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What can a first person camera 
tell us about my motion?

1. Learning representations 
tied to ego-motion

2. Estimating “invisible” 
articulated 3D body 
poses



The kitten carousel experiment
[Held & Hein, 1963]

active kitten passive kitten

Key to perceptual development:
self-generated motion + visual feedback



Big picture goal: Embodied vision

Status quo: 
Learn from “disembodied” 
bag of labeled snapshots.

Our goal:
Learn in the context of acting
and moving in the world.



Goal: Teach computer vision system the connection:
“how I move” ↔ “how my visual surroundings change”

Our idea: Ego-motion ↔ vision

+

Ego-motion motor signals Unlabeled video

[Jayarman & Grauman, ICCV 2015]
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Ego-motion ↔ vision: view prediction

After moving:



Ego-motion ↔ vision for recognition

Learning this connection requires:

 Depth, 3D geometry
 Semantics
 Context

Can be learned without manual labels!

Also key to 
recognition!

Our approach: unsupervised feature learning 
using egocentric video + motor signals

[Jayaraman & Grauman, ICCV 2015]



Approach idea: Ego-motion equivariance
Invariant features: unresponsive to some classes of 
transformations

𝐳𝐳 𝑔𝑔𝐱𝐱 ≈ 𝐳𝐳(𝐱𝐱)

Simard et al, Tech Report, ’98
Wiskott et al, Neural Comp ’02

Hadsell et al, CVPR ’06
Mobahi et al, ICML ’09

Zou et al, NIPS ’12
Sohn et al, ICML ’12

Cadieu et al, Neural Comp ’12
Goroshin et al, ICCV ’15

Lies et al, PLoS computation biology ’14
…



Approach idea: Ego-motion equivariance
Invariant features: unresponsive to some classes of 
transformations

𝐳𝐳 𝑔𝑔𝐱𝐱 ≈ 𝐳𝐳(𝐱𝐱)

Invariance discards information;
equivariance organizes it. 

Equivariant features: predictably responsive to 
some classes of transformations, through simple 
mappings (e.g., linear)

𝐳𝐳 𝑔𝑔𝐱𝐱 ≈ 𝑀𝑀𝑔𝑔𝐳𝐳(𝐱𝐱)
“equivariance map”



Equivariant embedding 
organized by ego-motions

Pairs of frames related by 
similar ego-motion should 

be related by same 
feature transformation

left turn
right turn
forward

Learn

Approach idea: Ego-motion equivariance

time →m
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Training data
Unlabeled video + 

motor signals
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Approach overview

Our approach: unsupervised feature learning using 
egocentric video + motor signals

1. Extract training frame pairs from video

2. Learn ego-motion-equivariant image features

3. Train on target recognition task in parallel

[Jayaraman & Grauman, ICCV 2015]



Training frame pair mining

Discovery of ego-motion clusters

Right turn

=forward

=right turn

=left turn
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∥ 𝑀𝑀𝑔𝑔𝐳𝐳𝛉𝛉(𝐱𝐱𝑖𝑖) − 𝐳𝐳𝛉𝛉(𝑔𝑔𝐱𝐱𝑖𝑖) ∥𝟐𝟐

Ego-motion equivariant feature learning

𝐱𝐱𝑖𝑖

𝑔𝑔𝐱𝐱𝑖𝑖

𝐳𝐳𝛉𝛉(𝐱𝐱𝑖𝑖)

𝐳𝐳𝛉𝛉(𝑔𝑔𝐱𝐱𝑖𝑖)

𝑀𝑀𝑔𝑔

Desired: for all motions 𝑔𝑔 and all images 𝐱𝐱,
𝐳𝐳𝛉𝛉 𝑔𝑔𝐱𝐱 ≈ 𝑀𝑀𝑔𝑔𝐳𝐳𝛉𝛉(𝐱𝐱)

𝛉𝛉

𝛉𝛉

Given:

𝛉𝛉 𝐳𝐳𝛉𝛉(𝐱𝐱𝑘𝑘)𝐱𝐱𝑘𝑘 𝑊𝑊 softmax loss 𝐿𝐿𝐶𝐶(𝐱𝐱𝑘𝑘 , y𝑘𝑘)

Unsupervised training

Supervised training

class y𝑘𝑘 𝛉𝛉, 𝑀𝑀𝑔𝑔 and 𝑊𝑊 jointly trained

𝑔𝑔

[Jayaraman & Grauman, ICCV 2015]



Results: Recognition
Learn from unlabeled car video (KITTI)

Exploit features for static scene classification 
(SUN, 397 classes)

Geiger et al, IJRR ’13

Xiao et al, CVPR ’10



Results: Recognition

Hadsell et al., Dimensionality Reduction by Learning an Invariant Mapping. CVPR 2006
Agrawal, Carreira, Malik, Learning to see by moving. ICCV 2015
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• k-nearest neighbor 
classification task in 
learned feature space

• Unlabeled video: 
KITTI

• Images:                
SUN, 397 categories

• 50 labels per class 0
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Purely unsupervised feature learning



KITTI⟶ SUN

Ego-motion equivariance as a regularizer
397 classes

re
co

gn
iti

on
 a

cc
ur

ac
y 

(%
)

**Mobahi et al., Deep Learning from Temporal Coherence in Video, ICML’09 

*Hadsell et al., Dimensionality Reduction by Learning an Invariant Mapping, CVPR’06

Results: Recognition

6 labeled training 
examples per class

KITTI⟶KITTI

NORB⟶NORB

Up to 30% accuracy increase 
over state of the art!
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0.70

1.02

1.21

1.58

invariance



Leverage proposed ego-motion equivariant
embedding to select next best view

cup frying pan

cup/bowl/pan? cup/bowl/pan?
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NORB data

Learning how to move
for recognition

[Jayarman & Grauman, ICCV 2015]



Learning from arbitrary
unlabeled video?

Unlabeled video 
+ ego-motion

Unlabeled video



Equivariance ≈ “steadily” varying frame features!  
d²𝐳𝐳𝛉𝛉(𝐱𝐱t)/dt²≈ 𝟎𝟎

[Jayaraman & Grauman, CVPR 2016]

Our idea: Steady feature analysis
Learning from arbitrary unlabeled video



Equivariance ≈ “steadily” varying frame features!  
d²𝐳𝐳𝛉𝛉(𝐱𝐱t)/dt²≈ 𝟎𝟎

[Jayaraman & Grauman, CVPR 2016]

Our idea: Steady feature analysis

Spotlight -- Wed 2:50PM - 1:20PM
Poster 7  – Wed 4:45PM - 6:45PM

Slow and Steady Feature Analysis: Higher 
Order Temporal Coherence in Video

Learning from arbitrary unlabeled video



Recap so far

 New embodied visual feature learning paradigm

 Ego-motion equivariance boosts performance 
across multiple challenging recognition tasks

 Future work: volition at training time too

http://vision.cs.utexas.edu/projects/egoequiv/



What can a first person camera 
tell us about my motion?

1. Learning representations 
tied to ego-motion

2. Estimating “invisible” 
articulated 3D body 
poses



What’s on the other side of the camera?

What does apparent ego-motion reveal about 
the person behind the camera?



Seeing invisible poses

• Goal: Learn to estimate 3D body pose of person 
behind the wearable camera

Input: 
egocentric video

Output:
sequence of 3d 
joint positions

Jiang & Grauman, arXiv 2016



Prior work: Ego body pose

Shiratori et al., SIGGRAPH 2011
• Multiple cameras on joints 
• Geometric solution
• Expensive (1.5 days for 1 min of 

capture)

Rogez et al. 2015, Kitani et al. 2013,…

• Focus on hands and arms
• Assume visible body parts



Our approach:
Seeing invisible poses

• Training: Kinect for ground truth pose collection
– Used only for training data and evaluation

• 10 subjects
• ~1 hour video, 1-3 minute clips



1. Instantaneous estimates based on
– Dynamic motion signatures

• Homographies between successive frames
– Static scene structure

sitting

standing

Our approach:
Seeing invisible poses



1. Instantaneous estimates based on
– Dynamic motion signatures

• Homographies between successive frames
– Static scene structure

2. Longer term sequence estimate
– Non-parametric model of dynamics
– Identify least-cost “pose path” in exemplars

[Figure: Kovar, Gleicher, Pighin]

Our approach:
Seeing invisible poses



Results: Ego-video → body pose

Train/test: Person repeats, but environment differs

Train/test: Person differs AND environment differs

Jiang & Grauman, arXiv 2016



Results: broader test settings

3rd person view 
(unseen) Ego view (input) Predicted pose

3rd person view 
(unseen, frame from 

longer clip)
Ego view (input) Predicted pose



• Joint errors (cm), ~40 minutes total test video

Train/test: Person repeats, but environment differs

Train/test: Person differs AND environment differs

“DeepPose” [Toshev & Szegedy, 2014] 
trained for our task

Generic body posture priors

Results: Ego-video → body pose



Summary

• Visual learning benefits from
– context of action and motion in the world
– continuous self-acquired feedback
– cues from ego-motion on multiple levels

• Main ideas:
– “Embodied” feature learning using both 

visual and motor signals
– Learning to estimate articulated body pose 

from first person video

Dinesh 
Jayaraman

Hao Jiang
Boston College

CVPR 2016 Tutorial on First Person Vision



Papers

– Learning Image Representations Tied to Ego-Motion.  D. 
Jayaraman and K. Grauman.  In Proceedings of the IEEE 
International Conference on Computer Vision (ICCV), 
Santiago, Chile, Dec 2015.

– Slow and Steady Feature Analysis: Higher Order Temporal 
Coherence in Video.  D. Jayaraman and K. Grauman.  In 
Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), Las Vegas, June 2016. 

– Seeing Invisible Poses: Estimating 3D Body Pose from 
Egocentric Video.  H. Jiang and K. Grauman.   March 2016. 
arXiv:1603.07763
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