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AI and autonomous robotics

Personal photo/video collectionsSurveillance and security

Science and medicineOrganizing visual content

Gaming, HCI, Augmented Reality

Visual recognition: applications

Kristen Grauman, UT Austin



Significant recent progress in the field

Big labeled 
datasets

Deep learning

GPU technology
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Recognition benchmarks

Caltech 101 (2004), Caltech 256 (2006) PASCAL (2007-12)

ImageNet (2009)LabelMe (2007)

MS COCO (2014)

SUN (2010)

Places (2014)

BSD (2001)

Visual Genome (2016)
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How do our systems learn about the 
visual world today?

boat

dog …

…

Expensive and 
restrictive in scope
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Big picture goal: Embodied visual learning

Status quo: 

Learn from “disembodied” 
bag of labeled snapshots.

Inexpensive and 
unrestricted in scope

Our goal:

Visual learning in the 
context of acting and moving
in the world.

Kristen Grauman, UT Austin
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Talk overview

1. Learning representations 
tied to ego-motion

2. Learning representations 
from unlabeled video

3. Learning how to move 
and where to look

Towards embodied visual learning

Kristen Grauman, UT Austin



The kitten carousel experiment
[Held & Hein, 1963]

active kitten passive kitten

Key to perceptual development:
self-generated motion + visual feedback

Kristen Grauman, UT Austin



Goal: Teach computer vision system the connection:
“how I move” “how my visual surroundings change”

Our idea: Ego-motion vision

+

Ego-motion motor signals Unlabeled video

[Jayaraman & Grauman, ICCV 2015]
Kristen Grauman, UT Austin



Ego-motion vision: view prediction

After moving:

Kristen Grauman, UT Austin



Ego-motion vision for recognition

Learning this connection requires:

 Depth, 3D geometry
 Semantics
 Context

Can be learned without manual labels!

Also key to 
recognition!

Our approach: unsupervised feature learning 
using egocentric video + motor signals

[Jayaraman & Grauman, ICCV 2015]
Kristen Grauman, UT Austin



Approach idea: Ego-motion equivariance
Invariant features: unresponsive to some classes of 
transformations

Simard et al, Tech Report, ’98
Wiskott et al, Neural Comp ’02

Hadsell et al, CVPR ’06
Mobahi et al, ICML ’09

Zou et al, NIPS ’12
Sohn et al, ICML ’12

Cadieu et al, Neural Comp ’12
Goroshin et al, ICCV ’15

Lies et al, PLoS computation biology ’14
…
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Approach idea: Ego-motion equivariance
Invariant features: unresponsive to some classes of 
transformations

Invariance discards information;
equivariance organizes it. 

Equivariant features: predictably responsive to 
some classes of transformations, through simple 
mappings (e.g., linear) “equivariance map”

Kristen Grauman, UT Austin



Equivariant embedding 
organized by ego-motions

Pairs of frames related by 
similar ego-motion should 

be related by same 
feature transformation

left turn
right turn
forward

Learn

Approach idea: Ego-motion equivariance
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Unlabeled video + 

motor signals
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Equivariant embedding 
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Ego-motion equivariant feature learning

Desired: for all motions and all images ,Given:

Unsupervised training

( )

( )

Feature space

[Jayaraman & Grauman, ICCV 2015]Kristen Grauman, UT Austin



Ego-motion equivariant feature learning

Desired: for all motions and all images ,Given:

softmax loss 

Unsupervised training

Supervised training

class , and jointly trained

[Jayaraman & Grauman, ICCV 2015]Kristen Grauman, UT Austin



Results: Recognition

Learn from unlabeled car video (KITTI)

Exploit features for static scene classification 
(SUN, 397 classes)

Geiger et al, IJRR ’13

Xiao et al, CVPR ’10
Kristen Grauman, UT Austin
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+ Hadsell, Chopra, LeCun,  “Dimensionality Reduction by Learning an Invariant Mapping”, CVPR 2006
* Agrawal, Carreira, Malik, “Learning to see by moving”, ICCV 2015

Results: Recognition
Ego-equivariance for unsupervised feature learning

Pre-trained models 
available

Egomotion-equivariance induces the 
strongest representations

SUN scenes: 397 multi-class accuracy

Kristen Grauman, UT Austin



Talk overview

1. Learning representations 
tied to ego-motion

2. Learning representations 
from unlabeled video

3. Learning how to move 
and where to look

Towards embodied visual learning

Kristen Grauman, UT Austin



Learning from arbitrary
unlabeled video?

Unlabeled video 
+ ego-motion

Unlabeled video

Kristen Grauman, UT Austin



Learning from arbitrary
unlabeled video?

Unlabeled video 
+ ego-motion

Unlabeled video
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Background: Slow feature analysis
[Wiskott & Sejnowski, 2002]

Figure: Laurenz Wiskott, http://www.scholarpedia.org/article/File:SlowFeatureAnalysis-OptimizationProblem.png

Find functions g(x) that map

quickly varying input 
signal x(t)

slowly varying 
features y(t)

Kristen Grauman, UT Austin



Background: Slow feature analysis
[Wiskott & Sejnowski, 2002]

Figure: Laurenz Wiskott, http://www.scholarpedia.org/article/File:SlowFeatureAnalysis-OptimizationProblem.png

quickly varying input 
signal x(t)

slowly varying 
features y(t)

Find functions g(x) that map
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Prior work: Slow feature analysis

Wiskott et al, 2002
Hadsell et al. 2006 
Mobahi et al. 2009

Bergstra & Bengio 2009
Goroshin et al. 2013
Wang & Gupta 2015

…

(invariance)
Learn feature map such that:

Kristen Grauman, UT Austin



(invariance)

Higher order 
temporal coherence

(equivariance)

Learn feature map such that:

Our idea: Steady feature analysis

[Jayaraman & Grauman, CVPR 2016]
Kristen Grauman, UT Austin



(invariance)

(equivariance)

[Jayaraman & Grauman, CVPR 2016]

Learn feature map such that:

Our idea: Steady feature analysis

Kristen Grauman, UT Austin



Datasets
Unlabeled video Target task (few labels)

Human Motion 
Database (HMDB)

PASCAL 10 Actions

KITTI Video SUN 397 Scenes

NORB NORB 25 Objects
32 x 32 images or 96 x 96 images

Kristen Grauman, UT Austin



Results: Steady feature analysis

**Mobahi et al., Deep Learning from Temporal Coherence in Video, ICML’09 

*Hadsell et al., Dimensionality Reduction by Learning an Invariant Mapping, CVPR’06

*

**

Multi-class recognition accuracy

Kristen Grauman, UT Austin



Pre-training a representation

Unlabeled video

Labeled images
from a related domain

Few labeled images
for target taskFine-tune

Few labeled images
for target task

Supervised 
pre-training

Unsupervised 
“pre-training”

Kristen Grauman, UT Austin



Results: Can we learn more from unlabeled 
video than “related” labeled images? 

CIFAR-100 
(labeled for other 

categories)

+ HMDB
(unlabeled video)

PASCAL 
(few img labels)

Kristen Grauman, UT Austin



Results: Can we learn more from unlabeled 
video than “related” labeled images? 

Better even than providing 50,000 extra manual 
labels for auxiliary classification task!

CIFAR-100 
(labeled for other 

categories)

+ HMDB
(unlabeled video)

PASCAL 
(few img labels)

Kristen Grauman, UT Austin



Talk overview

1. Learning representations 
tied to ego-motion

2. Learning representations 
from unlabeled video

3. Learning how to move 
and where to look

Towards embodied visual learning
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Current recognition benchmarks

Caltech 101 (2004), Caltech 256 (2006) PASCAL (2007-12)

ImageNet (2009)LabelMe (2007)

MS COCO (2014)

SUN (2010)

Places (2014)

BSD (2001)

Visual Genome (2016)

Passive, disembodied snapshots at test time, too

Kristen Grauman, UT Austin



Scene recognition

Object recognition

? ? ?

? ?

Current recognition benchmarks
Passive, disembodied snapshots at test time, too

Kristen Grauman, UT Austin



Moving to recognize

Time to revisit active recognition in 
challenging settings!

Bajcsy 1985, Aloimonos 1988, Ballard 1991, Wilkes 1992, Dickinson 1997, Schiele & Crowley
1998, Tsotsos 2001, Denzler 2002, Soatto 2009, Ramanathan 2011, Borotschnig 2011, …

Kristen Grauman, UT Austin



Difficulty: unconstrained visual input

vs.

ImageNet Web images

Moving to recognize

Kristen Grauman, UT Austin



mug?
bowl?
pan?

mug

Difficulty: unconstrained visual input

Opportunity: ability to move to change input

Moving to recognize

Kristen Grauman, UT Austin



mug?
bowl?
pan?

mug

Perception Perception

Action selection

Evidence fusion

Components of active recognition

Kristen Grauman, UT Austin



Perception Action selection Evidence fusion

- Verification

- Averaging

- Bayes / Naïve Bayes

- Navigate to  a pre-
selected viewpoint

- Greedily maximize 
information gain

- Reinforcement 
learning

- Train for 1-view 
recognition

Dickinson 1997
Schiele 1998
Denzler 2002

Borotschnig 1998
Ramanathan 2011
Wu 2015
Jayaraman 2015

Paletta 2000,
Malmir 2015

Johns 2016

Paletta 2000
Denzler 2002
Ramanathan 2011
Malmir 2015

Wilkes 1992
Dickinson 1997
Schiele 1998
Denzler 2002
Soatto 2009
Ramanathan 2011
Aloimonos 2011
Borotschnig 2011
Wu 2015
Jayaraman 2015
Johns 2016

Dickinson 1997
Schiele 1998

Independent solutions for the 
three components

Prior approaches to active recognition

Kristen Grauman, UT Austin



Perception Action selection Evidence fusion

JO
IN

T 
TR

AI
N
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G

Look-ahead

FORECASTING THE EFFECTS OF ACTIONS

Multi-task training of active recognition 
components + look-ahead.

Jayaraman and Grauman, ECCV 2016

Our idea: end-to-end active recognition

Kristen Grauman, UT Austin
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[Nene 1996, Schiele 1998, Denzler 2003, Ramanathan 2011…]

Instances, turntables Custom robot setting

Experiments
How to evaluate active recognition?

Previously…

Jayaraman and Grauman, ECCV 2016
Kristen Grauman, UT Austin
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Strongly outperform traditional active 
recognition approaches.
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End-to-end active recognition: results

Jayaraman and Grauman, ECCV 2016Kristen Grauman, UT Austin



P(“Church”):
Top 3 guesses:

(0.53)
Forest
Cave

Beach

(5.00)
Street
Cave

Plaza courtyard

(37.89)
Church

Lobby atrium
Street

P(“Plaza courtyard”):
Top 3 guesses:

(6.28)
Restaurant

Train interior
Shop

(11.95)
Theater

Restaurant
Plaza courtyard

(68.38)
Plaza courtyard

Street
Theater

[Jayaraman and Grauman, ECCV 2016]

End-to-end active recognition: example

Kristen Grauman, UT Austin



T=2

Predicted 
label:

T=1 T=3

End-to-end active recognition: example

GERMS dataset: Malmir et al. BMVC 2015
[Jayaraman and Grauman, ECCV 2016]

Kristen Grauman, UT Austin



Talk overview

1. Learning representations 
tied to ego-motion

2. Learning representations 
from unlabeled video

3. Learning how to move 
and where to look

Towards embodied visual learning
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360° cameras and panoramic video

Kristen Grauman, UT Austin



Challenge of viewing 360° videos 

How to find the right direction to watch?

Control by mouse

Kristen Grauman, UT Austin



Input:     360° video
Output: natural-looking normal-field-of-view video

Task:     control the virtual camera direction

Pano2Vid Definition

x y

z

Record

x y

z

Record

x y

z

Record

x y

z

[Su et al. ACCV 2016]

New problem:
Pano2Vid automatic videography

Kristen Grauman, UT Austin



Input: 
360° Video

Output: 
normal-field-of-view 

(NFOV) Video

Virtual camera direction

New problem:
Pano2Vid automatic videography

[Su et al. ACCV 2016]Kristen Grauman, UT Austin



Our approach – AutoCam

Learn videography tendencies from unlabeled
Web videos

• Diverse capture-worthy content
• Proper composition

[Su et al. ACCV 2016]

yx

z
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φ

Ω

65.5◦

T= 5

ST-glimpses

How close?

Human-captured NFOV
videos (“HumanCam”)

Unlabeled video

Kristen Grauman, UT Austin



Example AutoCam Output 1

AutoCam
Output Video

Input 360° Video + Camera Trajectory

[Su et al. ACCV 2016]Kristen Grauman, UT Austin



AutoCam Eye-level Prior

Example AutoCam Output 2

[Su et al. ACCV 2016]Kristen Grauman, UT Austin



With 
Zooming

Without 
Zooming

Input 360° Video
+

Camera Trajectories

Example AutoCam Output 3

[Su et al. ACCV 2016]Kristen Grauman, UT Austin



Results: Quantitative evaluation

Similarity to human-selected
camera trajectories

Similarity to user-uploaded 
standard web videos

Create plausible videos by learning 
“where to look” from unlabeled video

[Su et al. ACCV 2016]Kristen Grauman, UT Austin



• Active observations for representation learning

• Explore varied space of egomotions

• Multi-sensor active recognition

• Learning where to look +/- recognition

• 360 video summaries

Next steps

Kristen Grauman, UT Austin



Summary

• Visual learning benefits from

– context of action and motion in the world

– continuous unsupervised observations 

• New ideas:

– “Embodied” feature learning via visual 
and motor signals

– Feature learning from unlabeled video 
via higher order temporal coherence

– Active policies for view selection and 
camera control

Code and pre-trained models available
http://www.cs.utexas.edu/~grauman/research/pubs.html

Ruohan
Gao

Yu-Chuan
Su

Dinesh 
Jayaraman


