

Fine-Grained Visual Comparisons with Local Learning

Kristen Grauman Aron Yu University of Texas at Austin

Visual Comparisons

Which shoe is more *sporty*?

Problem:

Fine-grained visual comparisons require accounting for subtle visual differences specific to each comparison pair.

Status Quo: Learning a Global Ranking Function

more sporty

- o fails to account for subtle differences among closely related images
- each comparison pair exhibits unique visual cues/rationales
- o visual comparisons need not be *transitive*

less sporty

Project webpage here → □\□

Our Approach

We propose a **local learning** approach for fine-grained comparisons.

- learn attribute-specific distance metrics
- o identify top K analogous neighboring pairs w.r.t. each novel pair
- train local function that tailors to the neighborhood statistics

Key Idea: having the *right* data > having *more* data

Analogous Neighboring Pairs

Detect analogous pairs based on individual similarity & paired contrast.

- o select neighboring pairs that accentuate fine-grained differences
- o take *product* of pairwise distances of individual members
- o i.e. highly analogous if both query-training couplings are similar

Learned Attribute Distance

Learn a Mahalanobis metric per attribute (similarity computation).

- o attribute similarity doesn't rely equally on each dim of feature space
- constraints → similar images be close, dissimilar images be far

UT-Zap50K (pointy)			OSR (open)	PubFig (smiling)	
vs vs			VS		VS	
М	L	No ML	ML	No ML	ML	No ML
JOE .						

Observation: Nearest *analogous* pairs most suited for local learning need not be those closest in raw feature space.

UT Zappos50K Dataset

We introduce a new large shoe dataset UT-Zap50K, consisting of **50,025** catalog images from Zappos.com.

- 4 relative attributes (open, pointy, sporty, comfort)
- o high confidence pairwise labels from mTurk workers o 6,751 ordered labels + 4,612 "equal" labels
- 4,334 twice-labeled fine-grained labels (no "equal" option)

Fine-Grained

Results: UT-Zap50K

- o FG-LocalPair: our proposed fine-grained approach
- LocalPair: our approach w/o the learned metric
- o **RandPair:** local approach with random neighbors
- Global[Parikh & Grauman 11]: status quo of learning a single global ranking function per attribute
- o **RelTree**[Li et al. 12]: non-linear relative attribute approach

Accuracy Comparison (10 iterations @ K=100)

coarser comparisons

	Open	Pointy	Sporty	Comfort
Global	87.77	89.37	91.20	89.93
RandPair	82.53	83.70	86.30	84.77
LocalPair	88.53	88.87	92.20	90.90
FG-LocalPair	90.67	90.83	92.67	92.37

fine-grained comparisons

	Open	Pointy	Sporty	Comfort
Global	60.18	59.56	62.70	64.04
RandPair	61.00	53.41	58.26	59.24
LocalPair	71.64	59.56	61.22	59.75
FG-LocalPair	74.91	63.74	64.54	62.51

Ours √ - Global 🗶

We detect subtle changes while global relies only on the overall shape and color, often leading to incorrect decisions for finegrained comparisons.

Ours 🗴 – Global 🗸

These coarser differences are sufficiently captured by a global model w/o the need for fine-grained details.

Ours 🗴 – Global 🗶

Such pairs are so fine-grained that they are difficult even for humans to make a firm consistent decision.

accuracy for the 30 hardest test pairs (according to learned metrics)

Observation:

We outperform all baselines, demonstrating strong advantage for detecting subtle differences on the harder comparisons (~20% more).

Results: PubFig & Scenes

We form supervision pairs using the category-wise comparisons \rightarrow avg. 20,000 ordered labels / attribute.

- o **Public Figures Face (PubFig):** 772 images w/ 11 attributes
- o **Outdoor Scene Recognition (OSR):** 2,688 images w/ 6 attributes

Observation: We outperform the current state of the art on 2 popular relative attribute datasets. Our gains are especially dominant on localizable attributes due to the learned metrics.