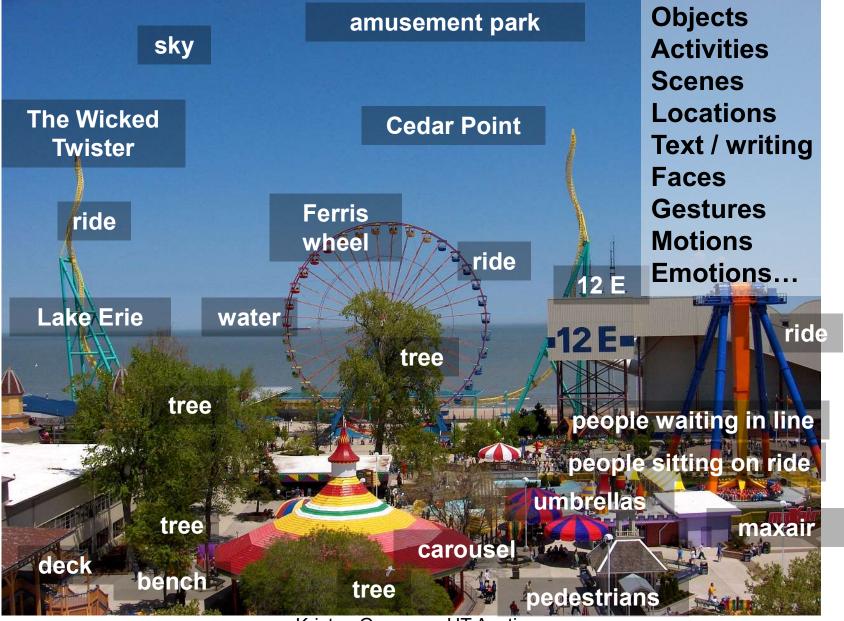
Learning How to Move and Where to Look from Unlabeled Video

Kristen Grauman Department of Computer Science University of Texas at Austin

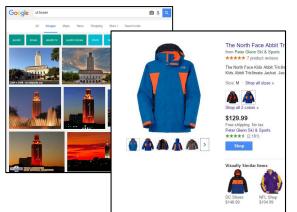
Visual recognition



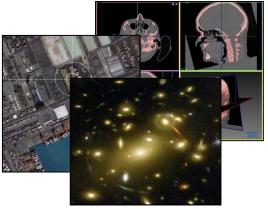
Kristen Grauman, UT Austin

Visual recognition: applications

AI and autonomous robotics

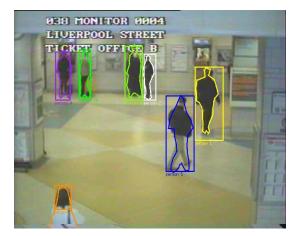


Organizing visual content



Science and medicine

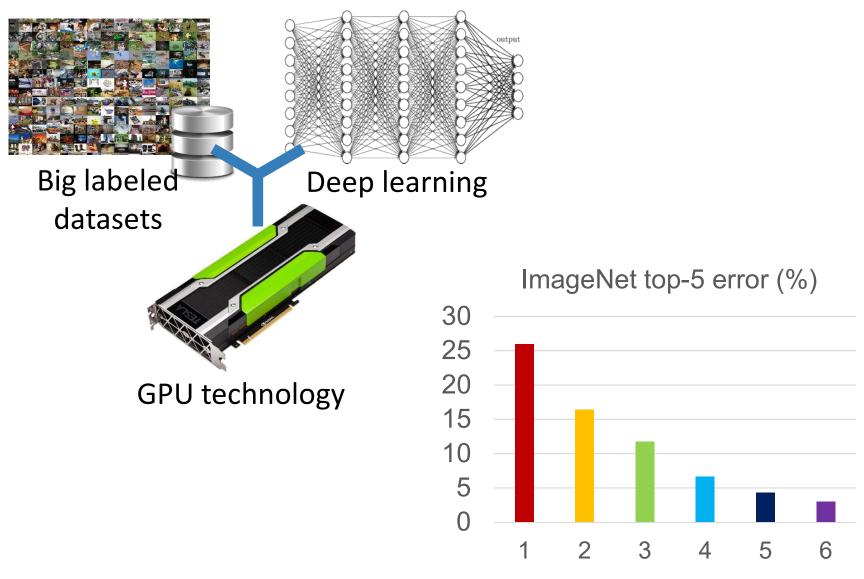
Gaming, HCI, Augmented Reality



Surveillance and security

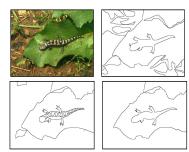
Personal photo/video collections

Significant recent progress in the field

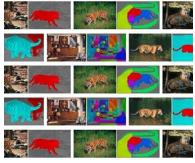


Kristen Grauman, UT Austin

Recognition benchmarks



BSD (2001)



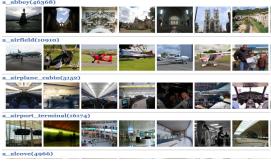
LabelMe (2007)

Caltech 101 (2004), Caltech 256 (2006)

ImageNet (2009)

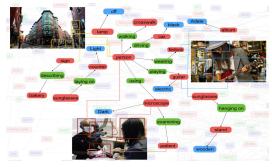
PASCAL (2007-12)

SUN (2010)



Places (2014)

MS COCO (2014) Kristen Grauman, UT Austin



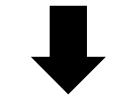
Visual Genome (2016)

How do our systems learn about the visual world today?

Big picture goal: Embodied visual learning

Status quo:

Learn from "disembodied" bag of labeled snapshots.



Our goal:

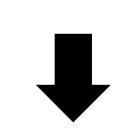
Visual learning in the context of acting and moving in the world.

Inexpensive and unrestricted in scope

Big picture goal: Embodied visual learning

Status quo:

Learn from "disembodied" bag of labeled snapshots.



Our goal:

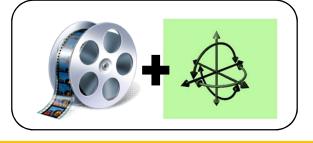
Visual learning in the context of acting and moving in the world.

Inexpensive and unrestricted in scope

Talk overview

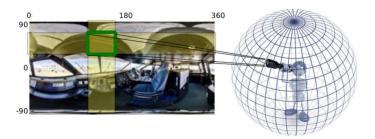
Towards embodied visual learning

1. Learning representations tied to ego-motion

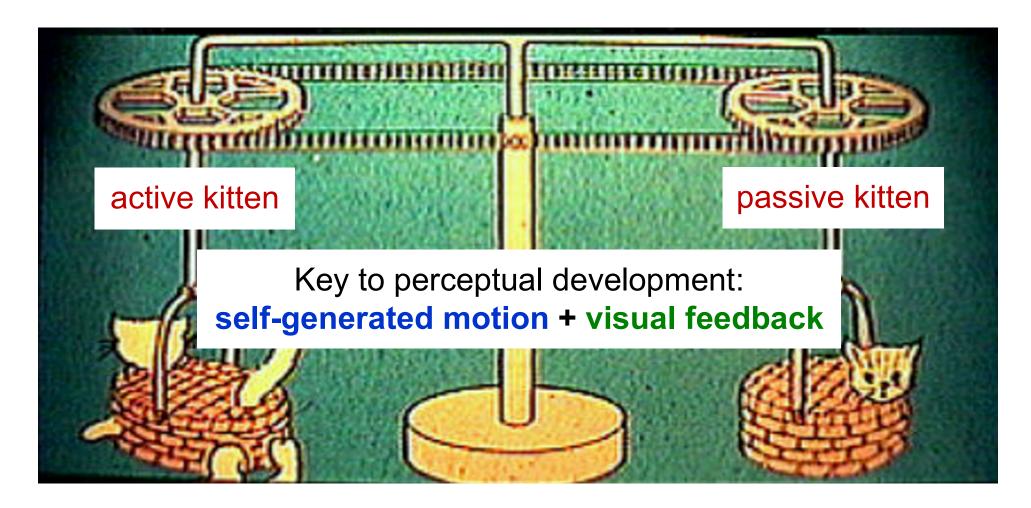


2. Learning representations from unlabeled video

3. Learning how to move and where to look

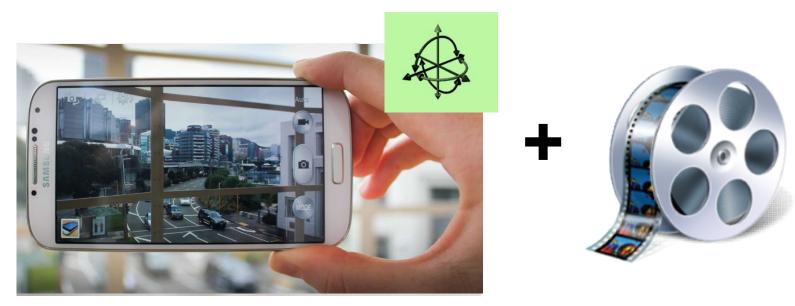


The kitten carousel experiment [Held & Hein, 1963]



Our idea: Ego-motion ↔ vision

Goal: Teach computer vision system the connection: "how I move" ↔ "how my visual surroundings change"



Ego-motion motor signals

Unlabeled video

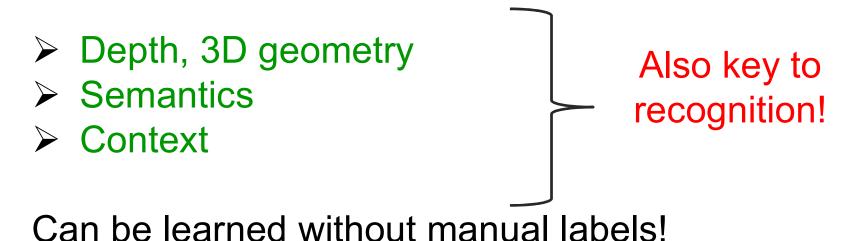
[Jayaraman & Grauman, ICCV 2015] Kristen Grauman, UT Austin

Ego-motion ↔ vision: view prediction

After moving:

Ego-motion ↔ **vision** for recognition

Learning this connection requires:



Our approach: unsupervised feature learning using egocentric video + motor signals

[Jayaraman & Grauman, ICCV 2015] Kristen Grauman, UT Austin

Invariant features: unresponsive to some classes of transformations

 $\mathbf{z}(g\mathbf{x}) \approx \mathbf{z}(\mathbf{x})$

Simard et al, Tech Report, '98 Wiskott et al, Neural Comp '02 Hadsell et al, CVPR '06 Mobahi et al, ICML '09 Zou et al, NIPS '12 Sohn et al, ICML '12 Cadieu et al, Neural Comp '12 Goroshin et al, ICCV '15 Lies et al, PLoS computation biology '14

. . .

Invariant features: unresponsive to some classes of transformations

 $\mathbf{z}(g\mathbf{x}) \approx \mathbf{z}(\mathbf{x})$

Equivariant features: *predictably* responsive to some classes of transformations, through simple mappings (e.g., linear) "equivariance map"

 $\mathbf{z}(g\mathbf{x}) \approx \mathbf{M}_{g}\mathbf{z}(\mathbf{x})$

Invariance <u>discards</u> information; equivariance <u>organizes</u> it.

Learn

Training data

Unlabeled video + motor signals

time \rightarrow

notor signa

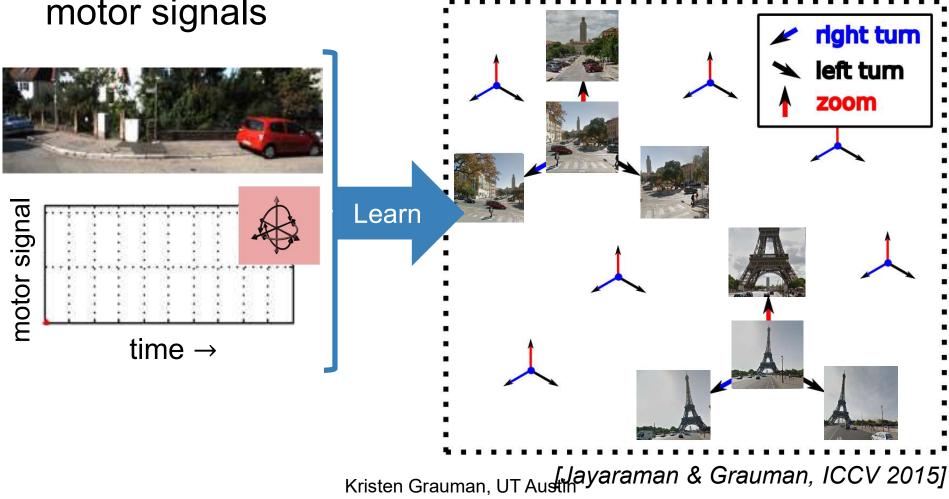
Equivariant embedding organized by ego-motions

Pairs of frames related by similar ego-motion should be related by same feature transformation

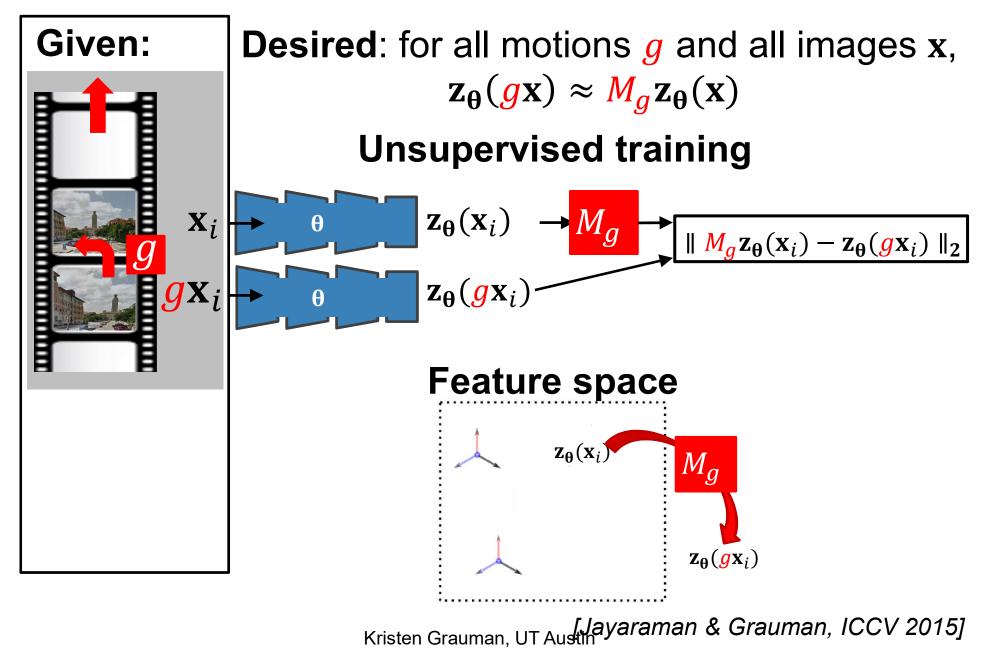
Training data

Unlabeled video + motor signals

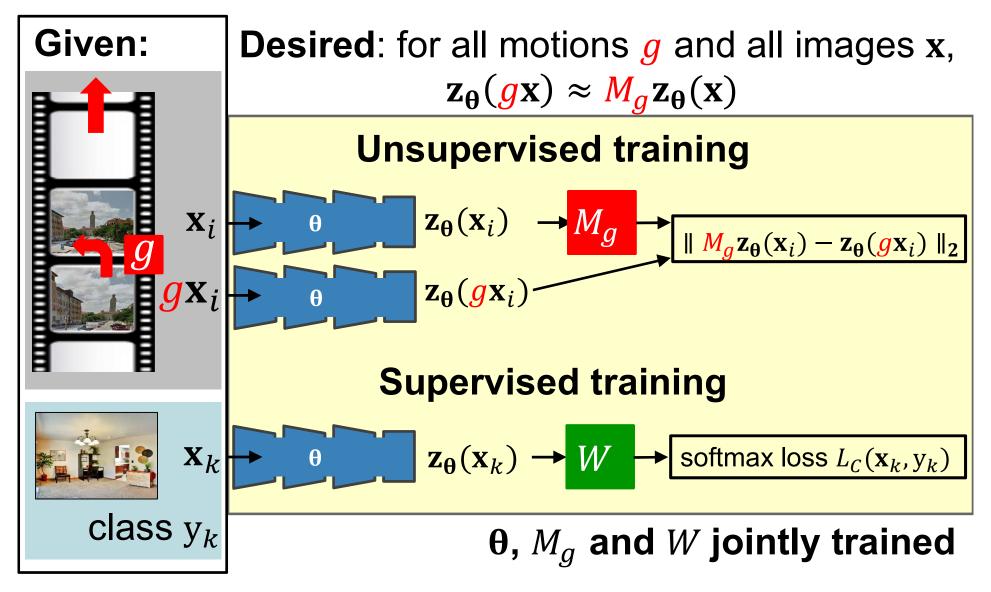
Equivariant embedding organized by ego-motions



Ego-motion equivariant feature learning



Ego-motion equivariant feature learning



Results: Recognition

Learn from *unlabeled* car video (KITTI)

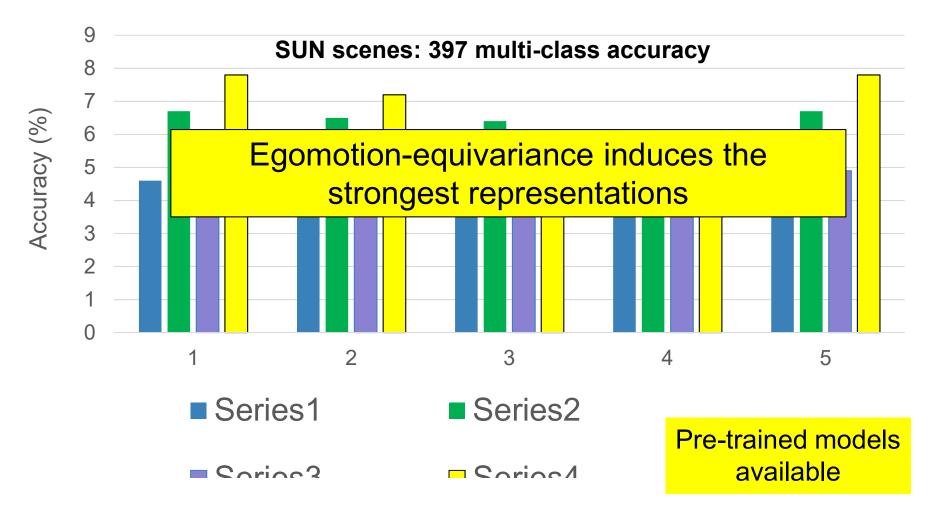
Geiger et al, IJRR '13

Exploit features for static scene classification (SUN, 397 classes)

Xiao et al, CVPR '10

Results: Recognition

Ego-equivariance for unsupervised feature learning

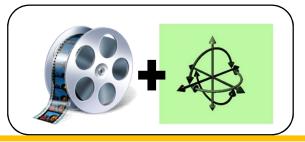


+ Hadsell, Chopra, LeCun, "Dimensionality Reduction by Learning an Invariant Mapping", CVPR 2006 * Agrawal, Carreira, Malik, "Learning to see by moving", ICCV 2015 Kristen Grauman, UT Austin

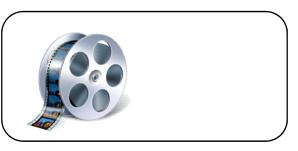
Talk overview

Towards embodied visual learning

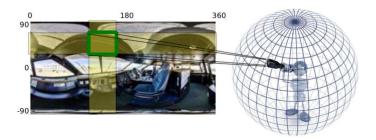
1. Learning representations tied to ego-motion



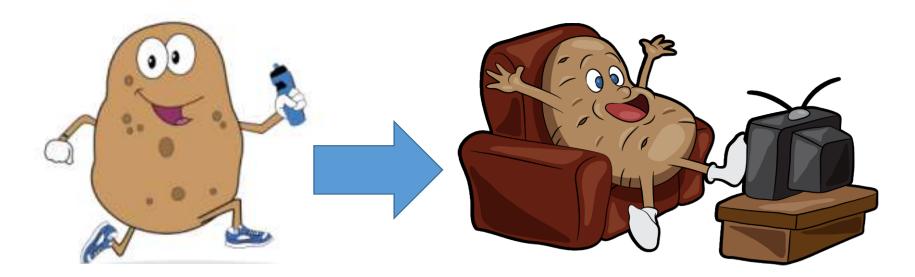
2. Learning representations from unlabeled video



3. Learning how to move and where to look

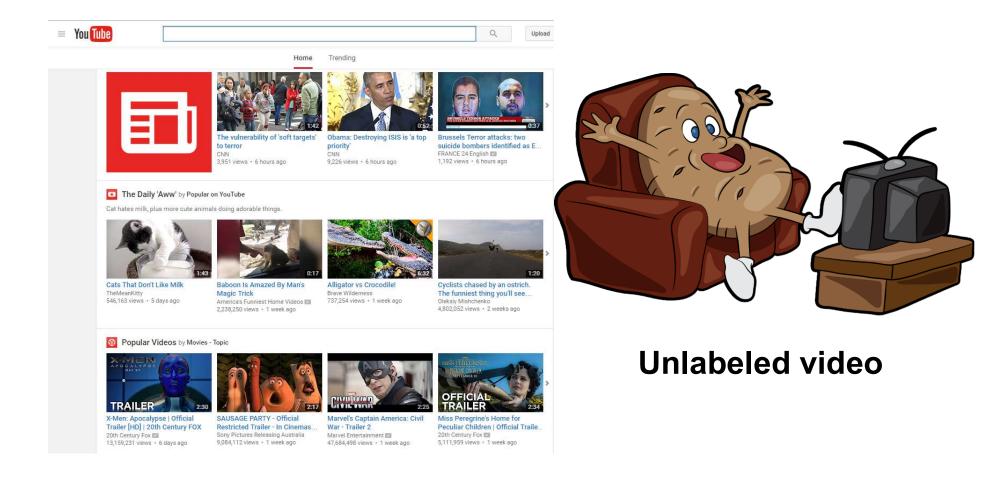


Learning from arbitrary unlabeled video?



Unlabeled video + ego-motion **Unlabeled video**

Learning from arbitrary unlabeled video?



Background: Slow feature analysis

[Wiskott & Sejnowski, 2002]

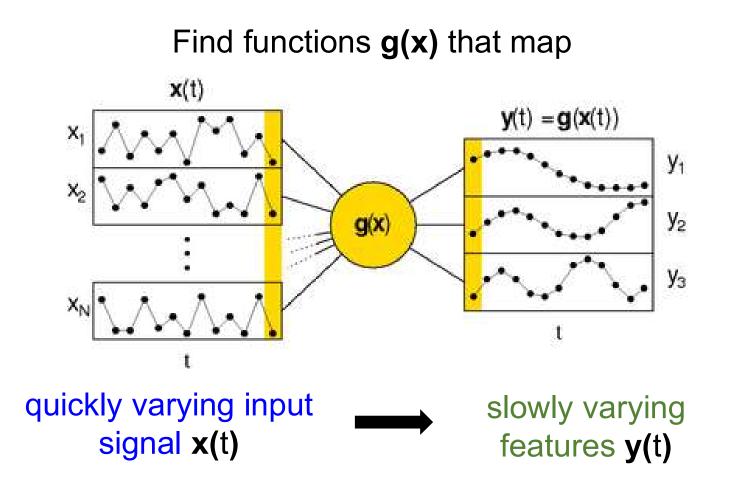


Figure: Laurenz Wiskott, http://www.scholarpedia.org/article/File:SlowFeatureAnalysis-OptimizationProblem.png Kristen Grauman, UT Austin

Background: Slow feature analysis

[Wiskott & Sejnowski, 2002]

Find functions **g(x)** that map

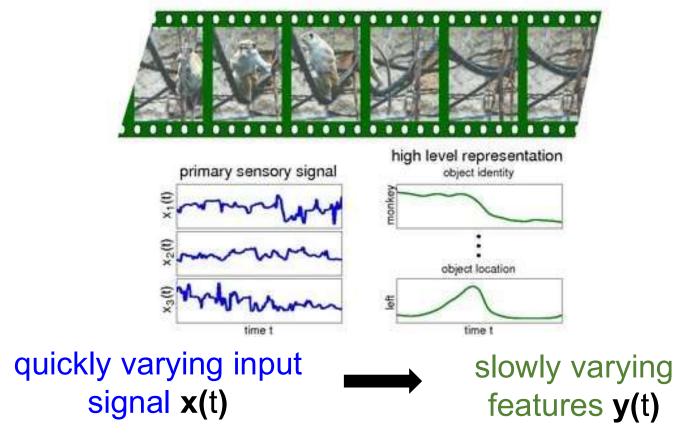
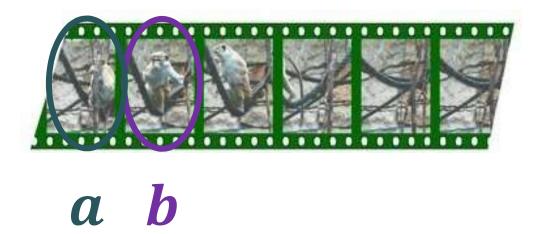


Figure: Laurenz Wiskott, http://www.scholarpedia.org/article/File:SlowFeatureAnalysis-OptimizationProblem.png Kristen Grauman, UT Austin

Prior work: Slow feature analysis



Wiskott et al, 2002 Hadsell et al. 2006 Mobahi et al. 2009 Bergstra & Bengio 2009 Goroshin et al. 2013 Wang & Gupta 2015

...

Learn feature map z(.) such that: $z(a) \approx z(b)$ (invariance)

Our idea: Steady feature analysis

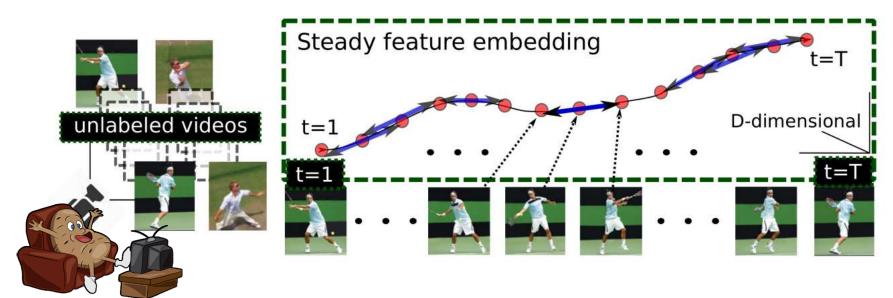
Higher order temporal coherence

Learn feature map z(.) such that:

 $z(a) \approx z(b)$ (invariance) $z(a) - z(b) \approx z(b) - z(c)$ (equivariance)

> [Jayaraman & Grauman, CVPR 2016] Kristen Grauman, UT Austin

Our idea: Steady feature analysis



Learn feature map z(.) such that:

 $z(a) \approx z(b) \qquad (invariance)$ $z(a) - z(b) \approx z(b) - z(c) \qquad (equivariance)$

[Jayaraman & Grauman, CVPR 2016] Kristen Grauman, UT Austin

Datasets

Unlabeled video

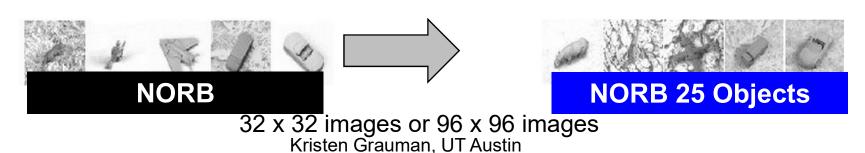
Human Motion Database (HMDB)

KITTI Video

Target task (few labels)

anechoic chamberalleywaybookbinderybowlingbookbinderybowlingbowlingaccess roadbowlingaccess road<td

SUN 397 Scenes



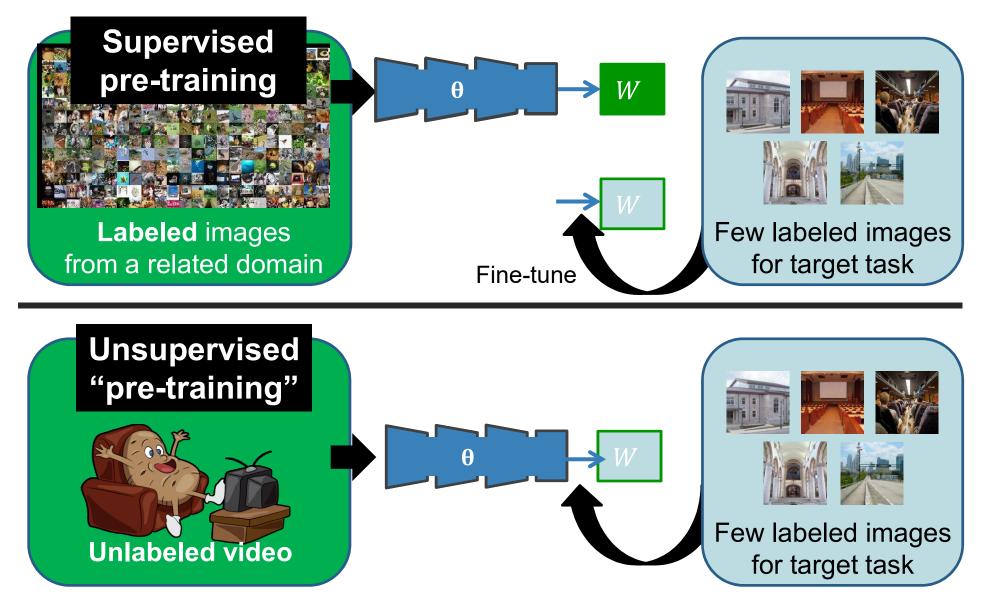
Results: Steady feature analysis

<u></u>	0 1 2 0		anechoic chamber	
Task type \rightarrow	Objects	Scenes		Actions
$Datasets \rightarrow$	NORB-NORB	KITTI→SUN		HMDB→PASCAL-10
Methods↓	[25 cls]	[397 cls]	[397 cls, top-10]	[10 cls]
random	4.00	0.25	2.52	10.00
UNREG	24.64 ± 0.85	$0.70 {\pm} 0.12$	6.10 ± 0.67	15.34±0.28
SFA-1 [30]*	37.57±0.85	1.21 ± 0.14	8.24 ± 0.25	19.26±0.45
SFA-2 [14]**	39.23±0.94	1.02 ± 0.12	6.78 ± 0.32	19.04 ± 0.24
SSFA (ours)	42.83±0.33	1.65±0.04	9.19±0.10	20.95±0.13

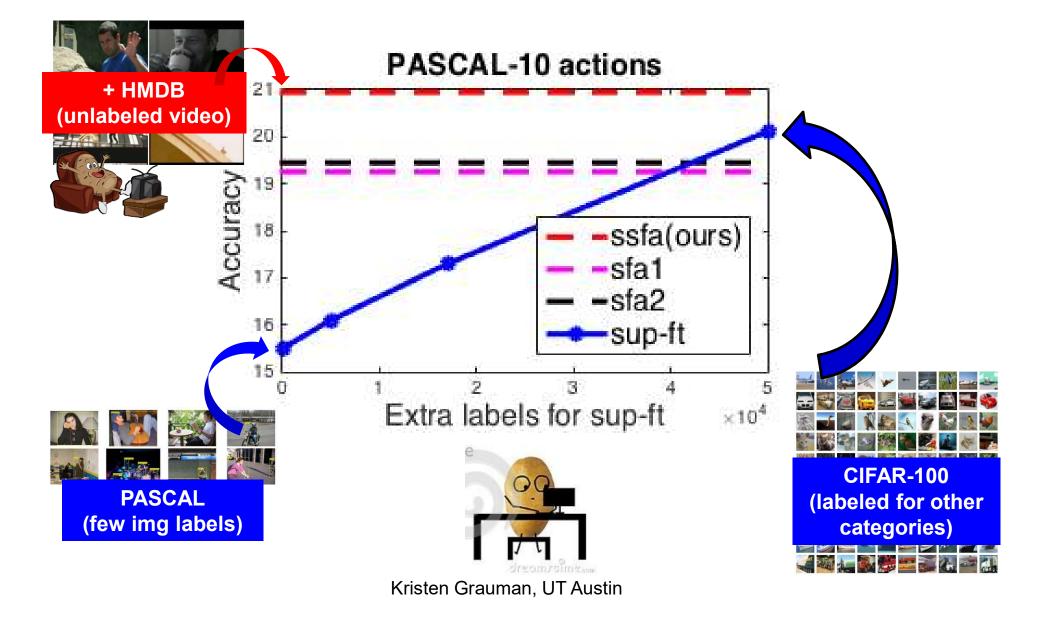
Multi-class recognition accuracy

*Hadsell et al., Dimensionality Reduction by Learning an Invariant Mapping, CVPR'06 **Mobahi et al., Deep Learning from Temporal Coherence in Video, ICML'09 Kristen Grauman, UT Austin

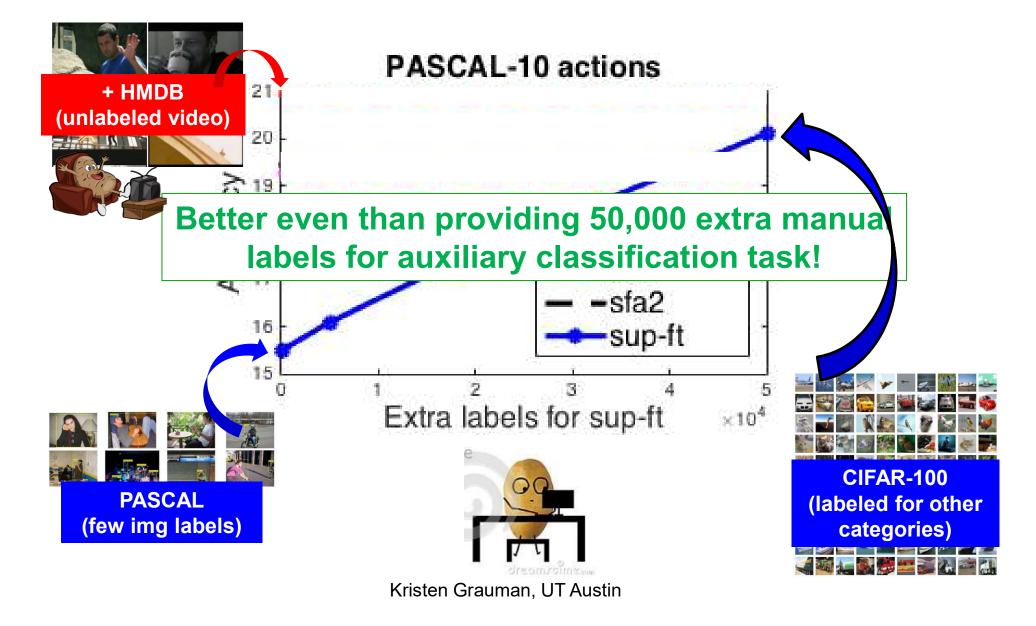
Pre-training a representation



Results: Can we learn *more* from unlabeled video than "related" labeled images?



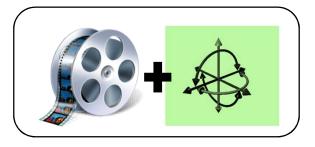
Results: Can we learn *more* from unlabeled video than "related" labeled images?



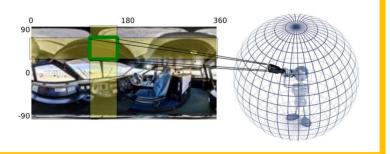
Talk overview

Towards embodied visual learning

- 1. Learning representations tied to ego-motion
- 2. Learning representations from unlabeled video

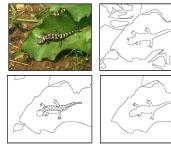


3. Learning how to move and where to look



Current recognition benchmarks

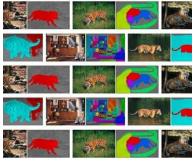
Passive, disembodied snapshots at test time, too



BSD (2001)

Caltech 101 (2004), Caltech 256 (2006)

PASCAL (2007-12)

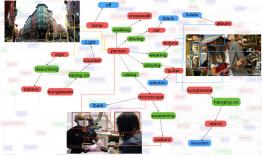


LabelMe (2007)

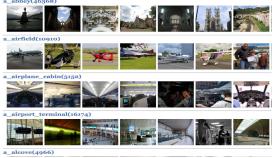
ImageNet (2009)

Kristen Grauman, (2914)

SUN (2010)



Visual Genome (2016)



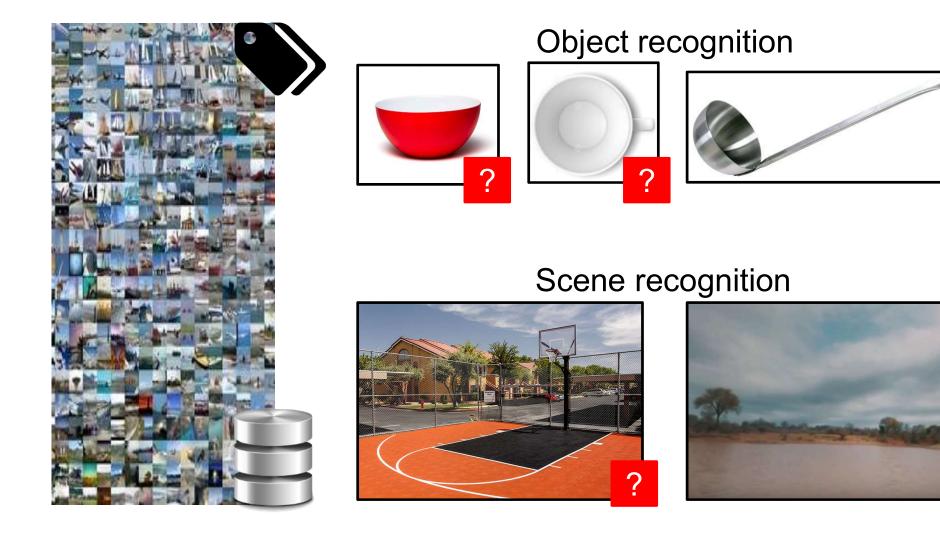
Places (2014)

Current recognition benchmarks

Passive, disembodied snapshots at *test* time, too

?

?



Moving to recognize

Time to revisit active recognition in challenging settings!

Bajcsy 1985, Aloimonos 1988, Ballard 1991, Wilkes 1992, Dickinson 1997, Schiele & Crowley 1998, Tsotsos 2001, Denzler 2002, Soatto 2009, Ramanathan 2011, Borotschnig 2011, ...

Moving to recognize

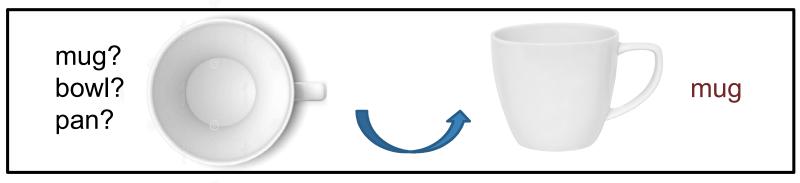
Difficulty: unconstrained visual input

ImageNet Web images Kristen Grauman, UT Austin

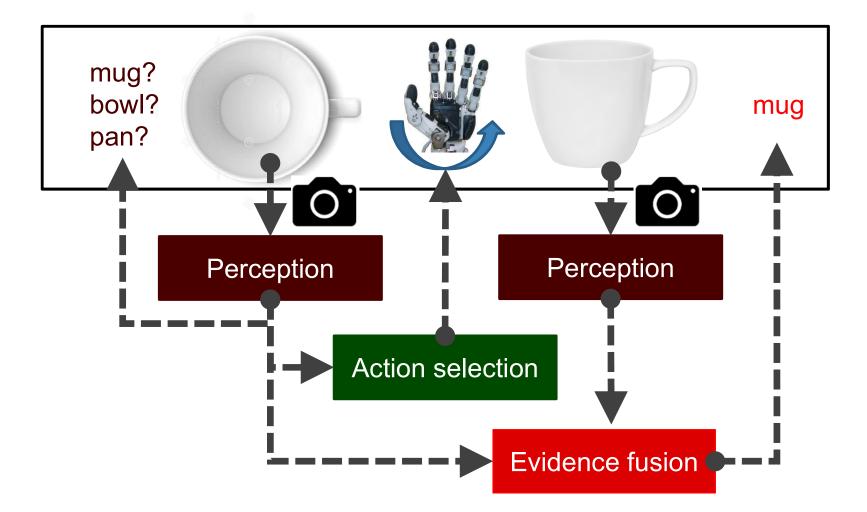
Moving to recognize

Difficulty: unconstrained visual input

Opportunity: ability to move to change input



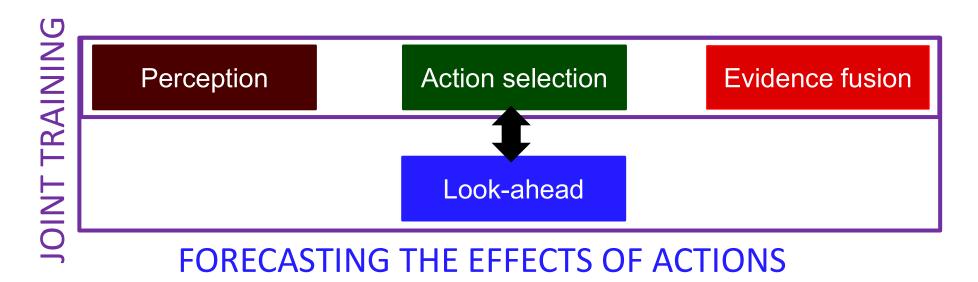
Components of active recognition



Prior approaches to active recognition

Perception	Action selection	Evidence fusion
- Train for 1-view recognition Wilkes 1992 Dickinson 1997	- Navigate to a pre- selected viewpoint Dickinson 1997 Schiele 1998	Verification Dickinson 1997 Schiele 1998
Schiele Denzler Soatto 2 Ramanatnan 2011 Aloimonos 2011 Borotschnig 2011 Wu 2015 Jayaraman 2015 Johns 2016	 Dendent solutions for three components Borotschnig 1998 Ramanathan 2011 Wu 2015 Jayaraman 2015 Reinforcement learning Paletta 2000, Malmir 2015 Kristen Grauman, UT Austin 	r the Bayes / Naïve Bayes Paletta 2000 Denzler 2002 Ramanathan 2011 Malmir 2015

Our idea: end-to-end active recognition



Multi-task training of active recognition components + look-ahead.

Jayaraman and Grauman, ECCV 2016

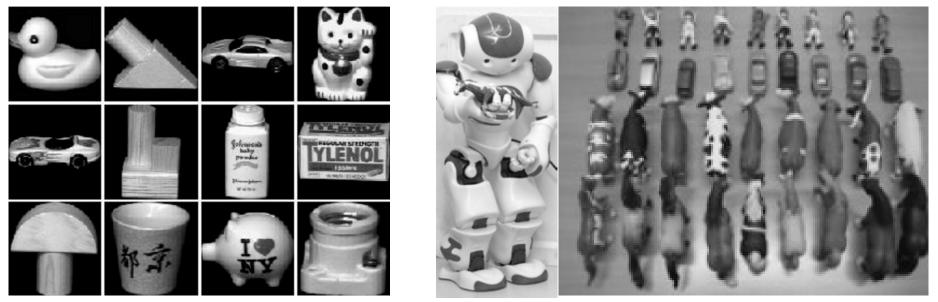
Experiments

How to evaluate active recognition?

Previously...

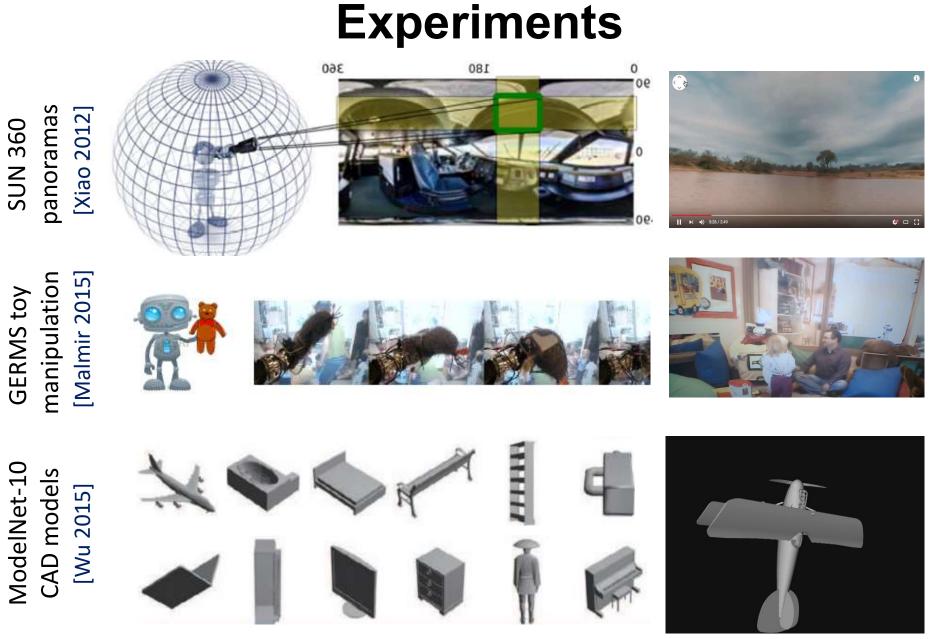
Instances, turntables

Custom robot setting



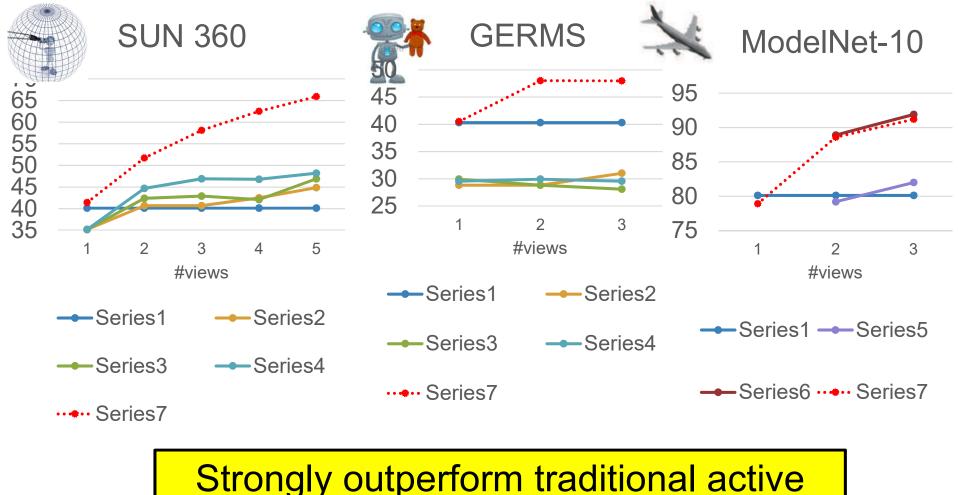
[Nene 1996, Schiele 1998, Denzler 2003, Ramanathan 2011...]

Jayaraman and Grauman, ECCV 2016



Jayaraman and Grauman, ECCV 2016 Kristen Grauman, UT Austin

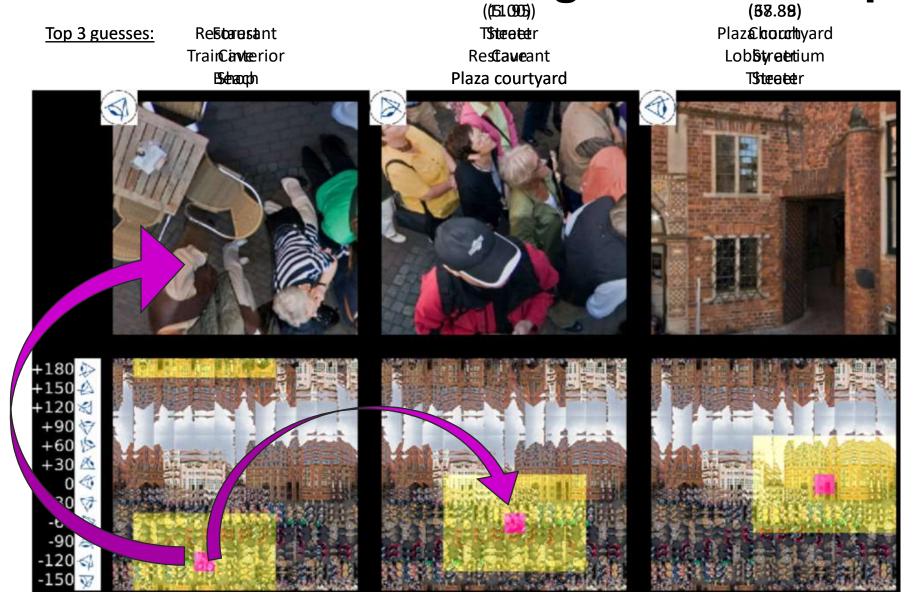
End-to-end active recognition: results



recognition approaches.

Kristen Grauman, UT Austin and Grauman, ECCV 2016

End-to-end active recognition: example



Kristen Grauman, UT Austin and Grauman, ECCV 2016]

End-to-end active recognition: example

T=1

T=2

T=3

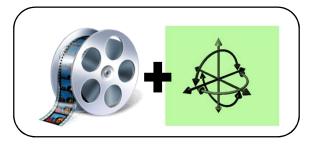
GERMS dataset: Malmir et al. BMVC 2015

[Jayaraman and Grauman, ECCV 2016] Kristen Grauman, UT Austin

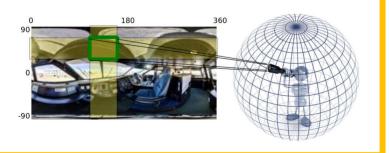
Talk overview

Towards embodied visual learning

- 1. Learning representations tied to ego-motion
- 2. Learning representations from unlabeled video



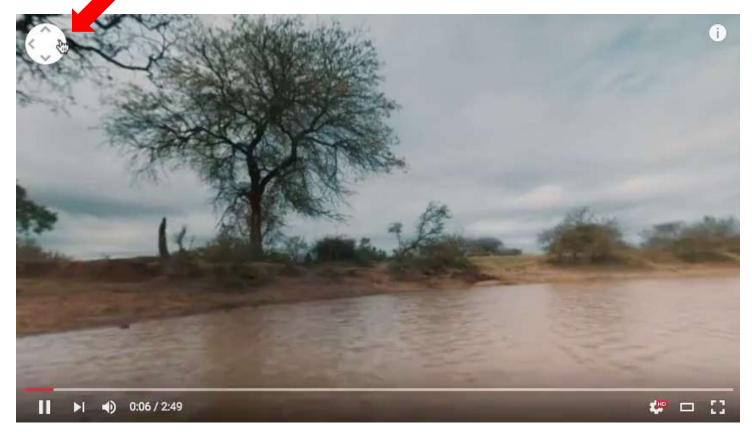
3. Learning how to move and where to look



360° cameras and panoramic video

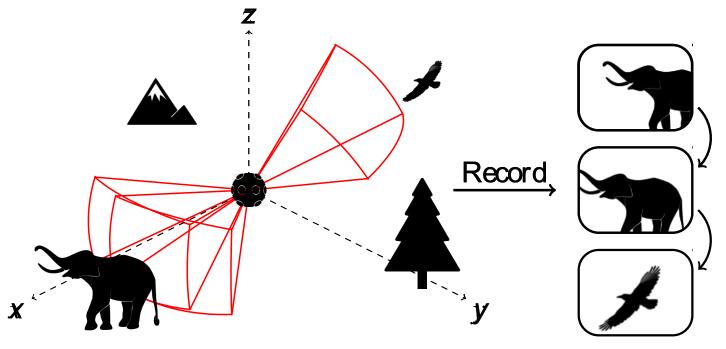
Challenge of viewing 360° videos

Control by mouse



How to find the right direction to watch?

New problem: Pano2Vid automatic videography



Pano2Vid Definition

Input: 360° video

Output: natural-looking normal-field-of-view video

Task: control the virtual camera direction

Kristen Grauman, UT Austin

New problem: Pano2Vid automatic videography

Virtual camera direction

Input: 360° Video

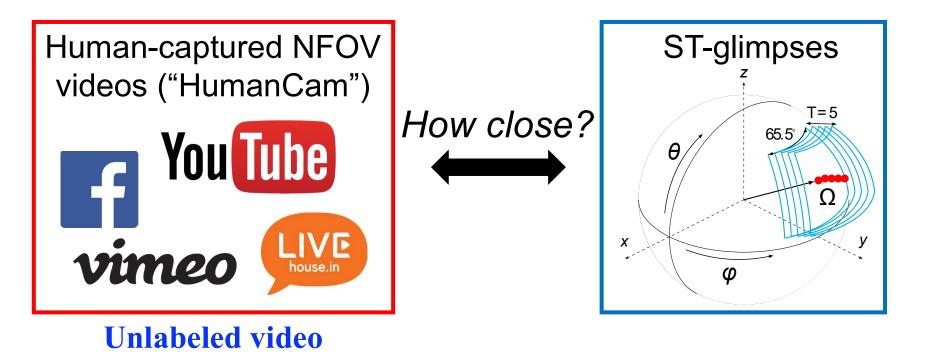
Output: normal-field-of-view (NFOV) Video

Kristen Grauman, UT Austin

Our approach – AutoCam

Learn videography tendencies from unlabeled Web videos

- Diverse capture-worthy content
- Proper composition



Kristen Grauman, UT Austin

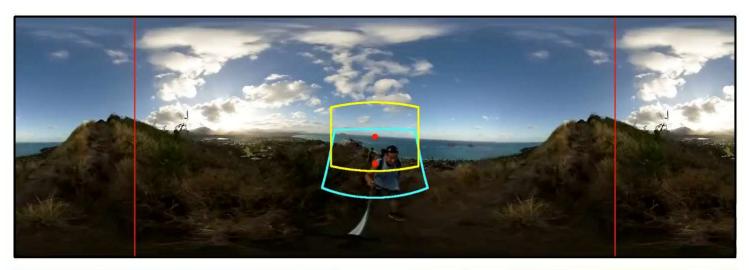
Example AutoCam Output 1

Input 360° Video + Camera Trajectory

AutoCam Output Video

Kristen Grauman, UT Austin

Example AutoCam Output 2

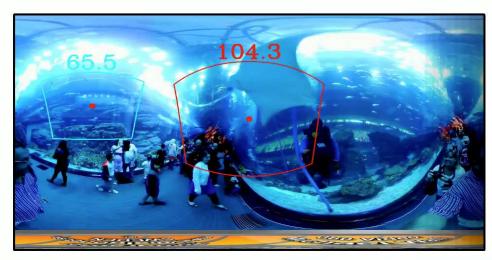


AutoCam

Eye-level Prior

Kristen Grauman, UT Austin

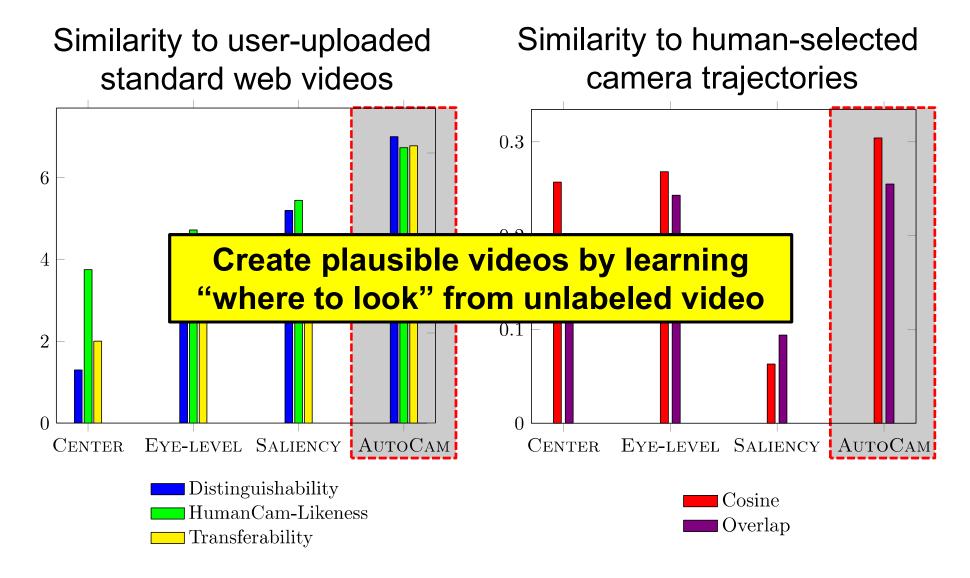
Example AutoCam Output 3



Input 360° Video + Camera Trajectories

With Zooming Kristen Grauman, UT Austin Without Zooming [Su et al. ACCV 2016]

Results: Quantitative evaluation



Next steps

- Active observations for representation learning
- Explore varied space of egomotions
- Multi-sensor active recognition
- Learning where to look +/- recognition
- 360 video summaries

Summary

- Visual learning benefits from
 - context of action and motion in the world
 - continuous unsupervised observations
- New ideas:
 - "Embodied" feature learning via visual and motor signals
 - Feature learning from unlabeled video via higher order temporal coherence
 - Active policies for view selection and camera control

http://www.cs.utexas.edu/~grauman/research/pubs.html

Dinesh Jayaraman

Yu-Chuan Su

Gao