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360◦ cameras are a core building block of the Virtual Reality (VR) and

Augmented Reality (AR) technology that bridges the real and digital worlds.

It allows us to build virtual environments for VR/AR applications from the

real world easily by capturing the entire visual world surrounding the camera

simultaneously. With the rapid growth of VR/AR technology, the availability

and popularity of 360◦ cameras are also growing faster than ever. People now

create, share, and watch 360◦ content in their everyday life, and the amount

of 360◦ content is increasing rapidly.

While 360◦ cameras offer tremendous new possibilities in various do-

mains, they also introduce new technical challenges. These challenges span

over the entire 360◦ video production pipeline, ranging all the way from video

capturing to high level applications. For example, the 360◦ field-of-view makes

it difficult to display the content to users, and the distortion in the planar pro-
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jection degrades the performance of both the compression and visual recogni-

tion algorithms. Many of the challenges remain unsolved or even unexplored,

which prohibits people from exploiting the full potential of the new media.

This leads to a dire need for a more mature 360◦ video production pipeline

like those for traditional media.

To this end, my thesis targets three fundamental challenges in 360◦

production—video compression, visual recognition, and 360◦ video display.

Because a proper compressed format is the foundation of all video technologies

and applications, I begin with improving 360◦ video compression. It has been

shown that existing video codecs do not perform well on 360◦ video, and 360◦

video compression standard is under rapid development. Complementary to

the ongoing progress in 360◦ video compression standards, I propose to exploit

the orientation of the 360◦ video projection for a better compression rate. The

method explores a new dimension in video compression and is compatible with

existing compression technologies. It reduces video sizes to allow easy storage

and transmission of 360◦ videos.

Besides being able to collect and distribute 360◦ content, another pre-

requisite for building advanced applications on top of the new media is the

ability to analyze the visual content. Therefore, I next study visual recogni-

tion on 360◦ imagery. I propose a general approach that transfers an existing

Convolutional Neural Network (CNN) trained on perspective images to 360◦

imagery. It allows us to transfer knowledge from perspective images to 360◦

images, including both the network architecture and training data. Compared
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with existing strategies for applying existing CNN models on 360◦ data, the

method sacrifices neither accuracy nor efficiency and does not need any addi-

tional annotation effort. The method allows us to perform visual recognition

on the new format given an existing CNN model with zero manual labor.

After building the basis for 360◦ video applications, I finally tackle one

of the most important applications of 360◦ video: displaying the video content

to users. The common interface for 360◦ video display requires human view-

ers to actively control “where” to look while watching the video. This task

is non-trivial, and a poor navigation will lead to a sub-optimal user experi-

ence. I propose to address this problem by controlling the viewing direction

automatically and formulate it as an automatic videography problem in 360◦

video. I further propose a data-driven approach that finds important content

in 360◦ videos and controls the viewing direction to focus on the discovered

content. The method takes the burden of choosing “where to look” off the

human viewer and provides an easier and better viewing experience.

Combining the proposed solutions, my research builds a basic pipeline

for 360◦ video production ranging from video storage, processing, to display.

This pipeline can also serve as the basis for other 360◦ video applications such

as 360◦ video editing and will allow both the content creators and technology

developers to further explore the possibility of the new media.
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Chapter 1

Introduction

360◦ cameras are gaining popularity as part of the virtual reality (VR)

and augmented reality (AR) technologies, and will also be increasingly in-

fluential for wearable cameras, autonomous mobile robots, and video-based

security applications. Unlike a traditional perspective camera, which samples

a limited field-of-view (FOV) of the 3D scene projected onto a 2D plane, a

360◦ camera captures the entire viewing sphere surrounding its optical center,

providing a complete picture of the visual world—an omnidirectional field of

view. A videographer no longer has to determine which direction to capture

in the scene, and a human video consumer has the freedom to explore the vi-

sual content based on her interest, without being severely restricted by choices

made by the videographer. As such, viewing 360◦ imagery provides a more

immersive experience of the visual content compared to traditional media.

Following the rising trend of VR/AR, the sales of 360◦ cameras are ex-

pected to grow by 1500% from 2016 to 2022 [115]. Foreseeing the tremendous

opportunities in 360◦ video, many companies are investing in it. For example,

Facebook and YouTube have offered 360◦ content support since 2015. Face-

book users have since uploaded more than one million 360◦ videos [8], and
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Figure 1.1: Targeted challenges in the 360◦ video production pipeline. For 360◦

video compression, I propose to improve the compression rate by exploiting
the orientation of cubemap projection (Chapter 3). For visual recognition in
360◦ imagery, I propose a general approach that transfers Convolution Neural
Networks trained on perspective images to 360◦ images (Chapter 4 and Chap-
ter 5). For 360◦ video display, I propose to learn virtual camera control from
Web videos to help users determine where to look in the video (Chapter 6).
The proposed methods help to build a more mature 360◦ video production
pipeline.

YouTube plans to bring 360◦ videos to even broader platforms (TV, gaming

consoles). 360◦ editing tools are now available in popular video editors such as

PowerDirector and Premiere Pro. All together, these efforts make 360◦ video

production and distribution easier and more prevalent than ever.
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The rapidly growing number of 360◦ content incurs an unprecedented

need for technologies to handle the new media. However, it remains relatively

unexplored in various aspects. The difference between 360◦ videos and tradi-

tional videos introduces many new challenges throughout the video production

pipeline, starting from low-level image capture and compression, mid-level vi-

sual content analysis and processing, to high-level video editing and display.

The research community has just started to explore these challenges. My

thesis focuses on three essential problems in the pipeline: 360◦ video compres-

sion, visual recognition in 360◦ imagery, and 360◦ video display. The solutions

for these challenges form the basis for a 360◦ video production pipeline. See

Fig. 1.1.

Throughout the thesis, I assume complete 360◦ imagery as the input.

The 360◦ imagery is defined as the visual content projected onto the unit

sphere centered at the 360◦ camera optical center. Although most 360◦ cameras

consist of multiple cameras with limited FOV (i.e. FOV < 360◦), they usually

convert the raw data into common 360◦ imagery before exporting, and most

360◦ content being distributed is “360◦”. Also, assuming 360◦ input instead

of raw camera data allows us to focus on the key challenges and enables the

methods to generalize across camera models. The following sections briefly

introduce these challenges and overview the proposed solutions. Technical

details and evaluation will be introduced in the following chapters.
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1.1 360◦ Video Compression

A compressed video format is the foundation of all video technologies,

and 360◦ video is no exception. Without proper compression, all 360◦ video

applications will have very limited scale in terms of both data and users.

Therefore, I begin with the challenge of 360◦ video compression. Evidence has

shown that existing video codecs are sub-optimal for 360◦ videos, and 360◦

specific video formats are under rapid development [5,22,33,43]. The common

strategy for compressing 360◦ video is to project the panoramic image into

a rectangular image and then encode the resulting rectangular video using

off-the-shelf video codecs [5, 22, 43, 71]. Therefore, the focus has been finding

a proper projection that transforms a 360◦ frame into a rectangular image

that will have a high compression rate. The most common projection for

existing 360◦ videos is equirectangular projection due to its popularity in other

applications such as cartography, but it is not very friendly for existing video

codecs. Alternatively, cubemap projection and its variants have been shown

to improve the compression rate by up to 25% and is the preferable format for

future standards [12,70,86].

While the content of 360◦ video is defined on the sphere and is equiv-

alent under rotation, the cubemap projection is defined by both the video

content and the orientation of the cube. Therefore, there exists multiple pos-

sible cubemap projections representing the very same video content. Our key

observation is that these projections are not equivalent for the video compres-

sion algorithm—some orientations are more compressible than others using

4



existing video codecs. This is because some cube orientations better preserve

the properties of perspective image in the unwrapped cubemap, which leads

to higher compression rates. We perform a detailed analysis to verify that the

orientation of the cubemap projection is important for the ultimate video size.

The results across three popular codecs show scope for reducing video sizes by

up to 77% through rotation, with an average of more than 8% over all videos.

We further introduce an approach to exploit this unique property of

360◦ video for a better compression. The proposed method predicts the cube

orientation that will yield the maximal compression rate. Given video clips

in their original encoding, a Convolutional Neural Network (CNN) learns the

association between a clip’s visual content and its compressibility at different

rotations of a cubemap projection. Given a novel video, the model efficiently

infers the most compressible direction in one shot, without repeated rendering

and compression of the source video. This approach achieves 78% the com-

pression rate of the optimal orientation while requiring less than 0.6% of the

computation of a search based solution. Furthermore, the approach explores a

new dimension in video compression and is compatible with ongoing efforts in

video compression algorithms and formats, both 360◦ specific and generally.

This part of my thesis first appears in [106] and is described in Chapter 3.

1.2 Visual Recognition in 360◦ Imagery

While a better compression algorithm allows us to collect and distribute

360◦ videos more easily and benefit many applications of 360◦ video, many po-

5



tential applications would be impossible if we were unable to perform visual

recognition on the new format. In fact, extracting visual features has be-

come part of the standard pipeline in media sharing sites [59]. However, most

existing computer vision algorithms and models are designed specifically for

traditional perspective images. Applying these models on 360◦ images naively

leads to significant performance drop, because the underlying projections are

different and have different geometric properties. In other words, the models

for perspective images will suffer from the distortion in 360◦ image projec-

tions. On the other hand, rebuilding visual recognition algorithms and models

on 360◦ data is inefficient since the underlying tasks remain the same. There-

fore, a general approach that can transfer existing visual recognition models

trained on perspective images to 360◦ images efficiently is highly desirable. In

particular, we focus on transferring a CNN model, given that CNNs are ar-

guably the most powerful tools in computer vision today [15,30,45,80,92,114].

These CNN models encode both the knowledge of the model design and the

massive training data for the target task obtained from perspective images.

There exist two common strategies for applying existing CNN models

on 360◦ imagery. The first one projects the entire 360◦ image into a rectangu-

lar one, usually using equirectangular projection, and then applies the CNN

on the resulting 2D image. The problem is that any sphere-to-plane projec-

tion introduces distortion, and the resulting convolutions are inaccurate. The

second strategy repeatedly projects the visual content to the tangent planes of

the sphere and then applies the CNN on the tangent planes. While this may

6



yield a more accurate result given dense enough tangent plane sampling, it

introduces very high computational cost due to the reprojection process. An

alternative solution is to re-train the CNN models on 360◦ images. However,

this requires re-collecting the labeled training data in 360◦ format, which is

very expensive and time consuming. Moreover, how to collect annotations such

as object bounding boxes or segmentations in 360◦ format itself is a non-trivial

problem.

To address this problem, we propose to learn a spherical convolutional

network that translates a planar source CNN to process 360◦ imagery directly

in its equirectangular projection. The approach learns to reproduce the flat

filter outputs on 360◦ data, sensitive to the varying distortion effects across

the viewing sphere. The key benefits are 1) efficient feature extraction for

360◦ images and video, and 2) the ability to leverage powerful pre-trained net-

works researchers have carefully honed (together with massive labeled image

training sets) for perspective images. To enable the translation, we propose a

systematic procedure to adjust the network structure from the source network

in order to account for the distortions. Furthermore, we propose a kernel-wise

pre-training procedure that greatly reduces the computational resources re-

quired during training and significantly accelerates the training process. We

validate the approach compared to several alternative methods in terms of

both raw CNN output accuracy as well as applying a state-of-the-art “flat”

object detector to 360◦ data. The proposed method yields the most accurate

results while saving orders of magnitude in computation versus the existing
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exact reprojection solution. This part of my thesis first appears in [104] and

is described in Chapter 4.

Despite the accuracy and efficiency, spherical convolution introduces a

new technical challenge—the model size for a spherical convolution network

is orders of magnitude larger than an ordinary CNN. In fact, it may even be

larger than the GPU memory size, which makes it difficult to deploy spheri-

cal convolution networks in practice. To overcome this challenge, we further

propose to learn a transformation function that can generate the spherical

convolution network from a planar CNN. By avoid learning and storing the

spherical convolution network explicitly, the proposed method can greatly re-

duce the model size and make the method more tractable on current hardware.

Furthermore, because the transformation function takes the planar CNN as

input, the same transformation function can be applied to different planar

CNNs to perform different visual recognition tasks on 360◦ images. The re-

sulting approach, kernel transformer network, allows us to transfer any existing

computer vision algorithm implemented in a CNN to 360◦ images and perform

visual recognition on 360◦ data as long as the model is available in flat data.

This part of my thesis first appears in [107] and is described in Chapter 5.

1.3 360◦ Video Display

The solutions for the previous two challenges serve as the foundation

for many applications of 360◦ video. I next turn to one of the most important

applications of 360◦ video—displaying the video to human viewers. While

8



the larger FOV of 360◦ videos is usually considered as a benefit, it becomes a

challenge when it comes to display because there is no single best way to display

a 360◦ FOV to users. Displaying the entire 360◦ panoramic video inevitably

introduces distortion. Moreover, watching a video with a FOV larger than that

of human vision is unintuitive and difficult. The current trend is to display

only a small portion of the content and allow the user to determine where

to look in the 360◦ video axis. This incurs another problem for the human

viewer—where and what should the users look at in the 360◦ video? This is a

non-trivial task, because users have no information beyond the current FOV

and may miss important content in the video. Awkward interfaces to navigate

the video and uninformed control may lead to suboptimal viewing experiences.

A better way to display 360◦ video is therefore very important, especially for

user generated videos that lack professional editing.

To address this difficulty, we define “Pano2Vid”, a new computer vision

problem. The task is to design an algorithm to automatically control the pose

and motion of a virtual normal field-of-view (NFOV) camera within an input

360◦ video. The output is the NFOV video captured by this virtual camera.

Camera control must be optimized to produce video that could conceivably

have been captured by a human observer equipped with a real NFOV camera.

A successful Pano2Vid solution would therefore take the burden of choosing

“where to look” off both the videographer and the end viewer: the videogra-

pher could enjoy the moment without consciously directing her camera, while

the end viewer could watch intelligently-chosen portions of the video in the
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familiar NFOV format.

We propose an algorithm that solves the Pano2Vid problem in a data

driven approach and does not require human labor. The algorithm first learns

a discriminative model of human-captured NFOV web videos. It then uses this

model to identify candidate viewpoints and events of interest to capture in the

360◦ video, before finally stitching them together through optimal camera mo-

tions using a dynamic programming formulation for presentation to human

viewers. Because we are the first to address the problem, we compile a dataset

of 360◦ videos downloaded from the web, together with human-selected NFOV

camera trajectories. We also define multiple evaluation metrics that mea-

sure how close a Pano2Vid algorithm’s output videos are to human-generated

NFOV videos. Experiment results show that the proposed algorithm is able

to generate viewing paths that look like human captured video and provide

an easier and more effective way to present the 360◦ video to human viewers.

This part of my thesis first appears in [105,108] and is described in Chapter 6.

Our proposed methods improve the 360◦ video production pipeline by

addressing three fundamental challenges. The new pipeline provides a better

compression of 360◦ video for easier storage and distribution, allows accurate

yet efficient analysis of 360◦ video content, and enables a more efficient presen-

tation of the 360◦ video to human viewers. For the rest of the thesis, Chapter 2

provide the literature survey for related research. Chapter 3 through 6 give

a detailed description for the proposed solutions and evaluation. Chapter 7

discusses the future directions for my research.
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Chapter 2

Related Work

In this chapter, I will review research related to my thesis. First, I will

review literature presenting sphere-to-plane projection (Sec. 2.1). This is the

foundation for 360◦ video and all the following research. Next, I will review

works related to video compression (Sec. 2.2), which is related to the first

challenge I tackle. I will then review works studying CNNs with geometric

transformations (Sec. 2.3), CNNs on spherical data (Sec. 2.4) and knowledge

distillation (Sec. 2.5). These works relate to my research on visual recognition

in 360◦ imagery. Finally, I review works related to automatic video editing

(Sec. 2.6), which is related to the proposed approach for solving the 360◦

video display problem. I will also highlight the difference between the related

works and my research in each section.

2.1 360◦ Image Projection

360◦ image projection has long been studied in the field of cartography.

As famously proven by Gauss, no single projection can project a sphere to a

plane without introducing some kind of distortion. Therefore, many different

projections are proposed, each designed to preserve certain properties such as
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distance, area, direction, etc. [102]. For example, the popular equirectangular

projection preserves the distance along longitude circles. Various projection

models have also been developed to improve perceived quality for 360◦ im-

ages. Prior work [122] studies how to select or combine the projections for a

better display, and others develop new projection methods to minimize visual

artifacts [14,65].

360◦ image projection has also been the focus for 360◦ video standard

format development. Cubemap is adopted as one of the two presentations for

360◦ video in the MPEG Omnidirectional MediA Format (OMAF) [86], and

major 360◦ video sharing sites such as YouTube and Facebook have turned to

this new format [12,70]. Cubemaps can improve the compression rate by 25%

compared to equirectangular projection, which suffers from redundant pixels

and distorted motions [71]. The Rotated Sphere Projection is an alternative

to cubemap projection with fewer discontinuous boundaries [3].

Although it is possible to tackle the challenges I address in my thesis

by designing new projections, we decide to build the methods on top of exist-

ing projections that are popular and comply with the future standard. This

ensures that the proposed methods will be compliant with real 360◦ data.

Also, most of the proposed methods are either independent of the projection

or generic to different projections.

12



2.2 Video Compression

There exists a long history for research in video compression. In this

section, I focus on those that are directly related to my research. I first review

recent efforts on 360◦ video standard development. Because the method we

propose for 360◦ video compression is a learning-based method and relies on a

CNN model, I next review recent works on applying deep learning for image

and video compression.

2.2.1 360◦ Video Compression

360◦ video has sparked initial interest in new video compression tech-

niques. A Call for Evidence last year for a meeting on video standards [117]

calls attention to the need for compression techniques specific to 360◦ video,

and responses indicate that substantial improvement can be achieved in test

cases [5, 22, 33, 43]. The result leads to the development of a new standard

format for 360◦ video, and the first international standard was published in

2019. For video streaming, some work studies the value in devoting more bits

to the region of 360◦ content currently viewed by the user [103,111]. However,

they require the current viewing direction of the user and reduce the video

quality beyond the user’s field of view. In contrast, our method does not know

where the user will look and encodes the entire video with the same quality.
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2.2.2 Deep Learning for Image/Video Compression

Recent work investigates ways to improve image compression using deep

neural networks. The most common approach is to improve predictive cod-

ing using either a feed-forward network [4, 67, 83, 93, 99] or recurrent neural

network (RNN) [60,112,113]. The concept can also be extended to video com-

pression [16, 81, 94, 99, 116, 118]. Other approaches include allocating bitrate

dynamically using a learned model [75], replacing frequency transformation

with learned CNN transformation [77], etc. Based on the success of deep

learning based compression, recent works also study how to improve entropy

coding [61, 84] in the learning based compression framework. While we also

study video compression using a CNN (cf. Chapter 3), we are the first to study

360◦ video compression, and—CNN or otherwise—the first to exploit spher-

ical video orientation to improve compression rates. Our idea is orthogonal

to existing video compression algorithms, which could be combined with our

approach without any modification to further improve performance.

Whereas these efforts aim for the next generation in video compression

standards, our method for improving 360◦ compression is compatible with

existing video formats and can be applied directly without any modification

of existing video codecs. Furthermore, our idea is orthogonal to these ongoing

progress in video compression, which could be combined with our approach to

further improve performance.
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2.3 Convolutional Neural Networks with Geometric Trans-
formations

Learning convolution on 360◦ imagery essentially needs to handle the

geometric distortion introduced by projection. Therefore, this section reviews

works studying CNN structures that incorporate geometric transformations.

There is an increasing interest in generalizing convolution in CNNs to han-

dle geometric transformations or deformations. Spatial transformer networks

(STNs) [54] represent a geometric transformation as a sampling layer and

predict the transformation parameters based on input data. Active convolu-

tion [57] learns the kernel shape together with the weights for a more general

receptive field, and deformable convolution [25] goes one step further by pre-

dicting the receptive field location.

These methods, however, are not suitable for convolution on 360◦ im-

agery because their assumption on the geometric transformation does not align

well with properties of 360◦ images. STNs assume the transformation is invert-

ible such that the subsequent convolution can be performed on data without

the transformation. This is not possible in 360◦ images because it requires

a projection that introduces no distortion. Active and deformable convolu-

tion are too restrictive for convolution on 360◦ images because they assume a

fixed kernel size and weight. In contrast, the proposed spherical convolution

(cf. Chapter 4) adapts the kernel size and weight based on the transforma-

tion to achieve better accuracy. Furthermore, spherical convolution exploits

problem-specific geometric information for efficient training and testing.

15



2.4 Convolutional Neural Networks on Spherical Data

In the last two years, several methods develop new spherical CNN mod-

els. Some design CNN architectures that account for the distortion in 360◦

images [24,126]. Following our spherical convolution [104], both SphereNet [24]

and Spherical U-Net [126] focus on enabling weight sharing in order to reduce

the model size. SphereNet [24] defines the kernels on the tangent plane and

projects features to the tangent planes before applying the kernels. Similarly,

Spherical U-Net [126] defines the kernels on the sphere and resamples the ker-

nels on the grid points for every location in the equirectangular projection.

However, both of them implicitly assume that features defined on the sphere

can be interpolated in the 2D plane defined by equirectangular projection,

which we show is problematic. Instead of learning independent kernels or us-

ing a fixed 2D transformation, our kernel transformer network [107] (cf. Chap-

ter 5) learns a transformation that considers both spatial and cross-channel

correlation and achieves a higher recognition accuracy.

Another strategy is to define convolution in the spectral domain in order

to learn rotation invariant CNNs. One approach is to apply graph convolution

and design the graph structure [62] such that the outputs are rotation invari-

ant. Another approach transforms both the feature maps and kernels into the

spectral domain and applies convolution there [23, 29]. However, orientation

is often semantically significant in real data (e.g., cars are rarely upside down)

and so removing orientation can unnecessarily restrict discrimination. In ad-

dition, these approaches require caching the basis functions and the frequency
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domain feature maps in order to achieve efficient computation. This leads

to significant memory overhead and limits the viable input resolution. Both

constraints limit the spectral methods’ accuracy on real world 360◦ images.

Finally, some works try to improve model accuracy by training vanilla

CNNs on the cubemap projection, which introduces less distortion [11,17], but

the model still suffers from cubemap distortion and discontinuities and has sub-

optimal accuracy for tasks such as object detection. Moreover, unlike any of

the above prior work [11,17,23,24,29,62,126], the proposed kernel transformer

network can transfer across different source CNNs with the same architecture

to perform new tasks without re-training; all other methods require training

a new model for each task.

2.5 Knowledge Distillation

The proposed approach for transferring CNN models to 360◦ imagery

is largely motivated by knowledge distillation. Knowledge distillation aims to

learn a new model given existing model(s) [9,13,49,95]. Rather than optimize

an objective function on annotated data, it learns the new model that can

reproduce the behavior of the existing model, by minimizing the difference

between their outputs. Most prior work explores distillation for model com-

pression [9, 13, 49, 95]. For example, a deep network can be distilled into a

shallower [9] or thinner [95] one, or an ensemble can be compressed to a single

model [49]. In contrast, our goal is to learn across domains, namely to link

networks on images with different projection models, rather than to compress
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the model.

Limited work considers distillation for transfer [40, 87]. In particular,

unlabeled target-source paired data can help learn a CNN for a domain lacking

labeled instances (e.g., RGB vs. depth images) [40], and multi-task policies

can be learned to simulate action value distributions of expert policies [87].

Learning spherical convolution can also be seen as a form of transfer, though

for a novel task motivated strongly by image processing complexity as well as

supervision costs. Different from any of the above, we show how to adapt the

network structure to account for geometric transformations caused by different

projections. Also, whereas most prior work uses only the final output for

supervision, we use the intermediate representation of the target network as

both input and target output to enable kernel-wise pre-training.

2.6 Automatic Video Editing and Generation

We propose to solve the challenge of 360◦ video display by learning

automatic cinematography, which performs automatic video editing on 360◦

video. In this section, I first review three common automatic video editing

problems. Both video summarization and retargeting share goals similar to

the proposed Pano2Vid problem by an reducing input video to its essential

portion; virtual cinematography controls a virtual camera to generate new

output videos like our approach. Next, I review works in visual saliency, which

helps automatic video editing by predicting the important region in the video

for human viewers. Finally, I briefly review follow up works of our proposed
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approach for 360◦ video display.

2.6.1 Video Summarization

Video summarization aims to generate a concise representation for

a video by removing temporal redundancy while preserving the important

events [38,41,42,64,74,89,91,109,120]. The goal is different from ours (cf. Chap-

ter 6) in the sense that video summarization selects content temporally whereas

Pano2Vid selects content spatially. Also, the outputs of our algorithm are con-

tinuous videos that look as if they were captured by a hand-held camera in

the scene, whereas the output of a video summarization algorithm is usually

keyframes or concatenated disjoint video clips.

Some efforts also address multi-video summarization [6, 26, 32], where

the objective is to select, at each time instant, video feed from one camera

among many to include in a summary video. The input cameras are human-

directed, whether stationary or dynamic [6]. In contrast, we deal with a single

hand-held 360◦ camera, which is not intentionally directed to point anywhere.

2.6.2 Video Retargeting

Video retargeting adapts a source video by cropping and scaling to

better fit the target display while minimizing the information loss [7,55,63,68,

78,96]. Both retargeting and our algorithm select portions of the original video

to display to the user, but retargeting takes an already well-edited video as

input and tries to generate a new version that conveys the same information.
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In contrast, our input 360◦ video is not pre-edited, and the goal is to generate

multiple outputs that convey different information. Also, Pano2Vid entails a

more severe reduction in spatial extent, e.g., compared to retargeting a 2D

video from the Web to display nicely on a mobile device.

2.6.3 Virtual Cinematography

Most existing work on virtual cinematography studies virtual camera

control in virtual (computer graphics) environments [21, 28, 47, 85] or else a

specialized domain such as lecture videos [31, 98, 110]. Aside from camera

control, some prior works also study automatic editing of raw materials like

videos or photos [35, 36, 48]. The goal is to generate an effective video pre-

sentation automatically to reduce human labor filming or editing. Existing

approaches typically rely on heuristics that encode popular cinematographic

rules. Pano2Vid differs from the above in that it takes unrestricted real 360◦

videos as input. Furthermore, the approach learns the cinematography ten-

dencies directly from Web videos.

2.6.4 Video Saliency

Saliency studies visual content that attracts viewers’ attention [44, 52,

53,79,97,123], where attention is usually measured by gaze fixations under free

viewing settings. Although the research originated in static images, there is in-

creasing work that studies video saliency [53,97,123]. Both video saliency and

Pano2Vid try to predict spatial locations in videos. However, saliency targets
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locations that are eye-catching in 2D image coordinates whereas Pano2Vid

(cf. Chapter 6) predicts directions in spherical coordinates that videographers

would try to capture with cameras. Also, saliency usually depends on local

image content whereas Pano2Vid depends on the content and composition of

the entire FOV.

2.6.5 Virtual Cinematography in 360◦ Video

After we proposed to solve the 360◦ video display problem using auto-

matic videography, several other works proposed alternative solutions for the

problem [20, 51, 72]. These methods rely on object information to guide the

virtual camera control, using either object proposals [51], semantic segmen-

tations [72], or object detection results [20]. They also take user input such

as preferred object(s) or narrative to improve view selection. The design im-

plicitly assumes that users prefer to focus on objects in 360◦ videos. While

this is true in some examples, we decided not to make this assumption in

order to handle more generic scenarios. Also, some of the methods perform

object detection/segmentation on equirectangular projection using an off-the-

shelf model [20,72], which cannot handle regions with severe distortion in the

equirectangular projection. In contrast, our method always processes visual

content in its perspective projection and does not suffer from distortion.
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Chapter 3

Learning Compressible 360◦ Video Isomers

A compressed video format is the core of all video technologies and is the

basis for all video related applications, ranging from video capture, storage,

processing to distribution. Without adequate compression, all of the above

suffer. 360◦ video is no exception. In this chapter, I study how to improve

360◦ video compression by exploring a new dimension in video compression—

the orientation of the 360◦ video projection1.

Thus far, the focus for 360◦ video compression is to find a proper pro-

jection that transforms a 360◦ frame into a rectangular planar image that will

have a high compression rate. A current favorite is to project the sphere to a

cubemap and unwrap the cube into a planar image [12, 70, 86] (see Fig. 3.2).

Cubemaps can improve the compression rate by up to 25% compared to the

previously popular equirectangular projection [71].

One unique property of 360◦ video is that each spherical video has an

infinite number of equivalents related by a rotation. Therefore, each 360◦ video

could be transformed into multiple possible cubemaps by changing the orien-

1The work in this chapter was originally published in: “Learning Compressible 360◦

Video Isomers,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition 2018 [106]. The authors are Yu-Chuan Su and Kristen Grauman.
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Figure 3.1: Our approach learns to automatically rotate the 360◦ video axis
before storing the video in cubemap format. While the 360◦ videos are equiv-
alent under rotation (“isomers”), the bitstreams are not because of the video
compression procedures. Our approach analyzes the video’s visual content to
predict its most compressible isomer.

tation of the cube, yet all of them represent the very same video content. I

will refer to these content-equivalent rotations as 360◦ isomers.2 The isomers,

however, are not equivalents in terms of compression. Different isomers in-

teract differently with a given compression algorithm and so yield different

compression rates (See Fig. 3.1). This is because the unwrapped cubemap is

2Strictly speaking isomers are equivalent only theoretically, because pixels are discretely
sampled and rotating a cubemap requires interpolating the pixels. Nevertheless, as long as
the pixel density, i.e. video resolution, is high enough, the information delta is negligible.
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not a homogenous perspective image. Therefore, some of the properties that

current compression algorithms exploit in perspective images do not hold. For

example, while the content is smooth and continuous in perspective images,

this need not be true along an inter-face boundary in an unwrapped cube-

map. The discontinuity can introduce artificial high frequency signals and

large abrupt motions, both of which harm the compression rate (cf. Sec. 3.1.2

and Fig. 3.5). In short, my key insight is that the compression rate of a 360◦

video will depend on the orientation of the cubemap it is projected on.

I propose a learning-based approach to predict—from the video’s visual

content itself—the cubemap orientation that will minimize the video size [106].

First, I demonstrate empirically that the orientation of a cubemap does influ-

ence the compression rate, and the difference is not an artifact of a specific

encoder but a general property over a variety of popular video formats. Based

on that observation, I propose to automatically re-orient the cubemap for ev-

ery group of pictures (GOP).3 A naive solution would enumerate each possible

orientation, compress the GOP, and pick the one with the lowest encoded

bitstream size. However, doing so would incur substantial overhead during

compression, prohibitively costly for many settings. Instead, I propose to ren-

der the GOP for a single orientation after predicting the optimal orientation

from the video clip rendered in its canonical orientation. Given encoded videos

in a fixed orientation, we train a CNN that takes both the segmentation con-

tours and motion vectors in the encoded bitstream and predicts the orientation

3A collection of successive pictures within a coded video stream.
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that will yield the minimum video size. By avoiding rendering and encoding

the video clip in all possible orientations, our approach greatly reduces the

computational cost and strikes a balance between speed and compression rate.

The key benefit of our approach is a higher compression rate for 360◦

video that requires only to re-render the cubemap. In particular, the approach

does not require changing the video format nor the compression algorithm,

which makes it fully compatible with any existing video codec. This is espe-

cially important in the realm of video compression, because a new video format

often takes years to standardize and deploy, and so changing the bitstream for-

mat would incur very high overhead. The only additional information that our

method needs to encode is the selected orientation of each GOP, which can

easily be encoded as meta data (and is part of the standard format [18]).

3.1 360◦ Video Isomers Analysis

Our goal is to develop a computationally efficient method that exploits

a cubemap’s orientation for better compression rates. In this section, I per-

form a detailed analysis on the correlation between the encoded video size

and cubemap orientation. The intent is to verify that orientation is indeed

important for 360◦ video compression.

First I briefly review fundamental video compression concepts, which

will help in understanding where our idea has leverage. Modern video com-

pression standards divide a video into a series of GOPs, which can be decoded

independently to allow fast seeking and error recovery. Each GOP starts with
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an I-frame, or intra-coded picture, which is encoded independently of other

frames like a static image. Other frames are encoded as inter-coded pictures,

and are divided into rectangular blocks. The encoder finds a reference block

in previous frames for each block that minimizes their difference. Instead of

encoding the pixels directly, the encoder encodes the relative location of the

reference block, i.e., the motion vector, and the residual between the current

and reference block. This inter-frame prediction allows encoders to exploit

temporal redundancy in the video. Note that the encoder has the freedom to

fall back to intra-coding mode for blocks in an inter-coded frame if no reference

block is found.

Just like static image compression, the encoder performs transform cod-

ing by transforming the pixels in I-frames and residuals in inter-coded frames

into the frequency domain and encoding the coefficients. The transformation

improves the compression rate because high frequency signals are usually few

in natural images, and many coefficients will be zero. To further reduce the

video size, video compression formats also exploit spatial redundancy through

intra-prediction, which predicts values to be encoded using adjacent values

that are previously encoded. The encoder will encode only the residual be-

tween the prediction and real value. This applies to both the motion vectors’

and transformed coefficients’ encoding. Most of the residuals will be small and

can be encoded efficiently using entropy coding. For a more complete survey,

see [90].

26



3.1.1 Cubemap Preparation

To study the correlation between cubemap orientation and compression

rate, we collect a 360◦ video dataset from YouTube. Existing datasets [51,108]

contain videos with arbitrary quality, many with compression artifacts that

could bias the result. Instead, we collect only high quality videos using the

4K filter in YouTube search. We use the keyword “360 video” together with

the 360◦ filter to search for videos and manually filter out those consisting of

static images or CG videos. The dataset covers a variety of video content and

recording situations, including but not limited to aerial, underwater, sports,

animal, news, and event videos, and the camera can be either static or moving.

We download the videos in equirectangular projection with 3,840 pixels width

encoded in H264 high profile. The dataset contains 80 videos with 4.2 hours

total length.

We next transcode the video into cubemap format and extract the

video size for each orientation. Because it is impossible to enumerate all pos-

sible cubemap orientations over time, we subsample both the GOP length and

cubemap orientations in our analysis.

Our analysis is divided into two parts. In the first part, we examine

whether the orientation of cubemap representation affects compression rate

using lossless video compression. Here we focus on lossless video compression

to reduce the number of factors in the analysis and therefore the computa-

tional cost. Similarly, we use a fixed two second GOP length, which results

in 7,436 video clips without overlap. Although common video codecs have
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the flexibility to adjust the GOP length within a given range, e.g., between

25-250 frames (1-10 seconds) in the default x264 encoder or 1-2 seconds in

Blu-ray videos [10], they usually use the longest GOP length unless a scene

cut is detected. Therefore, a fixed GOP length should not affect the analysis

significantly.

In the second part of the analysis, we examine whether the result of the

first part generalizes to more general video compression settings. In particular,

we relax the constraints of 1) lossless video compression and 2) fixed two-second

GOPs. We focus on these two factors because they are the most common

factors that may change in applications: the compression rate is controlled

by the user to meet the requirement of a specific application, and the GOP

length is controlled by the encoder to improve the compression rate. We

sample three different GOP lengths—one, two, four seconds—every second in

the video, so the video clips may overlap. Because lossy video compression

analysis considers more factors and incurs higher computational cost, we use

only the first 60 seconds from each video in the analysis, which leads to 13,920

video clips.

For each clip, we sample the cubemap orientation

Ω = (ϕ, θ) ∈ Φ×Θ (3.1)

with different ϕ and θ in Θ = Φ = {−45◦,−40◦, · · · , 45◦}, i.e., every 5◦ between

[−45◦, 45◦]. This yields |Φ× Θ| = 361 different orientations. We restrict the

orientation within 90◦ because of the rotational symmetry along each axis.
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Figure 3.2: Cubemap format transformation. The 360◦ video is first projected
to a cube enclosing the unit sphere and then unwrapped into 6 faces. The 6
faces are re-arranged to form a rectangular picture to fit video compression
standards (2×3 frame on the right).

For each orientation, we transform the video into cubemap format with

960 pixel resolution for each face. Fig. 3.2 illustrates the transformation. The

video is then encoded using off-the-shelf encoders before extracting the com-

pressed bitstream size.

For lossless video compression, we render the cubemaps using the trans-

form360 filter4 in FFMPEG released by Facebook. We then encode the video

into three popular formats—H264 using x2645, HEVC using x2656, and VP9

using libvpx7. Among them, H264 is currently the most common video format.

HEVC, also known as H265, is the successor of H264 and is the latest video

compression standard. VP9 is a competitor of HEVC developed by Google

and is most popular in web applications.

For lossy video compression, we render the video using 360Lib [1] and

compress the video into H264 format using x264 with five different video qual-

4https://github.com/facebook/transform360
5https://www.videolan.org/developers/x264.html
6http://x265.org
7https://chromium.googlesource.com/webm/libvpx/
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ities. The video qualities are controlled such that the resulting bitrates are

roughly equally spaced in log scale, i.e., bitrate ∈ {B,B/4, B/16, B/64, B/256},

where B is the bitrate for lossless compression. This is controlled by the con-

stant rate factor (CRF) parameter in the x264 encoder. We restrict the initial

analysis to H264 format in lossy video compression due to the computational

cost, but our results below extend to multiple encoders and both lossless and

lossy compression.

Note that we use popular open source tools for both cubemap rendering

and video compression to ensure that they are well optimized and tested.

This way any size changes we observe can be taken as common in 360◦ video

production instead of an artifact of our implementation.

3.1.2 Cubemap Analysis

Next we investigate how much and why the orientation of an isomer

matters for compressibility. If not mentioned specifically, all the results are

obtained from H264 fromat.

Video size distribution w.r.t. Ω We first show the video size distribution

with respect to Ω. We compute the normalized clip size

S̃Ω = 100× SΩ − SΩmin

SΩmax − SΩmin

(3.2)

for every Ω and cluster the size distribution of each clip using K-Means. SΩ

is the encoded bitstream size with orientation Ω and Ωmax/Ωmin corresponds
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Figure 3.3: Relative clip size distribution w.r.t. Ω. We cluster the distribution
into 16 clusters and show the cluster centers.

to the orientation with maximum/minimum bitstream size. Each cluster is

represented by the nearest neighbor to the center.

Fig. 3.3 shows the results. We can see Ωmin lies on or near θ=0◦ in about

half of the clusters. In general, this corresponds to orienting the cubemap

perpendicular to the ground such that the top face captures the sky and the
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Figure 3.4: Size distribution for one particular video. We show the cube-
maps corresponding to Ωmax/Ωmin, which are its worst (max) and best (min)
orientations for compressibility.

bottom face captures the camera and ground. See Fig. 3.2 for example. The

top and bottom faces tend to have smaller motion within the faces in these

orientations, and the compression rate is higher because the problem reduces

from compressing six dynamic pictures to four dynamic pictures plus two near

static pictures. However, θ=0◦ is not best for every clip, and there are multiple

modes visible in Fig. 3.3. For example, the minimum size occurs at θ=ϕ=45◦

in Fig. 3.4. The non-trivial distribution of video size shows that the orientation

of isomers indeed matters for video compression.

Reasons for the compression rate difference Why does the video size

depend on Ω? The fundamental reason is that all the video compression for-

mats are designed for perspective images and heavily exploit the image prop-

erties. The unwrapped cubemap format is a perspective image only locally

within each of the six faces. The cubemap projection introduces perspective

distortion near the face boundaries and artificial discontinuities across face
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Ωmin Ωmax

(a) Content discontinuity.

Ωmin Ωmax

(b) Motion discontinuity.

Figure 3.5: Explanations for why different Ω have different compression rate,
shown for good (Ωmin) and bad (Ωmax) rotations. (a) From a static picture
perspective, some Ω introduce content discontinuity and reduce spatial redun-
dancy. (b) From a dynamic picture perspective, some Ω make the motion more
disordered and break the temporal redundancy.
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Figure 3.6: Real examples for the explanations in Fig. 3.5. Example (A)
shows content discontinuity introduced by rotation. Example (B) shows mo-
tion discontinuity. The encoder fails to find reference blocks in this example,
and the number of intra-coded blocks increases.

boundaries, both of which make the cubemap significantly different from per-

spective images and can degrade the compression rate. Because the degrada-

tion is content dependent, different orientations result in different compression

rates.

More specifically, the reasons for the compression rate difference can be

divided into two parts: static content and dynamic motion. From the static

image perspective, artificial edges may be introduced if continuous patterns

fall on the face boundary. See Fig. 3.5 (a) and Fig. 3.6 for examples. The
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edges introduce additional high frequency signals and reduce the efficiency of

transform coding. Furthermore, the single continuous patch is divided into

multiple patches that are dispersed to multiple locations in the image. This

reduces the spatial redundancy and breaks the intra-prediction.

From the dynamic video perspective, the face boundaries may introduce

abrupt jumps in the motion. If an object moves across the boundary, it may

be teleported to a distant location on the image. See Fig. 3.5 (b) and Fig. 3.6

for examples. The abrupt motion makes it difficult to find the reference block

during encoding, and the encoder may fall back to intra-coding mode which

is much less efficient. Even if the encoder successfully finds the reference

block, the motion vectors would have very different magnitudes and directions

compared to those within the faces, which breaks intra-prediction. Finally,

because the perspective distortion is location dependent, the same pattern

will be distorted differently when it falls on different faces, and the residual

of inter-frame prediction may increase. The analysis applies similarly across

all formats, which makes sense, since their compression strategies are broadly

similar.

Achievable video size reduction We next examine the size reduction we

can achieve by optimally changing the cubemap orientation. In particular, we

compute the reduction

r = 100× SΩmax − SΩmin

SΩmax

. (3.3)
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H264 HEVC VP9

Video r (%)
Avg. 8.43± 2.43 8.11± 2.03 7.83± 2.34
Range [4.34, 15.18] [4.58, 13.67] [3.80, 14.72]

Clip r (%)
Avg. 10.37± 8.79 8.88± 8.23 9.78± 8.62
Range [1.08, 76.93] [1.40, 74.95] [1.70, 75.84]

Table 3.1: Achievable video size reduction through rotation for lossless com-
pression in three different formats. Clip-level reductions are per GOP (fixed
in length); video-level reductions are aggregated over all clips in a video (and
hence vary in length). We can reduce the video size by up to 77% by optimally
changing the cubemap orientation.

We start with lossless video compression. Table 3.1 shows the results.

The average video size reduction r is 8.43% for H264, which means that we can

reduce the overall 360◦ video size by more than 8% by rotating the video axis.

This corresponds to a 2GB reduction in our 80 video database and would scale

to 25.3TB for a 1M video database. The range of r for each clip using H264

is [1.08, 76.93], which indicates that the compression rate is strongly content

dependent, and the size reduction can be up to 77% for a single video if we

allow the encoder to re-orient the 360◦ video. If we restrict the rotation to ϕ

and fix θ = 0◦, r drops to 2.35%. This result suggests that it is important to

allow rotation along both axes. Table. 3.1 also shows the outcomes are similar

across the three formats, which makes sense, since their compression strategies

are broadly similar.

We next extend the analysis to lossy video compression. Fig. 3.7 shows

the results for H264. Clearly, the correlation between cubemap orientation

and bitstream size is not specific to lossless video compression or a single
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Figure 3.7: Achievable video size reduction through rotation for lossy com-
pression at different compression rates and GOP lengths for H264. B refers
to the bitrate for lossless video compression.

video compression setting. Instead, it is a general property of the cubemap

representation and video codecs over different compression rates and GOP

lengths. We can also see that the size reduction is not sensitive to the GOP

length. Although the effect of orientation varies across different compression

rates, the average size reduction is between 8-18%, which is consistent with

the results in lossless compression. Note that the size reduction for lossy video

compression in Fig. 3.7 (bitrate=B) is larger than that in Table 3.1. The

reason is that Fig. 3.7 is computed over the first 60 seconds of the video.

Because some of the videos contain title slides at the beginning—which are

more sensitive to cubemap orientation—the size reduction tends to be more

significant in the first 60 seconds of the videos.

Video size correlation across formats Finally, we verify the correlation

between video size and orientation is a generic property of the cubemap rep-
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Encoders H264 / H265 H264 / VP9 H265 / VP9

Avg. ρ 0.8757 0.9533 0.8423

Table 3.2: The correlation of relative video sizes across video formats. The
high correlation indicates that the dependency between video size and Ω is
common across formats.

resentation and the common structure of video compression algorithm, as op-

posed to an artifact of a specific video codec. We compare the size reduction

that can be achieved through rotation under different video compression set-

tings and their correlations. Recall that Table 3.1 shows the bitstream sizes

using different video encoders in lossless video compression. That result clearly

shows that the dependency between the compression rate and Ω is a common

property across current video compression formats. This is further verified in

Table 3.2, where we observe a high correlation between the relative video size,

i.e.,

S ′
Ω = SΩ − S0,0, (3.4)

of different encoders.

Next we consider the correlations for lossy video compression for differ-

ent compression rates (Table 3.3). The results show that the bitstream sizes

across different compression settings are highly correlated, especially when

the video qualities are not significantly different (i.e., from lossless compres-

sion to the lowest possible quality). Note that the bitrates in the analysis

cover almost the entire range of available bitrates in the x264 encoder, and the

common bitrate in practical applications is between [B/7, B/25] according to
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Bitrate B B/4 B/16 B/64 B/256

B 1.00 0.93 0.83 0.69 0.45
B/4 0.93 1.00 0.90 0.73 0.44
B/16 0.83 0.90 1.00 0.87 0.55
B/64 0.69 0.73 0.87 1.00 0.75
B/256 0.45 0.44 0.55 0.75 1.00

Avg. 0.78 0.80 0.83 0.81 0.64

Table 3.3: The correlation of relative video sizes across compression rate.

the FFMPEG documents.

The high correlation between the bitstream sizes across different video

compression settings not only verifies that the correlation between bitstream

sizes and orientation is a general property of the cubemap representation, it

also suggests that we may be able to predict the bitstream size of other com-

pression settings having trained with one particular setting. This implies that

if we can learn a model that predicts the bitstream size of one compression

setting (e.g., GOP length 2 and bitrate B/16), the same model may predict

the bitstream size of other compression settings as well. We empirically verify

the transferability of the prediction model in the experiments (Sec. 3.3). This

is very important for video compression: there is a large number of poten-

tial settings users may choose, and it would be impractical to optimize the

cubemap orientation for each possible compression setting independently.
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Figure 3.8: Our model takes a video clip as input and predicts Ωmin as output.
(A) It first divides the video into 4 segments temporally and (B) extracts
appearance and motion features from each segment. (C) It then concatenates
the appearance and motion feature maps and feeds them into a CNN. (D) The
model concatenates the outputs of each segment together and joins the output
with the input feature map using skip connections to form the video feature.
(F) It then learns a regression model that predicts the relative video size S ′

Ω

for all Ω and takes the minimum one as the predicted optimally compressible
isomer.

3.2 Approach for Exploiting 360◦ Video Isomers

In this section, I introduce our approach for improving 360◦ video com-

pression rates by predicting the most compressible isomer. Given a 360◦ video

clip, the goal is to identify Ωmin to minimize the video size. A naive solution is

to render and compress the video for all possible angles Ω and compare their

sizes. While this guarantees the optimal solution, it introduces a significant

computational overhead, i.e., 360 times more computation than encoding the

video with a fixed Ω. For example, it takes more than 15 seconds to encode

one single clip using the default x264 encoder on a 48 core machine with Intel

Xeon E5-2697 processors, which corresponds to 15s× 360 ≈ 1.5 hours for one

clip if we were to enumerate all Ω. Moreover, the computational cost will grow

quadratically if we allow more fine-grained control. Therefore, enumerating Ω

is not practical.

39



Instead, we propose to predict Ωmin from the raw input without re-

rendering the video. Given the input video in cubemap format, we extract

both motion and appearance features (details below) and feed them into a

CNN that predicts the video size SΩ for each Ω, and the final prediction of the

model is

Ωmin = argmin
Ω

SΩ. (3.5)

See Fig. 3.8. The computational cost remains roughly the same as transcoding

the video because the prediction takes less than a second, which is orders of

magnitude shorter than encoding the video and thus negligible. Since no pre-

dictor will generalize perfectly, there is a chance of decreasing the compression

rate in some cases. However, experimental results show that it yields very

good results and strikes a balance between computation time and video size.

Furthermore, due to our two-pass design (defined below, cf. Fig. 3.9), if the

input orientation of the video proves to encode to a smaller sized file than the

one encoded using our method’s predicted angle, we can simply return that

one, i.e., “do no harm”.

Because the goal is to find Ωmin for a given video clip, exact prediction

of SΩ is not necessary. Instead, the model predicts the relative video size S ′
Ω

from Eq. 3.4. The value S ′
Ω is scaled to [0, 100] over the entire dataset to

facilitate training. We treat it as a regression problem and learn a model that

predicts 361 real values using L2 loss as the objective function. Note that we

do not predict SΩ in Eq. 3.2 because it would amplify the loss for clips with

smaller size, which may be harmful for the absolute size reduction.
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The model first divides the input video into 4 equal length segments.

For each segment, it extracts the appearance and motion features for each

frame and average them over the segment. For appearance features, we seg-

ment the frame into regions using SLIC [2] and take the segmentation contour

map as a feature. The segmentation contour represents edges in the frame,

which imply object boundaries and high frequency signals that take more bits

in video compression.

For motion features, we take the motion vectors directly from the in-

put video stream encoding, as opposed to computing optical flow. The motion

vectors are readily available in the input and thus this saves computation. Fur-

thermore, motion vectors provide more direct information about the encoder.

Specifically, we sample one motion vector every 8 pixels and take both the

forward and backward motion vectors as the feature. Because each motion

vector consists of both spatial and temporal displacement, this results in a

6-dimensional feature. For regions without a motion vector, we simply pad 0

for the input regardless of the encoding mode. We concatenate the appearance

and motion features to construct a feature map with depth 7. Because the

motion feature map has lower resolution than the video frame, we downscale

the appearance feature map by 8 to match the spatial resolution. The input

resolution of each face of the cube map is therefore 960/8 = 160 pixels.

The feature maps for each segment are then fed into a CNN and con-

catenated together as the video feature. We use the VGG architecture [101]

except that we increase the number of input channels in the first convolu-
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tion layer. Because fine details are important in video compression, we use

skip connections to combine low level information with high level features,

following models for image segmentation [80]. In particular, we combine the

input feature map and final convolution output as the segment feature after

performing 1x1 convolution to reduce the dimension to 4 and 64 respectively.

The video feature is then fed into a fully-connected layer with 361 outputs as

the regression model. Note that we remove the fully-connected layers in the

VGG architecture to keep the spatial resolution for the regression model and

reduce model size.

Aside from predicting SΩ, in preliminary research we tried other ob-

jective functions such as regression for Ωmin directly or predicting Ωmin from

the 361 possible Ω with 361-way classification, but none of them perform as

well as the proposed approach. Regressing Ωmin often falls back to predicting

(θ, ϕ) = (0, 0) because the distribution is symmetric. Treating the problem

as 361-way classification has very poor accuracy, i.e., slightly better than ran-

dom (≈5%), because the amount of training data is small and imbalanced.

We also examined different input features. For motion features, we tried 3D

convolution instead of explicitly feeding the motion information as input, but

3D convolution performs 4−30% worse than 2D convolution despite having a

higher computational cost. For appearance features, we tried raw pixels with

various network architectures but find that segmentation contours consistently

perform better.

Based on the prediction model, we propose a two-pass compression
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Figure 3.9: We propose a two-pass compression pipeline. The second pass
optimizes the compression rate by taking the orientation predicted from the
output bitstream of the first pass. The dashed line indicates the additional
steps in the new pipeline.

pipeline for 360◦ videos. Given a 360◦ video, we first compress it in the de-

fault orientation using any standard encoder that will unwrap the video into

a cubemap and encode it. Next, we feed the cubemap representation into the

prediction model, which predicts Ωmin given the video content. As mentioned

before, the cubemap representation provides the motion vectors as motion

features readily, which reduces the computational cost of the entire pipeline.

Finally, we feed Ωmin and the 360◦ video back to the same encoder to perform

the second pass of compression, where the output cubemap representation has
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Figure 3.10: Example frames from JVET test sequences. The images are
from ChairliftRide, Gaslamp, Harbor, KiteFlite, SkateboardInLot, and Trolley
sequences, respectively, from top left to bottom right.

orientation Ωmin and achieves a better compression rate. See Fig. 3.9.

Note that the two-pass compression pipeline is very common in video

compression, especially when one wants to encode the video with a constant

bitrate. Thus, our proposed pipeline can be considered as an extension of the

original two-pass compression pipeline where we introduce an additional bit-

stream analysis. Also, because the new pipeline does not make any bitstream

level changes on the compression algorithm, it can be combined with existing

video compression techniques easily.

3.3 Experiments

To evaluate our method, we compute the size reduction it achieves on

high resolution 360◦ video datasets with real and dynamic 360◦ videos.
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3.3.1 Dataset

We evaluate the prediction model on both the YouTube 360◦ video

dataset introduced in Sec. 3.1 and the common test sequences introduced by

the Joint Video Exploration Team (JVET), a key compression benchmark.

For the YouTube 360◦ video dataset, we use all 80 videos with full length as

in the previous analysis. For the JVET test sequences, we use the six 8K

sequences introduced in the JVET common test conditions. All the sequences

contain 300 frames with 30 fps frame rate, and the resolution is 8192 × 4096

in equirectangular projection with YUV420 pixel format. The name of the

sequences are in Table 3.7, which provides a high level description of the video

content, and Fig. 3.10 shows example frames from each sequence.

An important benefit of the JVET test set is that it provides raw video

input without any compression. The raw format avoids compression artifacts

in the source video, which may affect the analysis of compression algorithms.

Because most use cases for video compression take the raw or high quality video

as input, evaluating the algorithm on the raw format provides an accurate

estimate of performance. Furthermore, these sequences are widely used in the

development of 360◦ video compression, so the results may be compared with

other ongoing work.

To train and test the model, we divide the YouTube 360◦ video dataset

into 4 folds, each containing 20 videos. Three are used for training, and the

other is used for testing. We report the average result over 4 folds as the final

performance. For the JVET test sequences, we use the models trained on the
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YouTube 360◦ video dataset directly without modification.

3.3.2 Evaluation Metrics

We use two metrics: normalized size reduction and Bjøntegaard-Delta

bitrate (BD-rate). We compare each method using the normalized size reduc-

tion r̃ = 1 − S̃ for each video. Specifically, we compute the largest full-video

size by choosing Ωmax for every clip and sum the clip sizes. Similarly, we

compute the minimum video size. Given the predicted orientation for each

clip, we compute the video size when rotating the cubemap by the predicted

orientation. The result indicates the fraction of reduction the method achieves

compared to the optimal result.

Besides the normalized size reduction, we also evaluate the performance

using the BD-rate, which is the most common evaluation metric for video com-

pression. Because there is a trade-off between bitrate and video quality in video

compression and it is hard to require a fixed quality or bitrate for a compres-

sion algorithm, BD-rate evaluates the performance of a compression algorithm

over the entire bitrate versus video quality curve instead on a single point. In

particular, it computes the average bitrate difference between two codecs in

percent over all possible video qualities, namely by fitting a third order polyno-

mial over discrete sample points. We use Peak-Signal-to-Noise-Ratio (PSNR)

for the quality metric, which is the most common quality metric in video com-

pression algorithm. Following the ongoing works for 360◦ video compression,

we also evaluate the Weighted-to-Spherically-Uniform PSNR (WS-PSNR). Be-
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cause the pixels in equirectangular projection are not uniformly distributed on

the sphere, WS-PSNR reweights the quality metric so it is uniform over the

entire sphere.

3.3.3 Baselines

To our knowledge, no prior work studies how to predict the cubemap

orientation for better compression. Thus, we compare our method with the

following two heuristics:

• Random — Randomly rotate the cubemap to one of the 361 orientations.

This represents the compression rate when we have no knowledge about the

video orientation.

• Center — Use the orientation provided by the videographer. This is a

strong prior, usually corresponding to the direction of the videographer’s

gaze or movement and lying on the horizon of the world coordinate.

3.3.4 Implementation Details

We initialize the weights using an ImageNet pre-trained VGG model

provided by the authors [101]. For the first layer, we replicate the weights

of the original network to increase the number of input channels. Weights

that are not in the original model are randomly initialized using Xavier ini-

tialization [37]. We train the model using ADAM [66] for 4,000 iterations with

batch size 64 parallelized to 16 GPUs. The base learning rate is initialized to

1.0 × 10−3 and is decreased by a factor of 10 after 2,000 iterations. We also
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H264 HEVC VP9

Random 50.75 51.62 51.20
Center 74.35 63.34 72.92

Ours 82.10 79.10 81.55

Table 3.4: Size reduction of each method. The range is [0, 100], the higher the
better.

apply L2 regularization with the weight set to 5.0× 10−4 and use dropout for

the fully-connected layers with ratio 0.5. For SLIC, we segment each face of

the cubemap independently into 256 superpixels with compactness m=1. The

low compactness value leads to more emphasis on the color proximity in the

superpixels.

3.3.5 Results

If not mentioned specifically, the results are obtained from the YouTube

360◦ video dataset.

Video size reduction We first examine the size reduction the proposed

method achieves. Table 3.4 shows the results for lossless video compression.

The proposed method performs better than the baselines in all video formats

by 7%− 16%. The improvement over the baseline is largest in HEVC, which

indicates that the advantage of our approach will become more significant as

HEVC gradually replaces H264. Interestingly, the Center baseline performs

particularly worse in HEVC. The reason is that HEVC allows the encoder to

achieve good compression rates in more diversed situations, so the distribution
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Figure 3.11: Absolute size reduction (MB) of each video. Each point represents
the input video size vs. size reduction relative to Center achieved by our
model.

of Ωmin becomes more dispersed. The result further shows the value in consid-

ering cubemap orientation during compression as more advanced video codecs

are used. While there remains a 20% room for improvement compared to the

optimal result (as ascertained by enumerating Ω), our approach is significantly

faster and takes less than 0.6% the computation.

Fig. 3.11 shows the absolute file size reduction for each video. Because

the video size depends very much on the video content and length and is

hard to compare across examples, we show the reduction versus the original

video size. The size reduction by our method, though dependent on the video

content, is roughly linear in the original video size. Note that the original

videos are encoded with orientation Ω0,0.

Table 3.5 shows the corresponding results for lossy video compression.

The model (Ours) is trained and evaluated in the same video compression

setting, i.e., the same GOP length and bitrate. Again, the prediction model
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Bitrate

GOP B B/4 B/16 B/64 B/256

Random
1s 43.61 50.30 50.65 50.62 53.90
2s 43.10 49.98 51.20 50.91 53.80
4s 42.64 49.56 51.02 50.97 53.96

Center
1s 95.95 63.64 55.73 62.81 67.64
2s 96.17 64.16 54.32 62.05 66.87
4s 96.52 63.72 52.60 61.40 66.51

Ours
1s 96.14 73.84 71.74 73.28 74.80
2s 96.62 73.66 70.11 74.15 76.69
4s 96.73 75.34 71.01 74.46 75.09

Ours (Single Model)
1s 96.53 74.77 71.43 73.86 75.71
2s 96.75 74.99 71.25 74.15 75.97
4s 96.90 74.91 70.82 74.28 76.09

Table 3.5: Video size reduction for lossy video compression (higher is better).
Ours shows the reduction when the model is trained and evaluated on the
same compression setting, while Ours (Single Model) shows the result
using a model trained on a single compression setting. Note thatOurs requires
training 3×5=15 models, whereas Ours (Single Model) requires training
only 1.

performs 10 − 20% better than the Center baseline and 20 − 25% better

than Random. On the other hand, the absolute performance in lossy video

compression is worse than that in lossless video compression. Our hypothesis is

that the video encoders have a higher degree of freedom in lossy compression,

so the final bitstream size is less predictable than that in lossless compression.

Fig. 3.12 shows example prediction results. Our approach performs

well despite the diversity in the video content and recording situation. The

complexity in the content would make it hard to design a simple rule-based
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Figure 3.12: Qualitative examples. The heatmap shows the actual normalized
reductions for all angles. Black circle shows the predicted result, which is
rendered in the second and third figures. The fourth and fifth figures show the
Center baseline. The second and fourth figures show the first frame of the
clip, and the third and fifth figures are the last frame. Best viewed in color.
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method to predict Ωmin (such as analyzing the continuity in Fig. 3.6); a learn-

ing based method is necessary. We can see that even small objects can affect

the compression rate, such as the rhinos in the first example and the diver in

the second example. The pattern doesn’t even have to correspond to a real

object like the blank region in the fourth example or the logo in the fifth ex-

ample. The fifth example also shows how the file size is affected by multiple

factors jointly. The distribution would be symmetric with respect to θ=0 if

the file size only depended on the logo, but the sky and cloud lead to the

additional mode at the top middle. We also see that the continuity of fore-

ground objects is not the only factor that matters from the sixth and seventh

example; the person in the sixth example and the pilot in the seventh example

lie on the face boundary in the optimal orientation. The result suggests that

heuristics based on object location, either automatic or manual, do not solve

the problem.

Fig. 3.13 shows failure examples. In the first example, we can see the

best compression rate occurs when the coral is continuous, while our method

fails because it decides to keep the sun light (round white pattern) continuous.

In the second and third example, the video size tends to be smaller when the

horizon falls on the face diagonal, possibly because it is more friendly for intra-

prediction in compression. Our method doesn’t learn this tendency, so it fails

to predict the optimal θ and only predicts the correct ϕ.
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Figure 3.13: Failure cases. Blue circle shows true minimum and is rendered in
the fourth and fifth figures. The two figures are the first and last frame of the
clip.

Model transferability We next examine whether the model can be trans-

ferred across video formats, e.g. can the model trained on H264 videos improve

the compression rate of HEVC videos? First, we evaluate the transferability

across different encoders with lossless video compression. Table 3.6 shows the

results. Overall, the results show that our approach is capable of generalizing

across video formats given common features. We find that the model trained

on H264 is less transferable, while the models trained on HEVC and VP9 per-

form fairly well on H264. In particular, the model trained on HEVC performs

the best across all formats. The reasons are twofold. First, the models trained

on HEVC and VP9 focus on the appearance feature which is common across

all formats. Second, the predictions generated by models trained on H264 is
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H264 HEVC VP9

HEVC VP9 H264 VP9 H264 HEVC

70.82 78.17 85.79 84.61 83.19 75.16

Table 3.6: Transferability across video formats. We show the size reduction of
our approach. Top row indicates training source, second row is test sources.

more biased. See Fig. 3.14. The predicted Ωmin tend to be more concentrated

around θ=0 than the real Ωmin. Because the distribution of Ωmin is more con-

centrated in H264, so is the prediction of Ωmin by the model trained on H264.

We hypothesize that the distribution difference is the result of the flexibility

of the encoder, and our method works better with more modern codecs like

HEVC.

Next we examine the transferability across the GOP length and com-

pression rate. The model is trained with bitstreams encoded using x264 with

GOP length 2 and bitrate B/16. We choose these compression settings based

on the best correlation between bitstream sizes from our previous analysis

(cf. Table 3.3). The size reduction achieved by this single prediction model

is indicated by Ours (Single Model) in Table 3.5. The performance of the

model is almost identical to Ours, which trains one model for each setting

independently. In other words, Ours (Single Model) requires only one

model but achieves similar performance to Ours, which requires 15 models,

one per GOP × bitrate combination. Note that in practice, Ours may require

even more models because of the number of different settings the encoder may

support. Ours (Single Model) is therefore more practical than Ours in real
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(c) Predicted Ωmin (HEVC).
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Figure 3.14: Distribution of Ωmin (%). Predictions are on H264 videos with
different training data.

video codecs. The result, together with that in Table 3.6, is encouraging be-

cause it suggests we can apply the same prediction model for all compression

settings without a significant loss in terms of the achievable compression rate.

Bjøntegaard-Delta Rate for Lossy Compression Finally, we compute

the BD-rate the proposed method achieves. For JVET test sequences, we re-

port the BD-rate for each video following the convention of the JVET common
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PSNR Y PSNR U PSNR V WS-PSNR Y WS-PSNR U WS-PSNR V

Trolley −0.74% −1.07% −1.11% −1.31% −1.22% −1.27%
SkateboardingInLot 3.53% −26.48% −16.87% 2.44% −30.49% −7.58%
Chairlift −0.38% −0.19% −0.45% −0.13% −0.12% −0.22%
KiteFlite 0.79% 0.15% 0.39% 0.41% 0.08% 0.88%
Harbor 2.13% −0.11% 0.01% 2.66% −0.13% −0.10%
Gaslamp −3.22% −1.53% −2.91% −4.46% −1.54% −2.34%

YouTube (avg.) 1.37% −2.14% −2.33% 1.18% −1.38% −1.11%

Table 3.7: Bitrate reduction on JVET test sequences and the YouTube 360◦

video dataset. Refer to Sec. 3.3.2 for metric definitions.

test condition. For the YouTube videos, we report the average result over all

80 videos. BD-rate makes a head-to-head comparison between two compres-

sion algorithms; we compare our method to Center, given that it performs

better than Random in previous analysis and is consistent with the common

test condition adopted by JVET.

Table 3.7 shows the results. Our method improves the compression rate

in four of the test videos, and the improvement in bitrate is between −0.10%

to −30.49%. Note that for SkateboardingInLot, although the bitrate increases

for the Y (luma) channel, the bitrate reduction is more significant in the color

channels so the overall compression rate improves. The result further verifies

that we can improve the compression rate of 360◦ video by optimizing the

orientation for cubemap representation, and the range of improvement heavily

depends on the video content.
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3.4 Conclusion

In this chapter, I introduced how to improve 360◦ video compression

by rotating the video content. I first perform a detailed analysis to verify that

the orientation of cubemap projection matters for compression. The analysis

across three popular codecs shows scope for reducing video sizes by up to 77%

through rotation, with an average of more than 8% over all videos. I then

propose an approach that predicts the optimal orientation given the video

in a single orientation. It achieves 78% the compression rate of the optimal

orientation while requiring less than 0.6% of the computation of a search-based

solution (fraction of a second vs. 1.5 hours per GOP).

The proposed approach explores an untapped dimension for 360◦ video

compression and is compatible with ongoing progress in video compression.

However, it ignores the interactive nature of 360◦ videos and is evaluated

on objective metrics over the entire video. Because users may interact with

the 360◦ video and focus on a small FOV at a time, the subjective quality

may not always align well with the objective metrics because it is determined

purely by the content within the FOV. In Chapter 7, I discuss future work

plans to exploit user interactions for better 360◦ video compression. Another

limitation of the proposed method is the latency. While being much more

efficient than the exhaustive search solution, the latency induced by the two-

pass compression pipeline still makes it unsuitable for applications such as

video streaming. In order to reduce the latency, we need to avoid the two-pass

pipeline and compress the 360◦ video in the preferable orientation directly.
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A proper compression algorithm makes various applications of 360◦

video possible by allowing us to store, transmit, and distribute this new media

easily. On the other hand, simply distributing the raw 360◦ video is not enough

for many potential applications, and further visual content analysis is necessary

in order to build more advanced applications. For example, face recognition

may be very helpful for video conference applications, and semantic features

can help to build a more effective 360◦ video display as I will show in Chapter 6.

Therefore, the next chapter will introduce the challenges for applying existing

computer vision models on 360◦ imagery and our solution for these challenges.
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Chapter 4

Learning Spherical Convolution

Many visual data applications rely on visual content analysis. For ex-

ample, object detection and segmentation are fundamental steps for current

visual search systems. In fact, extracting visual features is now part of the

standard pipeline in media distributing sites [59]. The same applies for 360◦

data. As I will show in the Chapter 6, sementic features can help to improve

the viewing experience of 360◦ video. Therefore, performing visual recognition

on 360◦ content becomes a practical need and attracts the attention of both

researchers and application developers1.

Arguably the most powerful tools in computer vision today are CNNs.

CNNs are responsible for state-of-the-art results across a wide range of vision

problems, including image recognition [46,127], object detection [34,92], image

and video segmentation [45,56,80], and action detection [30,100]. Furthermore,

significant research effort over the past few years (and really decades [73])

has led to well-honed CNN architectures that, when trained with massive

labeled image datasets [27], produce “pre-trained” networks broadly useful as

1The work in this chapter was originally published in: “Learning Spherical Convolution
for Fast Features from 360◦ Imagery”, in Proceedings of the Advances in Neural Information
Processing Systems 2017 [104]. The authors are Yu-Chuan Su and Kristen Grauman.
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Figure 4.1: Two existing strategies for applying CNNs to 360◦ images. Top:
The first strategy unwraps the 360◦ input into a single planar image using a
global projection (most commonly equirectangular projection), then applies
the CNN on the distorted planar image. Bottom: The second strategy sam-
ples multiple tangent planar projections to obtain multiple perspective images,
to which the CNN is applied independently to obtain local results for the orig-
inal 360◦ image. Strategy I is fast but inaccurate; Strategy II is accurate
but slow. The proposed approach learns to replicate flat filters on spherical
imagery, offering both speed and accuracy.

feature extractors for new problems. Indeed such networks are widely adopted

as off-the-shelf feature extractors for other algorithms and applications (cf.,

VGG [101], ResNet [46], and AlexNet [69] for images; C3D [114] for video).

However, thus far, powerful CNN models are awkward if not off limits

in practice for 360◦ imagery. The problem is that the underlying projection

models of current CNNs and 360◦ data are different. Both the existing CNN

filters and the expensive training data that produced them are “flat”’, i.e.,

the product of perspective projection to a plane. In contrast, a 360◦ image is

projected onto the unit sphere surrounding the camera’s optical center.

To address this discrepancy, there are two common, though flawed, ap-
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proaches. In the first, the 360◦ image is projected to a planar one, e.g., with

equirectangular projection, then the CNN is applied to the resulting 2D im-

age [51,72] (see Fig. 4.1, top). However, any sphere-to-plane projection intro-

duces distortion, making the resulting convolutions inaccurate. In the second

existing strategy, the 360◦ image is repeatedly projected to tangent planes

around the sphere, each of which is then fed to the CNN [105, 108, 119, 125]

(Fig. 4.1, bottom). In the extreme of sampling every tangent plane, this so-

lution is exact and therefore accurate. However, it suffers from very high

computational cost. Not only does it incur the cost of rendering each pla-

nar view, but also it prevents amortization of convolutions: the intermediate

representation cannot be shared across perspective images because they are

projected to different planes.

I propose a learning-based solution that, unlike the existing strategies,

sacrifices neither accuracy nor efficiency. The main idea is to learn a CNN that

processes a 360◦ image in its equirectangular projection (fast) but mimics the

“flat” filter responses that an existing network would produce on all tangent

plane projections for the original spherical image (accurate). Because convo-

lutions are indexed by spherical coordinates, I refer to our method as spherical

convolution (SphConv). I develop a systematic procedure to adjust the net-

work structure in order to account for distortions. Furthermore, I propose a

kernel-wise pre-training procedure which significantly accelerates the training

process.

In addition to providing fast general feature extraction for 360◦ imagery,
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my approach provides a bridge from 360◦ content to existing heavily supervised

datasets dedicated to perspective images. In particular, training requires no

new annotations—only the source CNN model (e.g., VGG [101] pre-trained

on millions of labeled images) and an arbitrary collection of unlabeled 360◦

images.

4.1 Spherical Convolution Definition

We first define the objective for spherical convolution. Let Is be the

input spherical image, and let Ie be the corresponding flat RGB image in

equirectangular projection. We define the perspective projection operator P

which projects an α-degree FOV from Is to W pixels on the the tangent plane

n̂:

P(Is, n̂) = Ip ∈ IW×W×3. (4.1)

The projection operator is characterized by the pixel size

∆pθ = α/W (4.2)

in Ip, and Ip denotes the resulting perspective image. Note that we assume

∆θ = ∆ϕ following common digital imagery.

Given a source network2 Np trained on perspective images Ip with re-

ceptive field R×R, we define the output on Is at n̂ = (θ, ϕ) as

Np(Is)[θ, ϕ] = Np(P(Is, (θ, ϕ))), (4.3)

2e.g., Np could be AlexNet [69] or VGG [101] pre-trained for a large-scale recognition
task.
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Source Network (Np)

Spherical Convolutional
Network (Ne)

Figure 4.2: The objective for a spherical convolution network (SphConv) is to
mimic the output of a source model on the perspective projection while taking
equirectangular projection as input. This can be considered as a knowledge
distillation across different projections.

where w.l.o.g. we assumeW = R for simplicity. The goal is to learn a spherical

convolution network Ne that takes an equirectangular map Ie as input and,

for every image position (x, y), produces as output the results of applying the

perspective projection network to the corresponding tangent plane for spherical

image Is:

Ne(Ie)[x, y] ≈ Np(Is)[θ, ϕ], ∀(x, y) ∈ De, (4.4)

where

De = {0, 1, · · · ,We − 1} × {0, 1, · · · , He − 1}. (4.5)

Note the image coordinate (x, y) in equirectangular projection and spherical

coordinate (θ, ϕ) are linearly mapped by

(θ, ϕ) = (
πy

He

,
2πx

We

). (4.6)

See Fig. 4.2.

This can be seen as a domain adaptation problem where we want to

transfer the model from the domain of Ip to that of Ie. However, unlike typical
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domain adaptation problems, the difference between Ip and Ie is characterized

by a geometric projection transformation rather than a shift in data distribu-

tion. Note that the training data to learn Ne requires no manual annotations:

it consists of arbitrary 360◦ images coupled with the “true” Np outputs com-

puted by exhaustive planar reprojections, i.e., evaluating the rhs of Eq. 4.3 for

every (θ, ϕ). Furthermore, at test time, only a single equirectangular projec-

tion of the entire 360◦ input will be computed using Ne to obtain the dense

(inferred) Np outputs, which would otherwise require multiple projections and

evaluations of Np.

4.2 Approach for Learning Spherical Convolution

This section describes how we learn the spherical convolution network.

We exploit the domain knowledge for spherical convolution to facilitate learn-

ing. Sec. 4.2.1 introduces how to adapt the structure from the source network,

and Sec. 4.2.2 presents the training process.

4.2.1 Network Structure

The main challenge for transferring Np to Ne is the distortion intro-

duced by equirectangular projection. The distortion is location dependent—a

k × k square in perspective projection will not be a square in the equirectan-

gular projection, and its shape and size will depend on the polar angle θ. See

Fig. 4.3. The convolution kernel should transform accordingly. The proposed

approach 1) adjusts the shape of the convolution kernel to account for the
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𝜽 = 36°𝜽 = 108°𝜽 = 180°

Figure 4.3: Inverse perspective projections P−1 to equirectangular projections
at different polar angles θ. The same square image will distort to different
sizes and shapes depending on θ. Because equirectangular projection unwraps
the 180◦ longitude, a line will be split into two if it passes through the 180◦

longitude, which causes the double curve in θ = 36◦.

distortion, in particular the content expansion, and 2) reduces the number of

max-pooling layers to match the pixel sizes in Ne and Np, as I detail next.

We adapt the architecture of Ne from Np using the following heuristic.

The goal is to ensure each kernel receives enough information from the input in

order to compute the target output. First, we untie the weight of convolution

kernels at different θ by learning one kernel Ky
e for each output row y. Next,

we adjust the shape of Ky
e such that it covers the receptive field of the original

kernel. We consider Ky
e ∈ Ne to cover Kp ∈ Np if more than 95% of pixels

in the receptive field of Kp are also in the receptive field of Ke in Ie. The

receptive field of Kp in Ie is obtained by backprojecting the R × R grid to

n̂ = (θ, 0) using P−1, where the center of the grid aligns on n̂. Ke should be

large enough to cover Kp, but it should also be as small as possible to avoid

overfitting. Therefore, we optimize the shape of K l,y
e for layer l as follows. The

shape of K l,y
e is initialized as 3× 3. We first adjust the height kh and increase

kh by 2 until the height of the receptive field is larger than that of Kp in Ie.

We then adjust the width kw similar to kh. Furthermore, we restrict the kernel
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Figure 4.4: Method to select the kernel height kh. We project the receptive
field of the source kernel to equirectangular projection Ie and increase kh until
it is taller than the source kernel in Ie. The kernel width kw is determined
using the same procedure after kh is set. We restrict the kernel size kw × kh
by an upper bound Uk.

size kh× kw to be smaller than an upper bound Uk. See Fig. 4.4. Because the

receptive field of K l
e depends on K l−1

e , we search for the kernel size starting

from the bottom layer.

It is important to relax the kernel from being square to being rectangu-

lar, because equirectangular projection will expand content horizontally near

the poles of the sphere (see Fig. 4.3). If we restrict the kernel to be square, the

receptive field of Ke can easily be taller but narrower than that of Kp which

leads to overfitting. It is also important to restrict the kernel size, otherwise

the kernel can grow wide rapidly near the poles and eventually cover the entire

row. Although cutting off the kernel size may lead to information loss, the loss

is not significant in practice because pixels in equirectangular projection do

not distribute on the unit sphere uniformly; they are denser near the pole, and

the pixels are by nature redundant in the region where the kernel size expands
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Figure 4.5: Spherical convolution. The kernel weight in spherical convolution
is tied only along each row of the equirectangular image (i.e., ϕ), and each
kernel convolves along the row to generate 1D output. Note that the kernel
size differs at different rows and layers, and it expands near the top and bottom
of the image.

dramatically.

Besides adjusting the kernel sizes, we also adjust the number of pooling

layers to match the pixel size ∆θ in Ne and Np. We define ∆θe = 180◦/He and

restrict We = 2He to ensure ∆θe = ∆ϕe. Because max-pooling introduces shift

invariance up to kw pixels in the image, which corresponds to kw×∆θ degrees

on the unit sphere, the physical meaning of max-pooling depends on the pixel

size. Since the pixel size is usually larger in Ie and max-pooling increases the

pixel size by a factor of kw, we remove the pooling layer in Ne if ∆θe ≥ ∆θp.

Fig. 4.5 illustrates how spherical convolution differs from ordinary CNN.

Note that we approximate one layer in Np by one layer in Ne, so the number

of layers and output channels in each layer is exactly the same as the source
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network. However, this does not have to be the case. For example, we could

use two or more layers to approximate each layer in Np. Although doing so

may improve accuracy, it would also introduce significant overhead, so we stick

with the one-to-one mapping.

4.2.2 Training Process

Given the goal in Eq. 4.4 and the architecture described in Sec. 4.2.1,

we would like to learn the network Ne by minimizing the L2 loss

E[(Ne(Ie)−Np(Is))
2]. (4.7)

However, the network converges slowly, possibly due to the large number of

parameters. Instead, we propose a kernel-wise pre-training process that disas-

sembles the network and initially learns each kernel independently.

To perform kernel-wise pre-training, we further require Ne to generate

the same intermediate representation as Np in all layers l:

N l
e(Ie)[x, y] ≈ N l

p(Is)[θ, ϕ] ∀l ∈ Ne. (4.8)

Given Eq. 4.8, every layer l ∈ Ne is independent of each other. In fact, every

kernel is independent and can be learned separately. We learn each kernel by

taking the “ground truth” value of the previous layer N l−1
p (Is) as input and

minimizing the L2 loss

E[(N l
e(Ie)−N l

p(Is))
2], (4.9)

except for the first layer. Note that N l
p refers to the convolution output of layer

l before applying any non-linear operation, e.g. ReLU, max-pooling, etc. It is
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important to learn the target value before applying ReLU because it provides

more information. we combine the non-linear operation with K l+1
e during

kernel-wise pre-training, and we use dilated convolution [121] to increase the

receptive field size instead of performing max-pooling on the input feature

map.

For the first convolution layer, we derive the analytic solution directly.

The projection operator P is linear in the pixels in equirectangular projection:

P(Is, n̂)[x, y] =
∑
ij

cijIe[i, j], (4.10)

for coefficients cij from, e.g., bilinear interpolation. Because convolution is a

weighted sum of input pixels

Kp ∗ Ip =
∑
xy

wxyIp[x, y], (4.11)

we can combine the weight wxy and interpolation coefficient cij as a single

convolution operator:

K1
p ∗ Is[θ, ϕ] =

∑
xy

wxy

∑
ij

cijIe[i, j] =
∑
ij

(∑
xy

wxycij

)
Ie[i, j] = K1

e ∗ Ie.

(4.12)

The output value of N1
e will be exact and requires no learning. Of course, the

same is not possible for l > 1 because of the non-linear operations between

layers. See sec. 5.2.4 for more detailed discussion.

After kernel-wise pre-training, we can further fine-tune the network

jointly across layers and kernels by minimizing the L2 loss of the final output.
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Because the pre-trained kernels cannot fully recover the intermediate repre-

sentation, fine-tuning can help to adjust the weights to account for residual

errors. We ignore the constraint introduced in Eq. 4.8 when performing fine-

tuning. Although Eq. 4.8 is necessary for kernel-wise pre-training, it restricts

the expressive power of Ne and degrades the performance if we only care about

the final output.

4.3 Experiments

To evaluate our approach, we consider both the accuracy of its convolu-

tions as well as its applicability for object detections in 360◦ data. We use the

VGG architecture3 and the Faster R-CNN [92] model as our source network

Np. We learn a network Ne to produce the topmost (conv5 3) convolution

output.

4.3.1 Dataset

We use two datasets: Pano2Vid for training, and Pano2Vid and Pascal

VOC for testing.

Pano2Vid We sample frames from the 360◦ videos in the Pano2Vid dataset [108]

for both training and testing. The dataset consists of 86 videos crawled from

YouTube using four keywords: “Hiking,” “Mountain Climbing,” “Parade,”

and “Soccer”. We sample frames at 0.05fps to obtain 1,056 frames for train-

3https://github.com/rbgirshick/py-faster-rcnn
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ing and 168 frames for testing. We use “Mountain Climbing” for testing

and others for training, so the training and testing frames are from disjoint

videos. Because the supervision is on a per pixel basis, this corresponds to

N×We×He ≈ 250M (non i.i.d.) samples. See Sec. 6.3.1 for more information

about the dataset. Note that most object categories targeted by the Faster

R-CNN detector do not appear in Pano2Vid, meaning that our experiments

test the content-independence of my approach.

Pascal VOC Because the source model was originally trained and evaluated

on Pascal VOC 2007, we “360-ify” it to evaluate the object detector applica-

tion. We test with the 4,952 images in Pascal VOC 2007 validation set, which

contain 12,032 bounding boxes. We transform them to equirectangular images

as if they originated from a 360◦ camera. In particular, each object bounding

box is backprojected to 3 different scales {0.5R, 1.0R, 1.5R} and 5 different

polar angles θ∈{36◦, 72◦, 108◦, 144◦, 180◦} on the 360◦ image sphere using the

inverse perspective projection, whereR is the resolution of the source network’s

receptive field. Regions outside the bounding box are zero-padded. Backpro-

jection allows us to evaluate the performance at different levels of distortion

in the equirectangular projection.

4.3.2 Evaluation Metrics

We generate the output widely used in the literature (conv5 3) and

evaluate it with the following metrics.
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Network output error The first metric measures the difference between

Ne(Ie) and Np(Is). We report the root-mean-square error (RMSE) over all

pixels and channels. For Pascal VOC, we measure the error over the receptive

field of the detector network.

Detector network performance The second metric measures the perfor-

mance of the detector network in Faster R-CNN using multi-class classification

accuracy. We replace the ROI-pooling in Faster R-CNN by pooling over the

bounding box in Ie. Note that the bounding box is backprojected to equirect-

angular projection and is no longer a square region.

Proposal network performance The last metric evaluates the proposal

network in Faster R-CNN using average Intersection-over-Union (IoU). For

each bounding box centered at n̂, we project the conv5 3 output to the tangent

plane n̂ using P and apply the proposal network at the center of the bounding

box on the tangent plane. Given the predicted proposals, we compute the IoUs

between foreground proposals and the bounding box and take the maximum.

The IoU is set to 0 if there is no foreground proposal.

4.3.3 Baselines

We compare our method with the following baselines.

• Exact — Compute the true target value Np(Is)[θ, ϕ] for every pixel. This

serves as an upper bound in performance and does not consider the compu-
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tational cost.

• Direct — Apply Np on Ie directly. We replace max-pooling with dilated

convolution to produce a full resolution output. This is Strategy I in Fig. 4.1

and is used in 360◦ video analysis [51,72].

• Interp — Compute Np(Is)[θ, ϕ] every S-pixels and interpolate the values

for the others. We set S such that the computational cost is roughly the

same as our SphConv. This is a more efficient variant of Strategy II in

Fig. 4.1.

• Perspect — Project Is onto a cube map [70] and then apply Np on each

face of the cube, which is a perspective image with 90◦ FOV. The result is

backprojected to Ie to obtain the feature on Ie. We use W=960 for the cube

map resolution so ∆θ is roughly the same as Ip. This is a second variant of

Strategy II in Fig. 4.1 used in PanoContext [125].

We also evaluate three variants of the proposed SphConv:

• OptSphConv — To compute the output for each layer l, OptSphConv

computes the exact output for layer l−1 using Np(Is) then applies spherical

convolution for layer l. OptSphConv serves as an upper bound for our

approach, where it avoids accumulating any error across layers.

• SphConv-Pre — Uses the weights from kernel-wise pre-training directly

without fine-tuning.
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• SphConv — The full spherical convolution with joint fine-tuning of all

layers.

4.3.4 Implementation Details

We set the resolution of Ie to 640×320. For the projection operator

P, we map α=65.5◦ to W=640 pixels following SUN360 [119]. The pixel size

is therefore ∆θe=360◦/640 for Ie and ∆θp=65.5◦/640 for Ip. Accordingly, we

remove the first three max-pooling layers so Ne has only one max-pooling layer

following conv4 3. The kernel size upper bound Uk=7 × 7 following the max

kernel size in VGG.

We train the network using ADAM [66]. For pre-training, we use the

batch size of 256 and initialize the learning rate to 0.01. For layers without

batch normalization, we train the kernel for 16,000 iterations and decrease the

learning rate by 10 every 4,000 iterations. For layers with batch normaliza-

tion, we train for 4,000 iterations and decrease the learning rate every 1,000

iterations. For fine-tuning, we first fine-tune the network on conv3 3 for 12,000

iterations with batch size of 1. The learning rate is set to 1e-5 and is divided

by 10 after 6,000 iterations. We then fine-tune the network on conv5 3 for

2,048 iterations. The learning rate is initialized to 1e-4 and is divided by 10

after 1,024 iterations. We do not insert batch normalization in conv1 2 to

conv3 3 because we empirically find that it increases the training error.
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Figure 4.6: Network output error on Pano2Vid; lower is better. Note the error
of Exact is 0 by definition. SphConv’s convolutions are much closer to the
exact solution than the baselines’.

4.3.5 Results

Convolution output accuracy Fig. 4.6 shows the output error of layers

conv3 3 and conv5 3 on the Pano2Vid [108] dataset. The error is normalized by

that of the mean predictor. We evaluate the error at 5 polar angles θ uniformly

sampled from the northern hemisphere, since error is roughly symmetric with

the equator.

First we discuss the three variants of our method. OptSphConv per-

forms the best in all layers and θ, validating our main idea of spherical convo-

lution. It performs particularly well in the lower layers, because the receptive

field is larger in higher layers and the distortion becomes more significant.

Overall, SphConv-Pre performs the second best, but as to be expected, the

gap with OptConv becomes larger in higher layers because of error propaga-

tion. SphConv outperforms SphConv-Pre in conv5 3 at the cost of larger

error in lower layers (as seen here for conv3 3). It also has larger error at θ=18◦
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Figure 4.7: Computational cost vs. accuracy on Pascal VOC. Our approach
yields accuracy closest to the exact solution while requiring orders of magni-
tude less computation time (left plot). SphConv’s cost is similar to the other
approximations tested (right plot). Plot titles indicate the y-labels, and error
is measured by root-mean-square-error (RMSE).

for two possible reasons. First, the learning curve indicates that the network

learns more slowly near the pole, possibly because the receptive field is larger

and the pixels degenerate. Second, we optimize the joint L2 loss, which may

trade the error near the pole with that at the center.

Comparing to the baselines, we see that SphConv achieves lowest

errors. Direct performs the worst among all methods, underscoring that

convolutions on the flattened sphere—though fast—are inadequate. Interp

performs better than Direct, and the error decreases in higher layers. This

is because the receptive field is larger in the higher layers, so the S-pixel

shift in Ie causes relatively smaller changes in the receptive field and therefore

the network output. Perspective performs similarly in different layers and

outperforms Interp in lower layers. The error of Perspective is particularly

large at θ=54◦, which is close to the boundary of the perspective image and
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has larger perspective distortion.

Computational cost Fig. 4.7 shows the accuracy vs. cost tradeoff. Com-

putational cost is measured by the number of Multiply-Accumulate (MAC)

operations. The leftmost plot shows cost on a log scale. Here we see that

Exact—whose outputs we wish to replicate—is about 400 times slower than

SphConv, and SphConv approaches Exact’s detector accuracy much bet-

ter than all baselines. The second plot shows that SphConv is about 34%

faster than Interp (while performing better in all metrics). Perspective

is the fastest among all methods and is 60% faster than SphConv, followed

by Direct which is 23% faster than SphConv. However, both baselines are

noticeably inferior in accuracy compared to SphConv.

SphConv kernel visualization To visualize what SphConv has learned,

we learn the first layer of the AlexNet [69] model provided by the Caffe pack-

age [58] and examine the resulting kernels. Fig. 4.8 shows the original kernel

Kp and the corresponding kernels Ke at different polar angles θ. Ke is usually

the re-scaled version of Kp, but the weights are often amplified because multi-

ple pixels in Kp fall to the same pixel in Ke like the second example. We also

observe situations where the high frequency signal in the kernel is reduced, like

the third example, possibly because the kernel is smaller. Note that we learn

the first convolution layer for visualization purposes only, since l = 1 (only)

has an analytic solution (cf. Sec 4.2.2).
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Figure 4.8: AlexNet conv1 kernels (left squares) and their corresponding four
SphConv-Pre kernels at θ ∈ {9◦, 18◦, 36◦, 72◦} (left to right).

Object detection accuracy Having established SphConv provides ac-

curate and efficient Ne convolutions, we now examine how important that
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Figure 4.9: Faster R-CNN object detection accuracy on a 360◦ version of
Pascal VOC across polar angles θ. Best viewed in color.

accuracy is to object detection on 360◦ inputs. Fig. 4.9 shows the result of

the Faster R-CNN detector network on Pascal VOC in 360◦ format. Opt-

SphConv performs almost as well as Exact. The performance degrades in

SphConv-Pre because of error accumulation, but it still significantly outper-

forms Direct and is better than Interp and Perspective in most regions.

Although joint training (SphConv) improves the output error near the equa-

tor, the error is larger near the pole which degrades the detector performance.

Note that the receptive field of the detector network spans multiple rows, so

the error is the weighted sum of the error at different rows. The result, together

with Fig. 4.6, suggest that SphConv reduces the conv5 3 error in parts of the

receptive field but increases it at the other parts. The detector network needs

accurate conv5 3 features throughout the receptive field in order to generate

good predictions.

Direct again performs the worst. In particular, the performance drops

significantly at θ=18◦, showing that it is sensitive to the distortion. In con-

trast, Interp performs better near the pole because the samples are denser
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Figure 4.10: Faster R-CNN object detection average IoU on a 360◦ version of
Pascal VOC across polar angles θ. R refers to the receptive field of Np.

on the unit sphere. In fact, Interp should converge to Exact at the pole.

Perspective outperforms Interp near the equator but is worse in other

regions. Note that θ∈{18◦, 36◦} falls on the top face, and θ=54◦ is near the

border of the face. The result suggests that Perspective is still sensitive to

the polar angle, and it performs the best when the object is near the center of

the faces where the perspective distortion is small.

Object proposal accuracy Fig. 4.10 shows the performance of the object

proposal network for two scales. Interestingly, the result is different from the

detector network. OptSphConv still performs almost the same as Exact,

and SphConv-Pre performs better than baselines. However, Direct now

outperforms other baselines, suggesting that the proposal network is not as

sensitive as the detector network to the distortion introduced by equirectan-

gular projection. The performance of the methods is similar when the object is

larger (right plot), even though the output error is significantly different. The

only exception is Perspective, which performs poorly for θ∈{54◦, 72◦, 90◦}
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regardless of the object scale. It again suggests that objectness is sensitive to

the perspective image being sampled.

Fig. 4.11 shows examples of objects successfully detected by our ap-

proach in spite of severe distortions. Also see Fig. 4.12 for failure examples.

4.4 Conclusion

In this chapter, I proposed to learn spherical convolutions for 360◦

images. Because the solution entails a new form of distillation across cam-

era projection models, it can transfer existing CNN models trained on large

“flat” images to 360◦ images without any annotation effort. Compared to

current practices for applying CNN models on 360◦ images/video, spherical

convolution benefits efficiency by avoiding performing multiple perspective

projections, and it benefits accuracy by adapting kernels to the distortions

in equirectangular projection. Results on two datasets demonstrate how it

successfully transfers state-of-the-art vision models from the realm of limited

FOV 2D imagery into the realm of omnidirectional data.

One practical limitation of SphConv is the model size. Because it un-

ties the kernel weights along θ, the model size grows linearly with the equirect-

angular image height. The model size can easily grow to tens of gigabytes as

the image resolution increases. A more compact model would be necessary in

order to incorporate SphConv into standard framework. In the next chapter,

I will introduce an approach that can reduce the spherical convolution network

size and make the model more tractable on current hardware.
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Figure 4.11: Object detection examples on 360◦ Pascal VOC test images.
Text gives predicted label, multi-class probability, and IoU, resp. SphConv
successfully detects objects undergoing severe distortion, some of which are
barely recognizable even for a human viewer.
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Figure 4.12: Failure cases for SphConv.
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Chapter 5

Kernel Transformer Networks for Compact

Spherical Convolution

In the previous chapter, I introduced the spherical convolution network

for visual recognition on 360◦ images. While SphConv is both accurate and

computationally efficient, it suffers from significant model bloat. For example,

the size of a VGG network will grow from 56MB to 29GB in SphConv when

the model takes a 640×320 input resolution. The model size is even larger

than the memory of the latest GPU in 2019, which makes the model hard to

deploy in practice1.

Since our initial SphConv work, several other methods have been pro-

posed for learning a new CNN on 360◦ images. Broadly speaking, they pursue

one of two approaches. The first approach adapts the kernels on the sphere,

resampling the kernels or projecting their tangent plane features [24, 126].

While allowing kernel sharing and hence smaller models, this approach de-

grades accuracy—especially for deeper networks—due to an implicit interpo-

lation assumption as I will explain below. The second approach defines convo-

1The work in this chapter was originally published in: “Kernel Transformer Networks
for Compact Spherical Convolution,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition 2019 [107]. The authors are Yu-Chuan Su and Kristen
Grauman.

84



360◦ image

fΩ1

fΩ2
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(C) Proposed KTN

(A) Apply directly

(B) Apply on tangent planes

Figure 5.1: The goal is to transfer CNNs trained on planar images to 360◦

images. As introduced in Chapter 4, common approaches either (A) apply
CNNs directly on the equirectangular projection of a 360◦ image or (B) project
the content to tangent planes and apply the models on the tangent planes. In
contrast, kernel transformer network (KTN) adapts the kernels in CNNs to
account for the distortion in 360◦ images.

lution in the spectral domain [23, 29], which has significant memory overhead

and thus far limited applicability to real-world data. Moreover, all of the above

require retraining to handle a new recognition task.

In light of these shortcomings, I propose the kernel transformer net-

work (KTN). KTN is built upon SphConv introduced in the previous chap-

ter. However, instead of learning the kernels in the equirectangular projection

pixel space directly, KTN learns a function that takes a kernel in the source

CNN as input and generates the corresponding spherical convolution kernels
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Figure 5.2: KTN vs. SphConv. The proposed KTN improves upon the Sph-
Conv introduced in Chapter 4 by learning a function f that generates the
spherical convolution kernels from the source kernel. The generator formula-
tion leads to a transferable and more compact model compared with SphConv.

as output. See Fig. 5.1 (C) and Fig. 5.2. The function accounts for the distor-

tion in 360◦ images, returning different transformations depending on both the

polar angle θ and the source kernel. Following SphConv, the transformation

function is trained to reproduce the outputs of the source CNN on the per-

spective projection for each tangent plane on an arbitrary 360◦ image. Hence,

KTN learns to behave similarly to the source CNN while avoiding repeated

projection of the image.

Key highlights of the proposed KTN are its transferability and com-

pactness—both of which owe to the function-based design. Once trained for a
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(Spherical Object Detector)

Figure 5.3: KTN is transferable across different source models. The same KTN
can take different source CNNs as input in order to perform different visual
recognition task, given that the source CNNs have the same architecture.

base architecture, the same KTN can transfer multiple source CNNs to 360◦

images. For example, having trained a KTN for VGG [101] on ImageNet clas-

sification, we can transfer the same KTN to run a VGG-based Pascal VOC

object detector on 360◦ panoramas. See Fig. 5.3. This is possible because

the KTN takes the source CNN as input rather than embed the CNN kernels

into its own parameters (unlike [23, 24, 29, 104, 126]). Furthermore, since the

KTN factorizes source kernels from transformations, it is implementable with

a lightweight network (e.g., increasing the footprint of a VGG network by only

25%). Compared with SphConv, KTN avoids the need of learning and stor-

ing the spherical convolution kernels explicitly and reduces the model size by

orders of magnitude. The smaller model size enables implementing spherical

convolution on GPU and makes the method more usable.

5.1 Kernel Transformer Network Definition

In this section, I introduce the concept of a kernel transformer network

for transferring convolutions to 360◦ images. KTN can be considered as a
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generalization of ordinary convolutions in CNNs. In the convolution layers of

vanilla CNNs, the same kernel is applied to the entire input feature map to

generate the output feature map. The assumption underlying the convolution

operation is that the feature patterns, i.e., the kernels, are translation invariant

and should remain the same over the entire feature map. However, as discussed

in the previous chapter, this assumption does not hold in 360◦ images. A 360◦

image is defined by the visual content projected on the sphere centered at the

camera’s optical center. To represent the image in digital format, the sphere

has to be unwrapped into a 2D pixel array, e.g., with equirectangular projection

or cubemaps. Because all sphere-to-plane projections introduce distortion, the

feature patterns are not translation invariant in the pixel space, and ordinary

CNNs trained for perspective images do not perform well on 360◦ images.

To overcome this challenge, we propose the kernel transformer network,

which can generate kernels that account for the distortion. Assume an input

feature map I ∈ RH×W×C and a source kernel K ∈ Rk×k×C defined in undis-

torted images (i.e., perspective projection). Instead of applying the source

kernel directly

F [x, y] = Σi,jK[i, j] ∗ I[x− i, y − j], (5.1)

we propose to learn the KTN (f) that generates different kernels for different

distortions:

KΩ = f(K,Ω) (5.2)

F [x, y] = Σi,jKΩ[i, j] ∗ I[x− i, y − j] (5.3)
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where the distortion is parameterized by Ω. Because the distortion in 360◦

images is location dependent, we can define Ω as a function on the sphere

Ω = g(θ, ϕ), (5.4)

where θ and ϕ are the polar and azimuthal angle in spherical coordinates,

respectively. Given the KTNs and the new definition of convolution, the pro-

posed approach permits applying an ordinary CNN to 360◦ images by replacing

the convolution operation in Eq. 5.1 with Eq. 5.3.

KTNs make it possible to take a CNN trained for some target task

(recognition, detection, segmentation, etc.) on ordinary perspective images

and apply it directly to 360◦ panoramas. Critically, KTNs do so without using

any annotated 360◦ images. Furthermore, as we will see below, once trained for

a given architecture (e.g., VGG), the same KTN is applicable for a new task

using that architecture without retraining the KTN. For example, we could

train the KTN according to a VGG network trained for ImageNet classification,

then apply the same KTN to transfer a VGG network trained for Pascal VOC

object detection; with the same KTN, both tasks can be translated to 360◦

images. Whereas this transfer is not possible with SphConv (Chapter 4), it

is possible in KTN because KTN factorizes the spherical convolution kernels

into the source kernel and the transformations.
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5.2 Approach for Learning Kernel Transformer Net-
work

This section describes the implementation of KTN for spherical convo-

lution. I first describe the architecture and objective function of KTN. Next,

I will further discuss the difference between KTN and existing methods for

learning CNNs on 360◦ data.

5.2.1 KTN Architecture

Following SphConv, KTN considers 360◦ images that are unwrapped

into 2D rectangular images using equirectangular projection. The main benefit

of equirectangular projection for KTNs is that the distortion depends only on

the polar angle. Because the polar angle has a one-to-one correspondence

with the image row (y=θH/π) in the equirectangular projection pixel space,

the distortion can be parameterized easily using Ω = g(θ, ϕ) = y. Furthermore,

we can generate one kernel and apply it to the entire row instead of generating

one kernel for each location, which leads to more efficient computation.

A KTN instance is based on a given CNN architecture. There are two

basic requirements for the KTN module. First, it has to be lightweight in

terms of both model size and computational cost. A large KTN module would

incur a significant overhead in both memory and computation, which would

limit the resolution of input 360◦ images during both training and test time.

Because 360◦ images by nature require a higher resolution representation in

order to capture the same level of detail compared with ordinary images, the
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accuracy of the model would degrade significantly if we were forced to use

lower resolution inputs.

Second, KTNs need to generate output kernels with variable size, be-

cause the appropriate kernel shape may vary in a single 360◦ image. A common

way to generalize convolution kernels on the 2D plane to 360◦ images is to de-

fine the kernels on the tangent plane of the sphere. As a result, the receptive

field of the kernel on the 360◦ image is the back projection of the receptive field

on the tangent plane, which varies at different polar angles [24,104,126]. While

one could address this naively by always generating the kernels in the largest

possible size, doing so would incur significant overhead in both computation

and memory.

We address the first requirement (size and cost) by employing depthwise

separable convolutions [19, 50] within the KTN. Instead of learning 3D (i.e.,

height×width×channels) kernels, KTN alternates between pointwise convolu-

tion that captures cross-channel correlation and depthwise convolution that

captures spatial correlation. Using the same 3x3 depthwise convolutions as in

MobileNet [50], the computation cost is about 8 to 9 times less than standard

convolution. Furthermore, the model size overhead for KTN is roughly 1/k2 of

the source kernels, where most of the parameters are in the 1x1 convolution.

The size overhead turns out to be necessary, because cross channel correlation

is captured only by the 1x1 convolution in KTN, and removing it reduces the

final spherical convolution accuracy significantly.

To address the second requirement (variable-sized kernels), we learn a
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Figure 5.4: KTN consists of row dependent channel-wise projections that resize
the kernel to the target size and depth separable convolution blocks. It takes a
source kernel K and θ as input and generates an output kernel KΩ. KΩ is then
applied to the 360◦ image in its equirectangular projection at row y=θH/π.
The transformation accounts for the distortion in equirectangular projection,
while maintaining cross-channel interactions.

row dependent depthwise projection to resize the source kernel. The projection

consists of h projection matrices Pi, for i ∈ [1, h], where h is the number of

rows in the 360◦ image. Let ri = hi × wi be the target kernel receptive field

at row i. The projection matrix has the size Pi ∈ Rri×k2 , which projects the

source kernel into the target size. Similar to the depthwise convolution, KTN

performs channel-wise projection to reduce the model size.
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The complete architecture for KTN is in Fig. 5.4. It adopts a Residual

Network [46]-like architecture. For both the residual and shortcut branches,

the model first applies the row dependent projection to resize the kernel to the

target size. The residual branch then applies depthwise separable convolution

twice. The depthwise separable convolution block consists of ReLU-pointwise

conv-ReLU-depthwise conv. This design removes the batch normalization used

in MobileNet to reduce the model size and memory consumption. The two

branches are added together to generate the output kernel, which is then

applied to a 360◦ feature map as in Eq. 5.3.

To compute the target kernel size at a given polar angle, we first back

project the receptive field of the source kernel to equirectangular projection.

The minimum bounding box centered at the polar angle that can cover the

receptive field on equirectangular projection is then selected as the target

kernel shape. We restrict the kernel height and width to be an odd number to

ensure that the kernel is defined on the equirectangular pixel space. Because

the size of the back projected receptive field may grow rapidly and span the

entire image, we restrict the actual kernel width and height to be less then 65

pixels and dilate the kernel to increase the effective receptive field if necessary.

Note that while the KTN can be applied to different kernels, the structure of

a KTN depends on Pi, which is determined by the receptive field of the source

kernel. Therefore, we need one KTN for each layer of a source CNN.
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5.2.2 KTN Objective and Training Process

Having introduced the KTN module and how to apply it for CNNs on

360◦ images, I now describe the KTN objective function and training process.

The goal of the KTN is to adapt the source kernel to the 360◦ domain. There-

fore, we train the model to reproduce the outputs of the source kernels. Let

F l ∈ RH×W×Cl
and F l+1 ∈ RH×W×Cl+1

be the feature maps generated by the

l-th and (l+1)-th layer of a source CNN respectively. The goal is to minimize

the difference between the feature map generated by the source kernels K l and

that generated by the KTN module:

L = ∥F l+1 − f l(K l,Ω) ∗ F l∥2 (5.5)

for any 360◦ image. Note that during training the feature maps F l are not

generated by applying the source CNN directly on the equirectangular projec-

tion of the 360◦ images. Instead, for each point (x, y) in the 360◦ image, we

project the image content to the tangent plane of the sphere at

(θ, ϕ) = (
π × y

H
,
2π × x

W
) (5.6)

and apply the source CNN on the tangent plane. This ensures that the target

training values are accurately computed on undistorted image content. F l[x, y]

is defined as the l-th layer outputs generated by the source CNN at the point of

tangency. The objective function is similar to that of SphConv (Chapter 4),

but KTN optimizes the model over the entire feature map instead of on a

single polar angle in order to factor the kernel itself out of the KTN weights.
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The objective function depends only on the source pretrained CNN and

does not require any annotated data for training. In fact, it does not require

image data specific to the target task, because the loss is defined over any

360◦ images. The goal is to fully reproduce the behavior of the source kernel.

Therefore, even if the training images do not contain the same objects, scenes,

etc. as are seen in the target task, the KTN should still minimize the loss

in Eq. 5.5. Although KTN takes only the source kernels and θ as input, the

exact transformation f may depend on all the feature maps F l, F l−1, . . . , F 1

to resolve the error introduced by non-linearities. KTN learns the important

components of those transformations from data. KTN’s transferability across

source kernels is analogous to the generalizability of visual features across

natural images. In general, the more visual diversity in the unlabeled training

data, the more accurately we can expect the KTN to be trained. While one

could replace all convolution layers in a CNN with KTNs and train the entire

model end-to-end using annotated 360◦ data, Eq. 5.5 is a stronger condition

while also enjoying the advantage of bypassing any annotated training data.

5.2.3 Spherical Faster R-CNN

Using KTNs, I next introduce how to implement a spherical Faster R-

CNN model [92] based on spherical convolution. Faster R-CNN is a two-stage

object detection model that has been widely adopted in various applications.

It first uses a backbone CNN (e.g., VGG, ResNet) to extract a feature map

from the input image. It then solves the object detection problem on top of
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Figure 5.5: Spherical non-maximum suppression. We approximate rectangular
proposals using cones on the sphere and then cast the cone overlap problem
into a sector overlap problem, which can be computed more efficiently than
computing the exact overlap between proposals.

the feature map with two sequential sub-tasks, i.e., object proposal generation

and object classification. A region proposal network (RPN) is first applied

on the feature map to generate candidate bounding boxes. Because the RPN

may predict multiple proposals for the same object, non-maximum suppres-

sion (NMS) is then applied to remove redundant proposals. An object detector

network then uses a region-of-interest (ROI) pooling to generate the features

for each object proposal from the same input feature map as the region pro-

posal network. It then predicts the object category and refines the bounding

box for each candidate proposal.

In our Spherical Faster R-CNN implementation, we replace the back-

bone CNN with our spherical convolution network using KTN. While KTN

transfers kernels and therefore the features from planar images to spherical

images, it does not transfer the proposals and ROI pooling, which are defined

on 2D planes. Instead of redefining the object proposals and ROI pooling op-

eration, we project the feature map onto tangent planes before applying the
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region proposal and detector networks on the projected feature maps, which

allows us to reuse existing models directly without any change. This is par-

ticularly important when we want to detect objects in different scales, where

we can simply change the FOV of the projection operation while leaving the

rest of the model the same. We use nearest neighbor interpolation for the

projection operation and precompute the indices in order to compute the pro-

jected features efficiently. While feature projection introduces error as we will

discuss in Sec. 5.2.4, the error is tolerable because we perform feature projec-

tion only once—as opposed to accumulating projection errors across layers of

a convolutional network.

While the RPN generates a separate set of proposals for each tangent

plane, the proposals defined on different tangent planes may overlap when

back projected onto the sphere. Therefore, instead of applying the detection

on each tangent plane independently, we perform NMS over the proposals from

all tangent planes before applying the detector network. However, because the

bounding boxes on different tangent planes are not well aligned on a single 2D

plane, computing the exact overlap is inefficient and computationally infea-

sible. To improve the computational efficiency, we propose a spherical NMS

that uses an approximate overlap between the proposals in NMS. In practice,

we approximate each rectangular proposal using a cone on the sphere. The

center of the cone co-located with the center of the bounding box and the

radius of the cone is

FOVc =
FOVx + FOVy

2
, (5.7)
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Figure 5.6: Comparison between ordinary Faster R-CNN and spherical Faster
R-CNN. The spherical Faster R-CNNmodel 1) replaces the ordinary CNN with
a KTN spherical convolution network for feature extraction, 2) projects fea-
tures to tangent planes before applying the region proposal network (RPN) and
object detector network, and 3) replaces non-maximum suppression (NMS)
with spherical NMS introduced in Fig. 5.5.

where FOVx and FOVy correspond to the horizontal and vertical FOV of the

proposal respectively. To compute the overlap between two cones, we cast the

cone to one dimension and reduce the problem to the overlap between two

circular sectors. See Fig. 5.5. This approximation allows us to compute the

overlap and therefore NMS more efficiently.

To recap, we translate the Faster R-CNN object detector to spherical

data using KTN as follows: first, we replace the backbone CNN with a spher-
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ical convolutional network to extract spherical feature map. We then project

the features to tangent planes and apply the RPN on each tangent plane. Re-

dundant proposals from all tangent planes are removed using a spherical NMS

process, before the proposals are fed into the detector network to generate the

final object prediction. See Fig. 5.6 for the full pipeline.

5.2.4 Discussion

Compared to existing methods for convolution for 360◦ images, the

main benefits of KTN are its compactness and transferability. The information

required to solve the target task is encoded in the source kernel, which is fed

into the KTN as an input rather than part of the model. As a result, the same

KTN can be applied to another CNN having the same base architecture but

trained for a different target task. In other words, without additional training,

the same KTN model can be used to solve multiple vision tasks on 360◦ images

by replacing the source kernels, provided that the source CNNs for each task

have the same base architecture.

Compared with KTN, SphConv learns the kernels adapted to the dis-

tortion in equirectangular projection. Instead of learning the transformation

function f in Eq. 5.2, SphConv learns KΩ directly, and hence must learn

one KΩ for every different row of the equirectangular image. While SphConv

should be more accurate than KTN theoretically (i.e., removing any limita-

tions on memory and training time and data) experimental results show that

the two methods perform similarly in terms of accuracy. Furthermore, the
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Figure 5.7: Beyond the first CNN layer, the feature interpolation assumption
in SphereNet [24] yields only approximated results. See text for details.

number of parameters in SphConv is hundreds of times larger than KTN,

which makes SphConv much more difficult to train and deploy. The dif-

ference in model size becomes even more significant when there are multiple

models to be evaluated: the same KTN can apply to multiple source CNNs and

thus incurs only constant overhead, whereas SphConv must fully retrain and

store a new model for each source CNN. For example, if we want to apply five

different VGG-based CNNs to 360◦ images, SphConv will take 29×5=145GB

of space, while KTN takes only 56×5+14=294MB (cf. Sec. 5.3.4). In addition,

since SphConv trains KΩ for a single source kernel K, the model does not

generalize to different source CNNs.

SphereNet [24] formulates the transformation function f using the sphere-

to-tangent-plane image projection. While the projection transformation leads

to an analytical solution for f , it implicitly assumes that CNN feature maps

can be interpolated like pixels. This assumption is only true for the first layer

in a network because of non-linear activation functions used in modern CNNs
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between convolution layers. Consider a two layer 1D convolution with a kernel

of size 1, as sketched in Fig. 5.7. If we interpolate the pixel first and apply the

kernels, the output of at location x is

c(x) = w2 × σ(w1(ax1 + bx2)). (5.8)

However, if we apply the kernels and then interpolate the features, the result

is

c(x) = aw2 × σ(w1x1) + bw2 × σ(w1x2). (5.9)

These two values are not equal because σ is non-linear, and the error will

propagate as the network becomes deeper. The interpolated feature can at

most be an approximation for the exact feature. Experimental results show

that a projection transformation for f leads to sub-optimal performance.

Finally, other methods attempt to reduce distortion by unwrapping a

single 360◦ image into multiple images using perspective projection locally [11,

17], e.g., with cubemap projection. It is non-trivial to define convolution across

multiple image planes, where two cube faces meet. Prior work addresses this

problem by “cube-padding” the feature maps using output from adjacent im-

age planes [11,17], but experimental results indicate that the resultant features

are not accurate enough and degrade the accuracy. The reason is that the same

object may have different appearance on different tangent planes, especially

when the field-of-view is large and introduces significant perspective distortion.

Alternatively, one could sample the tangent planes densely and apply convo-

lution on each tangent plane independently, but doing so incurs unrealistic
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Table 5.1: Comparison of different approaches. Equirectangular and
Cubemap refer to applying the given CNN directly to the equirectangular
and cubemap projection, respectively. Supervised training means that the
method requires annotated 360 images. The model size is the size for a single
layer, where c, k,H refer to the number of channels, kernel size, and input
resolution (bandwidth) respectively. Note that c ∼ H ≫ k for real images and
source CNNs, and we keep only the leading term for each method.

Translation Rotation Supervised Model Transferable
Invariance Invariance Training Size Across Models

Equirectangular No No No c2k2 No
Cubemap No No No c2k2 No
S2CNN [23] Yes Yes Yes c2H No
Spherical CNN [29] Yes Yes Yes c2H No
Spherical U-Net [126] Yes No Yes c2k2 No
SphereNet [24] Yes No Yes c2k2 No

SphConv Yes No No c2k2H No
KTN Yes No No c2k2 + c2 Yes

computational overhead [105].

Table 5.1 summarizes the tradeoffs between existing spherical convolu-

tion models. In short, KTN is distinct from all others in its ability to transfer

to new tasks without any labeled data. Furthermore, KTN has the favorable

properties of a highly compact model and the ability to preserve orientation-

specific features (typically desirable for recognition and other high-level tasks).

5.3 Experiments

We evaluate KTN on multiple datasets and multiple source models.

The goal is to 1) validate the accuracy of KTN as compared to other methods

for learning CNNs on 360◦ images, 2) demonstrate KTN’s ability to generalize

to novel source models, and 3) examine KTN’s memory and computation
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overhead compared to existing techniques.

5.3.1 Dataset

The experiments make use of both unannotated 360◦ videos and 360◦

images with annotation.

Spherical MNIST is constructed from the MNIST dataset by back pro-

jecting the digits into equirectangular projection with 160×80 resolution. The

digit labels are used to train the source CNN (recognition model), but they

are not used to train the KTN. Classification accuracy on the 360◦-ified test

set is used as the evaluation metric.

Pano2Vid is a real world 360◦ video dataset [108]. We sample frames from

non-overlapping videos for training and testing, and the frames are resized

to 640×320 resolution. The models are trained to reproduce the convolution

outputs of the source model, so no labels are required for training. The root-

mean-square error (RMSE) of the final convolution outputs is used as the

evaluation metric.

Pascal VOC is a perspective image dataset with object annotations. We

backproject the object bounding boxes to equirectangular projection with

640×320 resolution. Following SphConv (Chapter 4), we use the accuracy

of the detector network in Faster R-CNN on the validation set as the evalua-

tion metric instead of evaluating the full spherical Faster R-CNN model. This
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dataset is used for evaluation only. Note that the settings for Pano2Vid and

Pascal VOC are the same as that in Chapter 4. Please refer to Sec. 4.3 for

details.

5.3.2 Source Models

For Spherical MNIST, we train the source CNN on the MNIST train-

ing set. The model consists of three convolution layers followed by one fully

connected layer. Each convolution layer consists of 5x5Conv-MaxPool-ReLU,

and the number of kernels is 32, 64, and 128, respectively. For Pano2Vid and

Pascal VOC, we take off-the-shelf Faster R-CNN [92] models with VGG ar-

chitecture [101] as the source model. The Faster R-CNN is trained on Pascal

VOC if not mentioned specifically. Source models are not fine-tuned on 360◦

data in any form.

5.3.3 Baselines

We compare to the following existing methods:

• Equirectangular—Apply ordinary CNNs on the 360◦ image in its equirect-

angular projection.

• Cubemap—Apply ordinary CNNs on the 360◦ image in its cubemap projec-

tion, with cube padding [17]. For the Pano2Vid and Pascal VOC datasets,

the conv5 3 feature map is re-projected to equirectangular projection as the

final output.
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• S2CNN [23]—We use the S2Convolution and SO3Convolution in the au-

thors’ implementation2 for convolution. S2Convolution is applied in the

first convolution layer, and SO3Convolution is used for the other layers.

The default near identity grid is used for both S2 and SO3 convolution.

Furthermore, we reduce the feature map resolution by reducing the output

bandwidth instead of using max-pooling following the authors’ implemen-

tation. The input resolution is 80×80 for Spherical MNIST and 64×64 for

Pano2Vid and Pascal VOC. For Spherical MNIST, we use SO(3) integration

instead of max-pooling to reduce the final feature map. For Pano2Vid and

Pascal VOC, because the output of SO3Convolution is a 3D feature map,

we add a 1x1 convolution layer on top of the conv5 3 output to generate a

2D feature map. The feature map is then resized to 640×320 as the final

output. We reduce the output bandwidth in conv2 2 and conv3 3 and dis-

tribute the model to four NVIDIA V100 GPUs using model parallelism due

to the GPU memory limit.

• Spherical CNN [29]—We use the sphconv module in the authors’ imple-

mentation3 for convolution. Similar to S2CNN , we replace max-pooling

with spectral pooling. Furthermore, we apply batch normalization in each

convolution layer following the example code. The input resolution is 80×80

for all datasets. For the Pano2Vid and Pascal VOC dataset, we reduce the

output bandwidth in conv4 1 and conv5 1 due to the memory limit. The

2https://github.com/jonas-koehler/s2cnn
3https://github.com/daniilidis-group/spherical-cnn
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conv5 3 feature map is resized to 640×320 as the final output.

• Spherical U-Net [126]—We use the SphericalConv module in Spherical

U-Net4 for convolution. We apply batch normalization and set the kernel

size to 8×4 following the authors’ example. For the Pano2Vid and Pascal

VOC dataset, the input is resized to 160×80 due to memory limit, and the

conv5 3 feature map is resized to 640×320 as the final output. The model

is distributed to four NVIDIA V100 GPUs using model parallelism.

• SphereNet [24]—We implement the SphereNet model using row depen-

dent channel-wise projection. The authors’ code and data were unavailable

at the time of this work. Because feature projection is the weighted sum of

the features, the projection weights can be combined with the kernel weights

as a single kernel. We derive the weights of the channel-wise projection us-

ing the feature projection operation and train the source kernels. For the

Pano2Vid dataset, we train each layer independently using the same objec-

tive function as KTN because the entire model cannot fit in GPU memory.

• Projected—Assuming that the kernel transformation f can be modeled

using the tangent plane-to-sphere projection, we derive the analytic solution

for the kernels Kθ using bilinear interpolation.

• SphConv—Because the model is too large to fit into GPU memory even

for evaluation, it is run on CPUs.5

4https://github.com/xuyanyu-shh/Saliency-detection-in-360-video
5For the other baselines, testing is still possible with GPUs.
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Note that the aspect ratio for the inputs is 1:1 for S2CNN and Spherical

CNN. This is the requirement of the methods, so we reduce the resolution

along the azimuthal angle. The input aspect ratio for all other methods is 2:1

following the common format of 360◦ images. The network architecture for

Equirectangular and Cubemap is the same as the source model. For all

methods, the number of layers and kernels are the same as the source model.

Note that the resolution reductions specified above were necessary to

even run those baseline models on the non-MNIST datasets, even with state-

of-the-art GPUs. All experiments were run on NVIDIA V100 GPU with 16GB

memory—the largest in any generally available GPU at the time of publication.

Therefore, the restriction is truly imposed by the latest hardware technology.

Compatible with these limits, the resolution in the authors’ own reported

results is restricted to 60 × 60 [23], 64 × 64 [29], or 150 × 300 [126]. On the

Spherical MNIST dataset, all methods use the exact same image resolution.

The fact that KTN scales to higher resolutions is precisely one of its technical

advantages, which we demonstrate on the other datasets.

For Spherical MNIST, the baselines are trained to predict the digit

projected to the sphere except SphConv. SphConv and KTN are trained to

reproduce the conv3 outputs of the source model. For Pano2Vid, all methods

are trained to reproduce the conv5 3 outputs.
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Table 5.2: Model accuracy.

MNIST Pano2Vid Pascal VOC
(Acc.↑) (RMSE ↓) (Acc.↑)

Equirectangular 95.24 3.44 41.63
Cubemap 68.53 3.57 49.29

S2CNN [23] 95.79 2.37 4.32
Spherical CNN [29] 97.48 2.36 6.06
Spherical U-Net [126] 98.43 2.54 24.98
SphereNet [24] 87.20 2.46 46.68
Projected 10.70 4.24 6.15

SphConv 98.72 1.50 63.54
KTN 97.94 1.53 69.48

5.3.4 Results

Model Accuracy Table 5.2 summarizes the methods’ CNN accuracy on

all three 360◦ datasets. SphConv performs the best on Spherical MNIST,

and the performance of KTN is on par with SphConv. The result verifies

that KTN can transfer the source kernels to the entire sphere by learning to

reproduce the feature maps, and it can match the accuracy of existing models

trained with annotated 360◦ images.

KTN and SphConv perform significantly better than the other base-

lines on the high resolution datasets, i.e., Pano2Vid and Pascal VOC. S2CNN ,

Spherical CNN, and Spherical U-Net suffer from their memory con-

straints, which as discussed above restricts them to lower resolution inputs.

Their accuracy is significantly worse on realistic full resolution datasets. These

models cannot take higher resolution inputs even after using model parallelism

over four GPUs with a total of 64GB of memory. Although Equirectangu-
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lar and Cubemap are trained and applied on the full resolution inputs, they

do not account for the distortion in 360◦ images and yield lower accuracy.

Finally, the performance of Projected and SphereNet suggests that the

transformation f cannot be modeled by a tangent plane-to-sphere projection.

Although SphereNet shows that the performance can be significantly im-

proved by training the source kernels on 360◦ images, the accuracy is still

worse than KTN because feature interpolation introduces error. The error

accumulates across layers, as discussed in Sec. 5.2.4, which substantially de-

grades the accuracy when applying a deep CNN. Note that the number of

learnable parameters in KTN is much smaller than that in SphereNet, but

it still achieves a much higher accuracy.

Interestingly, although SphConv performs better in RMSE on Pano2Vid,

KTN performs better in terms of object classification accuracy on Pascal

VOC. We attribute this to KTN’s inherent generalizability. SphConv has a

larger number of parameters, and the kernels at different θ are trained inde-

pendently. In contrast, the parameters in KTN are shared across different θ

and thus trained with richer information. Therefore, SphConv is more prone

to overfit the training loss, which is to minimize the RMSE for both models.

Furthermore, KTN has a significant compactness advantage over SphConv,

as discussed above.

Similarly, although Spherical U-Net and SphereNet perform slightly

worse than S2CNN and Spherical CNN on Pano2Vid, they are significantly

better than those baselines on Pascal VOC. This result reinforces the practical
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Figure 5.8: Model accuracy across θ of projection based baselines.

limitations of imposing rotation invariance. S2CNN and Spherical CNN

require full rotation invariance; the results show that orientation information

is in fact important in tasks like object recognition. Thus, the additional

rotational invariance constraint limits the expressiveness of the kernels and

degrades the performance of S2CNN and Spherical CNN. Furthermore,

the kernels in S2CNN and Spherical CNN may span the entire sphere,

whereas spatial locality in kernels has proven important in CNNs for visual

recognition.

Fig. 5.8 shows that the worst accuracy of KTN (at θ=18◦) outperforms

the best accuracy of Equirectangular and Cubemap (at θ=90◦). While a

possible method for improving the performance of the projection based meth-

ods (i.e. Equirectangular and Cubemap) is to aggregate the detection

results from multiple projections to reduce the effect of distortion, the results
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Figure 5.9: Model accuracy at different layers.

suggest that Equirectangular and Cubemap is less accurate then KTN

even if they are always evaluated on the less distorted region. This implies that

KTN will always be more accurate than Equirectangular and Cubemap

no matter how many different projections we sample. Furthermore, evaluating

the model on multiple projections increases the computational cost and intro-

duces the problem of how to combine detection results, which is non-trivial

especially in dense prediction problems such as depth prediction.

As discussed previously, the interpolation assumption made by SphereNet [24]

and the Projected baselines is problematic, particularly at deeper layers as

errors accumulate. Hence, we compare the accuracy of SphereNet [24],

Projected, and KTN with different network depths. We change the net-

work depth by feeding in the ground truth value of the intermediate layer
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and compare the RMSE of conv5 3 outputs. The experiment is performed on

Pano2Vid using Faster R-CNN source model. The results are in Fig. 5.9. Not

surprisingly, the error increases as the model depth increases for all methods.

More importantly, the gap between KTN and the other methods increases as

the network becomes deeper. The results suggest that the error of interpolated

features increases as the number of non-linearities increases and is consistent

with the analysis in Sec. 5.2.4.

Fig. 5.10 shows example outputs of KTN with a Faster R-CNN source

model. The detector successfully detects objects despite the distortion. On

the other hand, because SphConv and KTN aim to reproduce the behavior

of source CNNs, their accuracy are bounded by the source model. For exam-

ple, the spherical Faster R-CNN model fails to detect the person in the middle

in the bottom right image in Fig. 5.10, because the source model does not

recognize a person from the top view. Note that the outputs in Fig. 5.10 are

generated by the full spherical Faster R-CNN model, while previous evalua-

tions use the ground truth bounding boxes following the experiment settings

in Chapter 4.

Transferability Next, we evaluate the transferability of KTN across differ-

ent source models on Pano2Vid. In particular, we evaluate whether KTNs

trained with a Faster R-CNN that is trained on COCO can be applied to an-

other Faster R-CNN (both using VGG architecture) that is trained on Pascal

VOC and vice versa. We denote KTN trained on a different source CNN than
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Figure 5.10: KTN object detection examples on Pano2Vid.

it is being tested on as KTN-transfer and KTN otherwise.

Fig. 5.11 shows the results. The accuracy of KTN-Transfer is almost

identical to KTN. The results demonstrate that KTN indeed learns a task-

independent transformation and can be applied to different source models
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Figure 5.11: Model transferability. The title indicates the source CNN being
tested. KTN performs almost identically regardless of the source network it is
trained on. The results show we can learn a single KTN and apply it to other
source CNNs with the same architecture, even if that source model is trained
for a different task.

with the same base architecture. None of the existing models [23, 24, 29, 104,

126] are equipped to perform this kind of transfer, because they learn fixed

kernels for a specific task in some form. Hence, the Projected baseline is

the only baseline shown in Fig. 5.11. Although Projected can be applied

to any source CNN without training, the performance is significantly worse

than KTN. Again, the results indicate that a projection operation is not

sufficient to model the required transformation f . The proposed KTN is the

first approach to spherical convolution that translates across models without

requiring labeled 360◦ images or retraining. For experiments between VGG

trained for ImageNet classification and Faster R-CNN trained for Pascal object
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Figure 5.12: Model transferability of ImageNet trained VGG.

detection, and the results are similar. See Fig. 5.12.

Size and Speed Finally, we compare the overhead introduced by KTN

versus that required by the baseline methods. In particular, we measure the

model size and speed for the convolution layers in the VGG architecture. For

the model size, we compute the total size of the parameters using 32-bit float-

ing point numbers for the weights. While there exist algorithms that compress

neural networks, they are equally applicable for all methods. For the speed,

we measure the average processing time (I/O excluded) of an image for com-

puting the conv5 3 outputs. All methods are evaluated on a dedicated AWS

p3.8xlarge instance. Because the model size for SphConv is 29GB and cannot

fit in GPU memory (16GB), it is run on CPUs. Other methods are run on

GPUs.
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Figure 5.13: Model size (top) and speed (bottom) vs. accuracy for VGG.
KTN is orders of magnitude smaller than SphConv, and it is similarly or
more compact as all other models, while being significantly more accurate.

Fig. 5.13 shows the results. We can see that the model size of KTN

is very similar to Equirectangular, Cubemap and Projected. In fact,

it is only 25% (14MB) larger than the source CNN. At the same time, KTN

achieves a much better accuracy compared with all the models that have a

comparable size. Compared with SphConv, KTN not only achieves a higher

accuracy but is also orders of magnitude smaller. Similarly, S2CNN and

Spherical CNN increase model size by 131% and 727% while performing

worse in terms of accuracy. Note that we do not include parameters that can
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be computed analytically, such as the bases for S2CNN and the projection

matrices for SphereNet, though in practice they also add further memory

overhead for those baselines.

On the other hand, the computational cost of KTN is naturally much

higher than Equirectangular. The latter only needs to run the source CNN

on an equirectangular image, whereas the convolution kernels are generated

at run time for KTN. However, as all the results show, KTN is much more

accurate. Furthermore, KTN is 26 times faster than SphConv, since the

smaller model size allows the model to be evaluated on GPU.

5.4 Conclusion

I proposed the kernel transformer network for transfering CNNs from

perspective images to 360◦ images. KTN learns a function that transforms a

kernel to account for the distortion in the equirectangular projection of 360◦

images. The same KTN model can transfer to multiple source CNNs with the

same architecture, significantly streamlining the process of visual recognition

for 360◦ images. Experimental results show that KTN outperforms existing

methods while providing superior scalability and transferability.

One limitation of KTN is that it cannot handle very close objects that

span a large FOV. Because the goal of our spherical convolution is to repro-

duce the behavior of models trained on perspective images, the capability and

performance of the model is bounded by the source CNN. However, perspec-

tive cameras can only capture a small portion of a very close object in the
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FOV, and very close objects are usually not available in the training data of

the source CNN. Therefore, even though 360◦ images offer a much wider FOV,

spherical convolution inherits the limitations of the source model and may not

recognize very close large objects. More generally speaking, SphConv and

KTN ignores the domain shift in terms of the visual content, so the perfor-

mance may be supotimal compared with a model that has been trained on

massive 360◦ images.

Another limitation of KTN is that it only takes equirectangular projec-

tion as input. While equirectangular projection is the most popular format for

360◦ images and videos, there exist other formats for 360◦ video as introduced

in Chapter 3. The current model is designed specifically for equirectangular

projection and may not perform well on other formats such as cubemap pro-

jection, despite the fact that the definition of kernel transformer network is

generic to the projection. A more generic and flexible architecture is necessary

in order to apply KTN to other data formats.

Spherical convolution and kernel transformer network allow us to per-

form various CNN based visual analysis algorithms on 360◦ data easily. They

enable many potential applications of 360◦ videos which require advanced com-

puter vision algorithm in the pipeline. In the next Chapter, I will introduce

one particular example application—a more effective method to display 360◦

video.
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Chapter 6

Learning 360◦ Video Display

Having introduced an approach for 360◦ video compression and enabling

accurate and efficient visual recognition on 360◦ data, we are now better pre-

pared to build high level applications for 360◦ video. One of the most impor-

tant applications for this new media is to display the video to human viewers,

especially for general consumers. Therefore, the next challenge I tackle is 360◦

video display1.

A 360◦ camera captures the entire visual world as observable from its

optical center. The increased FOV of 360◦ cameras affords exciting new ways

to record and experience visual content. A videographer no longer has to

determine which direction to capture in the scene, freeing her to experience the

moment rather than the act of recording a video. Meanwhile, a human video

consumer has the freedom to explore the visual content based on her interest,

without being severely restricted by choices made by the videographer. For

1The work in this chapter was originally published in: “Pano2Vid: Automatic Cine-
matography for Watching 360◦ Videos,” in Proceedings of the Asian Conference on Com-
puter Vision 2018 [108] by Yu-Chuan Su, Dinesh Jayaraman, and Kristen Grauman and
“Making 360◦ Video Watchable in 2D: Learning Videography for Click Free Viewing,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017 [105]
by Yu-Chuan Su and Kristen Grauman.
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Figure 6.1: The goal of Pano2Vid is to control the direction and field of view
of a virtual camera within a 360◦ video in order to record a video that looks
as if it were captured by a human videographer.

example, a news correspondent can traverse a war zone without consciously

considering how to portray the scene, and subsequent viewers will still have

an immersive experience about the tragedy and witness events in more detail

than the videographer may even be able to attend to in the moment.

On the other hand, the medium also introduces new challenges. Fore-

most, it largely transfers the choice of “where to look” from the videographer

to the viewer. This makes 360◦ video hard to view effectively, since a human

viewer must now somehow make the “where to look” choice and convey it to
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a video player in real time. These choices determine the content seen by the

viewer and thus the user experience. Because the viewer has no information

about the content beyond the current FOV, it may be difficult to determine

where to look, e.g., a 360◦ video viewer can easily fail to notice that there is

something approaching the camera from the opposite direction. In fact, the

viewer may have to watch the video multiple times in order to find a proper

way to control the virtual camera that navigates through the content of inter-

est. While 360◦ videos may alternatively be displayed in their entirety using

equirectangular projection, the unfamiliar format and distortion make such

video hard to watch.

To address this difficulty, I define “Pano2Vid”, a new computer vi-

sion problem (see Fig 6.1) [105, 108]. The task is to design an algorithm to

automatically control the pose, motion, and focal length of a virtual normal

field-of-view (NFOV) camera within an input 360◦ video. The output of the

system is the NFOV video captured by this virtual camera. Camera control

must be optimized to produce video that could conceivably have been cap-

tured by a human observer equipped with a real NFOV camera. A successful

Pano2Vid system would therefore take the burden of choosing “where to look”

off both the videographer and the end viewer: the videographer could enjoy

the moment without consciously directing her camera, while the viewer could

watch intelligently-chosen portions of the video in the familiar NFOV format.

I propose the AutoCam algorithm to solve the Pano2Vid problem in

a data driven approach that does not require human labor. The algorithm
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first learns a discriminative model of human-captured NFOV web videos. The

NFOV videos are crawled automatically from the web and do not need human

annotations. It then uses this model to identify candidate viewpoints & fo-

cal lengths and events of interest to capture in the 360◦ video, before finally

stitching them together through optimal camera motions for presentation to

human viewers. I propose a dynamic programing based solution for the cam-

era trajectory search, which generates a set of plausible output videos for each

input 360◦ video. The trajectory search algorithm is designed to encourage the

diversity between different output videos while reducing the overall computa-

tional cost. The users can therefore control what to see by choosing between

different output videos.

In the rest of chapter, I will first provide a formal definition for the

Pano2Vid problem (Sec. 6.1). I will then introduce our method (Sec. 6.2),

before finally evaluating the proposed method on real 360◦ video (Sec. 6.3).

6.1 Pano2Vid Definition

We define the Pano2Vid task of automatic videography for 360◦ videos

as follows. Given a dynamic panoramic 360◦ video, the goal is to produce

“natural-looking” NFOV video. NFOV indicates the horizontal FOV of com-

mon zoom lens, i.e. from standard lens (46.4◦) to ultra wide angle lens (104.3◦).

Broadly, a natural-looking NFOV video is one which is indistinguishable

from human-captured NFOV video (henceforth “HumanCam”). Our ideal

video output should be such that it conceivably could have been captured by
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a human videographer equipped with an NFOV camera whose optical center

coincides exactly with that of the 360◦ camera, with the objective of best

presenting the event(s) in the scene. The NFOV video is difined by both

the camera trajectory, i.e., the time sequence of the camera’s principal axis

directions, and focal length. To solve the Pano2Vid problem, a system must

determine a NFOV camera trajectory through the 360◦ video to carve it into

a HumanCam-like NFOV video.

6.2 Approach for Solving Pano2Vid

I now present AutoCam, my approach to solve the Pano2Vid task.

The input to the system is an arbitrary 360◦ video, and the output is a natural

looking NFOV video extracted from it.

AutoCam works in two steps. First, it evaluates all virtual NFOV

spatio-temporal glimpses (ST-glimpses) sampled from the 360◦ video for their

“capture-worthiness”—their likelihood of appearing in HumanCam NFOV video.

Next, it selects virtual NFOV camera trajectories, prioritizing both 1) high-

scoring ST-glimpses from the first step, and 2) smooth human-like camera

movements. AutoCam is fully automatic and does not require any human

input. Furthermore, as we will see next, the proposed learning approach is

unsupervised—it learns a model of human-captured NFOV video simply by

watching clips people upload to YouTube.
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Figure 6.2: AutoCam first samples and scores the capture-worthiness of ST-
glimpses. It then jointly selects a glimpse for each time step and stitches them
together to form the output NFOV video. Best viewed in color.

6.2.1 Capture-worthiness Score

The first stage aims to find content that is likely to be captured by

human videographers. We achieve this by scoring the capture-worthiness of

candidate ST-glimpses sampled from the 360◦ video. An ST-glimpse is a five-

second NFOV video clip recorded from the 360◦ video by directing the camera

to a fixed direction in the 360◦ camera axes. One such glimpse is depicted

as the blue stack of frame excerpts on the surface of the sphere in Fig 6.2a.

These are not rectangular regions in the equirectangular projection (Fig 6.2a,

right) so they are projected into NFOV videos before processing. We sample

candidate ST-glimpses at 18 azimuthal angles and 11 polar angles every five

seconds:
θ ∈ Θ = {0,±10,±20,±30,±45,±75},

ϕ ∈ Φ = {0, 20, . . . , 340},

t ∈ T = {0s, 5s, . . . , L− 5s},

(6.1)

where L is the video length.
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To achieve the effect of zooming, we further sample ST-glimpses with

different focal lengths (f). Zooming is the technique of changing f of the

lens, which is equivalent to changing the FOV of the camera because they are

related by

FOV = 2 arctan(
d

2f
) (6.2)

where d is the horizontal sensor size and is a constant for the camera. Assume

the focal length for the 65.5◦ FOV is f 0, we sample ST-glimpses with three

different focal lengths

f ∈F = {0.5f 0, f 0, 1.5f 0}, (6.3)

which results in FOV∈{104.3◦, 65.5◦, 46.4◦} respectively. The 104.3◦ FOV cor-

responds to an ultra wide angle lens and is the largest FOV commonly used

in photography. The 65.5◦ and 46.4◦ FOV cover the range of standard lenses.

Each candidate ST-glimpse is therefore defined by the camera principal axis

(θ, ϕ) direction, focal length f , and time in the video t:

Ωt,θ,ϕ,f ≡ (θt, ϕt, ft) ∈ Θ× Φ× F. (6.4)

Our approach then learns to score capture-worthiness from HumanCam

data. We expect capture-worthiness to rely on two main facets: content and

composition. The content captured by human videographers is naturally very

diverse. For example, in a mountain climbing video, people may consider

capturing the recorder and his companion as well as a beautiful scene such as

the sunrise as being equally important. Similarly, in a soccer video, a player
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dribbling and a goalkeeper blocking the ball may both be capture-worthy.

Our approach accounts for this diversity both by learning from a wide array

of NFOV HumanCam clips and by targeting related domains via the keyword

query data collection described above. The composition in HumanCam data is

a meta-cue, largely independent of semantic content, that involves the framing

effects chosen by a human videographer. For example, an ST-glimpse that

captures only the bottom half of a human face is not capture-worthy, while a

framing that captures the full face is; a composition for outdoor scenes may

tend to put the horizon towards the middle of the frame, etc.

Rather than attempt to characterize capture-worthiness through rules,

AutoCam learns a data-driven model. We make the following hypotheses: 1)

the majority of content in HumanCam NFOV videos were considered capture-

worthy by their respective videographers, and 2) most random ST-glimpses

would not be capture-worthy. Based on these hypotheses, we train a capture-

worthiness classifier. Specifically, we divide each HumanCam video into non-

overlapping 5-second clips, to be used as positives, following 1) above. Next,

all candidate ST-glimpses extracted from (disjoint) 360◦ videos are treated as

negatives, per hypothesis 2) above. Due to the weak nature of this supervision,

both positives and negatives may have some label noise.

To represent each ST-glimpse and each 5s HumanCam clip, we use

off-the-shelf convolutional 3D features (C3D) [114]. C3D is a generic video

feature based on 3D (spatial+temporal) convolution that captures appear-

ance and motion information in a single vector representation, and is known
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Figure 6.3: Example glimpses scored by AutoCam. Left 4 columns are
glimpses considered capture-worthy by our method; each column is from the
same time step in the same video. Right column shows non-capture-worthy
glimpses.

to be useful for recognition tasks. We use a leave-one-video-out protocol to

train one capture-worthiness classifier for each 360◦ video. Both the positive

and negative training samples are from videos returned by the same keyword

query term as the test video, and we sub-sample the 360◦ videos so that the

total number of negatives is twice that of positives. We use logistic regression

classifiers; positive class probability estimates of ST-glimpses from the left-out

video are now treated as their capture-worthiness scores.

Fig 6.3 shows examples of “capture-worthy” and “non-capture-worthy”

glimpses as predicted by our system. We see that there may be multiple

capture-worthy glimpses at the same moment, and both the content and com-

position are important for capture-worthiness.
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6.2.2 Trajectory Search

After obtaining the capture-worthiness score of each candidate ST-

glimpse, we construct a camera trajectory by finding a path over the ST-

glimpses that maximizes the aggregate capture-worthiness score, while simul-

taneously producing human-like smooth camera motions. A naive solution

would be to choose the glimpse with the maximum score at each step. This

trajectory would capture the maximum aggregate capture-worthiness, but the

resultant NFOV video may have large/shaky unnatural camera motions. For

example, when two ST-glimpses located in opposite directions on the view-

ing sphere have high capture-worthiness scores, such a naive solution would

end up switching between these two directions at every time-step, producing

unpleasant and even physically impossible camera movements.

Instead, to construct a trajectory with more human-like camera op-

eration, we introduce a smooth motion prior when selecting the ST-glimpse

at each time step. The prior prefers trajectories that are stable over those

that jump abruptly between directions. For the example described above, the

smooth prior would suppress trajectories that switch between the two direc-

tions constantly and promote those that focus on one direction for a longer

amount of time. In practice, we realize the smooth motion prior by restricting

the trajectory from choosing an ST-glimpse that is displaced from the previous

ST-glimpse by more than a threshold ϵ in both longitude and latitude, i.e.

|∆Ω|θ = |θt − θt−1| ≤ ϵθ, |∆Ω|ϕ = |ϕt − ϕt−1| ≤ ϵϕ. (6.5)
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We also restrict the change in focal length between consecutive ST-glimpses:

|∆Ω|f = |ft − ft−1| ≤ 0.5f 0, (6.6)

which is a prior saying that human videographers tend to use gradual changes

in zoom.

Given 1) the capture-worthiness scores of all candidate ST-glimpses

and 2) the smoothness constraint in Eq. 6.5 and Eq. 6.6, we next introduce

our algorithm for constructing camera trajectories.

Dynamic programming solution The problem of finding the trajecto-

ries with maximum aggregate capture-worthiness scores can be reduced to a

shortest path problem. Let C(Ωt,θ,ϕ,f ) be the capture-worthiness score of the

ST-glimpse at time t with viewpoint (θ, ϕ) and focal length f . We construct

a 3D lattice per time slice, where each node corresponds to an ST-glimpse at

a given Ω. The edges in the lattice connect ST-glimpses from time step t to

t+ 1, and the weight for an edge is defined by:

E (Ωt,θ,ϕ,f ,Ωt+1,θ′,ϕ′,f ′) =

{
−C(Ωt+1,θ′,ϕ′,f ′), |Ωt,θ,ϕ,f − Ωt+1,θ′,ϕ′,f ′| ≤ ϵ

∞, otherwise,

(6.7)

where the difference above is shorthand for the smoothness constraint in

Eq. 6.5 and Eq. 6.6.

The solution to the shortest path problem over this graph now corre-

sponds to camera trajectories with maximum aggregate capture-worthiness.

This solution can be efficiently computed using dynamic programming. See
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Algorithm 1 Camera trajectory selection

C ← Capture-worthiness scores
ϵ← Valid camera motion
for all θ, ϕ, f do

Accum[Ω1,θ,ϕ,f ] ← C[Ω1,θ,ϕ,f ]
end for
for t← 2, T do

for all θ, ϕ, f do
Ωt−1,θ′,ϕ′,f ′ ← argmaxθ′,ϕ′,f ′ Accum[Ωt−1,θ′,ϕ′,f ′ ]

s.t. |Ωt,θ,ϕ,f − Ωt−1,θ′,ϕ′,f | ≤ ϵ
Accum[Ωt,θ,ϕ,f ] ← Accum[Ωt−1,θ′,ϕ′,f ′ ] + C[Ωt,θ,ϕ,f ]
TraceBack[Ωt,θ,ϕ,f ] ← Ωt−1,θ′,ϕ′,f ′

end for
end for
Ω ← argmaxθ,ϕ,f Accum[ΩT,θ,ϕ,f ]
for t← T, 1 do

Traj[t] ← Ω
Ω ← TraceBack[Ω]

end for

pseudocode in Alg 1. At this point, the optimal trajectory indicated by this

solution is “discrete” in the sense that it makes jumps between discrete direc-

tions after each 5-second time-step. To smooth over these jumps, we linearly

interpolate the trajectories between the discrete time instants, so that the final

camera motion trajectories output by AutoCam are continuous.

Coarse-to-fine solution While the dynamic programming solution can be

solved efficiently, it requires that C[Ω] is known for all Ω. However, the

computational bottleneck for the algorithm is in fact estimating the capture-

worthiness score of each ST-glimpse because it adopts Strategy II discussed

in Chapter 4 (Fig. 4.1). Therefore, it has to first render the 360◦ ST-glimpse
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Figure 6.4: Coarse-to-fine camera trajectory search. We first construct the
trajectory on a coarse sample of ST-glimpses and then refine it on a dense
sample of ST-glimpses around the trajectory. It reduces computational cost
by avoiding processing all candidate ST-glimpses.

into NFOV video and then extract the C3D feature, both of which are com-

putationally intensive. Even if we assume we can render the NFOV video

and extract C3D features in real time, the processing time would be orders of

magnitude longer than the input video length due to the large number of can-

didate ST-glimpses, i.e. several hours to process even a 1 minute 360◦ video.

The most straightforward solution would be to downsample the number of

candidate ST-glimpses. However, this would lead to coarser camera control

and a degradation in the quality of the output videos. In other words, the com-

putational overhead not only makes the algorithm slow but it also restricts the

granularity of virtual camera control.

Instead, we propose a coarse-to-fine approach that preserves the ef-

fective number of candidate ST-glimpses while reducing the number of ST-

glimpses that require computation of the capture-worthiness score. The basic
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idea is to first construct the trajectory over coarsely sampled ST-glimpses and

then refine the solution over densely sampled ST-glimpses centered around the

initial trajectory. See Fig. 6.4. Furthermore, to keep the total cost sublinear

in the number of available focal lengths, we construct the coarse trajectory

with a single focal length and enable zooming only when refining the solu-

tion. Because we process ST-glimpses densely only in a small portion of the

video, the total number of capture-worthiness scores required by the algorithm

decreases. The proposed coarse-to-fine approach is based on the observation

that the capture-worthiness scores of neighbor ST-glimpses are positively cor-

related, and the optimal trajectory in densely sampled ST-glimpses leads to

a candidate solution in coarsely sampled ST-glimpses. Although the solution

is not guaranteed to be the same as that of dynamic programming over all

candidate ST-glimpses, empirical results verify that it perform well.

We start the algorithm by sampling ST-glimpses at

θ ∈ Θ′ = {±10,±30,±75},

ϕ ∈ Φ′ = {0, 40, . . . , 320},

t ∈ T ′ = {0s, 10s, . . . , L− 10s},

f ∈ F ′ = {0.5f 0}.

(6.8)

We use the focal length f =0.5f 0 which corresponds to the largest FOV so

the visual content of these initial ST-glimpses cover that of other focal lengths

at the same direction. Eq. 6.8 downsamples the candidate ST-glimpses by a

factor of two from Eq. 6.1, so the number of capture-worthiness scores that
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need to be computed is only

|Θ′ × Φ′ × T ′|
|Θ× Φ× T |

× 1

|F |
≈ 4.5% (6.9)

the number of candidate ST-glimpses. We solve for the trajectory using dy-

namic programming, but set the smoothness constraint to 2ϵ to account for

the coarser samples

|∆Ω|θ = |θt − θt−1| ≤ 2ϵ, |∆Ω|ϕ = |ϕt − ϕt−1| ≤ 2ϵ. (6.10)

Denoting the ST-glimpses selected by the trajectory as

Ω0
t,θ,ϕ ≡ (θ0t , ϕ

0
t ) (6.11)

for t ∈ T ′, we then interpolate the ST-glimpses for t ∈ T \ T ′ = {5s, 15s, . . .}

to obtain the full trajectory.

To refine the trajectory, we sample ST-glimpses

Ω1
t,θ,ϕ,f = (θ1t , ϕ

1
t , f

1
t ) (6.12)

that are adjacent to the original trajectory in direction

|θ1t − θ0t | ≤ ϵθ, |ϕ1
t − ϕ0

t | ≤ ϵϕ (6.13)

following Eq. 6.1 and 6.3. We then solve the same trajectory search problem

over the sampled ST-glimpses using dynamic programming with the smooth-

ness constraints in Eq. 6.5 and Eq. 6.6. The number of candidate ST-glimpses

is greatly reduced by the adjacency constraint in Eq. 6.13 and is only 5% of

all candidate ST-glimpses.
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Diverse trajectory search I next introduce how to expand that single best

solution to a set of diverse plausible outputs. The motivation to generate a

diverse set of output videos stems from the fact that, by definition, there may

be multiple valid Pano2Vid solutions for each 360◦ video. For example, one

might capture a soccer game by tracking the ball or by focusing on a particular

player. Both of them will lead to a plausible presentation for the game and

should be a valid output. In fact, when we ask human editors to manually

extract NFOV videos from 360◦ data, the outputs for any two editors on the

same source video have only about 47% overlap on average. In addition, many

applications of Pano2Vid would prefer a set of candidate solutions instead of a

single output. An editing aid system would be more useful if the editor has the

freedom to choose from different reasonable algorithm-provided initializations.

Similarly, a 360◦ video player that allows the viewers to choose from different

NFOV video presentations is likely to achieve a better user experience because

the viewers can decide what to see based on their preferences.

It is difficult to encourage diversity in a single pass of dynamic program-

ming, because all the potential solutions are constructed concurrently and the

distances between them are hard to control. Instead, we generate trajectories

iteratively and encourage diversity by imposing the minimum distance con-

straint between trajectories generated in different iterations. To realize the

constraint, we sample a time window and forbid the trajectories of the current

iteration from selecting the same ST-glimpses as the solution of previous itera-

tions in the window. Therefore, the length of the time window determines the
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Figure 6.5: Diverse trajectory search generates trajectories iteratively. In each
iteration, we construct multiple trajectory search problems by sampling time
windows and removing previously selected ST-glimpses in the window from
the search space. We solve all the problems and take the best solution as the
output trajectory.

minimum distance between the solutions of different iterations. We sample the

time window at multiple temporal locations and construct the optimal trajec-

tory for each window. We take the best trajectory among them in terms of

accumulated capture-worthiness score as the solution of the current iteration.

This avoids critical glimpses being excluded from the solution space even if it

is selected by previous trajectories. See Fig. 6.5.

In practice, we set the length of the time window to 10% the original
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video length and sample 20 different windows distributed evenly over time.

Once the length and location of the time window is specified, the optimal tra-

jectory can be found using dynamic programming on a modified shortest path

problem where the ST-glimpses selected by previous solutions in the window

are removed from the search space. To improve computational efficiency, we

divide the unit sphere into 6 regions (by 3 azimuthal angles and 2 polar an-

gles) and generate an output per region by finding the best trajectory ending

in the region. This leads to 6 trajectories per iteration. The iteration ends

after K-trajectories have been generated.

6.3 Experiments

We evaluate the proposed AutoCam algorithm on unconstrained real

world 360◦ videos. Because we are the first to study the Pano2Vid problem, we

also design two sets of evaluation metrics and three baselines for the problem.

6.3.1 Dataset

360◦ videos We collect 360◦ videos from YouTube using the keywords “Soc-

cer,” “Mountain Climbing,” “Parade,” and “Hiking.” These terms were se-

lected to have 1) a large number of relevant 360◦ video results, 2) dynamic

activity, i.e., spatio-temporal events, rather than just static scenes, and 3)

possibly multiple regions/events of interest at the same time. For each query

term, we download the top 100 videos sorted by relevance and filter out any

that are not truly 360◦ videos (e.g., animations, slide shows of panoramas,
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Figure 6.6: Examples frames from the Pano2Vid 360◦ video dataset. The
videos are under the keywords “Soccer,” “Mountain Climbing,” “Parade,”
and “Hiking,” for each row respectively.

restricted FOV) or have poor lighting, resolution, or stitching quality. This

yields a Pano2Vid test set of 86 total 360◦ videos with a combined length of

7.3 hours. See Fig. 6.6 for example video frames. Note that this is the same
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Figure 6.7: HumanEdit interface. We display the 360◦ video in equirectangular
projection and ask annotators to direct the camera using the mouse. The
NFOV video is rendered and displayed to the annotator offline. Best viewed
in color.

Pano2Vid dataset used in Chapter 4.

HumanCamNFOV videos In both the learning stage of AutoCam (Sec 6.2.1)

and the proposed evaluation methods (Sec. 6.3.2), we need a model for Hu-

manCam. We collect a large diverse set of HumanCam NFOV videos from

YouTube using the same query terms as above and imposing a per-video max

length of 4 minutes. For each query term, we collect about 2,000 videos,

yielding a final HumanCam set of 9,171 videos totalling 343 hours.

Human annotation collection To collect human editors’ annotations, we

ask multiple annotators to watch the 360◦ test videos and generate the camera

trajectories from them. I next describe the annotation collection process.

Fig 6.7 shows the HumanEdit annotation interface. We display the

entire 360◦ video in equirectangular projection. Annotators are instructed
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to move a cursor to direct a virtual NFOV camera. Virtual NFOV frame

boundaries are backprojected onto the display (shown in cyan) in real time

as the camera is moved. The editors can also control the focal length of the

virtual camera. The available focal lengths are the same as those available to

the algorithm, and the interface will switch to the next available focal length

when the editor presses the button for zoom in/out.

We design the interface to mitigate problems due to discontinuities

at the edges. First, we extend the panoramic strip by 90◦ on the left and

right as shown in Fig 6.7. The cursor may now smoothly move over the 360◦

boundaries to mimic camera motion in the real world. Second, when passing

over these boundaries, content is duplicated, and so is the cursor position and

frame boundary rendering. When passing over an edge of this extended strip,

the cursor is repositioned to the duplicated position that is already on-screen

by this time.

For each 360◦ video, we ask the editors to watch the full video in

equirectangular projection first to familiarize themselves with the content.

Next, we ask them to annotate four camera trajectories per video. For each of

the four passes, we pan the panoramic strip by the angle of [0◦, 180◦, 0◦, 180◦]

to force the editors to consider the trajectories from different points of view.

Finally, for the first two trajectories of the first two videos annotated by each

editor, we render and show the output video to the editor right after the an-

notation to help him understand what the resulting video will look like. We

collect HumanEdit data for 40 videos, each of them annotated by 3 editors.
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Overall, we collect 480 trajectories totaling 717.2 minutes of video, and roughly

18 hours of annotation time.

6.3.2 Evaluation Metrics

Next I present evaluation metrics for the Pano2Vid problem. A good

metric must measure how close a Pano2Vid algorithm’s output videos are to

human-generated NFOV video, while simultaneously being reproducible for

easy benchmarking in future work. We devise two main criteria as described

in the following two paragraphs.

HumanCam-based metrics The first criterion measures whether the out-

put videos look like human-captured NFOV video (HumanCam). The more

indistinguishable the algorithm outputs are from HumanCam, the better the

algorithm. There are three metrics:

• Distinguishability quantifies if it is possible to tell the algorithm output

apart from HumanCam. For a fully successful Pano2Vid algorithm, these

sets would be entirely indistinguishable. This method can be considered as

an automatic Turing test that is based on feature statistics instead of human

perception; it is also motivated by the adversarial network framework [39]

where the objective of the generative model is to disguise the discrimina-

tive model. We measure distinguishability using 5-fold cross validation per-

formance of a discriminative classifier trained with HumanCam videos as

positives, and algorithmically generated videos as negatives. Training and
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testing negatives in each split are generated from disjoint sets of 360◦ video.

Higher error is better.

• HumanCam-likeness measures the relative distance from algorithm out-

puts to HumanCam data in a semantic feature space. Once again a clas-

sifier is trained on HumanCam videos as positives, but this time with all

algorithm-generated videos as negatives. Similar to exemplar SVM [82], each

algorithm-generated video is assigned a ranking based on its distance from

the decision boundary (i.e. HumanCam-likeness), using a leave-one-360◦-

video-out training and testing scheme. We rank all Pano2Vid algorithms

for each 360◦ video and compare their normalized mean rank; lower is bet-

ter. We use classification score rather than raw feature distance because we

are only interested in the factors that distinguish Pano2Vid and Human-

Cam. Since this metric depends on the relative comparison of all methods,

it requires the output of all methods to be available during evaluation.

• Transferability measures how well semantic classifiers trained on Human-

Cam videos transfer to algorithm-generated videos, and vice versa. A similar

method is used to evaluate automatic image colorization in [124]. We take

the four search keywords as labels to learn a multi-class classifier on one do-

main and measure transferability using the test error on the other domain.

The more transferable the classifiers are, the more similar the HumanCam

and algorithm outputs are.

We use logistic regression classifiers in all metrics.
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HumanEdit-based metrics Whereas the above metrics score output videos

by their resemblance to human-captured videos in general, the HumanEdit

metric measures the similarity between algorithm-generated camera trajecto-

ries and the manually created trajectories in the same 360◦ video. The more

similar they are, the better the algorithm. This metric captures the subjective

preference of human editors but is easily reproducible, in contrast to one-off

user studies.

In particular, we compute the overlap of the camera FOV in each

frame. The overlap is approximated by max(1− 2∆Ω
FOVH+FOVA

, 0), where FOVH

and FOVA correspond to the FOV of algorithm and human controlled camera

respectively. We report overlap results under two pooling strategies: 1) Tra-

jectory pooling: Each Pano2Vid trajectory is compared to its best-matched

HumanEdit trajectory. Frame-wise overlap to each human trajectory are first

averaged. Each Pano2Vid output is then assigned a score corresponding to

the minimum of its average overlap to HumanEdit trajectories. Trajectory

pooling rewards Pano2Vid outputs that are similar to at least one HumanEdit

trajectory over the whole video, and 2) Frame pooling: This pooling method

rewards Pano2Vid outputs that are similar to different HumanEdit tracks in

different portions of the video. First, each frame is assigned a score based on

its minimum frame-wise overlap to a HumanEdit trajectory. Now, we sim-

ply average this over all frames to produce the “frame overlap” score for that

trajectory. Frame pooling rewards Pano2Vid outputs that are similar to any

HumanEdit trajectory at each frame.
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Figure 6.8: Baseline illustration. Center generates random trajectories bi-
ased toward the 360◦ video center. Eye-level generates static trajectories
on the equator.

6.3.3 Baselines

We compare the following methods in the experiments.

• Saliency— replace the capture-worthiness scores inAutoCam by saliency

scores.2 The saliency is computed by a popular method [44] over the 360◦

video frame in equirectangular projection.

• Center — random trajectories biased toward the “center” of the 360◦

video axes (θ = ϕ = 0◦). The bias accounts for the fact that user-generated

360◦ videos often contain interesting content close to the center, possibly

because the 360◦ camera design allows the users to use it as if it were a

NFOV camera. We sample the camera direction for the next time-step from

2We also considered a saliency baseline that permits zoom like our method, but it fared
worse than all others.
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Table 6.1: Pano2Vid performance: HumanCam-based and HumanEdit-based
metrics. The arrows in column 3 indicate whether lower scores are better (⇓),
or higher scores (⇑). AutoCam significantly outperforms the baselines, and
the relative improvements over the best performing baseline are up to 124.4%.

Center Eye-level Saliency
AutoCam

AutoCamw/o Zoom
Distinguishability Error rate (%) ⇑ 1.93 4.03 7.70 12.05 17.28
HumanCam-Likeness Mean Rank ⇓ 0.659 0.707 0.612 0.522 0.267

Transferability
Human → Auto ⇑ 0.582 0.607 0.597 0.517 0.591
Auto → Human 0.526 0.552 0.549 0.584 0.617

Overlap
Trajectory ⇑ 0.271 0.335 0.359 0.343 0.442
Frame 0.498 0.555 0.580 0.530 0.630

a Gaussian centered around the current direction, which starts from the

center. See Fig. 6.8a.

• Eye-level — static trajectories that place the virtual camera on the equa-

tor (θ = 0◦). The equator usually corresponds to eye-level in 360◦ video

where most interesting events happen. We sample the azimuthal angle ϕ

every 20◦ for 18 different camera directions. See Fig. 6.8b.

6.3.4 Results

Output quality First we quantify the quality of the algorithm-generated

videos using the HumanCam-/HumanEdit-based metrics. We take the top

K=20 outputs from each method.

Table 6.1 shows the results. AutoCam algorithm significantly outper-

forms all other methods. Compared to the best performing baseline (Saliency),

it improves Distinguishability by 124.4% and ranks 34.5% better on average in

the HumanCam-Likeness. We also see a 23% improvement in the Trajectory

Overlap metric. Fig. 6.9 and 6.10 show qualitative examples. In particular,
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Fig. 6.10 shows the importance of generating multiple trajectories in the algo-

rithm. See our project webpage for example videos3.

Note how the zooming capability improves the output video quality.

The Distinguishability drops by 30% if we allow only a single focal length in the

AutoCam algorithm. Interestingly, the camera zooms out (i.e. FOV>65.5◦)

more often than it zooms in. In fact, 76% of the ST-glimpses selected by

AutoCam have 104.3◦ FOV, and editors select 104.3◦ FOV in 55% of the

HumanEdit data. These results suggest that a larger FOV is preferable when

viewing 360◦ videos, possibly because the object of interest is usually closer to

the camera. We use 65.5◦ FOV for AutoCam w/o Zoom, which is the most

common FOV for ordinary cameras.

Table 6.1 also shows that the Center and Eye-level baselines per-

form poorly, indicating that hand coded heuristics based on prior knowledge

are not enough and a content-dependent method is necessary. Eye-level

performs better than Center, which reflects the fact that Eye-level is a

generic prior while the Center prior only holds when the 360◦ camera is

asymmetric and the user uses it as an ordinary camera. Although Saliency

is content-dependent, it captures content that attracts gaze, which appears to

be a poor proxy for the Pano2Vid task. It underperforms AutoCam in all

metrics except the Human → Auto transferability.

3http://vision.cs.utexas.edu/projects/watchable360
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Figure 6.9: Example AutoCam outputs and the corresponding camera poses.
The circular sector shows the camera FOV and azimuthal angle, and the color
shows the polar angle. Red/green indicates the angle is greater/smaller than
0, and more saturated color indicates larger value.
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Figure 6.10: Two trajectories extracted from the same 360◦ video. Our algo-
rithm presents the same scene in different manners.

Although AutoCam outperforms all baselines, we notice that the

learned capture-worthiness is unable to capture preferences induced by con-

text. For example, the algorithm fails to concentrate on family members in

a family video. Also, the smoothness constraint may be too strong in some

scenes where the camera is unable to adjust to rapidly changing content.
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Table 6.2: HumanEdit consistency.

Overlap
Trajectory 0.560
Frame 0.782

HumanEdit agreement We also measure the consistency between trajec-

tories annotated by different annotators to provide a reference for how well

the algorithms perform. Table 6.2 shows the results. AutoCam reaches 80%

the overlap of inter annotator agreement, suggesting that it not only performs

better than the baslines but also provides a reasonable coverage for content

that captures annotators’ attention. Still, there is still a significant room for

improvement. Note that the average overlap between human trajectories is

only 56%, while the frame overlap is much higher. These differences indicate

that there is more than one natural trajectory for each 360◦ video, and dif-

ferent annotators may pick different trajectories. Still, with > 78% overlap

at any given moment, we see that there is often something in the 360◦ video

that catches everyone’s eye; different trajectories arise because people choose

to navigate through them in different manner. Overall, this analysis justifies

our design to ask each annotator to annotate multiple trajectories and under-

scores the need for metrics that take the multiple trajectories into account, as

we propose.

Computational cost Fig. 6.11 shows the computational cost versus output

quality, measured by HumanCam Distinguishability and HumanEdit Trajec-

tory Overlap. We measure computational cost by the average processing time
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Figure 6.11: Computational cost vs. output quality for our method and Au-
toCam [108]. Computational cost is measured by the average processing time
per 1 minute of input 360◦ video. Quality is measured by the Distinguishability
and Trajectory Overlap; higher is better (⇑) for both metrics.

for 1 minute of 360◦ video. The time is measured on a machine equipped with

Intel Xeon E5-2697 v2 processors (24 cores) and one GeForce GTX Titan Black

GPU (including I/O). The coarse-to-fine trajectory search reduces the com-

putational cost by 84% while performing similarly in Trajectory Overlap and

only 6% worse in Distinguishability. Comparing the trajectories generated by

the two methods, the coarse-to-fine approach tends to favor the largest FOV

and ignore trajectories that select the smallest FOV throughout the video, be-

cause the initial trajectories are constructed with the largest FOV. This may

cause the degradation in Distinguishability due to the fact that the 104.3◦

FOV introduces distortion in output frames. AutoCam takes less than 50%

of the computation of AutoCam w/o Zoom yet is more accurate in all met-

rics. Although further optimization on the implementation may reduce the
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processing time, the relative cost will remain the same, as it is linear in the

number of ST-glimpses processed.

6.4 Conclusion

In this chapter, I proposed an approach for more effective 360◦ video

display. The idea is to cast the FOV control problem as a virtual cinematog-

raphy problem in 360◦ video, and I propose a data driven approach to solve

the virtual cinematography problem. My proposed method generates proper

NFOV videos from the raw 360◦ video like a human editor, so the viewers can

watch the “edited” videos just as they would watch traditional NFOV videos.

One important factor ignored by the AutoCam algorithm is the in-

teractive nature of 360◦ video display. The algorithm does not consider the

situation where the user actively controls the FOV while watching the video.

While effort has been made to improve interactive 360◦ video display with

better human-computer interaction design [76, 88], these methods take static

camera trajectories as reference and cannot consider the user control as feed-

back signal for better FOV control or suggestion. Also, the AutoCam algo-

rithm assumes offline processing of the 360◦ video and does not work for an

online 360◦ video stream. Further study is necessary in order to adapt the

proposed method for different 360◦ video display settings, as will be discussed

in Chapter 7.
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Chapter 7

Future Work

In this chapter, I introduce future directions for my research on 360◦

media. My current research addresses existing challenges in 360◦ video pro-

cessing and provides the basis for more advanced applications. Based on the

results, I aim to explore the new possibilities enabled by the new media in the

future. In particular, I believe it is important to take user interaction into con-

sideration, because the most significant benefit of 360◦ video is the capability

of providing a more interactive video watching experience.

7.1 User Aware 360◦ Video Compression

Video compression algorithms are most commonly evaluated with ob-

jective metrics that consider the quality over the entire video. However, the

objective metrics do not always align with subjective metrics because users do

not perceive the entire video equally. This is particularly true in 360◦ videos—

viewers only watch a small portion of the video, and content beyond the FOV

will not affect the perceived quality. Therefore, it is possible to achieve a

better subjective quality by allocating higher bitrate to salient regions. The

saliency may come directly from user interaction or from model prediction,
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and it may depend on the specific application of the video. This suggests

building a better compression algorithm that takes both the application and

user interaction into consideration. I am interested in building a user aware

compression algorithm for 360◦ videos that achieves a better subjective quality

under the same bitrate.

7.2 Learning Automatic Cinematography from User Con-
trol

Existing algorithms for automatic cinematography usually rely on heuris-

tics to encode popular idioms from cinematography [21,28,31,47,85,110] and

are applicable in limited scenes. AutoCam is the first to learn cinemato-

graphic tendencies from data. However, it learns from arbitrary web videos

which provide only indirect and noisy supervision. In contrast, user interaction

in 360◦ video provides a more direct supervision for automatic cinematogra-

phy. It also provides richer information including saliency of visual content,

cinematography idioms, and preference of users. I would like to explore the

possibility of learning automatic cinematography from user control signals in

360◦ video in order to learn a better AutoCam model.

I am also interested in adapting AutoCam to the streaming and in-

teractive scenarios. In the streaming scenario, the algorithm has no access to

the video content beyond current time step. A Reinforcement Learning (RL)

solution fits well in the streaming scenario, as RL models usually consider

only observations made by the agent so far. Furthermore, an RL model has

152



the potential to learn to construct the camera trajectories and may perform

better than a hand crafted dynamic programming solution. In the interac-

tive scenario, the user may actively control the virtual camera to deviate from

the optimal trajectory. I would like to study how to adapt the algorithm to

consider the user interaction for better automatic cinematography.
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Chapter 8

Conclusion

My thesis addresses several problems encountered during 360◦ video

production. In particular, I study three fundamental challenges for 360◦

video—compression of 360◦ video, recognition on 360◦ imagery, and 360◦ video

display. For 360◦ video compression, I propose to exploit the orientation of

cubemap projection to improve the compression rate. My analysis shows that

the orientation of the 360◦ video representation affects the compression algo-

rithm, and I propose an efficient method to exploit the orientation for 360◦

video compression. The proposed method is compatible with existing codecs

and ongoing progress for video compression, and the better compression rate

allows us to store and distribute 360◦ video more easily. For recognition on

360◦ imagery, I propose a general approach to transfer CNN models trained on

perspective images to 360◦ images. The proposed method allows accurate and

efficient visual recognition on 360◦ images using off-the-shelf CNNs. Further-

more, because the proposed method does not require any many labor during

training and is transferable across CNNs for different visual recognition tasks,

it greatly reduce the cost for learning visual recognition models on 360◦ images.

For 360◦ video display, I propose to cast the virtual camera control problem in

360◦ video player as a virtual videography problem. I further introduce a data
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driven solution for the problem that can learn to control the virtual camera

in 360◦ video from arbitrary human captured ordinary videos. The proposed

method can transform a 360◦ video into easy-to-watch ordinary videos like a

human editor automatically and allows users to watch 360◦ videos without

additional effort. All together, the proposed solutions provide a more ma-

ture 360◦ video production pipeline. It will serve as the basis for various 360◦

video applications and allow both technology developers and content creators

to further explore the possibility of the new media.
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