What to Keep?: Summarizing Long Egocentric Videos

Kristen Grauman

Department of Computer Science
University of Texas at Austin

With Yong Jae Lee, Bo Xiong, Lu Zheng

Goal: Summarize egocentric video

Input: Egocentric video of the camera wearer's day

Output: Storyboard (or video skim) summary

Potential applications of egocentric video summarization

Memory aid

Law enforcement

Mobile robot discovery

What makes egocentric data hard to summarize?

- Subtle event boundaries
- Subtle figure/ground
- Long streams of data

Prior work

Egocentric recognition

[Starner et al. 1998, Doherty et al. 2008, Spriggs et al. 2009, Jojic et al. 2010, Ren & Gu 2010, Fathi et al. 2011, Aghazadeh et al. 2011, Kitani et al. 2011, Pirsiavash & Ramanan 2012, Fathi et al. 2012,...]

Video summarization

[Wolf 1996, Zhang et al. 1997, Ngo et al. 2003, Goldman et al. 2006, Caspi et al. 2006, Pritch et al. 2007, Laganiere et al. 2008, Liu et al. 2010, Nam & Tewfik 2002, Ellouze et al. 2010,...]

- → Low-level cues, stationary cameras
- → Consider summarization as a sampling problem

Our idea: Story-driven summarization

Our idea: Story-driven summarization

Good summary captures the progress of the story

- 1. Segment video temporally into subshots
- 2. Select chain of *k* subshots that maximize both weakest link's influence and object importance

Egocentric subshot detection

Define 3 generic ego-activities:

- Train classifiers to predict these activity types
- Features based on flow and motion blur

Egocentric subshot detection

Subshot selection objective

Good summary = chain of k selected subshots in which each influences the next via some subset of key objects

$$S^* = \arg\max_{S \subset \mathcal{V}} \ \lambda_s \ \mathcal{S}(S) + \lambda_i \ \mathcal{I}(S) + \lambda_d \ \mathcal{D}(S)$$
influence importance diversity

Man wearing a blue shirt and watch in coffee shop

Yellow notepad on table

Coffee mug that cameraman drinks

 First task: watch a short clip, and describe in text the essential people or objects necessary to create a summary

Man wearing a blue shirt and watch in coffee shop

Yellow notepad on table

Coffee mug that cameraman drinks

Iphone that the camera wearer holds

Camera wearer cleaning the plates

Soup bowl

 Second task: draw polygons around any described person or object obtained from the first task in sampled frames

Generate candidate object regions for uniformly sampled frames

Egocentric features:

distance to hand

distance to frame center

frequency

Egocentric features:

distance to hand

distance to frame center

frequency

Object features:

"Object-like" appearance, motion
[Endres et al. ECCV 2010, Lee et al. ICCV 2011]

overlap w/ face detection

Region features: size, width, height, centroid

[Lee et al. CVPR 2012]

Influence criterion

 Want the k subshots that maximize the weakest link's influence, subject to coherency constraints

$$\mathcal{S}(S) = \max_{a} \min_{j=1,\dots,K-1} \sum_{o_i \in O} a_{i,j} \text{Influence}(s_j, s_{j+1} | o_i)$$

Document-document influence [Shahaf & Guestrin, KDD 2010]

Connecting the dots between news articles. D. Shahaf and C. Guestrin. In KDD, 2010.

Estimating visual influence

INFLUENCE
$$(s_i, s_j | o) = \prod_i (s_j) - \prod_i^o (s_j)$$

Captures how reachable subshot *j* is from subshot *i*, via any object *o*

[Lu & Grauman, CVPR 2013]

Estimating visual influence

 Prefer small number of objects at once, and coherent (smooth) entrance/exit patterns

Datasets

UT Egocentric (UT Ego)

[Lee et al. 2012]

Activities of Daily Living (ADL)

[Pirsiavash & Ramanan 2009]

4 videos, each 3-5 hours long, uncontrolled setting.

We use visual words and subshots.

20 videos, each 20-60 minutes, daily activities in house.

We use object bounding boxes and keyframes.

Results: Important region prediction

Good predictions

Results: Important region prediction

Failure cases

Results: Important region prediction

Failure cases

Example keyframe summary – UT Ego data

Original video (3 hours)

Our summary (12 frames)

Example keyframe summary – UT Ego data

Alternative methods for comparison

Uniform keyframe sampling (12 frames)

[Liu & Kender, 2002] (12 frames)

Example summary – UT Ego data

Ours

Baseline

Example summary – ADL data

Baseline 1

Generating storyboard maps

Augment keyframe summary with geolocations

Human subject results: Blind taste test

How often do subjects prefer our summary?

Data	Uniform sampling	Shortest-path	Object-driven Lee et al. 2012
UTE	90.0%	90.9%	81.8%
ADL	75.7%	94.6%	N/A

34 human subjects, ages 18-60 12 hours of original video Each comparison done by 5 subjects

Total 535 tasks, 45 hours of subject time

Next steps

- Personalization
- Object-centric → activity-centric?
- Additional sensors
- Evaluation for search tasks
- Summaries while streaming

Which photos were purposely taken by a human?

Incidental wearable camera photos

Intentional human taken photos

Idea: Detect "snap points"

 Unsupervised data-driven approach to detect frames in first-person video that look intentional

Example snap point predictions

Snap points can boost precision for object detection

VS.

Person detection in intentional photos

Person detection in first-person frames

Snap points can boost precision for object detection

Person detection in first-person frames

Summary

- Deluge of first-person video imminent
 - → Need **summaries** to access and browse
- First person video summarization
 - Estimate influence between events given their objects
 - Category-independent region importance prediction
 - Snap point detection with a Web prior

