall. I consider

both a) Static object proposals (BestStaticProp): where the best per

frame region proposal (out of approx 2000 proposals per frame) computed
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using MCG algorithm, is chosen as the final segmentation for that frame

b) Spatio-temporal proposals [43, 84]: These methods produce multiple

spatio-temporal region tracks as segmentation hypotheses. To simulate a hu-

man picking the desired segmentation from the hypotheses, I use the dataset

ground truth to select the most overlapping hypothesis. I use the duration of

the video to estimate interaction time. This is a lower bound on cost, since the

annotator has to at least watch the clip once to select the best segmentation.

For the static proposals, I multiply the number of frames by 2.4 seconds, the

time required to provide one click [10].

(3) Scribble-based: I consider two existing methods: a) JOTS [153]: the

first frame is interactively segmented using scribbles and GrabCut. The seg-

mentation result is than propagated to the entire video. I use the timing

data from the detailed study by [99], who find it takes a human on average

66.43 seconds per image to obtain a good segmentation with scribbles. b)

iVideoSeg [125]: This is a recently proposed state-of-the-art technique that

uses scribbles to interactively label point trajectories. These labels are then

used to segment the object of interest. I use the timing data kindly shared by

the authors.

(4) Object outline propagation: the human outlines the object completely

to initialize the propagation algorithm (typically in the first frame), which

then propagates to the entire video. Here I again use my supervoxel based

propagation algorithm to propagate the human drawn outline to the entire

video. Timing data from [52, 89] indicate it typically takes 54-79 seconds
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to manually outline an object; I use the more optimistic 54 seconds for this

baseline.

(5) Bounding box: Rather than segment the object, the annotator draws

a tight bounding box around it. The baseline BBox-VidGC uses that box

to obtain a segmentation for the video as follows. A Gaussian Mixture Model

(GMM) based appearance model is learned for foreground and background

pixels according to the box, then applied in a standard spatio-temporal MRF

defined over pixels. The unaries are derived from the learnt GMM model and

contrast-sensitive spatial and temporal potentials are used for smoothness.

(6) 1-Click based: I also consider baselines which perform video segmenta-

tion with a single user click. a) TouchCut [151] the only prior work using

clicks for video segmentation. b) Click-VidGC: This is similar to BBox-

VidGC except that I take a small region around the click to learn the fore-

ground model. The background model is learnt from a small area around image

boundaries. c) Click-STProp: To propagate the impact of a user click to

the entire video volume, I use the spatio-temporal proposals from [103]. I do

this by selecting all proposals which enclose the click inside them. Foreground

and background appearance models are learnt using the selected proposals and

refined using a spatio-temporal MRF. I again use the timing data from [10],

which reports that a human takes about 2.4 seconds to place a single click on

the object of interest.

Next I discuss the results for video segmentation, where we propagate
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Unsup. Multiple Segmentations
Scrib-
bles

Out-
line

Bounding
Box

Click Based

[107] [43] [84]
BestStat-

icProp
[153] [57]

BBox-
VidGC

Click-
VidGC

Click-
STProp

Ours

Avg. Accuracy
35.24 51.89 65.92 78.48 71.91 67.86 23.04 16.81 46.18 63.65

Annot. Effort

-
336.6
tracks

60
tracks

120k
proposals

1
frame

1
frame

2 clicks 1 click 1 click
2.46
clicks

Annot. Time (sec)
0 673.2 120 142.5 66.43 54 7 2.4 2.4 9.37

Table 4.3: Video segmentation accuracy (IoU) on all 14 videos from Segtrack-
v2. The last column shows results with real human users. The bottom two
rows summarize the amount of human annotation effort required to obtain the
corresponding segmentation performance, for all methods. My approach leads
to an excellent trade-off between video segmentation accuracy and human
annotation effort.

the results of Click Carving to the remaining frames in the video.

Video segmentation propagation on Segtrack-v2: Table 4.3 shows the

results on Segtrack-v2. I compare using the standard intersection-over-union

(IoU) metric with a total of 9 methods which use varying amounts of hu-

man supervision. The unsupervised algorithm [107] that uses no human input

results in the lowest accuracy. Among the approaches which produce multi-

ple segmentations, BestStaticProp and [84] have the best accuracy. This is

expected because these methods are designed for having high recall, but it

requires much more effort to sift through the multiple hypotheses to pick the

best one. For example, it is prohibitively expensive to go through 2000 seg-

mentations for each frame to get to the accuracy level of BestStaticProp. The

method of [84] produces much fewer segmentations, but still requires 12x more

time than my method to achieve comparable performance.
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The scribble based method [153] achieves the best overall accuracy on

this dataset, but is 6 times more expensive than my method. An interesting

comparison is between my proposed Click Carving method and the “Outline”

baseline which also uses the same supervoxel propagation algorithm but is

initialized from a human-labeled object outline. My method which is initial-

ized from slightly imperfect—but much quicker to obtain—click-carved object

boundaries achieves comparable performance. This shows that we do not need

very accurate human-drawn object boundaries to obtain good segmentation

performance. Using computer generated segmentations coupled with my Click

Carving interactive selection algorithm is sufficient to obtain high performance.

Moving on to the methods that require less human supervision, i.e.,

bounding boxes and clicks, we see that Click Carving continues to hold ad-

vantages. In particular, BBox-VidGC and Click-VidGC result in poor perfor-

mance, indicating that more nuanced propagation methods are needed than

just relying on appearance-based segmentation alone. Click-STProp, which

obtains a spatial prior by propagating the impact of a single click to the en-

tire video volume, results in much better performance than solely appearance

based methods. However, my method, which first translates clicks into accu-

rate per-frame segmentation before propagating them, yields a 17% gain (37%

relative gain).

All these trends show that my method offers an excellent trade-off be-

tween segmentation performance and annotation time. Figure 4.5 (left), vi-

sually depicts this trade-off. All methods which result in better segmentation
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Unsup. Outline
Bounding

Box
Click Based

[107] [57]
BBox-
VidGC

Click-
VidGC

Click-
STProp

Ours

Avg. Accuracy 17.79 61.43 14.74 11.14 26.76 56.15

Annot. Effort - 1 frame 2 clicks 1 click 1 click 4.35 clicks

Annot. Time (sec) 0 54 7 2.4 2.4 18.58

Table 4.4: Video segmentation accuracy (IoU) on all 39 videos in VSB100;
format as in Table 4.3. My approach provides an excellent trade-off between
video segmentation accuracy and human annotation effort.

accuracy than ours need substantially more human effort. Even then the gap

in the performance in relatively small. On the flip side, the methods which

require less annotation effort than us also result in a significant degradation

in segmentation performance.

Video segmentation propagation on VSB100: Next, I test on VSB100.

This is an even more challenging dataset and very few existing methods have

reported foreground propagation results on it. Since this dataset includes sev-

eral videos that contain multiple interacting objects in challenging conditions,

Click Carving tends to require more clicks (4.35 on average). My method

again outperforms all baselines which require less human effort and results

in comparable performance with [57], but at a much lower cost. Figure 4.5

(right) again reflects this trend.

Video segmentation propagation on iVideoSeg: I also compare our

method on the recently proposed iVideoSeg dataset [125]. I compare with three

methods [41, 43, 125] out of which [125] is the current state-of-the-art method

for interactive foreground segmentation in videos. I use the timing information

provided by the authors [125]. I compare the performance of our method on
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Figure 4.5: Cost vs accuracy on Segtrack (left) and VSB100 (right). The Click
Carving based video propagation results in similar accuracy as state-of-the-
art methods, but it does so with much less human effort. The plots show a
comparison between Click Carving and the unsupervised method of Ferrari et
al. [107], spatio-temporal object proposal methods from Lee et al. [81], Li et
al. [84], semi-supervised propagation methods from Wen et al. [153], Jain et
al. [57] and other relevant baselines. Click Carving offers an excellent trade-off
between cost and accuracy. Best viewed in color.

all 24 videos in the dataset (300-1000 frames per video) using the real user

annotation times. The methods of [41, 43, 125] run for multiple iterations i.e., a

human provides annotation on several frames, observes the results and repeats

until he/she is satisfied. This requires a human to evaluate the current video

segmentation result and decide if more annotation is required. The authors

provided timing and accuracy data for 4-5 iterations on each video.

In contrast my method does one-shot selection instead of iterative re-

finement. My method pre-selects the frames on which to request human an-

notation (every 100th frame in this case). For each selected frame, we ask

a human annotator to use the Click Carving method to find the best region
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Figure 4.6: Cost vs accuracy on iVideoSeg dataset. The Click Carving based
video propagation results in similar accuracy as state-of-the-art methods, but
it does so with much less human effort. The plots show a comparison between
Click Carving and the unsupervised segmentation method from Grundmann
et al. [43], semi-supervised propagation method from Godec et al. [41] and in-
teractive video segmentation method from Nagaraja et al. [125]. Click Carving
offers an excellent trade-off between cost and accuracy. Best viewed in color.

proposal while recording their timing. The total time for the video is sim-

ply the sum of time taken for each selected frame. The video segmentation

propagation is re-initialized whenever a new labeled frame is available.

Figure 4.6 shows the results. For all methods, each data point on the

plot shows time vs. accuracy for a particular video at a particular iteration.

My method outperforms both [41, 43] by a considerable margin. When com-

pared with [125], my method achieves similar segmentation accuracy but with

less than half the total annotation time. On average over all 24 videos, [125]

takes 110.05 seconds to achieve an IoU score of 80.04. In comparison my
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method only takes 54.35 seconds to reach an IoU score of 77.68.

Comparison with TouchCut: To my knowledge TouchCut [151] is the

only prior work which utilizes clicks for video segmentation. In that work, the

user places a click somewhere on the object, then a level-sets technique trans-

forms the click to an object contour. This transformed contour is then prop-

agated to the remaining frames. Very few experimental results about video

segmentation are discussed in the paper, and code is not available. There-

fore, I am only able to compare with TouchCut on the three Segtrack videos

reported in their paper. Table 4.5 shows the result. When initialized with

a single click, my method outperforms TouchCut in two out of three videos.

With one more click, it performs better in all 3 videos.

TouchCut Ours (1-click) Ours (2-clicks)
birdfall2 248 213 187

girl 1691 2213 1541
parachute 228 225 198

Table 4.5: Comparison with TouchCut [151] in terms of pixel error (lower is
better).

Qualitative results on video segmentation propagation: Figure 4.7

- 4.9 show some qualitative results for video segmentation propagation on the

three datasets that we used in our experiments. The left-most image in each

row shows the best region proposal chosen by a human annotator using Click

Carving. Subsequent images show the results of segmentation propagation,

when initialized from this selected proposal.
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4.6 Conclusion

In this chapter, I presented a novel interactive image segmentation

technique, Click Carving, using which only a few clicks are required to obtain

accurate object segmentations in images and videos. My method strikes an

excellent balance between accuracy and human effort resulting in large savings.

Because of the ease of use even for non-experts, my method offers great promise

for scaling up image and video segmentation which can be beneficial for several

research communities.

In the future, several extensions can be incorporated in the current

method to improve it even further. Firstly, in its current form the proposed

method makes two key assumptions: 1) The overall segmentation quality is

upper bounded by the quality of the underlying region proposals and 2) the

user has a choice of only picking one among the top ranked hypotheses as

the final segmentation. Clearly, both these assumptions restrict the overall

quality of the segmentation that the current method can generate. A natural

extension would be to merge multiple slightly imperfect proposals selected by

the user into a single and more accurate segmentation. The user can then have

the option to manually edit this segmentation to further improve the quality.

Secondly, the user currently only places clicks on objects. This is a re-

strictive assumption especially in cases where multiple other objects are over-

lapping and occluding the target object. In such cases, allowing the user to also

indicate the background regions through “negative clicks” can possibly elim-

inate large number of irrelevant regions very efficiently. This straightforward
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extension can further reduce the total amount of annotation time required for

segmenting objects using Click Carving.

Thirdly, in its current form the system treats per-frame segmentation

and video propagation as separate tasks. These different tasks can be unified

together by incorporating space-time segmentation proposals directly in the

algorithm for complete video segmentation. In that case, user clicks will di-

rectly re-rank complete space-time segmentations of objects in video instead

of the current two step process.

Finally in case of video segmentation, the system currently assumes

that the user will evaluate the segmentation output and will re-initialize the

propagation by another per-frame segmentation done using Click Carving,

whenever it starts to fail. An active variant of the current system which

takes into account the annotation budget and also the quality of propagation

to automatically predict when a new Click Carving based re-initialization is

needed can be very useful.

Together the last two chapters have focused on handling the segmen-

tation of an individual image or video. In the next chapter I will expand the

scope to consider jointly segmenting a collection of related images at once.
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Figure 4.7: Qualitative results for video segmentation on Segtrack-v2 dataset:
The results using my supervoxel based segmentation propagation method ini-
tialized from the segmentation in the left-most image. This initialization is
obtained using our Click Carving method with static and motion-based pro-
posals. Best viewed in color.
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Figure 4.8: Qualitative results for video segmentation on iVideoSeg dataset:
The results using my supervoxel based segmentation propagation method ini-
tialized from the segmentation in the left-most image. This initialization is
obtained using our Click Carving method with static and motion-based pro-
posals. Best viewed in color.
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Figure 4.9: Qualitative results for video segmentation on VSB100 dataset:
The results using my supervoxel based segmentation propagation method ini-
tialized from the segmentation in the left-most image. This initialization is
obtained using our Click Carving method with static and motion-based pro-
posals. Best viewed in color.
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Chapter 5

Active segmentation propagation in image

collections

In the previous chapters, the graph cuts based interactive segmenta-

tion [13, 119] or the Click Carving algorithm [58] was applied individually on

each image. For segmenting each and every image, the user needs to provide

individual guidance through several possible modes of human interactions that

I previously described. Even if we have to apply these algorithms on a col-

lection of images, each image needs to be individually segmented by a human

annotator. The underlying assumption thus far is that an image collection

comprises of a set of totally unrelated images, hence each image needs to be

segmented individually.

However, there has been a lot of recent interest in segmenting a pool

of images known to contain the same object category (e.g. a collection of

“airplane” images) [2, 30, 44, 64, 121, 122, 124, 131, 140]. These collections are

readily available on Internet and are easy to obtain through a simple keyword

search. However, collecting spatial annotations which delineate the boundaries

of the common object in all images still remains challenging. It is natural to

think that this additional information i.e., all images contain objects from
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the same category should be beneficial when segmenting images from such

collections.

In this chapter, I explore the weakly supervised segmentation problem.

It refers to the problem of segmenting a collection of images all of which

belong to the same object category. I show that since the images here belong

to the same category, the repeated patterns between them can be exploited for

segmentation [2, 30, 44, 64, 121, 124, 131, 140] and also while making annotation

choices [122]. I show that this can be done by jointly segmenting all images

in the collection by defining a joint segmentation graph over all images. This

process mutually benefits individual images because information about the

object will propagate from an image to its neighbors. I also show that instances

from this image collection can be actively selected for human annotation by

accounting for their overall utility for the entire collection. This allows us to

inject actively chosen human annotations directly in the joint segmentation

graph, which will guide the segmentations of other unsegmented instances.

More specifically, the proposed approach1 for joint segmentation of an

image collection operates by alternating between these two components in a

stage-wise manner:

1. Segmentation propagation: To propagate human-drawn segmenta-

tions from some subset of images to all unsegmented images, a joint

1This work originally was published in Computer Vision and Pattern Recognition
(CVPR), 2016 [54].
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graph between object-like regions from all pairs of images is constructed.

An energy minimization procedure on this joint graph is used for efficient

propagation.

2. Active selection: To select a subset of images most suitable for ef-

fective segmentation propagation to all unsegmented images, a second

joint graph between all image pairs is defined using global image simi-

larity features. The active selection process favors choosing images that

are uncertain—poorly explained by any images labeled so far, as well as

influential—similar to many unlabeled images, making their foreground

mask transferrable—and mutually diverse—so as to avoid redundant hu-

man effort.

Stagewise propagation is a key element in the proposed method’s de-

sign, which permits both human-annotated and automatically annotated im-

ages to influence the system’s view of what most needs human attention next.

This characteristic of making stagewise active annotation choices separates it

from other propagation based methods which are passive in nature (i.e., they

try to best use a predefined set of labeled images) [44] or else selects them

in a one-shot manner without reacting to the impact of previously annotated

examples [122]. The proposed method in this chapter is also fundamentally

different from the active learning methods for recognition which aim to train

a model that will make accurate category label predictions on unseen test im-

ages (e.g., [127, 139, 142]). As such, they are tightly coupled to a particular
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classifier and iteratively refine it. In contrast, the goal here is to generate

accurate foreground estimates for all images in the collection, which makes it

a transductive setting.

Experiments demonstrate that the proposed method outperforms sev-

eral alternative active baselines and methods which do passive labeling [44].

Applying this method to 1 million ImageNet images, the results show substan-

tial savings in human annotation effort (upto 40% reduction in the amount of

data annotated), thus emphasizing the value of intelligently focusing human

effort for foreground extraction. As a special case, the proposed method is

capable of running in a fully automatic manner too (i.e., without any human

annotation), where it produces state-of-the-art foreground segmentation accu-

racy when compared to a variety of recent methods. Overall, the proposed

method strikes an excellent balance between human annotation effort and ac-

curacy. Depending on the amount of annotation budget available, the system

can automatically adapt itself by requesting only the most useful instances for

human annotation, thus resulting in much better segmentation performance

than other methods within the prescribed budget constraints.

In the following, I first describe the regions and descriptors I use to

construct the image graph (Sec. 5.1). Then I define my joint segmentation

procedure to simultaneously solve for all foreground masks, given foreground

annotations on only a subset of the images (Sec. 5.2). I then introduce my

active procedure for identifying the set of images that should be annotated next

(Sec. 5.3). Figure 5.1 visually illustrates all the steps. The remaining sections
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Figure 5.1: (1) Joint segmentation propagation: Given a set of images {I1, I2, I3, I4}
with I2 already segmented by a human, the goal is to generate foreground segmentations for
the remaining images. First a set of filtered region proposals is generated for each image.
Next, a joint segmentation graph over these region proposals (edges = region similarity) is
defined. An energy function defined over this graph is minimized to obtain a set of good
proposals for each image, which are then fused to obtain the final segmentation. (2) Active
human annotation: My active selection method works over a joint graph defined over all
images in the collection (darker edges = high similarity). These pairwise similarities allow
us to identify influential images (most useful for others) and also help in enforcing diversity
in selection (to avoid redundancy). Uncertainty (not depicted here) is also accounted for by
predicting the quality of the current segmentation. Example selections by my method are
shown in pink. Best viewed in color.

in this chapter then present detailed experimental results and comparisons

with other state-of-the-art methods.

Problem setup: Let I = {I1, I2, . . . , IN} be a collection of weakly super-

vised images, all of which contain instances of the same object category. My

goal is to jointly segment these images, yielding a foreground object mask

M = {M1,M2, . . . ,MN} for each one.

5.1 Region proposals and descriptors

The segmentation graph in my method is defined over region propos-

als. Region proposals are “object-like” segments that are prioritized among
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all bottom-up regions as those being most likely to agree with true object

boundaries [5, 22]. I assume that at least some of them capture the fore-

ground object well—and possibly more than one per image. Thus, the goal of

my joint segmentation procedure is to identify the subset of region proposals

that are good, and fuse them to obtain the final segmentation (see Sec. 5.2 for

details). Apart from being more efficient than traditional pixel-based graphs

(e.g., [121]), I show that a region-based representation lets us define strong

pairwise consistency potentials based on regions matched across images.

Existing region proposal methods typically produce ∼ 500-2000 regions

per image, a large sample that may include redundant candidates and back-

ground objects. To refine the set of proposals, I develop the following filtering

steps. First a set of generic object proposals are generated. Also a saliency

map for the image is computed using [61]. Next two ranked lists of these

proposals are obtained using saliency and objectness scores [22], respectively.

Only the union of the top 30% from each list is retained. Then, the reduced

set is clustered into r clusters. To capture shape and spatial alignment, re-

spectively, the regions’ HOG similarity and spatial overlap (IoU metric) are

used, and the clustering is done using k-medoids. The r cluster centers (typ-

ically r=10) form the final set of proposals for each image. I found that this

careful filtering was much more accurate than constraining the number of re-

gion proposals using the objectness scores directly. For example, on the MIT

dataset my filtering step results in a mean average best score (MABO) of 72.2

with only 10 proposals. In contrast, simply retaining the top 10 proposals
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using scores from [22] results in a MABO of 64.95. The clustering step selects

diverse proposals, leading to higher recall with fewer proposals.

Let R = {Rij} denote the set of all region proposals in all N images,

where Rij denotes the j-th region for image Ii. My joint segmentation ap-

proach, to be defined next, relies on both image and region-level features. For

each image Ii, a global appearance descriptor denoted Ic
i is extracted. For

each region Rij, two features are extracted: a saliency rating Rs
ij, and a region

appearance descriptor Rc
ij.

2

5.2 Semi-automatic joint foreground segmentation

I define a Markov Random Field (MRF) joint segmentation graph G =

(R,E) based on the filtered region proposals across all images in the collection.

Each region Rij ∈ R forms a node and the edges E connect pairs of regions.

During segmentation, the edges will encourage consistent labels for similar

regions, while the nodes will encourage foreground labels for salient regions

that are consistent with well-segmented exemplars. A sparse set of edges E

are kept by only connecting regions whose similarity exceeds a threshold τ .

No edges connect regions in the same image.

Let Y = {Yij} be a set of binary region labels, where:

Yij =

{
1 if proposal Rij is a good segmentation for Ii
0 otherwise.

(5.1)

2One could choose from a variety of features; I employ off-the-shelf CNN-based descrip-
tors and saliency metrics (see Sec. 5.4 for details).
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Let S ⊆ I denote the current subset of images labeled with foreground

masks by human annotators. (I explain in Sec. 5.3 how the composition of this

set is iteratively and actively defined.) Once an image Is has been labeled,

meaning it first appears in S, the graph is adjusted accordingly. First, all nodes

Rsj are replaced by the single mask region given by the human annotator,

denoted R̄s, and its label is clamped to Ys = 1. Then, the edge set E is

modified appropriately, such that in image s, only the mask R̄s has edges to

similar regions in unlabeled images.3 These updates inject the human-labeled

regions into the segmentation pipeline, allowing us to propagate the valuable

information through the pairwise terms (defined below).

There are several ways to use the human-labeled masks to guide the

joint segmentation. One could use them to train a foreground appearance

model (e.g., as in iCoseg [9]). However, this is most effective only in the

stricter co-segmentation setting where the same exact foreground object in-

stance repeats across images. An alternative could be to directly transfer

the segmentation from labeled images to unlabeled images, e.g., using dense

matching [90, 161]. However, due to variations in scale and shape of foreground

objects, global alignment is difficult in many cases.

Instead, my approach relies on strong matches discovered between fore-

ground regions in human-labeled images and region proposals in unlabeled im-

3For simplicity of notation, below I continue to use Rij for all regions unless strictly
required; it should be understood that ∀Ii ∈ S there is only one proposal, instead of r
proposals.

115



ages. The intuition is that a good region proposal (i.e., one close to the actual

foreground object segment) will strongly match a human-labeled ground truth

region. On the contrary, a bad proposal will have weaker matches.

I define the following energy function E(Y) for jointly segmenting the

image collection I:

E(Y) =
∑
Rij

− log Φ(Yij) +
∑

Rij ,R′ij∈E

Ψ(Yij, Y
′
ij). (5.2)

The unary term is defined as

Φ(Yij) =

{
Yij if i ∈ S

αs Φs(Yij) + αmΦm(Yij) if i ∈ I\S.

This unary prefers to label as foreground those regions that are (1) salient

and/or (2) form a good match with some previously labeled foreground mask.

The variables αs and αm weight the influence of the saliency and matching

terms, respectively. The saliency term is defined using the saliency region

feature (Rs
ij) as:

Φs(Yij) = YijR
s
ij + (1− Yij)(1−Rs

ij), (5.3)

so that we favor assigning Yij = 1 if Rij is very salient.

The match component of the unary term encodes that a region proposal

with a good ground truth region match is likely foreground. In particular,

matches for a region are identified by considering its “local neighborhood” of

images in the graph. For each unlabeled image Ii, its p nearest neighbors from

the labeled set S are retrieved using the image-level features Ic
i . Denote that
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set N(Ii, S). Then, for each region proposal Rij, the best matching ground

truth foreground region is found among these p neighbors, and the matching

score is used in the unary term:

Φm(Yij) = YijR
m

ij + (1− Yij)(1−Rm

ij),where (5.4)

Rm

ij = max
p∈N(Ii,S)

sim(Rc
ij, R̄

c
p), (5.5)

and sim is the cosine similarity, and R̄p denotes the p-th ground truth region.

The pairwise term in Eq (5.2) encourages similar-looking regions to

take the same label:

Ψ(Yij, Y
′
ij) = δ(Yij 6= Y ′ij) sim(Rc

ij, R
′c
ij). (5.6)

This term enforces consistency in my joint selection of good region proposals,

since a penalty proportional to region similarity is incurred if the two regions

receive different labels.

The minimum energy solution Y∗ = arg minYE(Y) yields a set of good

region proposals for each image in the collection. Note that there is no con-

straint that only one proposal should be selected per image. It is purposely

allowed to select multiple good regions per image, for two reasons. First, an

image can naturally have multiple good region proposals (e.g., covering differ-

ent object parts). As we will see next, my fusion step can take these multiple

partial proposals to obtain a single accurate segmentation. Second, it allows us

to efficiently and exactly minimize my energy function using graph-cuts [14].

I found that this works much better in practice than approximate inference
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techniques. A complete round of propagation for N = 1, 400 images takes just

1 minute on a single CPU (excluding feature extraction). In contrast, the

state-of-the-art propagation method of [122] would take 225 hours to propagate

labels (excluding both feature extraction and SIFT-Flow).

To obtain the final segmentation mask Mi, the chosen good region

proposals Y ∗i are fused. The selected regions are used as a rough prior for

the object’s spatial extent, and then that’s used to build an image-specific

foreground appearance model. Specifically, for each chosen proposal in Ii, the

p nearest human-labeled masks are retrieved. Those masks are transferred to Ii

(a simple resizing and transfer, similar to [68, 79] is used), next the transferred

masks of all proposals are averaged, and mean thresholded to obtain a spatial

prior. Next, as an appearance prior a Gaussian Mixture Model (GMM) over

RGB color values for all pixels in the spatial prior is learned. Finally, the

combined appearance and spatial prior are used to define an image-specific

MRF, which is minimized using graph cuts to obtain Mi.

In summary, my semi-supervised segmentation propagation algorithm

is designed to be accurate (through careful filtering of regions and use of sparse

actively chosen human annotations) and efficient (by avoiding expensive dense

matching steps [121] and by using an efficient graph cuts energy minimization

framework instead of costly approximate inference techniques as in [30]).
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5.3 Active selection for propagation

I now describe my stagewise algorithm to actively select images for an-

notation. The active selection procedure takes as input the image collection

I, an annotation budget k specifying the number of images to get labeled per

stage, and the number of total annotation stages T . In each stage t, anno-

tations for the actively chosen batch St are collected, S is augmented with

that newly labeled data (S ← S ∪ St) next, and then the segmentations are

propagated as described above. The output after T rounds is the resulting

propagated masks M on all images. Note that throughout the stages, each

unlabeled mask is continually refined, and its intermediate results affect sub-

sequent stages’ active selections.

My active selection algorithm accounts for three criteria—influence,

diversity, and uncertainty. The former two criteria account for relationships

between images that are relevant to propagation, while the latter accounts for

the inherent difficulty of individual images.

An image influential for propagation is similar to many other images in

the collection. Intuitively, labeling such a “hub” image can directly improve

the mask quality of the related images, particularly given my match-based

unaries and localized image neighborhoods (Eq (5.5) and Eq (5.6)). The in-

fluence of a candidate batch St is measured as:

Influence(St) =
1

|S′t|
∑
Ii∈St

∑
Ij∈S′t

sim(Ic
i , I

c
j ), (5.7)
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where S′t denotes all unlabeled images not in the candidate batch St and sim

is the cosine similarity.

A batch of images that are diverse ensures broad coverage over the

entire collection. Selecting images which are influential but also very similar

would not lead to a large information gain. Hence, A penalty for selecting

mutually similar images is also added:

Diversity(St) = − 1

|St|
∑
Ii∈St

∑
Ij∈St

sim(Ic
i , I

c
j ). (5.8)

An image that is uncertain—inherently difficult to segment automatically—

is also a good candidate for human supervision. The uncertainty of a batch is

quantified as:

Uncertainty(St) =
1

|St|
∑
Ii∈St

D(Mi), (5.9)

where D(·) is a learned predictor of image difficulty. This prediction function

is trained to infer when an image is badly segmented. Taking inspiration from

prior work [22, 52, 117], I devise a set of descriptors suggestive of segmentation

quality, and train a regression function using images for which we know each

region’s overlap with the true foreground. Given a region, the predictor returns

its expected normalized overlap with the ground truth.

Specifically, a random forest regressor is trained using 1,385 images

from the MSRC [97], iCoseg [9], and IIS [45] datasets. The regression target is

the overlap score with ground truth. To generate training samples, CPMC [22]

region proposals are sampled whose overlap falls in the top and bottom 5% of

all proposals. I use the following features as indicators of segmentation quality:
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• Boundary alignment: Similar to the cue used in Chapter 3, alignment

of a segmentation region with superpixel boundaries is used as a cue to

measure segmentation quality. This is done by measuring how much each

superpixel that lies on the boundary between foreground and background

region maximally straddles inside or outside.

• Object coherence: Number of connected components in the image

segmentation region is used as a measure of object coherence.

• Color separability: A good segmentation is likely to have a difference

in appearance with the background. Color histograms in RGB space

(16 bins per channel) for both the region proposal and background are

computed and χ2 distance between them is used as a feature.

• Region compactness: Good segmentations are more likely to be com-

pact in nature. Hence I use the following region features to capture

that:

1. Extent: area ratio between the region and a tight bounding box

surrounding it.

2. Solidity: area ratio between region and it’s convex hull

3. Size: good segmentations are not usually abnormally large or small,

hence we use area ratio between region and the complete image as

another feature.
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Algorithm 1 Active Selection Algorithm

1: procedure ActiveSelection
2: Input: I, Iu = I, Il = φ;
3: Define: F(S) = Influence(S) + Diversity(S), S ⊆ I;
4: for each stage t = 1,2, ..., T do
5: Candidate set: Iut = φ;
6: for i = 1,2, ..., K do
7: s∗ = arg max

s∈Iu\Iut
D(M t−1

s ) ; Iut = Iut ∪ s∗;

8: end for

9: St = φ, S
′

t = Iut ;
10: for i = 1,2, ..., k do
11: s∗ = arg max

s∈S′
t

F(St ∪ s)− F(St);

12: St = St ∪ s∗ ; S
′

t = S
′

t \ s∗;
13: end for

14: Il = Il ∪ St; Iu = Iu \ St;
15: end for
16: end procedure

We would like to identify the set maximizing all three criteria simul-

taneously. This is a combinatorial problem over all subsets St ⊆ I and im-

practical to solve optimally. I instead employ a greedy approach to account

for all factors. First, the K > k most uncertain unlabeled images are ex-

tracted, as judged using the predictor D(Mi) applied to the current mask

estimated at the end of the previous stage. From among that pool, a sub-

set St, accounting for both influence and diversity is selected. Starting with

an empty set, an image is iteratively added one at a time until the budget

k is reached. The selected image is the one giving the maximal marginal in-

crease for Influence(St) + Diversity(St). See Algorithm 1 for complete

pseudocode.

My greedy algorithm is inspired by the maximization procedure typi-
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cally used for monotone submodular functions, which offers theoretical guar-

antees [75]. Due to the diversity penalty, my objective is non-monotonic,

hence known approximation guarantees do not apply; nonetheless, it works

well in practice. It is also fast: for a pool of 1,400 unlabeled images, my active

selection requires just seconds.

5.4 Results

In this section, I provide detailed experiments and comparisons with

state-of-the-art methods.

5.4.1 Datasets and baselines

Datasets: I evaluate the proposed active segmentation propagation algorithm

on two benchmark datasets:

• ImageNet: I conduct a large-scale evaluation of my approach using Im-

ageNet [123] (∼1M images, 3,624 classes). I follow the setup of [131], and

consider all images with bounding box annotations available.4 Figure 5.2

shows some visual examples from the dataset.

• MIT Object Discovery: This challenging dataset consists of Air-

planes, Cars and Horses [121]. Its intra-class appearance variation is

4Since ImageNet lacks segmentation ground truth for all images, (1) I evaluate my masks
against the bounding boxes, using a tight bounding box around the predicted segmentation
and (2) when my method requests a human-drawn segmentation, it gets the region proposal
with maximum overlap with the ground-truth bounding box.
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Figure 5.2: Examples from ImageNet dataset. (best viewed in color).

much greater than that of older co-segmentation datasets (MSRC [97]

or iCoseg [9]). Figure 5.3 shows some visual examples from the dataset.

Baselines: Apart from an ablated version of my method (i.e., w/o uncer-

tainty), I compare with these baselines:

• Passive: This is a simple passive baseline where at every stage, k images

are randomly picked from the unlabeled set to be labeled by humans.

• PageRank Selection [122]: This is the only active propagation method

in the literature, making it critical for comparison. It uses PageRank im-

portance ranking and clustering to pick k good images at each stage.

• Semantic Propagation [44]: An existing propagation method that

promotes propagation between semantically related classes. It seeds the

propagation with labeled images from existing datasets.

• State-of-the art weakly supervised methods: I compare the spe-

cial case of my method (only weak supervision) with several existing ap-

proaches [25, 63, 64, 67, 121, 131]. Other weakly supervised methods [106,
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108, 112] for semantic segmentation consider multi-label data, and so are

not directly comparable.

Evaluation metrics: I use: (1) Jaccard Score: Standard intersection-

over-union (IoU) metric between predicted and ground truth segmentation

masks (for MIT) and between bounding boxes (for ImageNet), and (2) Cor-

Loc Score: Percentage of images correctly localized according to PASCAL

criterion (i.e IoU > 0.5) used in [131]. For MIT I use the segmentation masks

(Seg-CorLoc) and for ImageNet I use bounding boxes (BBox-CorLoc) since it

lacks ground truth masks.

Implementation details: Region proposals for MIT are generated using

CPMC [22] and for ImageNet using MCG [5] (due to efficiency). For global

appearance Ic
i , 4096-dim Convolutional Neural Network (CNN) features [77]

are extracted using Caffe [60]. I chose CNN features because of their state-

of-the-art performance in image recognition. For saliency Rs
ij, the region’s

pixel-level saliency values from [61] are averaged. For region appearance Rc
ij,

a CNN feature for the region’s tight bounding box is extracted. I set: τ =

0.7, p = 5, αs = αm = 0.5,# rounds T = 20, k = ( # images/T ), K = 4 ∗ k.

All parameters were set after manual inspection of few images, then fixed for all

experiments. In all experiments human annotation is simulated using ground

truth data. The run-time is dominated by the cost of computing pairwise

similarities between region proposals, O((Nr)2) for N images and r region

proposals per image.
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Figure 5.3: Example active annotation choices for the 3 image collections
(Airplane, Car, Horse) in the MIT dataset during the first stage with k = 10.
The algorithm selects influential and diverse images (e.g., prototypical shapes)
with some relatively difficult/unusual ones (best viewed in color).

5.4.2 Active segmentation propagation

First I present results for active selection. In this setting annotators

are iteratively requested to provide true segmentations for a subset of images.

These labeled images are then used to improve the joint segmentation of other

unlabeled images in the collection.

Figure 5.3 shows qualitative examples of annotation choices made by

my active selection algorithm. The impact of all the components is quite

visible in the choices. Several influential and diverse images which provide good

coverage over the collection are chosen, along with some relatively difficult and

unusual ones.

Figures 5.4 and 5.5 show the quantitative results. On the extreme left,

we have the performance of the purely weakly supervised setting (no human

input) and on the extreme right, annotators provide ground-truth segmenta-

tions for all images in the collection. In between we see the trade-off between
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Figure 5.4: Active propagation for varying amounts of human annotation
on a subset of the 3,624 ImageNet total synsets which were tested. Since
only bounding box ground truth is available, I show bounding-box localiza-
tion (BBox-CorLoc) accuracy. Last plot (Animal) shows a failure case. Best
viewed in color.

actively allocating human effort versus other baselines. Since this is a trans-

ductive setting where the goal is to generate segmentations for all images, I

plot average results over all the images in the collection (whether human or

computer segmented). This scoring protocol has an additional advantage of

averaging over the same number of images after each round of annotation,

making trends on the x-axis easy to interpret.

For all metrics and datasets, the proposed approach outperforms all

baselines. While all methods naturally improve with more labeled data, the

slope of my improvement curve is substantially sharper using minimal human

effort—sometimes dramatically so (e.g., Jetliner on ImageNet or Airplane on
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Figure 5.5: Active propagation results for varying amounts of human anno-
tation for MIT Object Discovery dataset. I show both segmentation overlap
(Jaccard) and segmentation localization (Seg-CorLoc) accuracy for each of the
three classes. Best viewed in color.

MIT). It is important to note that all methods are using identical CNN features

and the same propagation algorithm, hence my gains exactly show the impact

of making wiser annotation choices.

Surprisingly, the Passive baseline outperforms the active PageRank

method employed in [122]. I believe this is because PageRank emphasizes

the influence property more, and, despite its clustering component, fails to

select sufficiently diverse examples5 (in [122] no comparison with a passive

baseline is shown). On the other hand, my method takes into account in-

fluence, diversity, and uncertainty to choose good candidates for annotation.

5Restricting my proposed method to use “influence” alone also performs worse than
passive and comparable to [122].
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This leads to better annotation choices and in turn better propagation. Omit-

ting uncertainty from my approach decreases accuracy, showing the value of

this segmentation-specific active selection component.

While all methods fare better on the “easier” task of localization (vs

estimating pixel-perfect masks), my gains are actually substantially higher for

localization (as measured by Seg-CorLoc and BBox-CorLoc). In addition, for

both datasets, my gains are much higher for larger collections (> 100 images).

Larger collections exhibit both greater redundancy as well as several modes

within the data. My method successfully exploits these patterns while making

annotation choices. For example, for MIT “Airplanes”, the system correctly

localizes 90% of the images with only 30% of the data labeled by annotators.

In contrast, the Passive and active PageRank baselines require significantly

more annotations (55% and 70%, respectively) to achieve the same accuracy.

Figure 5.4 also shows an interesting failure case for the ImageNet “An-

imal” class. Upon inspection, I found that it contains images from several

different animal types with very little structural similarity; in this case, my

active annotation method did not fare any better than the baselines.

I stress that, to my knowledge, Rubinstein et al.[122] represents the only

prior attempt to incorporate active selection with segmentation propagation.

Before any inference, that method seeds a dense-flow graph with images chosen

with a PageRank sampling. My stage-wise method takes a very different

strategy, iteratively self-inspecting its own estimates and redirecting human

attention accordingly. As seen in Figure 5.4 and 5.5, my approach significantly
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outperforms the one-shot PageRank approach [122] in all experiments, and my

propagation method is orders of magnitude faster (cf. Sec 5.2).

I also compare with the other state of the art segmentation propagation

approach from Guillaumin et al. [44]. In their method, segmentations are

propagated from a fixed set of seed images. The propagation in that case

makes use of a semantic hierarchy and the propagation takes place between

semantically related categories. For a fair comparison, all images which are

common between my experimental setup and that of [44] are considered. This

gives us a total of 99,020 images across 352 ImageNet classes. From the data

provided by the authors, it was found that the ground-truth bounding boxes for

67,029 of those images were used to seed the propagation in [44]. For the same

amount of labeled data my active segmentation propagation approach achieves

a Jaccard score of 65% as opposed to 62.63% by [44]. More importantly,

reducing the supervision budget for my method, it achieves the same accuracy

as this (passive) state of the art propagation method [44] when using 26% less

human-annotated data. This large savings in human effort shows the clear

value of actively determining where human guidance is most needed.

5.4.3 Weakly supervised foreground segmentation

Next I test my method in a purely weakly supervised setting against

several existing methods. In this special case, weak supervision (i.e., all images

have an object from the same category) is the only information available. No

additional human annotation is requested. This corresponds to setting S = ∅,
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Methods
MIT dataset (subset) MIT dataset (full)
Airplane Car Horse Airplane Car Horse

# Images 82 89 93 470 1208 810

Joulin et al. [63] 15.36 37.15 30.16 n/a n/a n/a
Joulin et al. [64] 11.72 35.15 29.53 n/a n/a n/a
Kim et al. [67] 7.9 0.04 6.43 n/a n/a n/a

Rubinstein et al. [121] 55.81 64.42 51.65 55.62 63.35 53.88
Chen et al. [25] 54.62 69.2 44.46 60.87 62.74 60.23

Ours 58.65 66.47 53.57 62.27 65.3 55.41

Table 5.1: Comparison with state-of-the-art methods on MIT dataset for
weakly supervised joint foreground segmentation (Metric: Jaccard score).

αs = 1 and αm = 0.

Table 5.1 compares my approach to several existing methods [25, 63,

64, 67, 121] on the MIT (subset from [121] and full) dataset. My approach

outperforms all existing methods in 4 out of 6 cases and has consistently good

accuracy in all cases. This is really encouraging because my joint segmenta-

tion model is simpler and more efficient than existing methods (e.g [121] uses

dense matching, [25] uses negative training data to train detectors). The key

strengths of my propagation design lie in carefully selecting region proposals

that have good coverage over the objects and are not redundant (without this

performance drops by 8% on average), combined with the region-based match-

ing potentials. Jointly selecting good region proposals then helps in discovering

similar pattern configurations over the entire collection. The method of [25]

possibly benefits from stronger discriminative exemplar-appearance models for

the Horse class in MIT (full).

Table 5.2 shows results on ImageNet. The “Top obj” baseline is the
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ImageNet dataset

# Classes # Images
3,624 939,516

Methods BBox-CorLoc
Top obj. box [3] 37.42
Tang et al. [131] 53.20

Ours 57.64

Table 5.2: Comparison with state-of-the-art methods on ImageNet for weakly
supervised joint foreground segmentation (Metric: Avg. BBox-CorLoc).

result of taking the top Objectness window [3], as reported in [131]. My

method outperforms the state of the art [131] by a considerable margin, which

again highlights the strengths of my joint segmentation graph. With nearly 1

million images, a performance gain of 4.44% means that the system correctly

localizes 41,715 more images than [131].

Figure 5.6 shows qualitative results. My method is able to segment ob-

jects well in spite of large intra-class variations. Because of the joint segmen-

tation graph, my method can successfully segment some challenging instances

where the object is not easily separable from the background but matches well

with similar regions in easier images.

5.5 Conclusion

In this chapter, I proposed an approach for active segmentation prop-

agation in weakly supervised image collections. The proposed approach can

actively request human annotations which are most useful for the entire col-

lection as a whole. Having a subset of images actively labeled by human

annotators, the proposed approach can then propagate the human labeled seg-

mentations to the unsegmented images in the collection. Experimental results
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Example segmentations from MIT dataset

Example segmentations from ImageNet dataset

Figure 5.6: Qualitative results for weakly supervised joint segmentation. The
segmentation result is highlighted with a green overlay over the image. The
last column in each row shows a failure case. Failures occur when there is
ambiguity in the object of interest (e.g., airplane’s shadow, top row in MIT
dataset) or parts of the object are more salient than the complete object (e.g.,
dog’s face, top row in ImageNet dataset). Best viewed in color.

show that even without any human annotation, the proposed method out-

performs several state-of-the-art methods for weakly supervised segmentation.
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The active selection algorithm significantly outperforms the baseline methods,

and makes better annotation decisions leading to better segmentation propa-

gation. Overall, the proposed method results in an excellent trade-off between

cost and accuracy and can adapt itself depending on the amount of human

annotation budget available (including zero budget – where it can operate in

a purely automatic manner).

In the future, the proposed approach can be enhanced by extending the

ideas of active selection and segmentation propagation to more heterogeneous

multi-class image collections. While the proposed method’s design does not

preclude it from being applied on heterogeneous multi-class collections, the

current set of experiments always assumed that the image collection contains

images from a single category. It will be interesting to relax this assumption

and study the interactions between instances from different categories and

whether they can still benefit from joint segmentation and active selection.

In the current experimental setup, the same amount of human anno-

tation effort is assumed for every image. However in practice it is not true;

As we saw in Chapter 3, different images may contain objects with different

complexities and the annotation time will vary accordingly. Moreover, for

each image which is selected for human annotation, segmentation is drawn

from scratch by the human annotator. This is clearly sub-optimal because

at every step in the overall process, each image has a current segmentation

hypothesis. This can serve as an initial segmentation for the human annotator

who can simply edit this segmentation instead of drawing from scratch. This
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process can possibly reduce the total amount of annotation time required for

that particular image.

Finally, the current method works under the assumption that sim-

ple nearest neighbors in image feature space is a sufficiently strong metric

to construct the joint segmentation and active selection graphs. However in

complex images, a global similarity metric might not be sufficient to capture

fine-grained intra-class variations. Discovering better ways to construct these

graphs, which possibly capture finer nuances of segmentation propagation, is

an interesting research direction to explore. In the next chapter, I will present

my proposed algorithm for predicting compatibility between images for joint

segmentation, which is a first step towards exploring this idea.
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Chapter 6

Predicting compatibility for joint

segmentation of image pairs

In the previous chapter, I presented an active segmentation propaga-

tion algorithm which allows us to jointly segment a weakly supervised image

collection. A key component in my pipeline was an algorithm to actively se-

lect images which will be most valuable for human segmentation. There I used

image features extracted from the entire image to measure the compatibility

of segmentation while constructing the joint graph over all images in the col-

lection. In particular, image-nodes were only linked if they were very similar

in this feature space. However global features may not completely capture

the structural similarity between image pairs, which is naturally a key driver

for a successful segmentation propagation. More specifically, global features

may not be able to capture scale or viewpoint variations, or diversity in an

object category’s visual appearance. This has an unwanted effect of pairing

incompatible image pairs for joint segmentation.

However, the majority of the existing methods for joint segmentation

simply assume that all images are mutually amenable to a joint segmenta-

tion [2, 21, 63, 64, 67, 133, 140, 154]. This assumption was only true in very
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early works in this domain which focused on jointly segmenting input images

showing the very same object against distinct backgrounds [120]. However,

in modern image collections with large intra-class variations in appearance

and viewpoints, possibly containing noisily labeled instances [80, 121], this no

longer holds true. In fact, for this very reason, recent studies report the dis-

couraging outcome that, on some datasets, standard single-image segmentation

actually exceeds its joint segmentation counterpart—despite the latter’s pre-

sumed advantage of having access to a batch of weakly labeled data [121, 140].

In this chapter, I reconsider this assumption and demonstrate1 that not

all images are mutually valuable for joint segmentation. Pairing an image with

a right partner can lead to an improved segmentation performance. As a first

step in this direction, I study this problem in a limited setting where only a

single pair of images will be segmented in a joint manner. The problem of

jointly segmenting only a pair of images is commonly referred to as “coseg-

mentation” in the literature, which is the terminology I use in this chapter.

For this I also develop a new joint segmentation algorithm which is more suit-

able for single image pairs. Note that this is a simplified setting in comparison

with the previous chapter, where I developed an algorithm which can jointly

segment an entire collection of images simultaneously. However this limited

setting allows us to carefully study the “compatibility” aspect of the problem.

Incorporating the techniques described in this chapter into my joint active

1This work originally was published in Asian Conference on Computer Vision (ACCV),
2014 [53].
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segmentation propagation approach is a promising future direction.

As input, my method takes a “query” image Iq and a pool of candidate

partner images P = {I1, . . . , IN}. Among those N candidates, my method

selects the best partner image for Iq, that is, the image that when paired

with Iq for cosegmentation is expected to produce the most accurate result.

Then, as output, my method returns the result of cosegmenting Iq with its

selected partner, namely, a foreground mask for Iq. In the following, I refer to

a candidate partner image as a “source” image, denoted Is ∈ P.

For predicting the best partner for a “query” image, I introduce a

learning approach that uses a paired description of the “source” and “query”

images to predict their degree of joint segmentation success. The paired de-

scription captures not only to what extent the images seem to agree in appear-

ance, but also the uncertainty resulting from their shared foreground model.

I formulate the task in a learning-to-rank objective, where successful pairs are

constrained to rank higher than those that will likely segment poorly together.

Same as the previous chapter, I study the weakly supervised setting,

where images in P contain the same object category as Iq. This forces my

method to perform fine-grained analysis to select among all the possibly rel-

evant partners. Even with weak supervision, not all images are satisfactory

cosegmentation partners, since they contain objects exhibiting complex ap-

pearance and viewpoint variations, as discussed above. Experiments on two

challenging datasets show that there is great potential in focusing joint seg-

mentation only on those images where it is most valuable.
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In the following, I first define a basic single-image segmentation algo-

rithm (Sec. 6.1). I then expand that basic engine to handle cosegmentation of

a pair of images (Sec. 6.2). I then introduce my ranking approach to predict

the compatibility of two images for cosegmentation (Sec. 6.3). The remaining

sections in this chapter then present detailed experimental results and com-

parisons with other state-of-the-art methods.

6.1 Single-image segmentation engine

I first describe an approach to perform single-image segmentation. In

addition to serving as a baseline for the cosegmentation methods, I also use

the output of the single-image segmentation when cosegmentation compatibil-

ity is predicted (cf. Sec. 6.3). The method below produces good foreground

initializations, though alternative single-image methods could also be plugged

into my framework.

Given an image I i, the goal is to estimate a label matrix Li of the same

dimensions, where Li(p) = yip denotes the binary label for the pixel p, and

yip ∈ {0, 1}. The label 0 denotes background (bg) and 1 denotes foreground

(fg). I use a standard Markov Random Field (MRF) approach, where each

pixel p is a node connected to its spatial neighbors.

I define the MRF’s unary potentials using saliency and a foreground

color model, as follows. Since this is a single-image segmentation, there is no

external knowledge about where the foreground is. Thus, we rely on a generic

saliency metric to estimate the plausible foreground region, then boostrap
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an approximate foreground color model from those pixels. Specifically, for

image I i, first its pixel-wise saliency map Si is computed using a state-of-the-

art algorithm [61]. Next, that real-valued map is thresholded by its average,

yielding an initial estimate for the foreground mask. Then, the pixels inside

(outside) that mask are used to learn a Gaussian mixture model (GMM) for

the foreground (background) in RGB space. Let Gi
fg and Gi

bg denote those

two mixture models.

The single-image MRF energy function uses these color models and the

saliency map:

Esing(L
i) =

∑
p

Ai
p(y

i
p) +

∑
p

X i
p(y

i
p) +

∑
p,p′∈N

T i
p,p′

(
yip, y

i
p′), (6.1)

where Ai
p and X i

p are unary terms, T i
p,p′ is a pairwise term, and N consists of

all 4-connected neighborhoods. The appearance likelihood term is defined as:

Ai
p(y

i
p) = − logP (F i(p)|Gi

yip
), (6.2)

where F i(p) denotes the RGB color for pixel p in image I i. This term reflects

the cost of assigning a pixel as fg (bg) according to the GMM models. The

saliency prior unary term is defined as:

X i
p(y

i
p = 1) = − logP (Si(p)), (6.3)

where Si(p) denotes the saliency value for pixel p. This term reflects the cost

of assigning a pixel as fg, where more salient pixels are assumed more likely

to be foreground. For the background label, we have the corresponding term,
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X i
p(y

i
p = 0) = − log(1− P (Si(p))). Finally, the pairwise term,

T i
p,p′(y

i
p, y

i
p′) = δ(yip 6= yip′) exp(−β‖F i(p)− F i(p′)‖), (6.4)

is a standard smoothness prior that penalizes assigning different labels to

neighboring pixels that are similar in color, where β is a scaling parameter.

I employ graph cuts to efficiently minimize Eqn. 6.1 and apply five

rounds of iterative refinement (as in GrabCut [119]), alternating between learn-

ing the likelihood functions and obtaining the label estimates. The result is a

label matrix Li∗
sing = arg minLi Esing(L

i).

6.2 Paired-image cosegmentation engine

Next I define the cosegmentation engine I use in my implementation,

which expands on the single-image approach above. During training, my

method targets a given cosegmentation algorithm, as I show in the next sec-

tion. Any existing cosegmentation algorithm could be plugged in; the role of

my method is to improve its results by focusing on the most compatible image

partners.

Given a query and source image pair, Iq and Is ∈ P, an energy func-

tion over their joint labeling is defined. This model is initialized using GMM

appearance models learned from Lq∗

sing and Ls∗
sing, the single-image results for

the two inputs obtained by optimizing Eqn. (6.1). Specifically, the foreground

(background) pixels from both label masks are pooled to learn the joint GMM

Gqs
fg (Gqs

bg) in RGB space. Here and below, the superscript qs denotes a joint
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term that is a function of both the query and source images.

Let Lqs be shorthand for the two label matrices output by the coseg-

mentation, Lqs = (Lq, Ls). My joint energy function takes the following form:

Ecoseg(L
qs) = Esing(L

q) + Esing(L
s) + Θqs

app(L
qs) + Θqs

match(Lqs), (6.5)

where the first two terms refer to the single-image energy for either output, as

defined in Eqn. (6.1), and Θqs
app and Θqs

match capture the energy of a joint label

assignment based on appearance and matching terms, respectively (and will be

defined next). Note that even though the energy function contains terms for

individual label matrices, they are optimized jointly to minimize Eqn. (6.5).

The joint appearance likelihood term is defined as

Θqs
app(L

qs) =
∑
p∈Iq

Aqs
p (yqp) +

∑
r∈Is

Aqs
r (ysr), (6.6)

and it captures the extent to which the two output masks deviate from the

expected foreground/background appearance discovered with saliency. As be-

fore, each Aqs
p term is defined as the negative log likelihood over the GMM

probabilities; however, here it uses the joint GMM appearance models Gqs
fg

and Gqs
bg obtained by pooling pixels from the two images’ initial foreground

estimates.

The matching likelihood term Θqs
match(Lqs) leverages a dense pixel-level

correspondence to establish pairwise links between the two input images. Let

Fqs(p) denote the 2D flow vector from pixel p in image Iq to its match in

image Is. I introduce an edge in the cosegmentation MRF connecting each
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pixel p ∈ Iq to its matching pixel r ∈ Is, where r = p + Fqs(p). Using these

correspondences, the matching likelihood is a contrast-sensitive smoothness

potential over linked (matched) pixels in the two images:

Θqs
match(Lqs) =

∑
p∈Iq ,r∈Is

δ(yqp 6= ysr) exp(−β‖Dq(p)−Ds(r)‖), (6.7)

where Di(p) is a local image descriptor computed at pixel p (I use dense

SIFT [90]), and β is a scaling constant. This energy term encourages similar-

looking matched pixels between the query and source to take the same fg/bg

label.

The matching in Eqn. (6.7) helps cosegmentation’s robustness. I com-

pute Fqs using the Deformable Spatial Pyramid (DSP) matching algorithm [69],

an efficient method that regularizes match consistency across a pyramid of

spatial regions and permits cross-scale matches. By linking p ∈ Iq to r ∈ Is—

rather than naively linking p ∈ Iq to p ∈ Is—I gain robustness to the transla-

tion and scale of the foreground object in the two input images. This is valuable

when the inputs do share a similar-looking object, but its global placement or

size varies. Notably, this flexibility is lacking in a strictly image-based global

comparison approach (like GIST [134] and the scale-sensitive SIFT Flow as

used in [121]). It thus enables mutual discovery of the object between the two

images.

To optimize Eqn. (6.5), I again employ graph cuts with iterative up-

dates. This yields the cosegmented output image pair:

(Lq∗

coseg, L
s∗

coseg) = arg min
Lqs

Ecoseg(L
qs). (6.8)
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Note that the Markov Random Field (MRF) models defined in this

chapter are similar to the other MRF models which were defined in the previ-

ous chapters at a high level. In all cases, the models were primarily designed

to capture the affinity of pixels in images to be foreground or background. The

details differ in individual cases. For example, in this Chapter and in Chap-

ter 3, the MRFs were defined over pixels which is more suitable for segmenting

individual images or a single pair. In Chapter 5 it was defined over regions

because it allowed us to scale the model on a large number of images.

6.3 Learning cosegmentation compatibility to predict
partners

Having defined the underlying single-image and paired-image segmen-

tation algorithms, I can now present my approach to predict which partner

image is best suited for cosegmentation with a novel query image. There are

two main components:

1. Extracting features that are suggestive of cosegmentation success.

2. Training a ranking function to prioritize successful partners.

We are given a training set T = {(T 1, L1), . . . , (IM , LM)} of M images

labeled with their ground truth foreground masks, where T i denotes an image

and Li denotes its mask. This set is not only disjoint from the candidate part-

ner set P defined above, it also does not contain images of the same object
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category as what appears in P or the eventual novel queries. This is impor-

tant, since it means my approach is required to learn generic cues indicative

of cosegmentation compatibility, as opposed to object-specific cues. While

object-specific cues are presumably easier to exploit, it may be impractical to

train a model for every new object class of interest. Instead, all learning is

done on data and classes disjoint from the weakly supervised image set P.

Training a ranker for cosegmentation compatibility First, the coseg-

mentation algorithm (Sec. 6.2) is applied to every pair of images in T. Each im-

age in the training set acts as a “query” in turn, while the remaining images act

as its candidate source images. Let (T i
q , T

j
s ) denote one such query-source pair

comprised of training images T i and T j. For each pairing, the cosegmentation

quality that results for T i
q is recorded, that is, the intersection-over-union over-

lap score between the ground truth Li and the cosegmentation estimate Li∗
coseg

that results from optimizing Eqn. (6.5) with T i as the query and T j as the

source. After computing these scores for all training pairs (i, j) ∈ {1, . . . ,M},

we have a set of training tuples 〈T i, T j, oij〉, where oij denotes the overlap score

for pair i, j. The scores will vary across pairs depending on their compatibility.

Next, a ranked list of source images is generated for each training ex-

ample. These M -length ranked lists are used to train a ranking function. As

input, the learned ranking function f takes features computed on an image

pair φ(Iq, Is) (to be defined below), and it returns as output a score predicting

their cosegmentation compatibility. For simplicity a linear ranking function is
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trained:

f(φ(Iq, Is)) = wTφ(Iq, Is), (6.9)

where w is a vector of the same dimensionality as the feature space. To

learn w from the training tuples, we want to constrain it to return higher

scores for more compatible pairs. Let O be the set of pairs of all training

tuples {(i, j), (i, k)} for which oij > oik, for all i = 1, . . . ,M . Using the

SVM Rank formulation of [62], I seek the projection of the data that preserves

these training set orders, with a regularizer that favors a large margin between

nearest-projected pairs:

minimize
1

2
||w||22 + C

∑
ξ2
ijk (6.10)

s.t. wTφ(T i, T j) ≥ wTφ(T i, T k) + 1− ξijk

∀(i, j, k) ∈ O,

where the constant C balances the regularizer and constraints. In other words,

the model should score a training pair with greater overlap higher than one

with lower overlap.2

Defining features indicative of compatibility Next I define the features

φ(Iq, Is). Their purpose is to expose the images’ compatibility for cosegmenta-

tion. I define features of two types: 1) source image features meant to capture

2Alternatively, one could use regression. However, ranking has the advantage of giving
us more control over which training tuples are enforced, and it places emphasis only on the
relative scores (not absolute values), which is what I care about for deciding which partner
is best.
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Query

Shape Features

Source to Query transfer

with dense matching

Source (Good)

Source (Bad)

(a)

(b)

(c)

(d)

(e)

Figure 6.1: Feature illustration. Center: an example query and two candi-
date source images. (a-c): Cropped single-image segmentation masks (top)
and corresponding HOGs (bottom). These features are good indicators of
foreground shape similarity, as we can see by comparing the query (b) to its
good and bad source partners (a) and (c), respectively. (d-e): Results of mask
transfer with dense matching from the source image to the query image. The
success of this transfer clearly depends on the compatibility between the query
and source (i.e., it succeeds in (d) but fails in (e)).

the quality of the source in general, and 2) inter-image features meant to cap-

ture the likelihood of success in coupling a particular source and query. The

former makes use of the single-image segmentation mask Ls∗
sing from Sec. 6.1;

the latter makes use of the cosegmentation estimates Lq∗
coseg and Ls∗

coseg from

Sec. 6.2.

Source image features Ideally, we would like to cosegment with a source

image that is easy to segment on its own, since then it has better ability

to guide the foreground (when the query is compatible). Thus, my three
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source features aim to expose the predicted quality of the source’s single-image

segmentation:

• Foreground-background separability : Ls∗
sing is first used to compute sep-

arate color histograms for the (estimated) foreground and background

regions. The χ2 distance between the two histograms is used as a feature.

More distinctive foregrounds will yield higher χ2 distances.

• Graph cuts uncertainty : Dynamic graph cuts [73] are used to measure

each pixel’s graph cut uncertainty. These uncertainties are binned from

the foreground pixels of Ls∗
sing into 5 bins and this distribution is used as

a feature. It captures how uncertain the single image segmentation is.

• Number of connected components : The number of connected components

in Ls∗
sing is used as a measure of how coherent the source’s single-image

segmentation is.

Inter-image features To detect good partner candidates, the quality of

the source image alone is insufficient; I also want to look explicitly at the

compatibility of the particular input pair. Thus, my three inter-image features

aim to reveal the predicted success of the pair’s cosegmentation:

• Foreground similarity : The foreground similarity between the source and

query is computed using their estimated foregrounds from single-image

segmentation. Specifically, two χ2 distances are recorded: one between
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their color histograms, and one between their SIFT bag-of-words his-

tograms. By excluding background from this feature, we leave open the

possibility to discover compatible partners with varying backgrounds.

• Shape similarity : The cropped foreground region from Ls∗
sing is resized to

the size of the cropped foreground region from Lq∗

sing. To gauge shape

similarity, both the overlap between those masks as well as the L2 dis-

tance on the HOG features computed on the original images at those

masked positions (see Figure 6.1 (a-c)) are recorded.

• Dense matching quality : Ls∗
sing is warped to the query using the dense

matching flow field Fqs from DSP [69]. To capture the matching quality,

the overlap score between the transferred source mask and Lq∗

sing (see

Figure 6.1 (d-e)) is recorded. Here the saliency-driven foreground masks

and dense matching serve as two independent signals of alignment. If the

two images permit an accurate dense match that agrees with the saliency-

based foreground, there is evidence that they are closely related. This

compatibility cue offers some tolerance to foreground translation and

scale variation in the two inputs.

• GIST similarity : To capture global layout similarity of the image pair,

the L2 distance between their GIST [134] descriptors is recorded.

Altogether, we have seven and six feature dimensions for the source

and inter-image features, respectively. These are concatenated to form a 13-

dimensional φ(Iq, Is) feature. These descriptors are used in training (Eqn. (6.10)).
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Analyzing the learned weights, we find that the dense matching quality, shape

similarity, GIST similarity, and foreground-background separability are the

most useful features for this task.

Predicting the partner for a novel image At test time, we are given

a novel image Iq and the partner candidate set P. The algorithm operates

by computing its descriptor φ(Iq, Is) for every Is ∈ P, applying the learned

ranking function, and selecting as its partner the one that maximizes the

predicted cosegmentation compatibility:

Ip
∗

= arg max
Is∈P

f(φ(Iq, Is)). (6.11)

Finally, the foreground segmentation for Iq that results from cosegmenting the

pair (Iq, Ip
∗
) using the algorithm in Sec. 6.2 is returned as the output.

6.4 Results

In this section, I provide a detailed description of the experiments that

were conducted to evaluate the proposed method. In all cases, I assume a

weakly supervised setting, where we cosegment only image pairs which belong

to the same object class.

6.4.1 Datasets and baselines

Datasets: I evaluate my approach on two challenging publicly available

datasets. The first is MIT Object Discovery (MIT), a dataset recently
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introduced for evaluating object foreground discovery through cosegmenta-

tion [121].3 It consists of Internet images of objects from three classes: Air-

plane, Car, and Horse. The images within a class contain significant appear-

ance and viewpoint variation. I use the 100-image per class subset designated

by the authors to enable comparisons with multiple other existing methods.

The second dataset is the Caltech-28, a subset of 28 of the Caltech-1014

classes designated by [2] for study in weakly supervised joint segmentation.

The 30 images per class originate from Internet search and cover an array of

different objects.

Methods compared: I compare to results reported by a number of state-of-

the-art cosegmentation techniques, namely [63, 64, 67, 121] on MIT and [2, 21,

70, 119] on Caltech-28. In addition, I implement several baseline techniques:

• Single-Seg: the saliency-based single-image approach defined in Sec. 6.1.

This baseline reveals to what extent a query benefits at all from coseg-

mentation.

• Rand-Coseg: the cosegmentation approach defined in Sec. 6.2 applied

with a random image from the same object category as the partner source

image, averaged over 20 trials. This baseline helps illustrate the need

to actively choose a cosegmentation partner among a weakly labeled

dataset.

3http://people.csail.mit.edu/mrub/ObjectDiscovery/
4http://www.vision.caltech.edu/ImageDatasets/Caltech101/
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MIT Object Discovery Dataset

Caltech-28 Dataset

Figure 6.2: Examples from MIT Object Discovery and Caltech-28 datasets.
(best viewed in color).

• GIST-Coseg: the same cosegmentation approach is applied using the

source image that looks most similar to the query, in terms of GIST

descriptors. This baseline highlights how image similarity alone—used

in existing work [80, 121]—can be insufficient to determine good partners

for cosegmentation.

• Ours-Best k: I apply my method, but instead of choosing the single

maximally ranked image for cosegmentation, I refer to ground truth to
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pick the best partner from among the k = 5 source images my method

ranks most highly.

• Upper bound: the upper bound for cosegmentation accuracy. I use

ground truth to select the partner leading to the maximum overlap score

for each query. This reveals the best accuracy any method could possibly

attain for the cosegmentation partner selection problem.

All baselines reference the exact same candidate set P as my method.

My method’s training set T is always disjoint from P, and furthermore P and

T never overlap in object class. For example, when applying my method to

Cars in the MIT data, I train it using only images of Airplanes and Horses.

To quantify segmentation accuracy, I use the standard intersection-over-union

overlap accuracy score (Jaccard index), unless otherwise noted.

Implementation details: The color model GMMs consist of 5 mixture com-

ponents. The scale parameters β are set automatically as the inverse of the

mean of all individual distances. I use 50 visual words for the SIFT bag-

of-words used in the inter-image foreground similarity, and 11 bins per color

channel in all color histograms. The approximate run time per pair is between

10-12 seconds, which is dominated by the SIFT extraction step.

6.4.2 Results on MIT Object Discovery dataset

Table 6.1 shows my results against the baselines on all three classes in

the MIT dataset. I observe several things from this result. First, the large
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Single-Seg Rand-Coseg GIST-Coseg Ours Ours-Best k Upper bound
Airplane 39.14 42.22 42.34 45.81 46.26 57.39

Car 46.76 52.47 50.95 53.63 54.31 61.81
Horse 49.82 51.69 52.73 50.18 52.86 63.52

Table 6.1: Overlap accuracy on the MIT Object Discovery dataset.

gap between Single-Seg and the Upper bound underscores the fact that coseg-

mentation can indeed exceed the accuracy of single-image segmentation on

challenging images—if suitable partners are used. Despite the images’ di-

versity within a single class, the shared appearance in the optimally chosen

partner is beneficial. Second, I see that my approach outperforms the baselines

in nearly every case. This supports my key claim: it is valuable to actively

choose an appropriate cosegmentation partner by learning the cues for suc-

cess/failure. In two of three classes the method outperforms the GIST-Coseg

baseline, showing that off-the-shelf image similarity is inferior to my learning

approach for this problem. The Horse class is an exception, where it under-

performs than the GIST-Coseg baseline. This is likely due to weak saliency

priors in some of the more cluttered Horse images. Third, the fact that the

Rand-Coseg approach does as well as it does (in fact, nearly as good as the

GIST-Coseg method for Airplanes) indicates that many images of the same

class offer some degree of help with cosegmentation. Hence, my method’s gain

is due to its fine-grained analysis of the candidate source images. Finally, the

bump in accuracy it achieves if considering the k top-ranked source images

(Ours-Best k) indicates that future refinements of my method should consider

ways to exploit the ranked partners beyond the top-ranked example.
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Figure 6.3: Examples of the four top-ranked neighbors for a novel query, us-
ing either the GIST nearest neighbors (center block) or my learned ranking
function (right block). Best viewed in color. While both methods can identify
similar-looking source images among their top-ranked set, my method iden-
tifies partners that are more closely aligned in viewpoint or appearance and
thus amenable to cosegmentation.
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Joulin et al. [63] Joulin et al. [64] Kim et al. [67] Ours Rub. et al. [121]
Airplane 15.26 11.72 7.9 45.81 55.81

Car 37.15 35.15 0.04 53.63 64.42
Horse 30.16 29.53 6.43 50.18 51.65

Table 6.2: Comparison to state-of-the-art cosegmentation methods on the MIT
Object Discovery dataset, in terms of average overlap.

Figure 6.3 shows examples of the top-ranked partner images produced

by the GIST-Coseg baseline and my approach, for a variety of query images in

the MIT dataset. My method’s learning strategy pays off: it focuses on source

images that have more fine-grained compatability with the query image. The

GIST neighbors are globally similar, but can be too distinct in viewpoint

or appearance to assist in cosegmenting the query. In contrast, the partner

source images retrieved by my ranking algorithm are better equipped to share

a foreground model due to their viewpoint, appearance, and/or individual

saliency.

Table 6.2 compares the result to several state-of-the-art cosegmentation

methods.5 My method outperforms several existing methods by a large mar-

gin, except the method of Rubinstein et al. [121] and the joint segmentation

propagation algorithm which I proposed in the previous chapter. The disad-

vantage in this case may be due to the fact that both Rubinstein et al. [121]

and active segmentation propagation algorithm operates over a joint graph of

all images in the class at once, whereas here only pairs of images are considered

for cosegmentation. This suggests a promising future direction to extend my

5These are the overlap accuracies reported in [121], where the authors applied the public
source code to generate results for [63, 64, 67].
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Single-Seg Rand-Coseg GIST-Coseg Ours Ours-Best k Upper bound
B

e
st

brain 73.31 72.43 72.54 75.73 76.09 76.22
ferry 54.99 55.87 55.23 57.64 57.71 58.02

dalmatian 39.58 39.13 38.15 40.23 40.94 41.59
ewer 63.87 62.58 63.87 65.86 66.18 66.53

joshua tree 53.04 54.05 54.45 56.21 57.12 57.52
cougar face 58.19 57.39 56.51 58.25 58.53 59.05
sunflower 70.48 70.10 69.77 71.29 72.07 73.48
motorbike 57.38 55.86 55.79 57.21 58.12 58.59
euphonium 57.72 57.25 58.32 59.45 60.27 60.28
kangaroo 59.79 59.26 59.13 60.24 60.57 61.81

W
o
r
st

lotus 76.71 75.98 78.38 77.59 79.51 80.16
grand piano 67.21 67.28 67.93 66.58 67.01 68.33

crab 61.86 62.25 62.11 61.23 62.3 62.46
watch 55.00 56.4 57.72 56.11 56.16 58.30

Table 6.3: Accuracy on the Caltech-28 dataset, in terms of average overlap. I
show the 10 best and 4 worst performing classes.

algorithm, e.g., by using my compatibility predictions as weights within the

complete joint segmentation graph from the previous chapter.

6.4.3 Results on Caltech-28 dataset

Table 6.3 shows the results for the Caltech-28 dataset, in the same

format as Table 6.1 above. I show a representative set of the top 10 cases

where the method most outperforms GIST-Coseg and the bottom four cases

where the method most underperforms GIST-Coseg.

The analysis is fairly similar to my MIT dataset results. There is good

support for actively selecting a cosegmentation partner: my method outper-

forms the Rand-Coseg and GIST-Coseg baselines in most cases. Overall, the

proposed method outperforms GIST-Coseg in 23 of the 28 classes, and Single-

Seg in 20 of the 28 classes. My method is also quite close to the Upper bound

on this dataset, only 1.5 points away on average.
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Method Average Precision
Spatial Topic Model-Coseg [21] 67

Single-Seg 82.71
GrabCut-Coseg (see [2]) 81.5

ClassCut-Coseg [2] 83.6
BPLR-Coseg [70] 85.6

Ours 85.81

Table 6.4: Comparison to state-of-the-art cosegmentation algorithms on the
Caltech-28 dataset.

However, for the Caltech data, the gap between Single-Seg and the Up-

per bound—while still noticeably wider than the gap between my method and

the Upper bound—is also narrowed considerably compared to the MIT data.

This indicates that the Caltech images have greater regularity within a class

and/or more salient foregrounds (both of which are true upon visual inspec-

tion). In fact, Single-Seg can even outperform the cosegmentation methods

in some cases (e.g., see motorbike). This finding agrees with previous reports

in [121, 140]; while one hopes to see gains from the “more supervised” coseg-

mentation task, single-image segmentation can be competitive either when the

intra-class variation is too high or the foreground is particularly salient.

Finally, I compare my method to state-of-the-art cosegmentation meth-

ods using their published numbers on the Caltech-28. Table 6.4 shows the

results, in terms of average precision (the metric reported in the prior work).

My method is more accurate than all the previous results. Notably, all the

prior cosegmentation results ([2, 21, 70] and the multi-image GrabCut [119]

extension defined in [2]) indiscriminately use all the input images for joint

segmentation, whereas my method selects the single most effective partner per
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query. This result is more evidence for the advantage of doing so.

6.5 Conclusion

Cosegmentation injects valuable implicit top-down information for seg-

mentation, based on commonalities between related input images. Rather than

assume that useful partners for cosegmentation will be known in advance, I

proposed an algorithm to predict which pairs will work well together. My re-

sults on two challenging datasets are encouraging evidence that it is worthwhile

to actively focus cosegmentation on relevant pairs.

While so far this study was limited to only studying this problem in

the context of image pairs, I believe that measuring compatibility between

image pairs for mutual segmentation transfer has much wider applicability.

Extending the algorithm from pairs to the weakly-suervised multi-image joint

segmentation scenario and also possibly to the fully unsupervised setting is a

very promising future direction.

Having discussed my proposed methods for segmenting images in vari-

ous settings, in the next chapter I will describe my approach for semi-supervised

segmentation propagation in videos.
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Chapter 7

Supervoxel consistent foreground propagation

in video

Whereas the previous chapters deal largely with segmenting images

interactively, the remainder of the dissertation looks closely at segmenting

objects from video. Different from the algorithms for segmenting images, a

video segmentation algorithm can directly benefit from the temporal continuity

in video data. While segmentation propagation in an image collection had

to rely on similarity scores between images which are inherently noisy, the

temporal prior in video allows for direct constraints on how the propagation

should proceed (e.g., through connections in time).

In this chapter, I introduce a semi-supervised approach for video seg-

mentation propagation using supervoxel higher order potentials1. The pro-

posed semi-supervised video segmentation propagation algorithm takes a video

clip as input and some labeled frames in which an annotator has outlined the

foreground object of interest. The output is a space-time segmentation with

foreground (fg) or background (bg) labels to every pixel in every frame. This

is done by defining a space-time graph and energy function that respect the

1This work originally was published in European Conference on Computer Vision
(ECCV), 2014 [57].
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Figure 7.1: Automatic propagation of foreground segmentation in videos from
a single/multiple labeled frame(s). Here we see human drawn segmentation
on a single frame being propagated to all the other frames in the video using
my supervoxel based propagation (Chapter 7) algorithm [57]. Best viewed in
color.

“big picture” of how objects move and evolve throughout the clip (see Figure

7.1).

The propagation paradigm has several advantages. First, it removes

ambiguity about what object is of interest, which, despite impressive ad-

vances [81, 84, 96, 160], remains an inherent pitfall for purely unsupervised

methods for video segmentation [26, 40, 43, 81, 84, 96, 157, 158, 160]. Accord-

ingly, the propagation setting can accommodate a broader class of videos,

e.g., those in which the object does not move much, or shares appearance with

the background. Second, propagation from just few human-labeled frames can

be substantially less burdensome than human-in-the-loop systems that require

constant user interaction [7, 36, 87, 116, 145, 149], making it a promising tool

for gathering object tubes at a large scale.
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Figure 7.2: Example supervoxels, using [43]. Unique colors are unique super-
voxels, and repeated colors in adjacent frames refer to the same supervoxel.
Notice that a number of larger supervoxels remain steady in early frames, then
some split/merge as the dog’s pose changes, then a revised set again stabilizes
for the latter chunk of frames. Best viewed in color.

Key to my idea is the use of supervoxels (see Figure 7.2). Supervox-

els are space-time regions computed with a bottom-up unsupervised video

segmentation algorithm [43, 157, 158]. They typically oversegment—meaning

that objects may be parcelled into many supervoxels—but the object bound-

aries remain visible among the supervoxel boundaries. They vary in shape and

size, and will typically be larger and longer for content more uniform in its

color or motion. Though a given object part’s supervoxel is unlikely to remain

stable through the entire video, it will often persist for a series of frames. The

proposed approach exploits this partial stability of the supervoxels but also

guards against their noisy imperfections. As discussed in Chapter 2, existing

methods for segmentation propagation [6, 36, 118, 135, 141] only account for

short range interactions through noisy optical flow based connections between

adjacent frames. In contrast, the proposed supervoxel based method is able

to enforce long range temporal consistency and is more robust to flow errors.

In the proposed propagation method supervoxels are leveraged in two
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ways. First, each supervoxel is projected into each of its child frames to obtain

spatial superpixel nodes. These nodes have sufficient spatial extent to com-

pute rich visual features. Plus, compared to standard superpixel nodes com-

puted independently per frame [6, 26, 36, 40, 116, 118, 135], they benefit from

the broader perspective provided by the hierarchical space-time segment that

generates the supervoxels. For example, optical flow similarity of voxels on the

dog’s textured collar (Figure 7.2) may preserve it as one node, whereas per-

frame segments may break it into many. Secondly, supervoxels are leveraged

as a higher-order potential. Augmenting the usual unary and pairwise terms,

a soft label consistency constraint is enforced among nodes originating from

the same supervoxel. Again, this provides broader context to the propagation

engine.

The proposed approach is validated on three challenging datasets, Seg-

Track [135], YouTube Objects [115], and Weizmann [42], and compared to

state-of-the-art propagation methods. It outperforms existing techniques over-

all, with particular advantage when foreground and background look similar,

inter-frame motion is high, or the target changes shape between frames.

As stated earlier, the proposed supervoxel based propagation technique

also effectively combines with my Click Carving based interactive segmentation

algorithm (Chapter 4). Instead of manually annotating the initial frame, we

can use Click Carving to segment that frame interactively, which can then

be propagated using the supervoxel propagation method. This results in a

substantial savings in human annotation cost for video segmentation.
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Figure 7.3: Proposed spatio-temporal graph. Nodes are superpixels (projected
from supervoxels) in every frame. Spatial edges exist if the superpixels have
boundary overlap (black); temporal edges are computed using optical flow
(red). Higher order cliques are defined by supervoxel membership (dotted
green). For legibility, only a small subset of nodes and connections are de-
picted. Best viewed in color.

In the following, I describe the three main stages of our approach: 1)

a spatio-temporal graph is constructed from the video sequence using optical

flow and supervoxel segmentation (Section 7.1); 2) a Markov Random Field

is defined over this graph with suitable unary potentials, pairwise potentials,

and higher order potentials (Section 7.2); and 3) the energy of this MRF is

minimized by iteratively updating the likelihood functions using label esti-

mates (Section 7.3). Section 7.4 then presents detailed experimental results

and comparisons with other state-of-the-art methods.

7.1 Space-time MRF graph structure

I first formally define the proposed spatio-temporal Markov Random

Field (MRF) graph structure G consisting of nodes X and edges E. Let
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X = {Xt}Tt=1 be the set of superpixels2 over the entire video volume, where T

refers to the number of frames in the video. Xt is a subset of X and contains

superpixels belonging only to the t-th frame. Therefore each Xt is a collection

of superpixel nodes {xit}Kt
i=1, where Kt is the number of superpixels in the t-th

frame.

A random variable yit ∈ {+1,−1} is associated with every node to

represent the label it may take, which can be either object (+1) or background

(-1). My goal is to obtain a labeling Y = {Yt}Tt=1 over the entire video. Here,

Yt = {yit}Kt
i=1 represents the labels of superpixels belonging only to the t-th

frame. Below, (t, i) indexes a superpixel node at position i and time t.

An edge set E = {Es,Et} is defined for the video. Es is the set of

spatial edges between superpixel nodes. A spatial edge exists between a pair

of superpixel nodes (xit, x
j
t) in a given frame if their boundaries overlap (black

lines in Figure 7.3). Et is the set of temporal edges. A temporal edge exists

between a pair of superpixels (xit, x
j
t+1) in adjacent frames if any pixel from xit

tracks into xjt+1 using optical flow (red lines in Figure 7.3). I use the algorithm

of [19] to compute dense flow between consecutive frames. Let [(t, i), (t′, j)]

index an edge between two nodes. For spatial edges, t′ = t; for temporal edges,

t′ = t+ 1.

Finally S is used to denote the set of supervoxels. Each element v ∈ S

represents a higher order clique (one is shown with a green dashed box in

2Throughout, I use “superpixel” to refer to a supervoxel projection into the frame.

165



Figure 7.3) over all the superpixel nodes which are a part of that supervoxel.

Let yv denote the set of labels assigned to the superpixel nodes belonging to

the supervoxel v.

For each superpixel node xit, I compute two image features using all its

pixels: 1) an RGB color histogram with 33 bins (11 bins per channel), and 2) a

histogram of optical flow, which bins the flow orientations into 9 uniform bins.

The two descriptors are concatenated and the visual dissimilarity between two

superpixels D(xit, x
j
t′) is computed as the Euclidean distance in this feature

space.

7.2 Energy function with supervoxel label consistency

Having defined the graph structure, I can now explain the proposed

segmentation pipeline. I define an energy function over G = (X,E) that en-

forces long range temporal coherence through higher order potentials derived

from supervoxels S:

E(Y) =
∑

(t,i)∈X

Φi
t(y

i
t)

︸ ︷︷ ︸
Unary potential

+
∑

[(t,i),(t′,j)]∈E
t′∈{t,t+1}

Φi,j
t,t′

(
yit, y

j
t′)

︸ ︷︷ ︸
Pairwise potential

+
∑
v∈S

Φv

(
yv)

︸ ︷︷ ︸
Higher order potential

. (7.1)

The goal is to obtain the video’s optimal object segmentation by min-

imizing Eqn. 7.1: Y∗ = arg minYE(Y). The unary potential accounts for the

cost of assigning each node the object or background label, as determined by

appearance models and spatial priors learned from the labeled frame. The

pairwise potential promotes smooth segmentations by penalizing neighboring
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nodes taking different labels. The higher order potential, key to my approach,

ensures long term consistency in the segmentation. It can offset the errors

introduced by weak or incorrect temporal connections in the adjacent frames.

Next I give the details for each of the potential functions.

7.2.1 Unary potential

The unary potential in Eqn. 7.1 has two components, an appearance

model and a spatial prior:

Φi
t(y

i
t) = λappA

i
t(y

i
t)︸ ︷︷ ︸

Appearance prior

+ λloc L
i
t(y

i
t)︸ ︷︷ ︸

Spatial prior

, (7.2)

where λapp and λloc are scalar weights reflecting the two components’ influence.

To obtain the appearance prior Ai
t(y

i
t), the human-labeled frame is

used to learn Gaussian mixture models (GMM) to distinguish object vs. back-

ground. Specifically, all the pixels inside and outside the supplied object mask

are used to construct the foreground G+1 and background G−1 GMM distri-

butions, respectively, based on RGB values. To compute the likelihood that

a superpixel xit is object or background, the mean likelihood over all pixels

within the superpixel is used:

Ai
t(y

i
t) = − log

1

|xit|
∑
p∈xi

t

P (Fp|Gyit
), (7.3)

where Fp is the RGB color value for pixel p and |xit| is the pixel count within

the superpixel node xit.
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The spatial prior Li
t(y

i
t) penalizes label assignments that deviate from

an approximate expected spatial location for the object:

Li
t(y

i
t) = − logP (yit|(t, i)), (7.4)

where (t, i) denotes the location of a superpixel node. To compute this prior,

we start with the human-labeled object mask in the first frame and propagate

that region to subsequent frames using both optical flow and supervoxels.3 In

particular, we define:

P (ykt+1|(t+ 1, k)) =
∑

(i,t)∈Bk

ψ
(
xkt+1, x

i
t

)
δ
(
P (yit|(t, i)) > τ

)
, (7.5)

where Bk is the set of superpixel nodes tracked backwards from xkt+1 using

optical flow, and δ denotes the delta function. The δ term ensures that transfer

happens only from the most confident superpixels, as determined in the prior

frame of propagation. In particular, the contribution of any xit with confidence

lower than τ = 0.5 is ignored.

The term ψ(xkt+1, x
i
t) in Eqn. 7.5 estimates the likelihood of a successful

label transfer from frame t to frame t+1 at the site xk. If, via the flow, we find

the transfer takes place between superpixels belonging to the same supervox-

els, then the transfer is predicted to succeed to the extent the corresponding

superpixels overlap in pixel area, ρ =
|xi

t|
|xk

t+1|
. Otherwise, that overlap is further

scaled by the superpixels’ feature distance:

ψ(xkt+1, x
i
t) =

{
ρ if (xkt+1, x

i
t) ∈ v (same supervoxel)

ρ exp (−βuD(xkt+1, x
i
t)) otherwise,

3If a frame other than the first is chosen for labeling, the system propagates from that
frame out in both directions. See Sec. 7.4.4 for extension handling multiple labeled frames.
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where βu is a scaling constant for visual dissimilarity.

7.2.2 Pairwise potential

In order to ensure that the output segmentation is smooth in both

space and time, standard pairwise terms for both spatial and temporal edges

are used:

Φi,j
t,t′

(
yit, y

j
t′) = δ(yit 6= yjt′) exp (−βpD(xit, x

j
t′)), (7.6)

where βp is a scaling parameter for visual dissimilarity. The penalty for adja-

cent nodes having different labels is contrast-sensitive, meaning that they are

modulated by the visual feature distance D(xit, x
j
t′) between the neighboring

nodes. For temporal edges, this potential is further weighted by ρ, the pixel

overlap between the two nodes computed above with optical flow. Both types

of edges encourage output segmentations that are consistent between nearby

frames.

7.2.3 Higher order potential

Finally, I define the supervoxel label consistency potential, which is

crucial to my method. While the temporal smoothness potential helps enforce

segmentation coherence in time, it suffers from certain limitations. Temporal

edges are largely based on optical flow, hence they can only connect nodes in

adjacent frames. This inhibits long-term coherence in the segmentation. In

addition, the edges themselves can be noisy due to errors in flow.

Therefore, I propose to use higher order potentials derived from the su-
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pervoxel structure. As discussed above, the supervoxels group spatio-temporal

regions which are similar in color and flow. Using the method of [43], this

grouping is a result of long-term analysis of regions, and thus can overcome

some of the errors introduced from optical flow tracking. For instance, in the

datasets I use below, supervoxels can be up to 400 frames long and occupy up

to 70% of the frame. At the same time, the supervoxels themselves are not

perfect—otherwise the system would be done! Thus, I use them to define a

soft preference for label consistency among superpixel nodes within the same

supervoxel.

The Robust P n model [71] is adopted to define these potentials. It

consists of a higher order potential defined over supervoxel cliques:

Φv

(
yv) =

{
N(yv)

1
Q
γmax(v) if N(yv) ≤ Q

γmax(v) otherwise,
(7.7)

where yv denotes the labels of all the superpixel nodes within the supervoxel

v ∈ S, and N(yv) is the number of nodes within the supervoxel v that do

not take the dominant label. That is, N(yv) = min(|yv = −1|, |yv = +1|).

Following [71], Q is a truncation parameter that controls how rigidly we want to

enforce the consistency within the supervoxels. Intuitively, the more confident

we are that the supervoxels are strictly an oversegmentation, the higher Q

should be.

The penalty γmax(v) is a function of the supervoxel’s size and color

diversity, reflecting that those supervoxels that are inherently less uniform

should incur lesser penalty for label inconsistencies. Specifically, γmax(v) =
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|yv| exp(−βhσv), where σv is the total RGB variance in supervoxel v.

7.3 Energy minimization and parameters

The energy function defined in Eqn. 7.1 can be efficiently minimized

using the α-expansion algorithm [71]. The optimal labeling corresponding to

the minimum energy yields my initial fg-bg estimate. That output is iterative

refined by re-estimating the appearance model—using only the most confi-

dent samples based on the current unary potentials—then solving the energy

function again. The method iterates three times to obtain the final output.

The only three parameters that must be set are λapp and λloc, the

weights in the appearance potential, and the truncation parameter Q. I deter-

mined reasonable values (λapp = 100, λloc = 40, Q = 0.2 |yv|) by visual inspec-

tion of a couple outputs, then fixed them for all videos and datasets. (This

is minimal effort for a user of the system. It could also be done with cross-

validation, when sufficient pixel-level ground truth is available for training.)

The remaining parameters βu, βp, and βh, which scale the visual dissimilarity

for the unary, pairwise, and higher order potentials, respectively, are all set

automatically as the inverse of the mean of all individual distance terms.

7.4 Results

In this section, I provide detailed experiments and comparisons with

state-of-the-art methods.
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7.4.1 Datasets and baselines

Segtrack-v2 Dataset

YouTube-Objects Dataset

Weizmann Dataset

Figure 7.4: Example video sequences from Segtrack-v2, YouTube-Objects and
Weizmann datasets. (best viewed in color).
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Datasets and metrics: I evaluate on three publicly available video segmen-

tation datasets: SegTrack [135], YouTube-Objects [115], and Weizmann [42].

Figure 7.4 shows some visual examples from each dataset. For SegTrack and

YouTube, the true object region in the first frame is supplied to all methods.

I use standard evaluation metrics: average pixel label error and intersection-

over-union overlap.

Methods compared: I compare to five state-of-the-art methods: four for

semi-supervised foreground label propagation [27, 36, 135, 141], plus the state-

of-the-art higher order potential method of [26]. Note that unsupervised

multiple-hypothesis methods [81, 84, 96, 160] are not comparable in this semi-

supervised single-hypothesis setting. I also test the following baselines:

• SVX-MRF: an MRF comprised of supervoxel nodes. The unary po-

tentials are initialized through the labeled frame, and the smoothness

terms are defined using spatio-temporal adjacency between supervoxels.

It highlights the importance of the design choices in the proposed graph

structure.

• SVX-Prop: a simple propagation scheme using supervoxels. Starting

from the labeled frame, the propagation of foreground labels progresses

through temporally linked (using optical flow) supervoxels. It illustrates

that it’s non-trivial to directly extract foreground from supervoxels.

• PF-MRF: the existing algorithm of [141], which uses a pixel-flow (PF)

MRF for propagation. Note that the authors also propose a method to
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actively select frames for labeling, which I do not employ here.

• Ours w/o HOP: a simplified version of my method that lacks higher

order potentials (Eqn. 7.7), to isolate the impact of supervoxel label

consistency.

7.4.2 Results on SegTrack dataset

SegTrack [135] was designed to evaluate object segmentation in videos.

It consists of six videos, 21-71 frames each, with various challenges like color

overlap in objects, large inter-frame motion, and shape changes. Pixel-level

ground truth is provided, and the standard metric is the average number of

mislabeled pixels over all frames, per video. The creators also provide difficulty

ratings per video with respect to appearance, shape, and motion.

Table 7.1 shows the results, compared to all existing propagation results

in the literature. The proposed method outperforms the state-of-the-art in 4

of the 6 videos. Especially notable are the substantial gains on the challenging

“monkeydog” and “birdfall” sequences. Figure 7.5 (top row) shows exam-

ples from “monkeydog” (challenging w.r.t shape & motion [135]). My method

successfully propagates the foreground, despite considerable motion and defor-

mation. Figure 7.5 (bottom row) is from “birdfall” (challenging w.r.t motion

& appearance [135]). My method propagates the foreground well in spite of

significant fg/bg appearance overlap.

The weaker performance on “cheetah” and “girl” is due to underseg-

mentation in the supervoxels, which hurts the quality of my supervoxel cliques
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Figure 7.5: Example results on SegTrack. Best viewed in color.

Ours PF-MRF [141] Fathi[36] Tsai[135] Chockalingam[27]

birdfall 189 405 342 252 454
cheetah 1170 1288 711 1142 1217

girl 2883 8575 1206 1304 1755
monkeydog 333 1225 598 563 683
parachute 228 1042 251 235 502
penguin 443 482 1367 1705 6627

Table 7.1: Average pixel errors for all existing propagation methods on Seg-
Track.

and the projected superpixels. In particular, “cheetah” is low resolution and

foreground/background appearance strongly overlap, making it more difficult

for [43] (or any supervoxel algorithm) to oversegment. This suggests a hierar-

chical approach that considers fine to coarse supervoxels could be beneficial,

which I leave as future work.

PF-MRF [141], which propagates based on flow links, suffers in several

videos due to errors and drift in optical flow. This highlights the advantages of

the broader scale nodes formed from supervoxels: the supervoxel based graph

is not only more efficient (it requires 2-3 minutes per video, while PF-MRF

requires 8-10 minutes), but it also is robust to flow errors. The prior superpixel
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Ours Ours w/o HOP SVX-MRF SVX-Prop

birdfall 189 246 299 453
cheetah 1170 1287 1202 1832

girl 2883 3286 3950 5402
monkeydog 333 389 737 1283
parachute 228 258 420 1480
penguin 443 497 491 541

Table 7.2: Average pixel errors (lower is better) for other baselines on Seg-
Track.

graph methods [36, 135] use larger nodes, but only consider temporal links

between adjacent frames. Thus, the gains here confirm that long-range label

consistency constraints are important for successful propagation.

Table 7.2 compares my method to the other baselines on SegTrack.

SVX-Prop performs poorly, showing that tracking supervoxels alone is insuf-

ficient. SVX-MRF performs better but still is much worse than my method,

which shows that it’s best to enforce supervoxel constraints in a soft manner.

The higher order potentials (HOP) help my method in all cases (compare cols

1 and 2 in Table 7.2). To do a deeper analysis of the impact of HOPs, I con-

sider the sequences rated as difficult in terms of motion and shape by [135],

“monkeydog” and “birdfall”. On their top 10% most difficult frames, the rel-

ative gain of HOPs is substantially higher. On “birdfall” HOPs yield a 40%

gain on the most difficult frames (as opposed to 23% over all frames). On

“monkeydog” the gain is 18% (compared to 13% on all frames).
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7.4.3 Results on YouTube-Objects dataset

Next I evaluate on the YouTube-Objects [115]. I use the subset de-

fined by [132], who provide segmentation ground truth. However, that ground

truth is approximate—and even biased in our favor—since annotators marked

supervoxels computed with [43], not individual pixels. Hence, I collected fine-

grained pixel-level masks of the foreground object in every 10-th frame for

each video using Amazon Mechanical Turk4. In all, this yields 126 web videos

with 10 object classes and more than 20,000 frames. To my knowledge, these

experiments are the first time such a large-scale evaluation is being done for

the task of foreground label propagation; prior work has limited its validation

to the smaller SegTrack.

Table 7.3 shows the results in terms of overlap accuracy. My method

outperforms all the baselines in 8 out of 10 classes, with gains up to 8 points

over the best competing baseline. Note that each row corresponds to multi-

ple videos for the named class; my method is best on average for over 100

sequences.

On YouTube, PF-MRF [141] again suffers from optical flow errors,

which introduce a “dragging effect”. For example, Figure 7.6 shows the PF-

MRF pixel flow drags as the dog moves on the sofa (left), accumulating er-

rors. In contrast, my method propagates the foreground and background more

cleanly (right). The SVX-MRF baseline is on average 10 points worse than

4Available at: http://vision.cs.utexas.edu/projects/videoseg/
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obj (#vid) Ours Ours w/o HOP SVX-MRF SVX-Prop PF-MRF [141]

aeroplne (6) 86.27 79.86 77.36 51.43 84.9
bird (6) 81.04 78.43 70.29 55.23 76.3

boat (15) 68.59 60.12 52.26 48.70 62.44
car (7) 69.36 64.42 65.82 50.53 61.35
cat (16) 58.89 50.36 52.9 36.25 52.61
cow (20) 68.56 65.65 64.66 51.43 58.97
dog (27) 61.78 54.17 53.57 39.10 57.22

horse (14) 53.96 50.76 47.91 28.92 43.85
mbike (10) 60.87 58.31 45.23 42.23 62.6
train (5) 66.33 62.43 47.26 55.33 72.32

Table 7.3: Average accuracy per class on YouTube-Objects (higher is better).
Numbers in parens denote the number of videos for that class.

Propagation result using PF-MRF [141] Propagation result with my method

Figure 7.6: The supervoxel based propagation method resolves dragging errors
common in flow-based MRFs.

ours, and only 25 seconds faster.

Comparing the first two columns in Table 7.3, we see that supervoxel

HOPs have the most impact on “boat”, “dog”, and “cat” videos. They tend

to have substantial camera and object motion. Thus, often, the temporal

links based on optical flow are unreliable. In contrast, the supervoxels, which

depend on not only motion but also object appearance, are more robust. For

example, Figure 7.7 shows a challenging case where the cat suddenly jumps

forward. Without the HOP, optical flow connections alone are insufficient to

track the object (middle row). However, the supervoxels are still persistent

(top row), and so the HOP propagates the object properly (bottom row).
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Without higher  

order potentials

With higher  

order potentials

Supervoxels

Figure 7.7: Label propagation with and without HOPs (frames 31, 39, 42, 43,
51).

Figure 7.8 shows more qualitative results. My method performs well

even in the cases where there is significant object or camera motions. The cat

(third row) also shows its robustness to foreground-background appearance

overlap. In the failure case (last row), it initially tracks the cat well, but later

incorrectly merges the foreground and ladder due to supervoxel undersegmen-

tations.

7.4.4 Results on Weizmann dataset

Lastly, I use the Weizmann dataset [42] to compare to [26], which uses

higher order spatial cliques and short temporal cliques found with flow. The

dataset consists of 90 videos, from 10 activities with 9 actors each.

Figure 7.9 shows the results in terms of foreground precision and re-

call, following [26]. Whereas my method outputs a single fg-bg estimate (2
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Success cases

Failure case

Figure 7.8: Qualitative results highlighting the performance under fast motion,
shape changes, and complex appearance. The first image in each row shows
the human-labeled first frame of the video. See text for details.

segments), the method of [26] outputs an oversegmentation with about 25

segments per video. Thus, the authors use the ground truth on each frame

to map their outputs to fg and bg labels, based on majority overlap; this is

equivalent to obtaining on the order of 25 manual clicks per frame to label

the output. In contrast, my propagation method uses just 1 labeled frame

to generate a complete fg-bg segmentation. Therefore, I show the results for

increasing numbers of labeled frames, spread uniformly through the sequence.

This requires a multi-frame extension of my method—namely, it takes the ap-

pearance model Gyt from the labeled frame nearest to t, and re-initialize the

180



Ours (1) Ours (3) Ours (5) Ours (7) Ours (9) Cheng et al. (40-125)

Figure 7.9: Foreground precision (left) and recall (right) on Weizmann. Legend
shows number of labeled frames used per result (1 to 9 for my method, 40-125
for [26]).

spatial prior Li
t(y

i
t) at every labeled frame.

With just 5 labeled frames (compared to the 40-125 labeled frames used

in [26]), the results are better in nearly all cases. Even with a single labeled

frame, the performance is competitive. This result gives strong support for the

proposed formulation of a long-range HOP via supervoxels. Essentially, the

method of [26] achieves a good oversegmentation, whereas my method achieves

accurate object tubes with long range persistence.

7.5 Conclusion

In conclusion, this chapter introduced a new semi-supervised approach

to propagate object regions in a video. The proposed method is capable of

enforcing long-term temporal consistencies in the output segmentation us-

ing a supervoxel higher order potential. Extensive results on the SegTrack,
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YouTube-Objects and Weizmann datasets show that the proposed approach

outperforms many state-of-the-art methods and several important baselines

while propagating from a single/few labeled frames.

In the future, there can be several possible extensions to address some

weaknesses of the current propagation engine. Firstly, in its current form the

method uses supervoxels from a particular level in the hierarchical segmenta-

tion of the video. The current choice of this parameter is heuristic in nature

i.e., it selects an intermediate level of the hierarchy. However, using supervox-

els from a fixed level for all videos is sub-optimal. These supervoxels can be

too fine or too coarse at that level depending on the individual video content

or quality. It will be useful to consider a coarse-to-fine approach which can de-

fine higher order potentials to integrate information from the entire hierarchy.

Moreover, the performance also suffers due to the over-segmentation errors

which the supervoxels introduce. A coarse-to-fine approach can potentially

remedy that as well.

Secondly, in its current form the propagation engine requires the com-

plete video to be available for the propagation to take place. This can poten-

tially be problematic for longer videos where propagating information across

very large temporal intervals could be difficult. A straightforward extension,

which propagates information in a streaming fashion, i.e., by processing only

a subset of frames at a time and conditioning future propagation on the pre-

viously propagated frames, could be useful in such cases.

In addition, the current method always assumes that the propagation

182



happens from the first frame or uniformly sampled frames. These “keyframes”

from which the propagation takes place can instead be adaptively selected

depending on the content of the video [141]. For example, more frames can

be selected for human annotation from parts of the video undergoing large

deformations instead of the more static parts where things do not change

much and propagation can take place smoothly.

Finally, the current propagation method completely relies on the man-

ual annotation to obtain complete video segmentation. It will be interesting to

integrate this information with additional priors independent from the human

annotation which can possibly capture where the object lies in the video. As

a first step towards this, in the next chapter I will introduce the idea of a

generic pixel-level objectness in images and videos and show that combining it

with the supervoxel based propagation results in an even better segmentation

performance.
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Chapter 8

Pixel objectness in images and videos

In the previous chapter, I proposed a segmentation propagation algo-

rithm for videos, which takes a manually segmented frame in a video and

propagates it to the entire video volume. Typically in a video segmentation

propagation algorithm, one relies heavily on the manual segmentations pro-

vided by the human annotators to drive the underlying segmentation model [6,

36, 57, 118, 135, 141]. These are typically used to capture the appearance of the

object of interest by learning strong appearance models from the manually seg-

mented frames. However, as objects move and deform away from the manually

segmented frame, the learned appearance model gets weaker and it becomes

necessary to request further human guidance on future frames. This paradigm

in a sense relies purely on the human guidance for assigning likelihoods to ev-

ery pixel about being an object or background. Motion information from video

is also typically restricted to creating temporal and higher-order constraints

for propagating information [6, 36, 118, 135, 141].

However there are some inherent appearance and motion properties

of objects in images and videos which clearly separate them from the back-

ground. Gestalt principles of grouping also suggest that these properties are
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Image

Pixel objectness map

Segmentation

Figure 8.1: The goal is to predict an objectness map for each pixel (2nd row)
and a single foreground segmentation (3rd row). Left to right: The proposed
method can accurately handle objects with occlusion, thin objects with similar
colors to background, man-made objects, and multiple objects. It is class-
independent, meaning it is not trained to detect the particular objects in the
images and videos.

fairly generalizable across object categories. It is quite natural to think that

modeling these generic appearance and motion properties can help in generat-

ing a strong prior for each pixel as being an “object” or “background”. I refer

to these priors as “pixel objectness” for the remaining discussion.

In this chapter, I show1 that indeed low-level appearance and motion

1This work originally was published in part on arXiv in January 2017 [56] and in CVPR
2017 [55].
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signals contain rich information about a pixel being on an “object” or back-

ground, which can be modeled in a data-driven manner (see Figure 8.1 for

some examples). More specifically, I explore whether it is possible to learn a

model that quantifies how likely a pixel belongs to an object of any class, and

should be high even for objects unseen during training. The models that I

develop in this chapter are truly “generic” in nature that generalize to thou-

sands of object categories. Moreover, once trained they will be able to do it

without any human guidance or input during test time.

Generic objectness signals from both appearance and motion are com-

plex. For example, an object typically exhibits several intra-class variations

including scale changes and complex shapes which a generic objectness model

needs to capture. For motion, a single object may display multiple motions si-

multaneously, background and camera motion can intermingle, and even small-

magnitude motions could be informative. This makes it almost impossible to

hand-design rules which can generalize to thousands of object categories. It

is essential to have learnable models for objectness which can exploit large

volumes of training data to learn these rich signals.

Hence, in this chapter I introduce a two-stream deep network with end-

to-end trainable appearance and motion streams which capture objectness cues

present in each signal. The appearance stream requires an RGB image as in-

put, while the motion stream requires optical flow from a video frame as input.

The individual appearance and motion streams can be trained respectively to

produce pixel-level objectness scores using appearance and motion informa-
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tion. Naturally for images we rely only on the appearance stream to generate

pixel objectness maps from the RGB input. In the case of videos, a fusion

module towards the end combines these individual appearance and motion

streams in a unified manner to generate the final per-pixel objectness map for

each frame. These objectness maps can then be thresholded to obtain binary

“object” versus “background” segmentations for a given image or a video.

This also gives us a fully automatic algorithm to perform object segmentation

in images and videos.

Note that my proposed two-stream deep network is not restricted to

segmenting objects that stand-out as is the case with automatic salient ob-

ject segmentation methods [61, 86, 88, 93, 110, 162, 163]. It also produces only

a single segmentation hypothesis as opposed to object proposal methods [5,

22, 33, 51, 74, 113, 137, 165] which generate thousands of segmentation outputs

making it difficult to automatically select a single best segmentation. Also

in contrast with fully automatic video segmentation methods [35, 81, 107, 160]

which strongly rely on motion alone to seed the segmentation process and thus

can fail in segmenting static objects, my proposed method uses both appear-

ance and motion in a unified manner to segment all objects in videos (static

or moving).

A standard way to train such a deep network would be to simply take

large scale image and video segmentation datasets with per-pixel segmenta-

tions from thousands of object categories. However no such datasets exist

till date which makes it very challenging to train such a network. In the
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following sections I show that this can be achieved by decoupling the individ-

ual streams and first independently learning a generic “appearance” network

using large-scale image classification datasets (1000 classes) combined with

per-pixel image segmentation data from a small number of object categories

(20 classes). This “appearance” network, as we demonstrate, generalizes for

segmenting thousands of object categories. It is further combined with weakly

annotated video datasets to obtain high quality segmentations which are then

used to train the motion stream. Finally, the fusion module which combines

these individual streams is trained with only a small amount of boundary

annotations from videos.

The appearance stream generalizes well and accurately segments fore-

ground objects in images and video frames using appearance alone. For videos,

the results show the reward of learning from both signals in a unified frame-

work: a true synergy, with substantially stronger results than what we can

obtain from either one alone. It significantly advances the state of the art for

fully automatic video object segmentation on multiple challenging datasets.

I also show that this generic pixel-level objectness can be combined with the

video-specific appearance signals learned from a manually segmented frame

(e.g., as obtained with Click Carving from Chapter 4) and together they re-

sult in an even stronger segmentation performance.

In the following, first I discuss my proposed appearance stream to seg-

ment generic objects from images and individual frames using appearance

alone (Sec. 8.1). Then I describe the procedure to bootstrap the training of
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the motion stream from the outputs of the appearance stream and weakly

labeled videos (Sec. 8.2). Next, I describe the fusion step that combines the

two streams together to perform fully automatic video object segmentation

(Sec. 8.3). I also present a semi-supervised extension, which augments this

trained network with some manual annotations on the test video and further

improves the performance (Sec. 8.4). Finally, I discuss the experimental re-

sults and compare with several state-of-the-art methods to demonstrate both

its generalizability across object categories and also superior performance for

video segmentation.

8.1 Appearance stream

The proposed appearance stream takes either an RGB image or video

frame as input and directly outputs a generic pixel-level objectness map using

appearance alone. A good generic appearance model should 1) predict a pixel-

level map that aligns well with object boundaries, and 2) generalize so it can

assign high probability to pixels of unseen object categories.

Challenges in dense foreground-labeled training data: Potentially, one

way to address both challenges would be to rely on a large annotated im-

age dataset that contains a large number of diverse object categories with

pixel-level foreground annotations. However no such datasets currently exists.

Existing datasets contain boundary-level annotations for merely dozens of cat-

egories (20 in PASCAL [34], 80 in COCO [89]), and/or for only a tiny fraction

of all dataset images (0.03% of ImageNet’s 14M images have such masks). To
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naively train a generic foreground object segmentation system, one might ex-

pect to need foreground labels for many more representative categories than

what’s available today.

Mixing explicit and implicit representations of objectness: This chal-

lenge motivates us to consider a different means of supervision to learn this

generic foreground appearance stream. My idea is to train this stream to pre-

dict pixel level objectness using a mix of explicit boundary-level annotations

and implicit image-level object category annotations. From the former, the

system will obtain direct information about image cues indicative of generic

foreground object boundaries. From the latter, it will learn object-like features

across a wide spectrum of object types—but without being told where those

objects’ boundaries are.

To this end, this appearance stream is initialized using a powerful

generic image representation learned from millions of images labeled by their

object category, but lacking any foreground annotations. Then, this stream

is further fine-tuned directly to produce dense binary segmentation maps, us-

ing relatively few images with pixel-level annotations originating from a small

number of object categories. Note that at this point the appearance stream

is completely decoupled from the motion stream and is being individually

trained.

Since the pretrained network is trained to recognize thousands of ob-

jects, I hypothesize that its image representation has a strong notion of ob-

jectness built inside it, even though it never observes any segmentation anno-
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Figure 8.2: Network structure for the two-stream model with separate appear-
ance and motion streams followed by a fusion module to combine them in a
unified manner. Each convolutional layer except the first 7× 7 convolutional
layer and the fusion blocks is a residual block [47], adapted from ResNet-101.
The reduction in resolution is shown at top of each box and the number of
stacked convolutional layers in the bottom of each box.

tations. Meanwhile, by subsequently training with explicit dense foreground

labels, we can steer the appearance stream to fine-grained cues about bound-

aries that the standard object classification networks have no need to capture.

This way, even if the appearance stream is trained with a limited number of

object categories having pixel-level annotations, I expect it to learn generic

representations helpful to predict pixel level objectness.

In particular, I adapt the image classification model ResNet-101 [47]

and re-purpose it for doing segmentation. It is initialized with weights pre-

trained on ImageNet, which provides a representation equipped to perform

image-level classification for some 1,000 object categories. This appearance

stream is then trained to perform well on the dense foreground pixel labeling

task using a modestly sized semantic segmentation dataset. As we will see

in the results, the learned appearance stream possesses a strong notion of

objectness, making it possible to identify foreground regions of more than
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3,000 object categories despite seeing ground truth masks for only 20 during

training.

To re-purpose the classification network for doing segmentation, the

last two groups of convolution layers are replaced with atrous convolution lay-

ers (also known as dilated convolution) to increase feature resolution. This

results in only an 8× reduction in the output resolution instead of a 32× re-

duction in the output resolution in the original ResNet model. In order to

improve the model’s ability to handle both large and small objects, the classi-

fication layer of ResNet-101 is replaced with four parallel atrous convolutional

layers with different sampling rates to explicitly account for object scale. Then

the predictions from all four parallel atrous convolutional layers are fused by

summing all the outputs. The loss is the sum of cross-entropy terms over each

pixel position in the output layer, where ground truth masks consist of only

two labels—object foreground or background. The model is trained using the

Caffe implementation of [24]. This stream takes an image or a video frame of

arbitrary size and produces an objectness map of the same size. See Figure 8.2

(top stream).

8.2 Motion stream

The appearance stream described in the previous section is capable of

segmenting generic objects in images and videos using appearance information

alone. However, in the case of videos, motion also plays an important and often

complementary role to the appearance. Hence, for segmenting objects in video,
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I propose to develop a parallel motion stream which takes as input optical flow

data encoded as an RGB image and outputs per-pixel objectness score using

motion alone. These are then combined together using a fusion module for the

final pixel-objectness output for a video frame (see Figure 8.2).

The direct parallel to the appearance stream discussed above would

entail training the motion stream to map optical flow maps to video frame

foreground maps. However, an important practical catch to that solution is

training data availability. While ground truth foreground image segmenta-

tions are at least modestly available, datasets for video object segmentation

masks are small-scale in deep learning terms, and primarily support evaluation.

For example, Segtrack-v2 [84], one of the most commonly used benchmark

datasets for video segmentation, contains only 14 videos with 1066 labeled

frames. DAVIS [109] contains only 50 sequences with 3455 labeled frames.

None contain enough labeled frames to train a deep neural network. Semantic

video segmentation datasets like CamVid [18] or Cityscapes [28] are some-

what larger, yet limited in object diversity due to a focus on street scenes

and vehicles. A good training source for our task would have ample frames

with human-drawn segmentations on a wide variety of foreground objects,

and would show a good mix of static and moving objects. No such large-scale

dataset exists and creating one is non-trivial.

I propose a solution that leverages readily available image segmentation

annotations together with weakly annotated video data to train my model.

In brief, the appearance stream trained in the previous section is allowed
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to hypothesize likely foreground regions in frames of a large video dataset

annotated only by bounding boxes. Since the appearance alone need not

produce perfect segmentations in video, I devise a series of filtering stages by

which the system zeros in on high quality estimates of the true foreground.

These instances bootstrap pre-training of the optical flow stream, then the two

streams are joined to learn the best combination from minimal human labeled

training videos.

More specifically, given a video dataset with bounding boxes labeled

for each object,2 the category labels are first ignored and the boxes alone

are mapped to each frame. Then, the appearance stream, thus far trained

only from images labeled by their foreground masks is applied to compute

a binary segmentation for each frame. Next the box and segmentation are

deconflicted in each training frame. First, the binary segmentation is refined

by setting all the pixels outside the bounding box(es) as background. Sec-

ond, for each bounding box, its checked whether the smallest rectangle that

encloses all the foreground pixels overlaps with the bounding box by at least

75%. Otherwise the segmentation is discarded. Third, regions where the box

contains more than 95% pixels labeled as foreground are discarded, based on

the prior that good segmentations are rarely a rectangle, and thus probably

the true foreground spills out beyond the box. Finally, segments where object

and background lack distinct optical flow are eliminated, so that the motion

2We rely on ImageNet Video data, which contains 3862 videos and 30 diverse objects.
See Section 8.5.
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Figure 8.3: Procedures to generate (pseudo)-ground truth segmentations. The
appearance model is first applied to obtain initial segmentations (second row,
with object segment in green), followed by a pruning step which sets pixels
outside bounding boxes as background (third row). Next, the bounding box
test (fourth row, yellow bounding box is ground truth and blue bounding box
is the smallest bounding box enclosing the foreground segment) and optical
flow test (fifth row) are applied to determine whether the segmentation should
be added to the motion stream’s training set or discarded. Best viewed in
color.

model can learn from the desired cues. Specifically, the frame’s optical flow is

computed using [91] and converted to an RGB flow image [8]. If the 2-norm

between a) the average value within the bounding box and b) the average value
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in a box whose height and width are twice the original size exceeds 30, the

frame and filtered segmentation are added to the training set.3 See Figure 8.3

for a visual illustration of these steps.

To recap, bootstrapping from the preliminary appearance model, fol-

lowed by bounding box pruning, bounding box tests, and the optical flow

test, I can generate accurate per-pixel foreground masks for thousands of di-

verse moving objects—for which no such datasets exist to date. Note that

by eliminating training samples with these filters, I aim to reduce label noise

for training. However, at test time my system will be evaluated on standard

benchmarks for which each frame is manually annotated (see Sec. 8.5).

With this data, I now turn to training the motion stream. Analogous

to the strong generic appearance model, we also want to train a strong generic

motion model that can segment foreground objects purely based on motion.

The exact same network architecture as the appearance model (see Figure 8.2)

is used here. The motion model takes only optical flow as the input and is

trained with automatically generated pixel level ground truth segmentations.

In particular, the raw optical flow is converted to a 3-channel (RGB) color-

coded optical flow image [8]. This color-coded optical flow image is used as the

input to the motion network. Again the network is initialized with pre-trained

weights from ImageNet classification [123]. Representing optical flow using

RGB flow images allows us to leverage the strong pre-trained initializations as

3threshold chosen by initial visual inspection
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well as maintain symmetry in the appearance and motion arms of the network.

An alternative solution might forgo handing the system optical flow,

and instead input two raw consecutive RGB frames. However, doing so would

likely demand more training instances in order to discover the necessary cues.

Another alternative would directly train the joint model that combines both

motion and appearance, whereas we first “pre-train” each stream to make it

discover convolutional features that rely on appearance or motion alone, fol-

lowed by a fusion layer (below). My design choices are rooted in avoiding bias

in training the model. Since the (pseudo) ground truth comes from the initial

appearance network, either supplying two consecutive RGB frames or training

jointly from the onset is liable to bias the network to exploit appearance at

the expense of motion. By feeding the motion model with only optical flow, it

ensures that the motion stream learns to segment objects from motion.

8.3 Fusion model

The final processing in my pipeline for segmenting videos joins the

outputs of the appearance and motion streams, and aims to leverage a whole

that is greater than the sum of its parts. I now describe how to train the joint

model using both streams.

An object segmentation prediction is reliable if 1) either the appearance

model or the motion model predicts the object segmentation with very strong

confidence 2) both the appearance model and the motion model predict the

segmentation. This motivates the network structure of the joint model.
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I implement the idea by creating three indepedent parallel branches:

1) A 1×1 convolution layer followed by a RELU is applied to the output of

the appearance model 2) A 1×1 convolution layer followed by a RELU is

applied to the output of the motion model 3) The structure of first and second

branches is replicated and an element-wise multiplication is applied on their

outputs. The element-wise multiplication ensures the third branch outputs

confident predictions of object segmentation if and only if both appearance

model and motion model have strong predictions. Finally a layer that takes

the element-wise maximum is applied to obtain the final prediction. See Figure

8.2.

As discussed above, we do not fuse the two streams in an early stage

of the networks because we want them both to have strong independent pre-

dictions. Another advantage of this approach is that it only introduces six

additional parameters in each 1×1 convolution layer, for a total of 24 train-

able parameters. The fusion model can then be trained with very limited

annotated video data, without overfitting.

8.4 Semi-supervised extension

The joint model discussed in the previous section allows for an auto-

matic segmentation of objects in images and videos. However, on its own it

cannot disambiguate between multiple objects present in the image or a video

frame. The model is designed to only assign objectness scores to individual

pixels. Moreover if the underlying appearance and motion signals are weak,
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it will be difficult for the model to output accurate objectness scores, which

naturally will have an impact on the final segmentation. Hence, in this section

I propose a semi-supervised extension to my two-stream deep segmentation

model which combines the generic pixel objectness scores from the deep net-

work with the video specific information learned from a manually segmented

frame. This is done by incorporating the pixel objectness scores as additional

unary terms in the supervoxel based video propagation technique discussed

in Chapter 7. This effectively combines generic pixel objectness priors with

video specific information from sparse human annotations and results in an

improved performance for segmenting objects in videos.

8.5 Results

In this section I present experimental results and compare with other

state-of-the-art methods. I discuss the results in two main parts. In the first

part, I provide a detailed analysis on the generalization ability of the proposed

appearance stream for segmenting objects using appearance alone. This is

done through a detailed comparison on several image segmentation and local-

ization datasets. This is extremely important, because all other components

in my proposed method strongly rely on the outputs from the appearance

stream. In the second part, I discuss the video segmentation performance of

the complete joint model including the results from the semi-supervised ex-

tension. I first briefly describe the implementation details and then move on

to presenting the results.
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Implementation details: To train the appearance stream I rely on the PAS-

CAL VOC 2012 segmentation (20 categories) dataset [34] and use a total of

10,582 training images with binary object versus background masks. As weak

bounding box video annotations, I use the ImageNet-Video dataset [123]. This

dataset comes with a total of 3,862 training videos from 30 object categories

with 866,870 labeled object bounding boxes from over a million frames. Post

refinement using my ground truth generation procedure (see Sec. 8.2), we are

left with 84,929 frames with good pixel segmentations which are then used

to train my motion model. For training the joint model a subset of held-out

videos from the dataset is used. Each stream is trained for a total of 20,000 it-

erations, using “poly” learning rate policy (power = 0.9) with momentum (0.9)

and weight decay (0.0005). No post-processing is applied on the segmentations

obtained from the networks.

8.5.1 Generalization of appearance stream

In this section, I study the generalization ability of the proposed appear-

ance stream by conducting large-scale experiments on several image datasets

which have ground-truth for object segmentation (pixel-level object masks)

or object localization (bounding boxes around the objects). Together these

datasets cover objects from more than 3000 categories and thus provide strong

evidence about the generalization of the proposed model. Please note that all

the results in this section are obtained by simply thresholding (at 0.5) the

pixel objectness scores from the appearance stream alone. No motion infor-
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MIT Object Discovery Dataset

ImageNet Dataset

Figure 8.4: Examples from MIT Object Discovery and ImageNet datasets.
(best viewed in color).

mation is available, hence motion stream and fusion module are not used here

for anything.

8.5.1.1 Datasets, baselines and metrics

Datasets: I use three challenging datasets (Figure 8.4):

• MIT Object Discovery: This challenging dataset consists of Air-

planes, Cars, and Horses [121]. It is most commonly used to evaluate

weakly supervised segmentation methods. Note that this was also used

in Chapter 5 and 6 for experiments. The images were primarily collected
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using internet search and the dataset comes with per-pixel ground truth

segmentation masks.

• ImageNet-Localization: I conduct a large-scale evaluation of my ap-

proach using ImageNet [123] (∼1M images with bounding boxes, 3,624

classes). The diversity of this dataset lets us test the generalization

abilities of my method.

• ImageNet-Segmentation: This dataset contains 4,276 images from

445 ImageNet classes with pixel-wise ground truth from [44]. I use this

dataset to evaluate segmentation performance on a large number of ob-

ject classes.

Baselines: I compare to the following state-of-the-art methods:

• Saliency Detection: I compare to four salient object detection meth-

ods [61, 86, 162, 163], selected for their efficiency and state-of-the-art per-

formance. All these methods are designed to produce a complete seg-

mentation of the prominent object (versus localized fixation maps) and

output continuous saliency maps, which are then thresholded by per

image mean to obtain the segmentation.4

• Object Proposals: I also compare with state-of-the-art region proposal

algorithms, multiscale combinatorial grouping (MCG) [5] and Deep-

4This thresholding strategy was chosen because it gave the best results.
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Mask [113]. These methods output a ranked list of generic object seg-

mentation proposals. The top ranked proposal in each image is taken

as the final foreground segmentation for evaluation. I also compare with

SalObj [88] which uses saliency to merge multiple object proposals from

MCG into a single foreground.

• Weakly supervised joint-segmentation methods: These approaches

rely on an additional weak supervision which comes in the form of prior

knowledge that all images in a given collection share a common object

category [25, 54, 63, 64, 67, 121, 131]. Note that my method lacks this ad-

ditional supervision on test images.

Evaluation metrics: Depending on the dataset, I use: (1) Jaccard Score:

Standard intersection-over-union (IoU) metric between predicted and ground

truth segmentation masks and (2) BBox-CorLoc Score: Percentage of ob-

jects correctly localized with a bounding box according to PASCAL criterion

(i.e IoU > 0.5) used in [30, 131].

For MIT and ImageNet-Segmentation, I use the segmentation masks

and evaluate using the Jaccard score. For ImageNet-Localization I evaluate

with the BBox-CorLoc metric, following the setup from [54, 131], which entails

putting a tight bounding box around my method’s output.
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8.5.1.2 MIT Object Discovery dataset

First I present results on the MIT dataset [121]. I do separate evalu-

ation on the complete dataset and also a subset defined in [121]. I compare

my method with 13 existing state-of-the-art methods including saliency de-

tection [61, 86, 162, 163], object proposal generation [5, 113] plus merging [88]

and joint-segmentation [25, 54, 63, 64, 67, 121]. I compare with author-reported

results for the joint-segmentation baselines, and use software provided by the

authors for the saliency and object proposal baselines.

Table 8.1 shows the results. The proposed method outperforms several

state-of-the-art saliency and object proposal methods—including recent deep

learning techniques [86, 113, 163] in three out of six cases, and is competitive

with the best performing method in the others.

The gains over the joint segmentation methods are arguably even more

impressive because my proposed appearance stream simply segments a single

image at a time—no weak supervision!—and still substantially outperforms all

weakly supervised joint segmentation techniques. I stress that in addition to

the weak supervision in form of segmenting common object, the previous best

performing method [54] also makes use of a pre-trained deep network; we use

strictly less total supervision than [54] yet still perform better. Furthermore,

most joint segmentation methods involve expensive steps such as dense corre-

spondences [121] or region matching [54] which can take up to hours even for a

modest collection of 100 images. In contrast, my method directly outputs the

final segmentation in a single forward pass over the deep network and takes
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Methods
MIT dataset (subset) MIT dataset (full)

Airplane Car Horse Airplane Car Horse

# Images 82 89 93 470 1208 810

Joint Segmentation
Joulin et al. [63] 15.36 37.15 30.16 n/a n/a n/a
Joulin et al. [64] 11.72 35.15 29.53 n/a n/a n/a
Kim et al. [67] 7.9 0.04 6.43 n/a n/a n/a

Rubinstein et al. [121] 55.81 64.42 51.65 55.62 63.35 53.88
Chen et al. [25] 54.62 69.2 44.46 60.87 62.74 60.23
Jain et al. [54] 58.65 66.47 53.57 62.27 65.3 55.41

Saliency
Jiang et al. [61] 37.22 55.22 47.02 41.52 54.34 49.67

Zhang et al. [162] 51.84 46.61 39.52 54.09 47.38 44.12
DeepMC [163] 41.75 59.16 39.34 42.84 58.13 41.85

DeepSaliency [86] 69.11 83.48 57.61 69.11 83.48 67.26

Object Proposals
MCG [5] 32.02 54.21 37.85 35.32 52.98 40.44

DeepMask [113] 71.81 67.01 58.80 68.89 65.4 62.61
SalObj [88] 53.91 58.03 47.42 55.31 55.83 49.13

Ours 66.59 85.45 61.12 67.34 85.12 65.10

Table 8.1: Comparison with state-of-the-art methods on MIT Object Dis-
covery dataset. My method outperforms several state-of-the-art methods for
saliency detection, object proposal generation, and joint segmentation. (Met-
ric: Jaccard score).

only 0.6 seconds per image for complete processing.

8.5.1.3 ImageNet-Localization dataset

Next I present the segmentation results on ImageNet-Localization dataset.

This involves testing the proposed appearance stream on about 1 million im-

ages from 3,624 object categories. This also lets us test how generalizable it

is to unseen categories, i.e., those for which the method sees no foreground

examples during training.

Table 8.2 shows the results. When doing the evaluation over all cate-

gories, I compare my method with five methods which report results on this
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ImageNet-Localization dataset

All
# Classes # Images

3,624 939,516

Non-PASCAL
# Classes # Images

3,149 810,219

Methods
BBox-CorLoc

All Non-Pascal
Top-Objectness (Alexe) [3] 37.42 n/a

Tang et al. [131] 53.20 n/a
Jain et al. [54] 57.64 n/a

Saliency [61] 41.28 39.35
Top-Objectness (MCG) [5] 42.23 41.15

Ours 62.45 60.36

Table 8.2: Comparison with state-of-the-art methods on ImageNet-
Localization dataset. My proposed appearance stream outperforms several
state-of-the-art methods and also generalizes very well to unseen object cate-
gories. (Metric: BBox-CorLoc).

dataset [3, 54, 131] or are scalable enough to be run at this large scale [5, 61].

My method significantly improves the state-of-the-art. The saliency and ob-

ject proposal methods [3, 5, 61] result in much poorer segmentations. My

method also significantly outperforms the joint segmentation approaches [54,

131], which are the current best performing methods on this dataset. In terms

of the actual number of images, the gains translate into correctly segmenting

42,900 more images than [54] (which, like us, leverages ImageNet features)

and 83,800 more images than [131]. This reflects the overall magnitude of our

gains over state-of-the-art baselines.

Does my learned segmentation model only recognize foreground objects

that it has seen during training, or can it generalize to unseen object cate-

gories? Intuitively, ImageNet has such a large number of diverse categories

that this gain in performance would not have been possible if my method was

only over-fitting to the 20 seen PASCAL object categories. To empirically

verify this intuition, I next exclude those ImageNet categories which are di-

rectly related to the PASCAL objects, by matching the two datasets’ synsets.
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ImageNet-Segmentation dataset

Jiang et al. [61] 43.16
Zhang et al. [162] 45.07

DeepMC [163] 40.23
DeepSaliency [86] 61.12

MCG [5] 39.97
DeepMask [113] 58.69

SalObj [88] 41.35
Guillaumin et al. [44] 57.3

Ours 64.22

Table 8.3: Comparison with state-of-the-art methods on ImageNet-
Segmentation dataset. The proposed appearance stream outperforms all state-
of-the-art methods showing that it produces high-quality object boundaries
(Metric: Jaccard score).

This results in a total of 3,149 categories which are exclusive to ImageNet

(“Non-PASCAL”). See Table 8.2 for the data statistics.

We see only a very marginal drop in performance; my method still sig-

nificantly outperforms both the saliency and object proposal baselines. This

is an important result, because during training the segmentation model never

saw any dense object masks for images in these categories. Bootstrapping

from the pretrained weights of the Resnet-classification network, the appear-

ance stream is able to learn a transformation between its prior belief on what

looks like an object to complete dense foreground segmentations.

8.5.1.4 ImageNet-Segmentation dataset

Finally, I measure the pixel-wise segmentation quality on a large scale.

For this I use the ground truth masks provided by [44] for 4,276 images from

445 ImageNet categories. For this dataset the current best results are due
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to the segmentation propagation approach of [44]. We found that Deep-

Saliency [86] and DeepMask [113] further improve it. Note that like my

method, DeepSaliency [86] also trains with PASCAL [34]. DeepMask [113]

is trained with a much larger COCO [89] dataset. My proposed appearance

stream outperforms all methods, significantly improving the state-of-the-art

(see Table 8.3). This shows that the appearance stream not only general-

izes to thousands of object categories but also produces high quality object

segmentations.

8.5.1.5 Qualitative results

Figure 8.5 shows qualitative results for the ImageNet dataset for both

PASCAL and Non-PASCAL categories. The appearance stream accurately

segments foreground objects from both sets. The examples from the Non-

PASCAL categories highlight its strong generalization capabilities. It is able to

segment objects across all scales and appearance variations, including multiple

objects within an image. The bottom few examples show its remarkable ability

to segment even man-made objects, which are especially distinct from the kind

of objects in PASCAL dataset. The bottom row shows some failure cases. It

has more difficulty in segmenting scene-centric images. It is understandable

because in most scene-centric images, the entire scene is of primary importance

and it is more difficult to clearly identify foreground objects.
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ImageNet Examples from Pascal Categories

ImageNet Examples from Non-Pascal Categories (unseen)

Failure cases

Figure 8.5: Qualitative results: I show qualitative results on images belonging
to PASCAL (top) and Non-PASCAL (middle) categories. The segmentation
model generalizes remarkably well even to those categories which were unseen
in any foreground mask during training (middle rows). Typical failure cases
(bottom) involve scene-centric images where it is not easy to clearly identify
foreground objects (best viewed in color).

8.5.2 Video Segmentation Results

Having demonstrated the good performance and generalization ability

of my proposed appearance stream for segmenting foreground objects, I now

discuss the segmentation results for video datasets. This involves computing

the pixel objectness from the complete joint model and then thresholding to

obtain the foreground segmentation for a frame in a video.
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8.5.2.1 Datasets, baselines and metrics

DAVIS Dataset

YouTube-Objects Dataset

Segtrack-v2 Dataset

Figure 8.6: Example video sequences from DAVIS, YouTube-Objects and
Segtrack-v2 datasets. (best viewed in color).
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Datasets: I evaluate the method on three challenging video object segmen-

tation datasets: DAVIS [109], YouTube-Objects [57, 115, 132] and Segtrack-

v2 [84]. Figure 8.6 shows some visual examples from the datasets. To measure

accuracy the standard Jaccard score is used, which computes the intersec-

tion over union overlap (IoU) between the predicted and ground truth object

segmentations. The three datasets are:

• DAVIS [109]: the latest and most challenging video object segmenta-

tion benchmark consisting of 50 high quality video sequences of diverse

object categories with 3, 455 densely annotated, pixel-accurate frames.

The videos are unconstrained in nature and contain challenges such as

occlusions, motion blur, and appearance changes. While the videos con-

tain both static and moving objects, only the prominent moving objects

were annotated in the ground-truth.

• YouTube-Objects [57, 115, 132]: consists of challenging Web videos

from 10 object categories and is commonly used for evaluating video

object segmentation. I use the subset defined in [132] and the ground

truth provided by [57] for evaluation.

• SegTrack-v2 [84]: one of the most common benchmarks for video ob-

ject segmentation consisting of 14 videos with a total of 1, 066 frames

with pixel-level annotations. For videos with multiple objects with indi-

vidual ground-truth segmentations, I treat them as a single foreground

for evaluation.
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Baselines: I compare with several state-of-the-art methods for each dataset

as reported in the literature. Here I group them together based on whether

they can operate in a fully automatic fashion (automatic) or require a human

in the loop (semi-supervised) to do the segmentation:

• Automatic methods: Automatic video segmentation methods do not

require any human involvement to segment new videos. Depending on

the dataset, I compare with the following top-performing state of the

art methods: FST [107], KEY [81], NLC [35] and COSEG [136]. All

use some form of unsupervised motion or objectness cues to identify

foreground objects followed by post-processing to obtain spatio-temporal

object segmentations.

• Semi-supervised methods: Semi-supervised methods bring a human

in the loop. They have some knowledge about the object of interest which

is exploited to obtain the segmentation (e.g., a manually annotated first

frame). I compare with the following state-of-the-art methods: HVS [43],

HBT [41], FCP [111], IVID [125], HOP [57], and BVS [98]. The meth-

ods require different amounts of human annotation time to operate, e.g.

HOP, BVS, and FCP make use of manual complete object segmentation

in the first frame to seed the method; HBT requests a bounding box

around the object of interest in the first frame; HVS, IVID require a hu-

man to constantly guide the algorithm whenever it starts to fail. Please

note that HOP refers to my own supervoxel-based propagation method

from the previous chapter.
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Note that the automatic variant of my method requires human annotated data

only during training. At test time it operates in a fully automatic fashion.

Thus, given a new video, in that case my method requires equal effort as

the automatic methods, and less effort than the semi-supervised methods.

In the semi-supervised extension, where the outputs from the proposed joint

segmentation model and my supervoxel based propagation method (HOP)

from the previous chapter are combined, it requires the same effort as other

semi-supervised methods. Apart from these comparisons, I also examine some

natural baselines and ablated versions of my complete method:

• Flow-thresholding (Flow-Th): To examine the effectiveness of mo-

tion alone in segmenting objects, I adaptively threshold the optical flow

in each frame using the flow magnitude. Specifically, I compute the mean

and standard deviation from the L2 norm of optical flow magnitude and

use “mean+unit std.” as the adaptive threshold.

• Flow-saliency (Flow-Sal): Optical flow magnitudes can have large

variances, hence I also try a variant which normalizes the flow by apply-

ing a saliency detection method based on [61] to the flow image itself.

This is again followed by an average thresholding to obtain the segmen-

tation.

• Appearance model (Ours-A): To quantify the role of appearance in

segmenting objects, I obtain segmentations using only the appearance

stream of my model.
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• Motion model (Ours-M): To quantify the role of motion, I obtain

segmentations using only the motion stream of my model. Note that

this stream only sees the optical flow image and has no information

about the object’s appearance.

• Joint model (Ours-Joint): My complete joint model that learns to

combine both motion and appearance together to obtain the final object

segmentation.

• Semi-supervised joint model (Ours-Joint-HOP): My complete joint

model combined with the semi-supervised supervoxel-based propagation

algorithm from the previous chapter.

Quality of training data: To ascertain that the quality of training data,

automatically generated for training my motion stream is good, it is first

compared it with a small amount of human annotated ground truth. A set

of 100 frames that passed both the bounding box and optical flow tests was

randomly selected. We collected human-drawn segmentations for these 100

frames on Amazon Mechanical Turk. The crowd workers were first presented a

frame with a bounding box labeled for each object, and then asked to draw the

detailed segmentation for all objects within the bounding boxes. Each frame

was labeled by three crowd workers and the final segmentation is obtained by

majority vote on each pixel. The results indicate that my strategy to gather

pseudo-ground truth is effective. On the 100 labeled frames, Jaccard overlap
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with the human-drawn ground truth is 77.8 (and 70.2 before pruning with

bounding boxes).

I now present the quantitative comparisons of my method with several

state-of-the-art methods and baselines, for each of the three datasets in turn.

8.5.2.2 DAVIS dataset

Table 8.4 shows the results, with some of the best performing methods

on this dataset taken from the benchmark results [109]. My method outper-

forms all existing video segmentation methods on this dataset and significantly

advances state-of-the-art. My method is significantly better than simple flow

baselines. This supports my claim that even though motion contains a strong

signal about foreground objects in videos, it is not straightforward to simply

threshold optical flow and obtain those segmentations. A data-driven ap-

proach that learns to identify motion patterns indicative of objects as opposed

to backgrounds or camera motion is required.

The fully automatic appearance and motion variants of my method

themselves result in a very good performance. The performance of the motion

variant is particularly impressive, knowing that it has no information about

object’s appearance and purely relies on the flow signal. When combined to-

gether, the fully automatic joint model results in a significant improvement,

with an absolute gain of up to 11% over individual streams. This joint model

when further combined with the supervoxel-based semi-supervised propaga-
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DAVIS (50 videos)

Methods Human in loop? Avg. IoU
Flow-Th No 42.95
Flow-Sal No 30.22
FST [107] No 57.5
KEY [81] No 56.9
NLC [35] No 64.1

HVS [43] Yes 59.6
HOP [57] Yes 61.12
FCP [111] Yes 63.1
BVS [98] Yes 66.5

Ours-A No 64.69
Ours-M No 60.18

Ours-Joint No 71.51
Ours-Joint-HOP Yes 74.68

Table 8.4: Video object segmentation results on DAVIS dataset. I show the
average accuracy over all 50 videos. The fully automatic variant of my method
itself outperforms several state-of-the art methods, including the ones which
actually require human supervision during segmentation. The best performing
methods grouped by whether they require human-in-the-loop or not during
segmentation are highlighted in bold. Metric: Jaccard score, higher is better.

tion algorithm (Ours-Joint-HOP), results in the overall best performance. This

highlights the strengths of incorporating human guidance when there is ambi-

guity or when the underlying appearance and motion signals might be weak.

The proposed method is also significantly better than fully automatic

methods, which typically rely on motion alone to identify foreground objects.

This illustrates the benefits of a unified combination of both motion and ap-

pearance. Most surprisingly, the fully automatic variant of my method sig-

nificantly outperforms even the existing state-of-the-art semi supervised tech-
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YouTube-Objects dataset (126 videos)

Methods
Flow-

Th
Flow-

Sal
FST
[107]

COSEG
[136]

HBT
[41]

HOP
[57]

IVID
[125]

Ours-A Ours-M
Ours-
Joint

Ours-
Joint-HOP

Human in loop? No No No No Yes Yes Yes No No No Yes

airplane (6) 18 33 71 69 74 86 89 83 59 82 80
bird (6) 32 34 71 76 56 81 82 61 64 64 72

boat (15) 4 23 43 54 58 69 74 73 40 72 74
car (7) 22 49 65 70 34 69 71 75 61 75 77
cat (16) 20 32 52 67 31 59 68 68 49 68 70
cow (20) 17 29 45 49 42 69 79 70 39 68 73
dog (27) 18 25 65 48 37 62 70 69 55 69 74

horse (14) 12 24 54 56 44 54 68 63 40 60 67
mbike (10) 13 17 44 40 49 61 62 62 43 63 65
train (5) 18 24 30 53 39 66 78 63 43 62 64

Avg. IoU 17 29 54 58 46 68 74 69 49 68 72

Table 8.5: Video object segmentation results on YouTube-Objects dataset. I
show the average performance for each of the 10 categories from the dataset.
The final row shows an average over all the videos. The fully automatic variant
of my method outperforms several state-of-the art methods, including the ones
which actually require human supervision during segmentation. The semi-
supervised variant outperforms the best performing semi-supervised method
IVID in half the categories. However, note that IVID requires a human in
the loop always to correct mistakes hence is much more expensive. The best
performing methods grouped by whether they require human-in-the-loop or
not during segmentation are highlighted in bold. Metric: Jaccard score, higher
is better.

niques, which require substantial human annotation on every video they pro-

cess. All those existing methods rely only on the human guidance to guide

the segmentation process. The superior performance of my semi-supervised

variant which utilizes both the human guidance and generic pixel objectness

priors demonstrates the effectiveness of combining them together instead of

relying on one or the other.
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8.5.2.3 YouTube-Objects dataset

Table 8.5 shows a similarly strong result on the YouTube-Objects dataset.

This dataset shares categories with the PASCAL segmentation benchmark

used to train my appearance stream. Accordingly, I observe that the appear-

ance stream itself results in the best performance among the fully automatic

variants of my method. Moreover, this dataset has a mix of static and moving

objects which explains the relatively weaker performance of my motion model

alone. The combined joint model works similarly well as appearance alone.

Again, augmenting the joint model with a human segmented frame results in

the overall best performance.

Overall, my method again outperforms the flow baselines and all the

automatic methods by a significant margin (see Table 8.5). The publicly avail-

able code for NLC [35] runs successfully only on 9% of the YouTube dataset

(1725 frames); on those, its Jaccard score is 43.64%. The proposed model

outperforms it by a significant margin of 28% on these frames. Even among

human-in-the-loop methods, it outperforms all methods except IVID [125].

However I would like to point out that IVID [125] requires a human in the

loop consistently to track the segmentation performance and correct whatever

mistakes the algorithm makes. This can take up to minutes of human annota-

tion time for each video. In contrast, even the fully automatic variants in my

proposed method perform very competitively and the semi-supervised vari-

ant (Ours-Joint-HOP) which only receives a one-shot guidance (i.e., a single

manually segmented frame) outperforms IVID in 5 out of 10 categories.

218



Segtrack-v2 (14 videos)

Methods Human in loop? Avg. IoU
Flow-Th No 37.77
Flow-Sal No 27.04
FST [107] No 53.5
KEY [81] No 57.3

NLC [35] No 80*

HBT [41] Yes 41.3
HVS [43] Yes 50.8
HOP [57] Yes 60.54

Ours-A No 56.88
Ours-M No 53.04

Ours-Joint No 61.40
Ours-Joint-HOP Yes 65.36

Table 8.6: Video object segmentation results on Segtrack-v2. I show the
average accuracy over all 14 videos. For NLC results are averaged over 12 of the
14 videos as reported in their paper [35]. The proposed method outperforms all
other methods except NLC which is exceptionally strong on this dataset. The
best performing methods grouped by whether they require human-in-the-loop
or not during segmentation are highlighted in bold. Metric: Jaccard score,
higher is better.

8.5.2.4 Segtrack-v2 dataset

In Table 8.6, my method outperforms all semi-supervised and auto-

matic baselines except NLC [35] on Segtrack. While my approach significantly

outperforms NLC [35] on the DAVIS and YouTube-Objects datasets, NLC is

exceptionally strong on this dataset. The relatively weaker performance of

my proposed method could be due to the low quality and resolution of the

Segtrack-v2 videos, making it hard for my network based model to process

them. Nonetheless, the joint model still provides a significant boost over both
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the appearance and motion streams, showing that it again realizes the syn-

ergy of motion and appearance in a useful way. Moreover, the semi-supervised

variant again results in an overall best performance amongst all the proposed

variants.

8.5.2.5 Qualitative evaluation

Figure 8.7 shows qualitative results of my method. The top half shows

visual comparisons between different components of my method including the

appearance, motion, and joint models. I also show the optical flow image that

was used as an input to the motion stream. These images help reveal the

complexity of learned motion signals. In the bear example, the flow is most

salient only on the bear’s head, still my motion stream alone is able to segment

the bear completely. The boat, car, and sail example shows that even when the

flow is noisy—including strong flow on the background—my motion model is

able to learn about object shapes and successfully suppresses the background

regions. The rhino and train examples show cases where the appearance model

fails to segment accurately but when combined with the motion stream, the

joint model produces accurate segmentations.

The bottom half of Figure 8.7 shows visual comparisons between my

method and state-of-the-art automatic [35, 107] and semi-supervised [98, 111]

methods. The automatic methods have a very weak notion about object’s

appearance; hence they completely miss parts of objects [35] or cannot disam-

biguate the objects from background [107]. Semi-supervised methods [98, 111],
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which rely heavily on the initial human-segmented frame to learn about ob-

ject’s appearance, start to fail as time elapses and the object’s appearance

changes considerably. In contrast, my method successfully learns to combine

generic cues about object motion and appearance, segmenting much more ac-

curately across all frames even in very challenging videos5.

8.6 Conclusion

In this chapter I introduced the notion of a generic pixel-level object-

ness in images and videos. This was realized through a novel two-stream deep

network with parallel appearance and motion streams. Each stream individ-

ually captured the notion of pixel objectness through appearance and motion

cues respectively. The fusion module which then combined these two streams

together in a unified manner achieved a deep synergy between the motion and

appearance information.

The proposed appearance stream generalizes to thousands of object

categories and also allowed us to train the complete network for video seg-

mentation. Results on the video segmentation benchmarks show sizeable im-

provements over several state-of-the-art methods. Throughout the chapter,

the proposed method also addresses several practical challenges and shows

that it is possible to train generic pixel objectness models without the avail-

ability of large scale image and video datasets with boundary annotations.

5Additional results and videos available at: http://vision.cs.utexas.edu/projects/
fusionseg/
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Finally, I also demonstrated that combining human guidance with the generic

pixel-level objectness results in further improvements for segmenting objects

in videos.

Building on the strengths of the current pixel objectness model there are

several natural extensions which are possible. Firstly, the current model uses

late fusion to combine motion and appearance together. This particular design

choice is primarily governed by the lack of sufficient training data. Given

enough training data, exploring other architectures involving early fusion of

the appearance and motion streams can be potentially useful in finding even

better ways of fusing these complementary sources of information.

Secondly, pixel objectness in videos currently relies on information ex-

tracted from a single frame (for appearance) or adjacent frames (for motion).

Incorporating longer range information either through the use of 3D convo-

lutions or recurrent models can further improve the way in which the model

learns about an object’s motion and dynamics.

Another key weakness of the current pixel-level objectness method is

that it is not instance aware. Right now it treats all objects as a single fore-

ground. Going from this single foreground prior to an instance-aware prior will

be really useful for downstream applications (for e.g., in visual search, scene

understanding etc.)

Finally, taking inspiration from the effectiveness of combining generic

pixel-level objectness with supervoxel based propagation, in the future it will
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interesting to explore ideas which combine my Click Carving algorithm (Chap-

ter 4) and the generic-pixel level objectness. The objectness prior can be in-

corporated in the ranking process which can possibly lead to more speedups.

Overall, in the previous chapters I explored different aspects of human-

machine collaboration for segmenting foreground objects in images and videos.

I presented novel algorithms developed in this thesis for interactively segment-

ing objects in individual images, jointly segmenting objects in weakly super-

vised image collections, and also for segmenting objects in videos. In the next

chapter, I will discuss some possible directions for future work.
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Appearance model (Ours-A)

Motion model (Ours-M)

Joint model (Ours-Joint)

Optical Flow Image

Ours vs. Automatic Ours vs. Semi-supervised

FST [107] BVS [98]

NLC [35] FCP [111]

Ours-Joint Ours-Joint

Figure 8.7: Qualitative results: The top half shows examples from my appear-
ance, motion, and joint models along with the flow image which was used as
an input to the motion network. The bottom rows show visual comparisons of
the joint model with existing automatic and semi-supervised baselines (best
viewed in color and see text for the discussion).
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Chapter 9

Future Work

In the previous chapters, I developed methods which explored differ-

ent aspects for human-machine collaboration for foreground segmentation in

images and videos. There are several interesting avenues for future research

which include some specific ideas which can directly extend the work presented

in this thesis and some broader themes for more long-term research goals.

First, it would be very interesting to incorporate the active selection

ideas from Chapter 5 in the context of videos. Currently, the segmentation

propagation in Chapter 7 is done only from a fixed set of video frames (for

example, the first frame). However, it is natural to think that the frames from

which propagation happens can be actively chosen such that when labeled by

human annotators the propagation will be more likely to succeed. For example

choosing frames where objects are undergoing large motions or occlusions may

be more important for the propagation to succeed than choosing frames where

the object is mostly static. This can be further enhanced by a stage-wise

algorithm, which propagates from an initial set of actively chosen frames,

automatically identifies when propagation engine starts to fail, and requests

more annotations accordingly.
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Second, the idea of predicting compatibility for co-segmentation of im-

age pairs which was developed in Chapter 6 can naturally be incorporated

in the joint segmentation and active selection methods which were discussed

in Chapter 5. Currently the image neighborhoods in the joint segmentation

and active selection graphs in Chapter 5 only rely on similarity between image

features. A more data-driven approach that can adapt itself to the strengths

and weaknesses of a particular joint segmentation and selection algorithm can

potentially lead to an improved segmentation propagation. Moreover the idea

of joint segmentation was restricted to image collections. It will be interesting

to explore these ideas in the context of segmenting a collection of weakly-

supervised videos.

Third, the generic pixel-level objectness for images and videos which

was developed in (Chapter 8) can provide a strong prior for foreground ob-

jects in several other problems. For example, it can potentially be used to

improve the performance of image search engines by focusing on foreground

regions while performing query to target matching. Content-aware resizing

algorithms can also be enhanced by explicitly penalizing for removing the

foreground content. This generic pixel-objectness prior can also be used to

enhance interactive segmentation algorithms, where the human guidance can

be augmented with this prior while generating the segmentation output.

Fourth, the idea of Click Carving can be further adapted for the task of

segmenting objects in video. In the current form, the user segments an object

in an initial frame and then this manually segmented frame is propagated to
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the entire video to obtain the segmentation. However the key idea behind Click

Carving (to pre-generate thousands of segmentation hypotheses) can directly

be expanded to videos instead of this two step process. This will require us

to generate thousands of space-time segmentation proposals instead of per

frame proposals which we currently have. The user can than directly select a

space-time proposal using the Click Carving idea to do video segmentation.

In the long term, I believe that human-machine collaboration can be a

very effective approach for solving challenging computer vision and machine

learning problems. While in this thesis the primary focus was on the problem

of image and video segmentation, the broad idea of actively engaging human

annotators can be applied to several other domains such as in robotics and nat-

ural language processing. Another interesting research direction is to explore

alternative means of engaging human annotators. In all modern crowdsourc-

ing platforms, monetary benefit is still the key driver for human annotators

while the tasks remain mundane. Designing gamified interfaces or providing

additional value to the users while they guide the system can potentially allow

us to further scale these algorithms for real world applications.
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Chapter 10

Conclusion

In this thesis, I presented novel algorithms for segmenting foreground

objects in images and videos. The key idea in this thesis was to bring the com-

plementary strengths of humans and machines together to solve this problem

more efficiently and effectively. The resulting algorithms can actively reason

about the modes of user interaction through which humans can guide the sys-

tem, can identify where the human guidance is most needed, and are also

capable of propagating human guidance to other unguided instances whenever

possible. Together it results in human-machine collaborative systems which

lead to large savings in human annotation costs while achieving high levels of

performance.

Towards this goal, I first studied the problem of interactively segment-

ing objects in images and videos. First, I proposed a method to predict the

input modality which is sufficiently strong for segmenting objects in images

using traditional interactive segmentation methods. This demonstrated the

utility in actively reasoning about the extent to which a human needs to guide

a segmentation system. Next, I developed a novel interactive segmentation

algorithm which is capable of segmenting objects in images and videos using
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simple point clicks. In contrast with existing modalities of human interaction

used in the current algorithms, this requires only a fraction of human effort

and often outperforms alternative and more expensive methods significantly.

Having developed novel algorithms for interactive segmentation of a sin-

gle image, I next studied the problem of jointly segmenting objects in weakly

supervised image collections. For this, I developed a novel segmentation propa-

gation and active selection algorithm that can actively select images for human

annotation which, once labeled, will be most useful for jointly segmenting the

entire collection. I showed that this stage-wise approach results in a significant

reduction in the amount of human annotation required to obtain good quality

segmentations for the entire collection. In this context, I also introduced the

idea of predicting compatibility between image partners for joint segmentation

and demonstrated that segmenting compatible images together results in an

improved segmentation performance.

Finally, turning from images to videos, I studied the problem of semi-

supervised video propagation and designed a supervoxel-based propagation

algorithm which can exploit long-range connection in videos to accurately

propagate information. Results show that the supervoxel-based propagation

algorithm outperforms several state-of-the-art segmentation algorithms and

is much more efficient in practice. I also introduced the idea of a generic

pixel-level objectness in images and videos, which was implemented using an

end-to-end trainable deep neural network. Pixel objectness itself allowed us

to obtain high quality image and video segmentation results. Moreover when

229



combined with the human guidance in the supervoxel propagation algorithm,

together they resulted in a state-of-the-art video segmentation algorithm.

Throughout, I addressed key issues that arise both from the perspective

of designing novel segmentation algorithms and also for efficiently utilizing

the human guidance that is available on demand. Extensive experiments on

challenging datasets and detailed comparisons with state-of-the-art methods

and relevant baselines validated the effectiveness of the proposed methods.

Overall, this thesis helps realize the potential of human-machine col-

laboration for foreground segmentation in images and videos. The proposed

methods result in significant savings in human annotation costs and thus have

the potential for enabling large-scale collection of image and video segmenta-

tion data across several domains in an economical manner. Moreover, they

can potentially make a significant impact in improving the solutions for sev-

eral important real world problems such as image and video search, image

synthesis, and post-production video editing. Finally, these methods can be a

key component in higher-level computer vision systems for activity and scene

understanding, where accurately segmenting foreground objects is extremely

important.
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