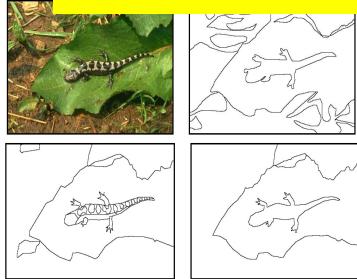


Learning egocentric policies for where to look

Kristen Grauman
Department of Computer Science
University of Texas at Austin

Human-taken photos

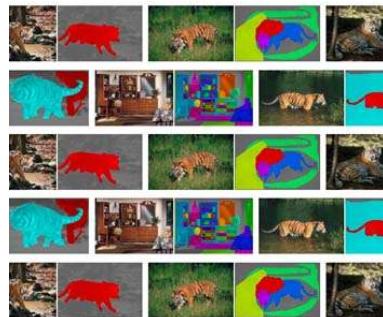
A well-framed, well-curated moment in time



BSD (2001)

Caltech 101 (2004), Caltech 256 (2006)

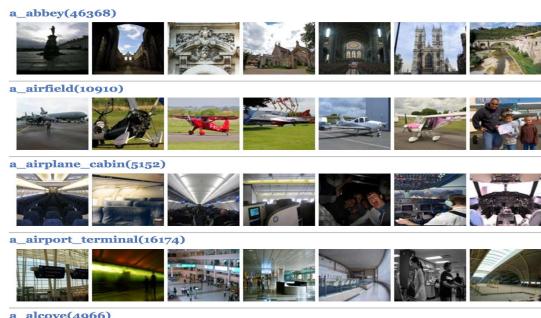
PASCAL (2007-12)



LabelMe (2007)

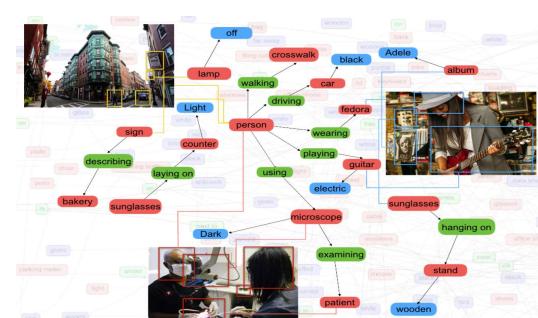
ImageNet (2009)

SUN (2010)



Places (2014)

MS COCO (2014)



Visual Genome (2016)

Passively-captured video

A tangle of relevant and irrelevant information

First-person video

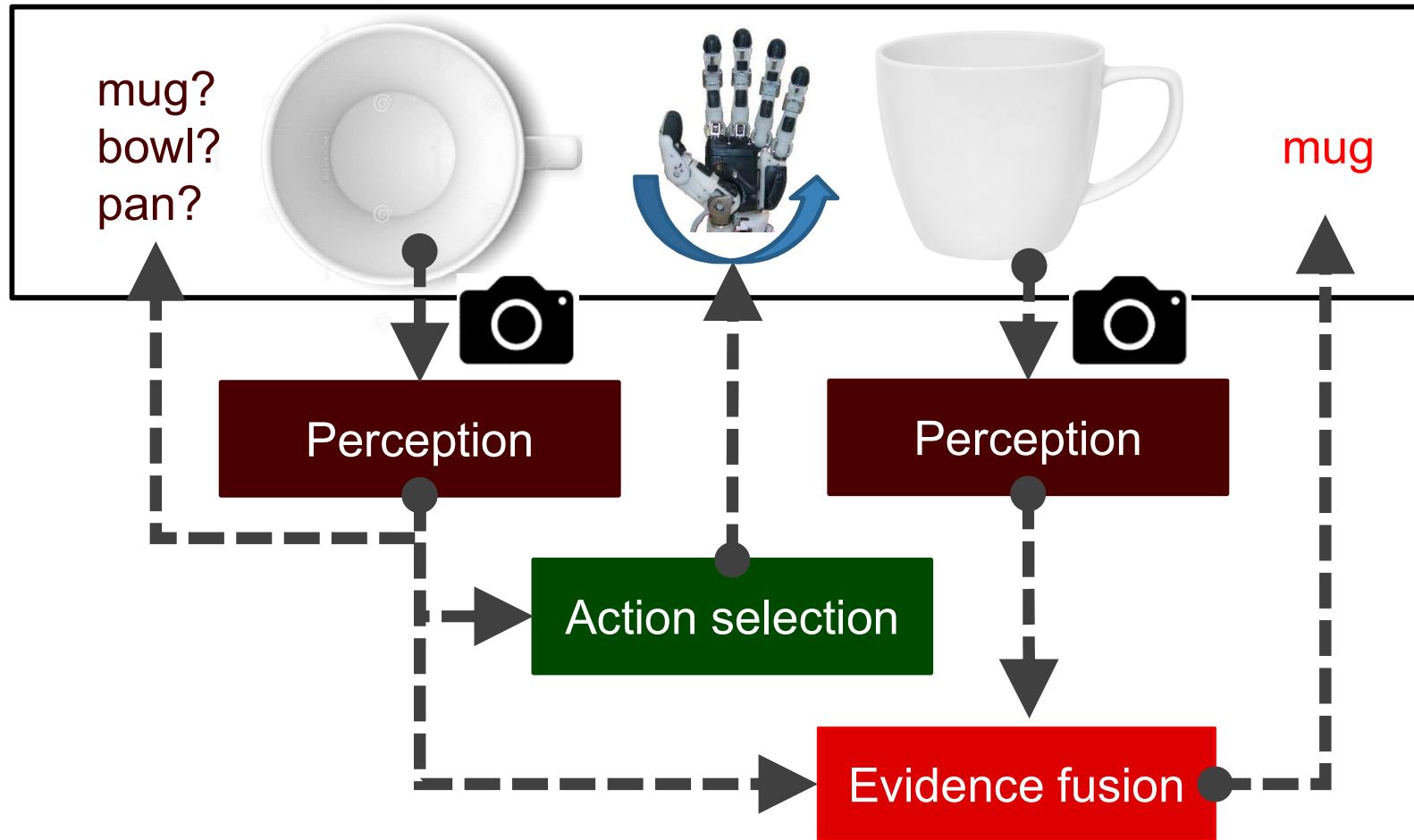
360 video

This talk

Egocentric policies for where to look

1. **Where to look** for object/scene recognition?
Intelligent view selection and manipulations
2. **Where to look** when dynamically exploring?
Learning to look around for active exploration
3. **Where to look** in a wide field of view video?
Automatic cinematography in 360 video

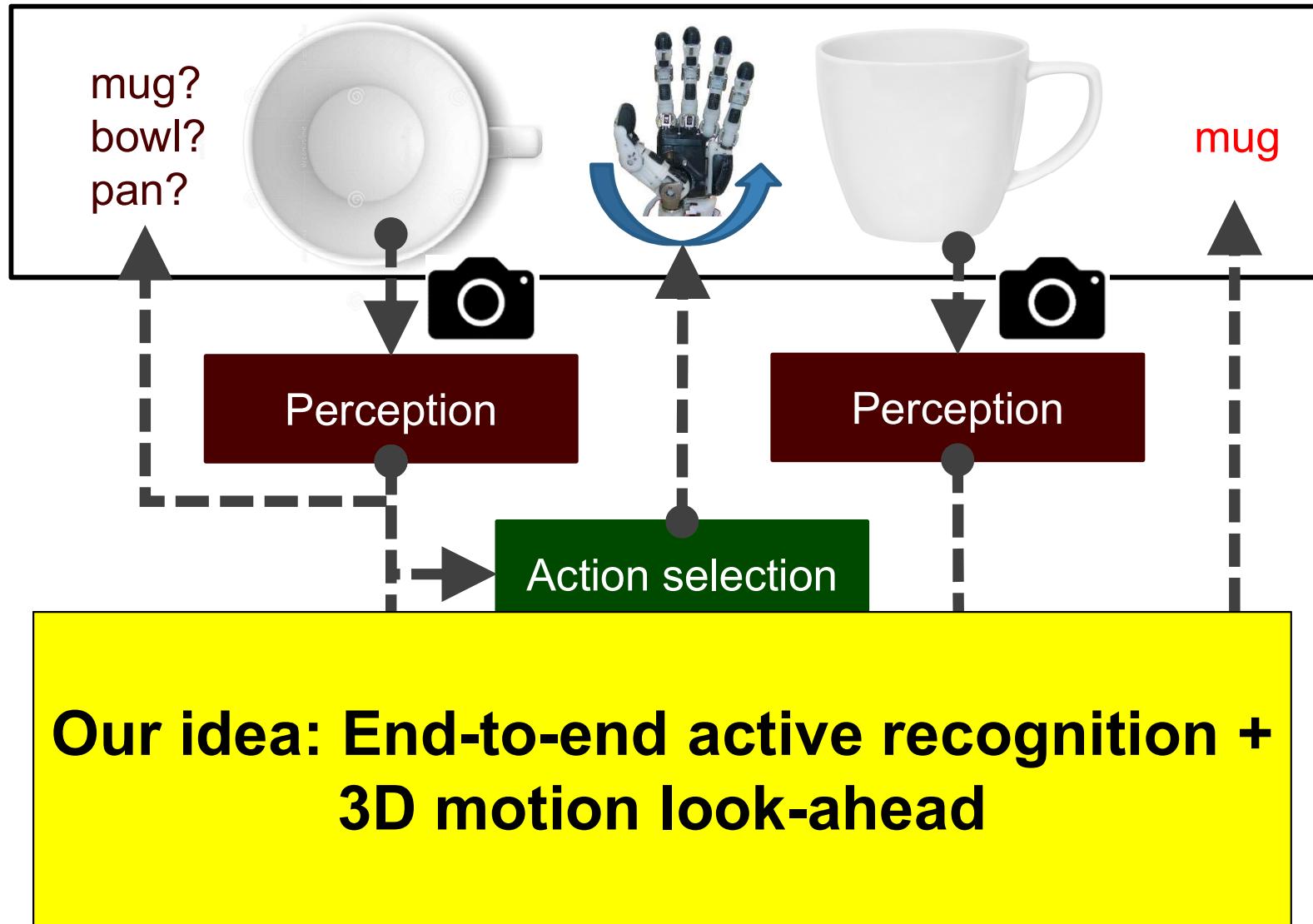
Actively moving to recognize



Bajcsy 1985, Aloimonos 1988, Ballard 1991, Wilkes 1992, Dickinson 1997, Schiele & Crowley 1998, Tsotsos 2001, Denzler 2002, Soatto 2009, Ramanathan 2011, Borotschnig 2011, ...

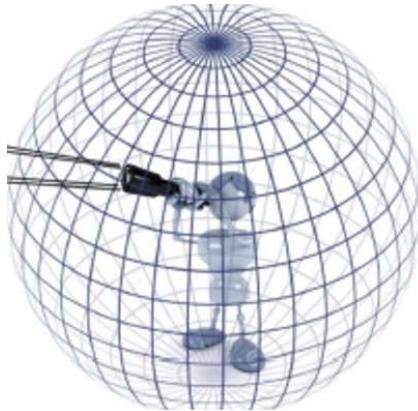
Jayaraman and Grauman, ECCV 2016

Actively moving to recognize



End-to-end active recognition: tasks

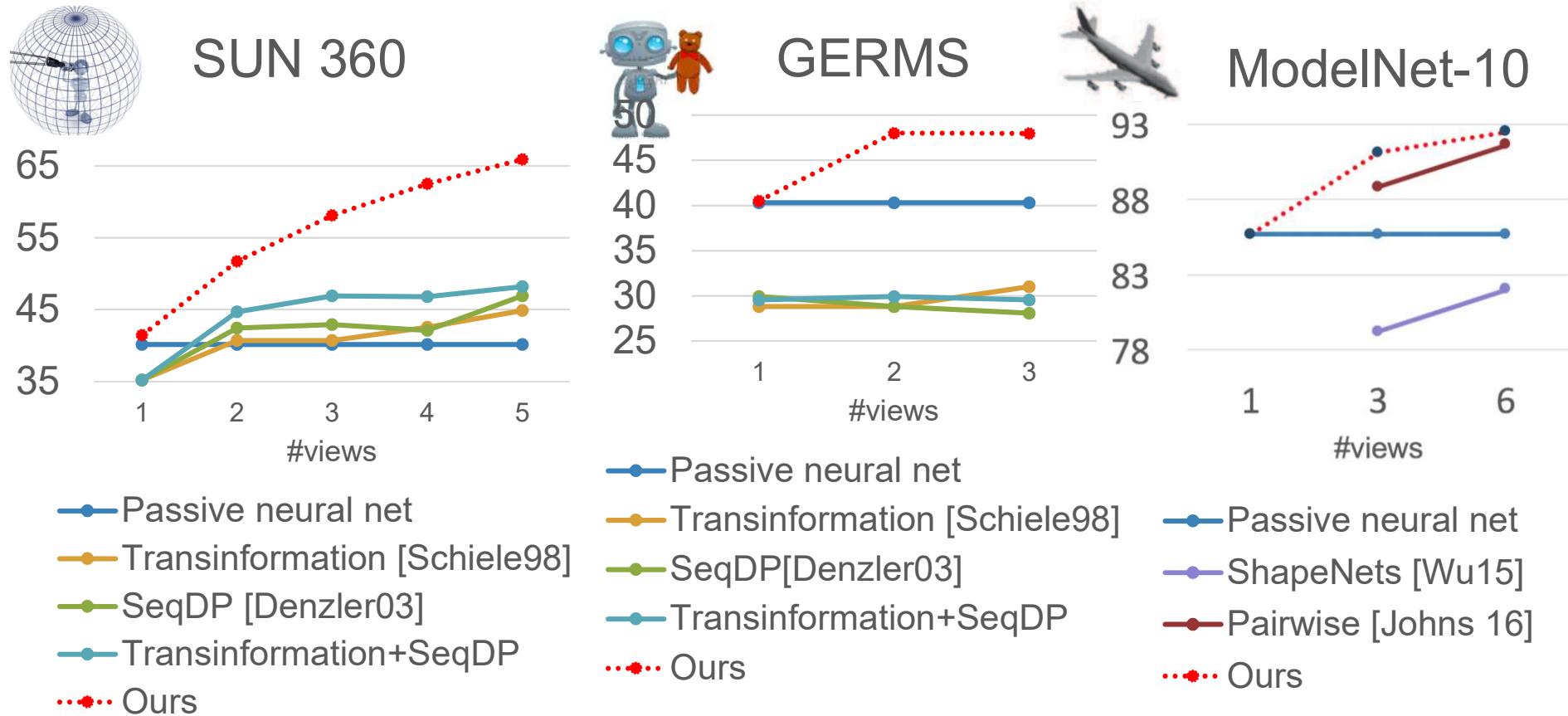
1. Look around scene



2. Manipulate object

3. Move around object

End-to-end active recognition: results



Faster recognition via intelligent view selection

End-to-end active recognition: example

[Jayaraman and Grauman, ECCV 2016]

End-to-end active recognition: example

Predicted
label:

T=1

T=2

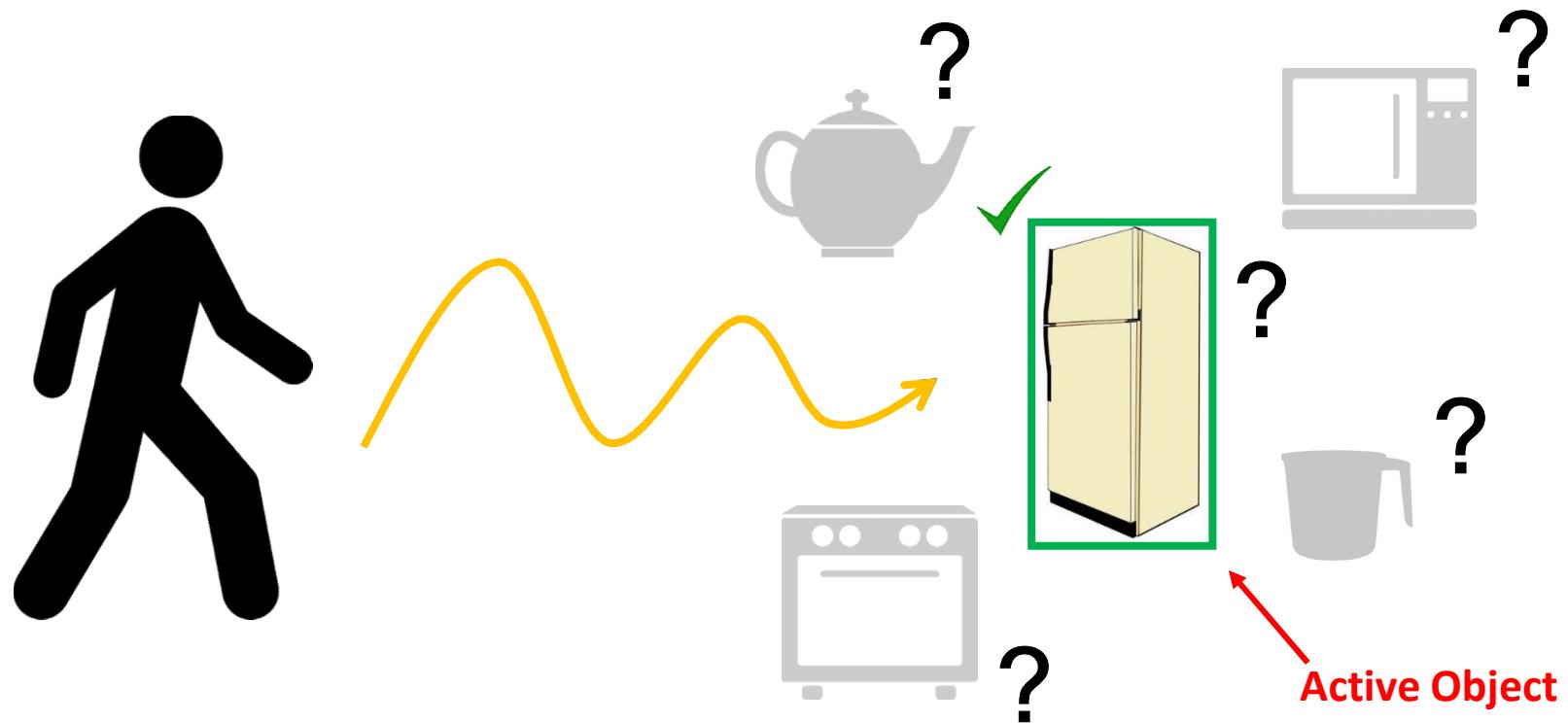
T=3

GERMS dataset: Malmir et al. BMVC 2015

[Jayaraman and Grauman, ECCV 2016]

Next-active-object prediction

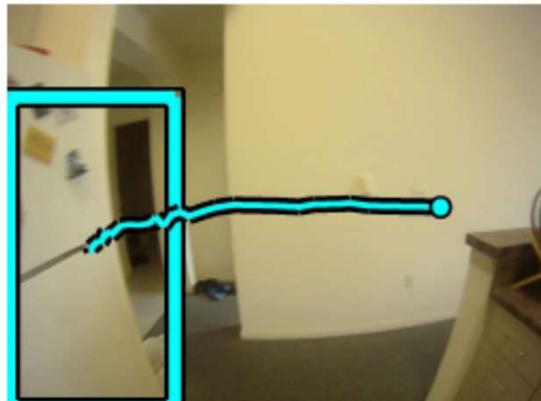
What object will the camera wearer interact with next?



Next-active-object prediction

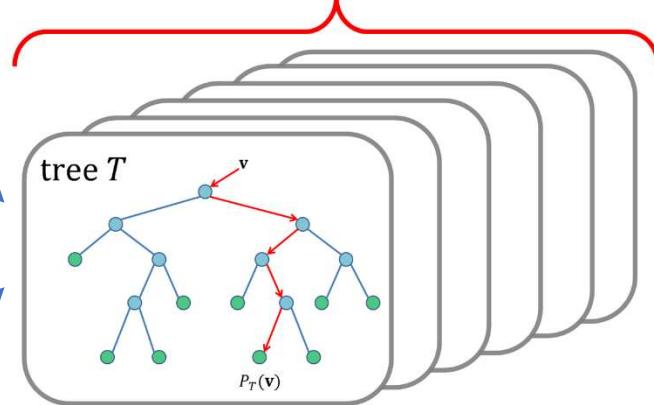
Approach: learn properties of active object trajectories

Active Trajectory



Passive Trajectory

Random Decision Forest



Active

Passive

Next-active-object prediction

Next Active Object Prediction
from Egocentric Videos
<http://iplab.dmi.unict.it/NextActiveObjectPrediction>

SUCCESS EXAMPLES

object class

positive predictions

(score > 0.5)

object class

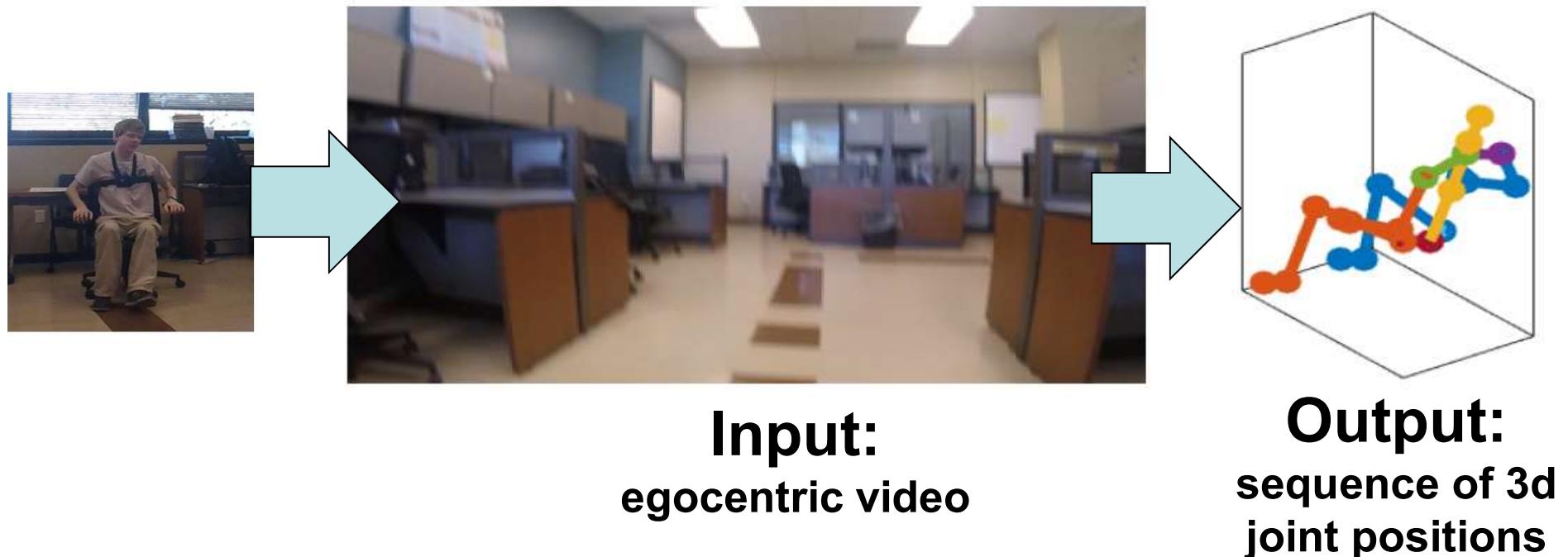
negative predictions

(score <= 0.5)

discarded objects

Egomotion and implied body pose

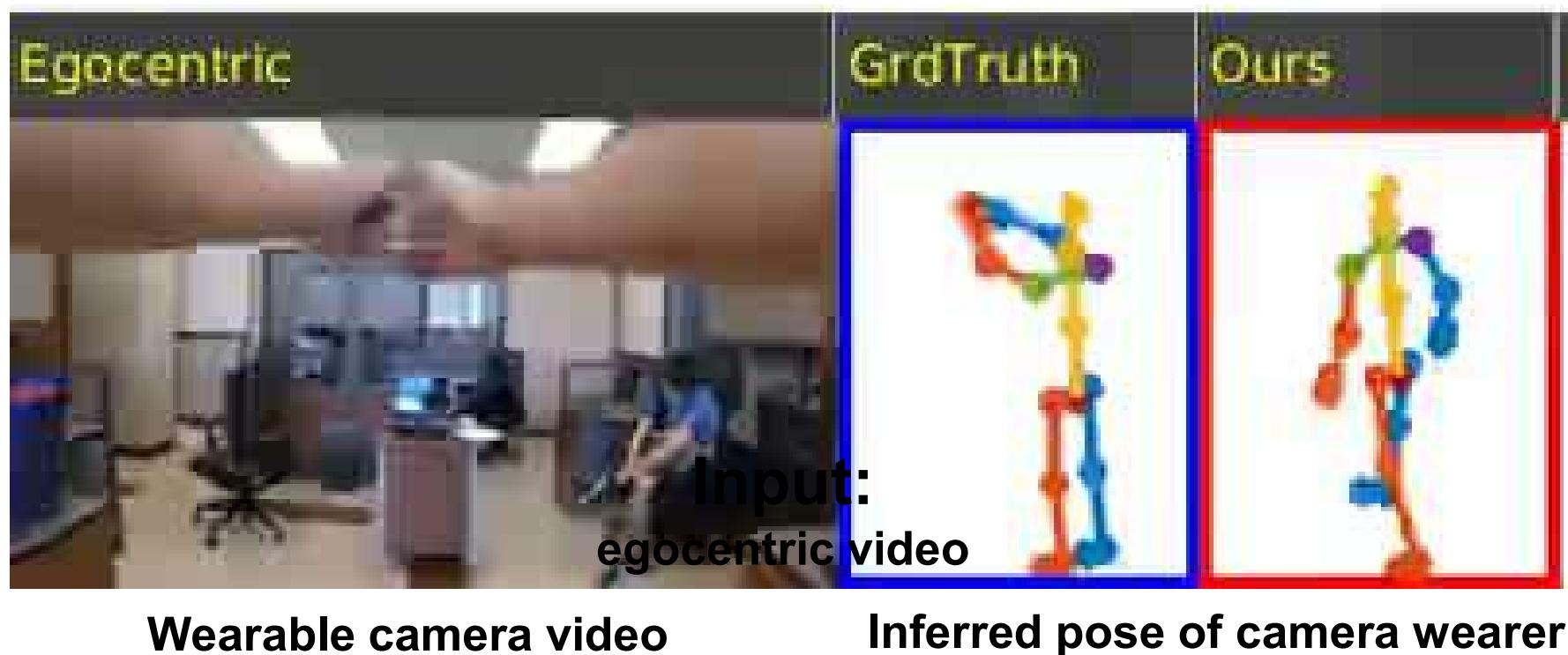
Learn relationship between egocentric scene motion and 3D human body pose



[Jiang & Grauman, CVPR 2017]

Egomotion and implied body pose

Learn relationship between egocentric scene motion and 3D human body pose



[Jiang & Grauman, CVPR 2017]

This talk

Egocentric policies for where to look

1. **Where to look** for object/scene recognition?
Intelligent view selection and manipulations

2. **Where to look** when dynamically exploring?
Learning to look around for active exploration

3. **Where to look** in a wide field of view video?
Automatic cinematography in 360 video

Goal: Learn to “look around”

recognition

task predefined

reconnaissance

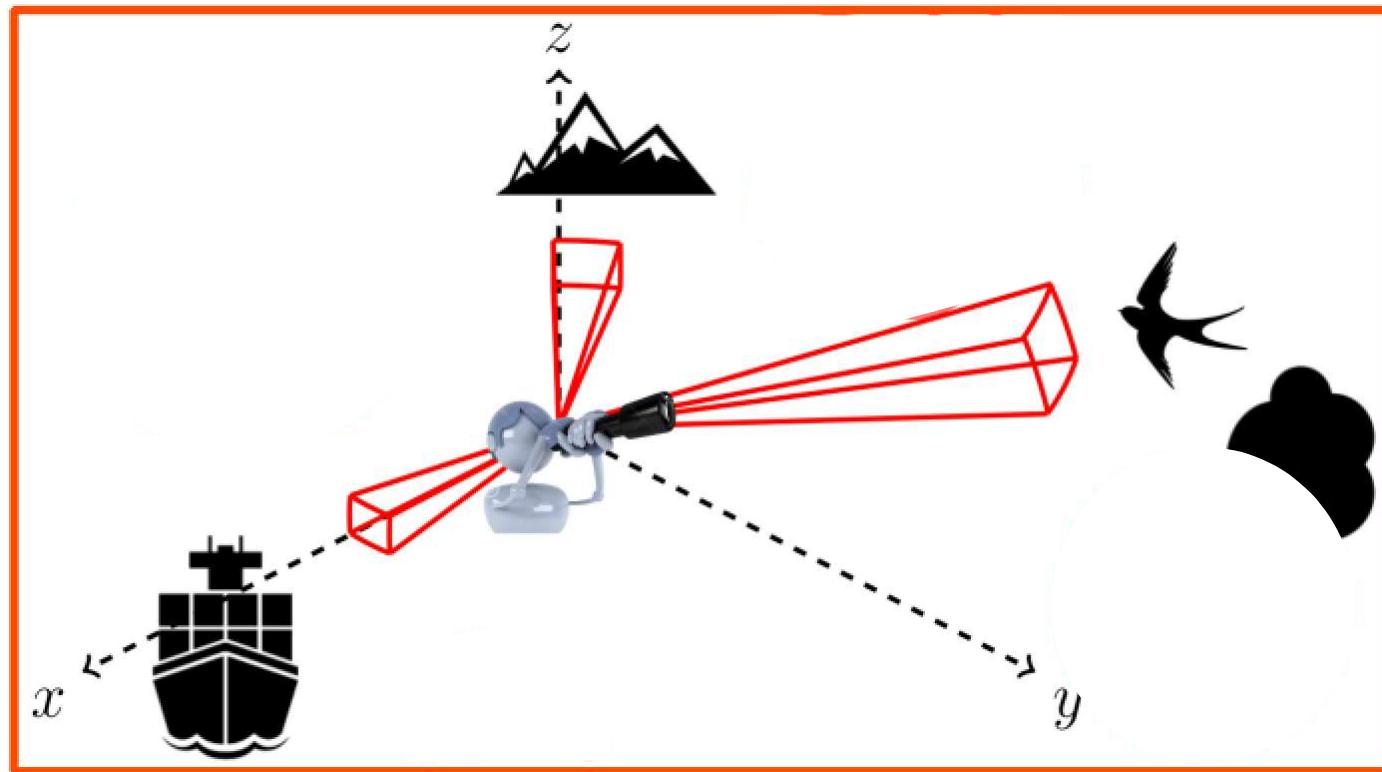
task unfolds dynamically

search and rescue

Can we learn **look-around policies** for visual agents that are curiosity-driven, exploratory, and generic?

Key idea: Active observation completion

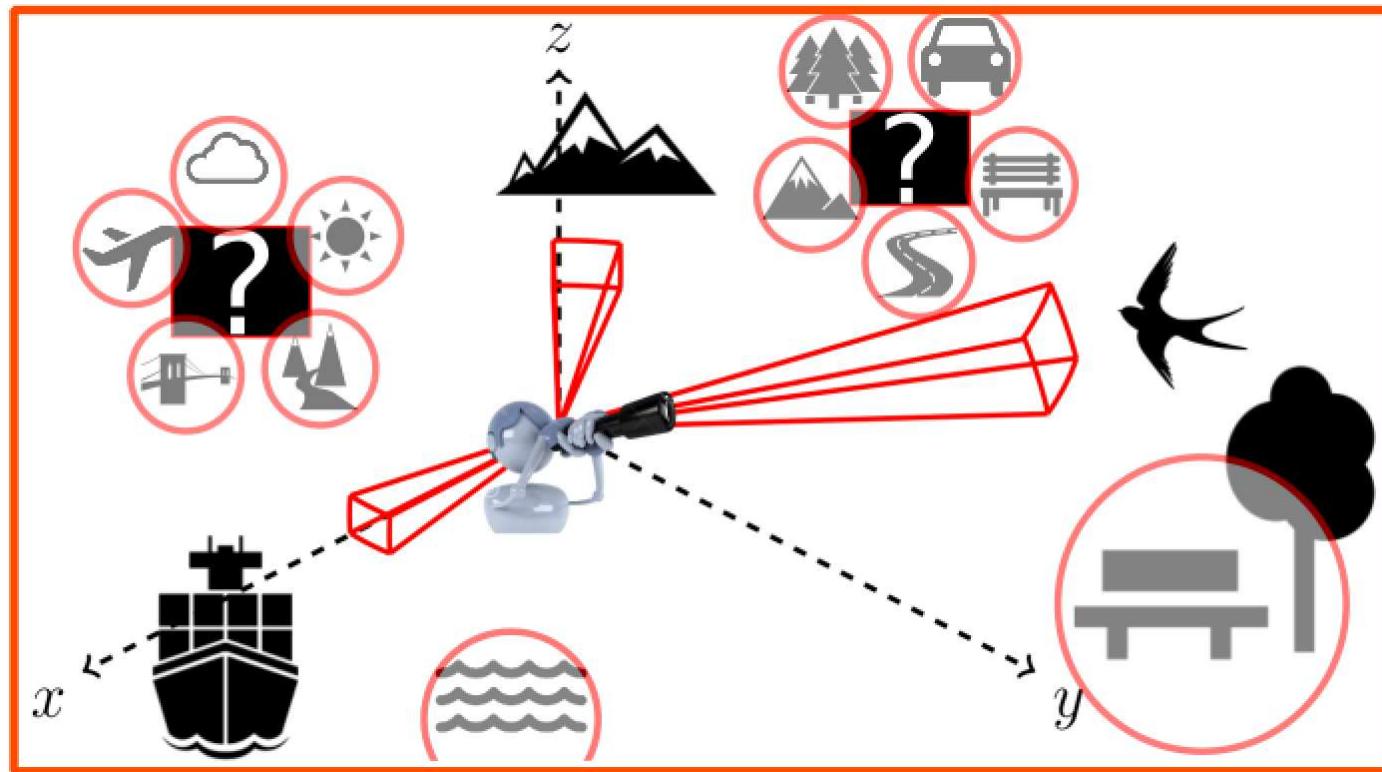
Completion objective: Learn policy for efficiently inferring (pixels of) all yet-unseen portions of environment



Agent must choose where to look *before* looking there.

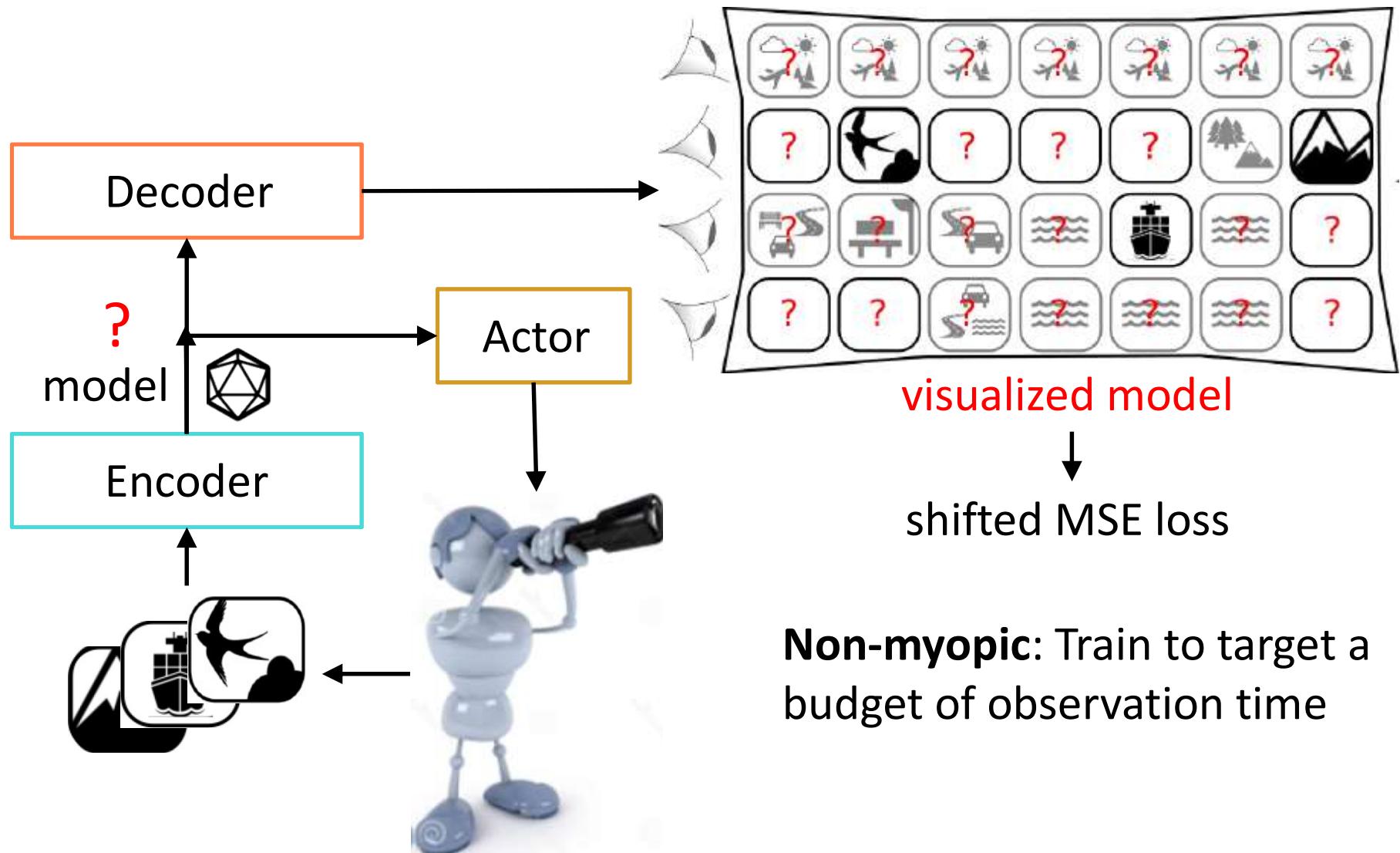
Key idea: Active observation completion

Completion objective: Learn policy for efficiently inferring (pixels of) all yet-unseen portions of environment



Agent must choose where to look *before* looking there.

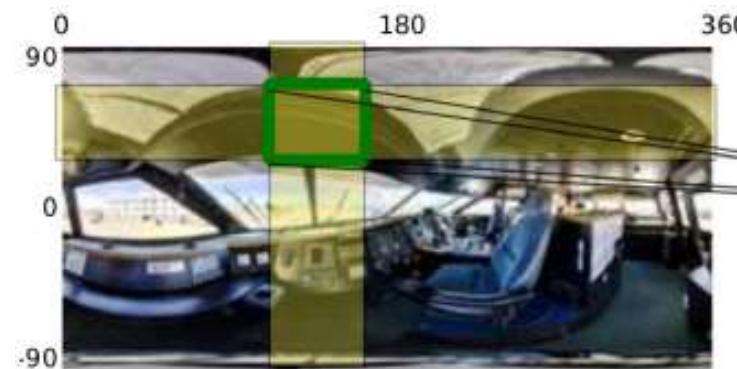
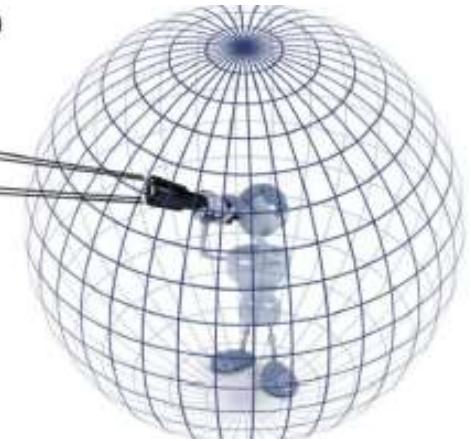
Approach: Active observation completion



Datasets: Two scenarios

Where to
look next?

agent

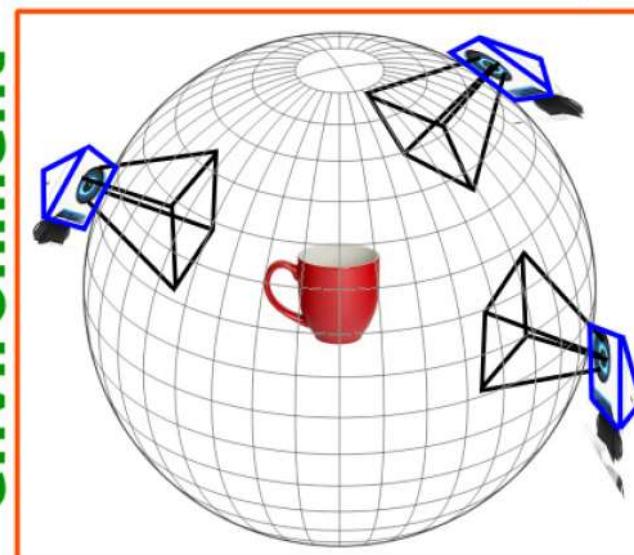


SUN 360 panoramas
[Xiao 2012]

How to
manipulate?

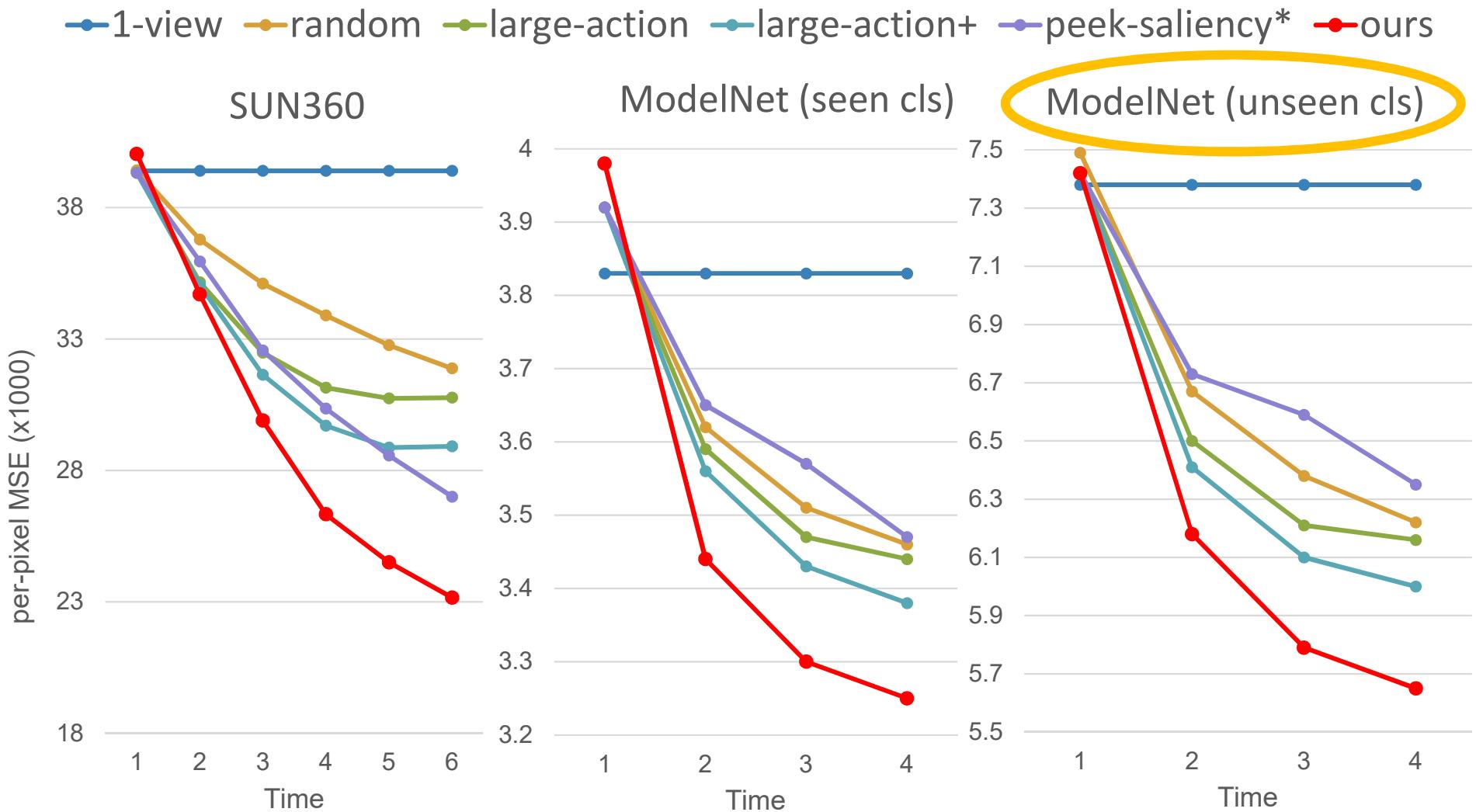
agent

environment



observations

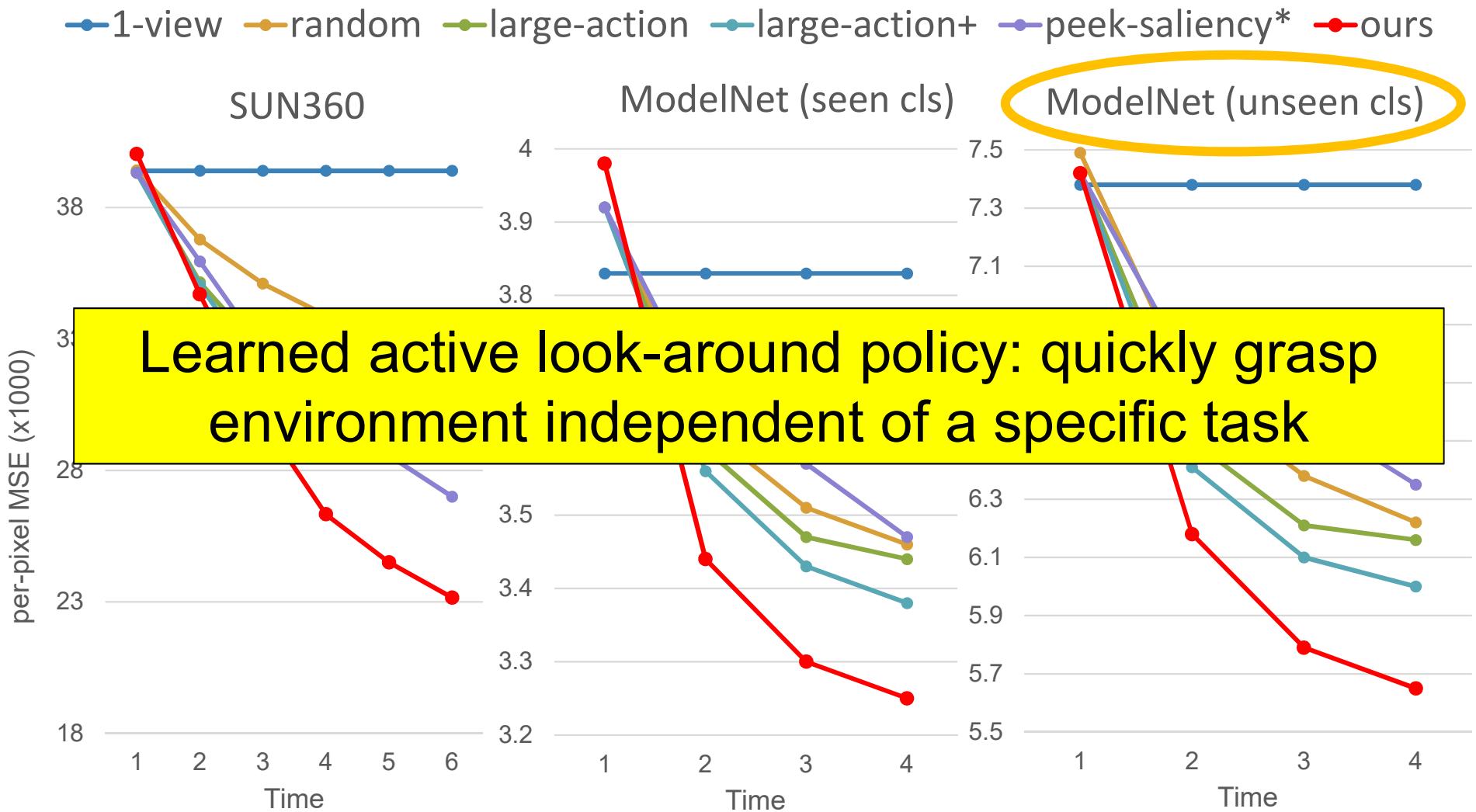
Active “look around” results



*Harel et al, Graph based Visual Saliency, NIPS'07

Jayaraman and Grauman, arXiv 2017

Active “look around” results



*Harel et al, Graph based Visual Saliency, NIPS'07

Jayaraman and Grauman, arXiv 2017

Active “look around” visualization

observed view

Ground truth

Visualized internal model over time

$t=1$

$t=2$

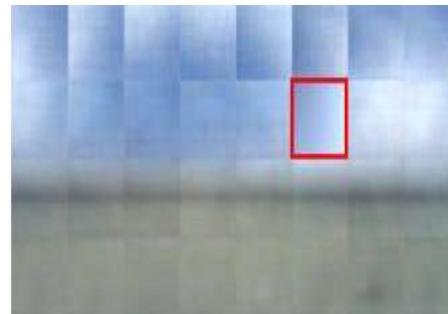
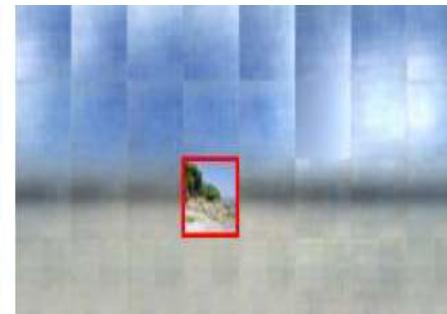
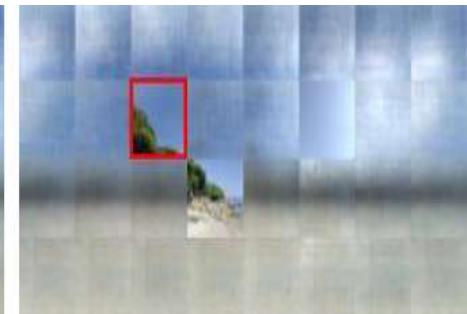
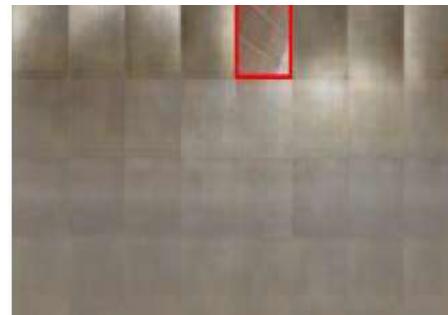
$t=3$

Active “look around” visualization

 observed view

Ground truth

Visualized internal model over time



$t=1$

$t=2$

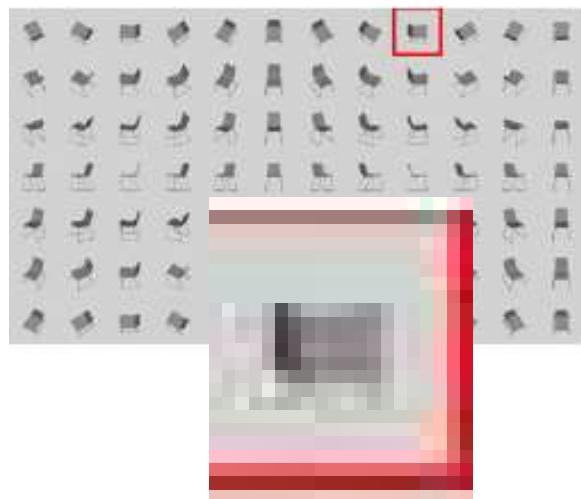
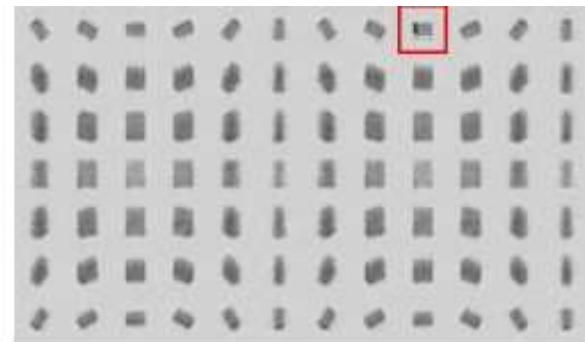
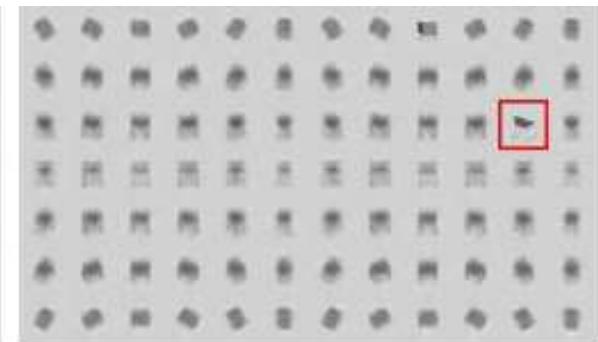
$t=3$

Active “look around” visualization

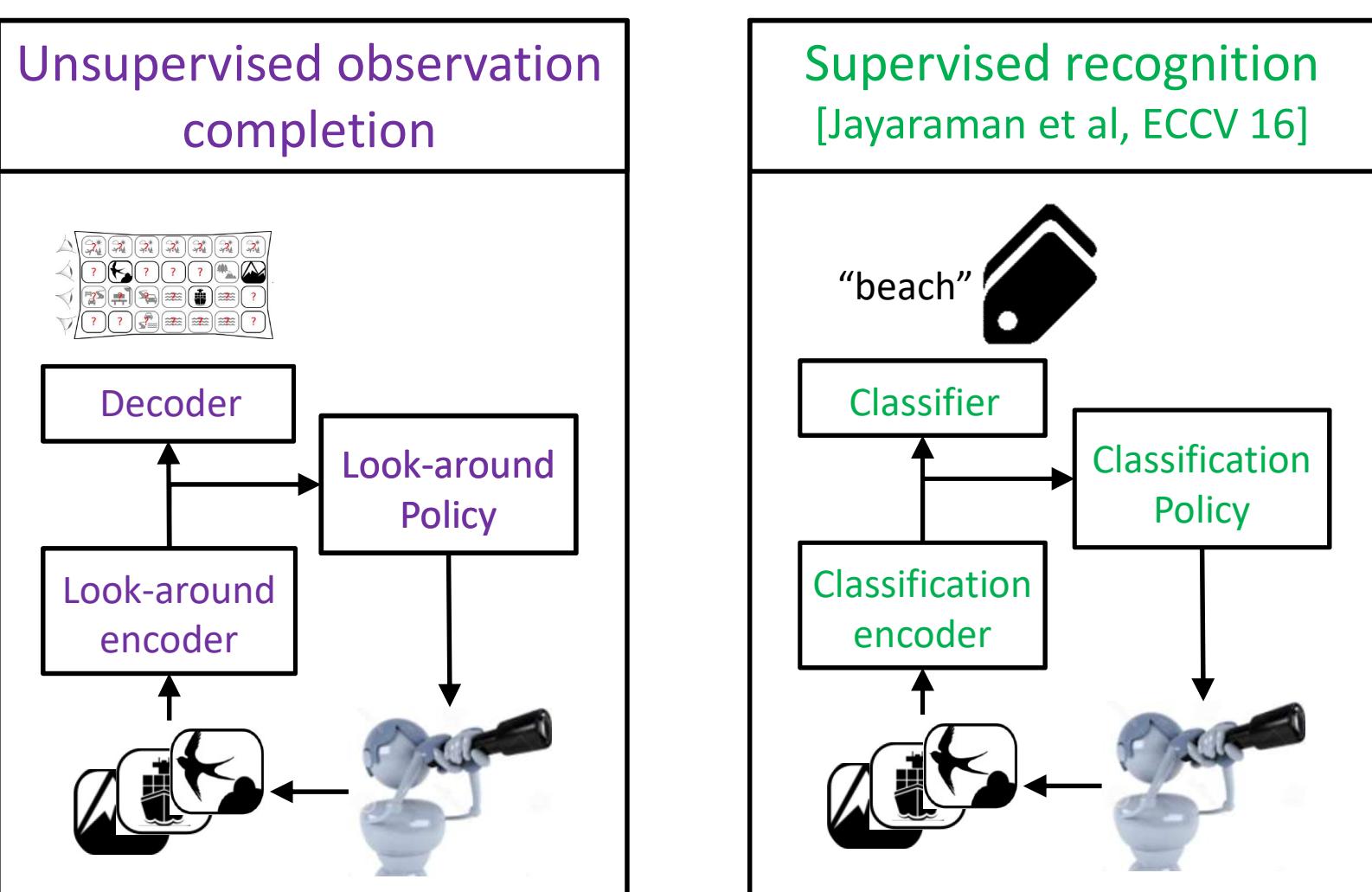
observed view

Ground truth

Visualized internal model over time

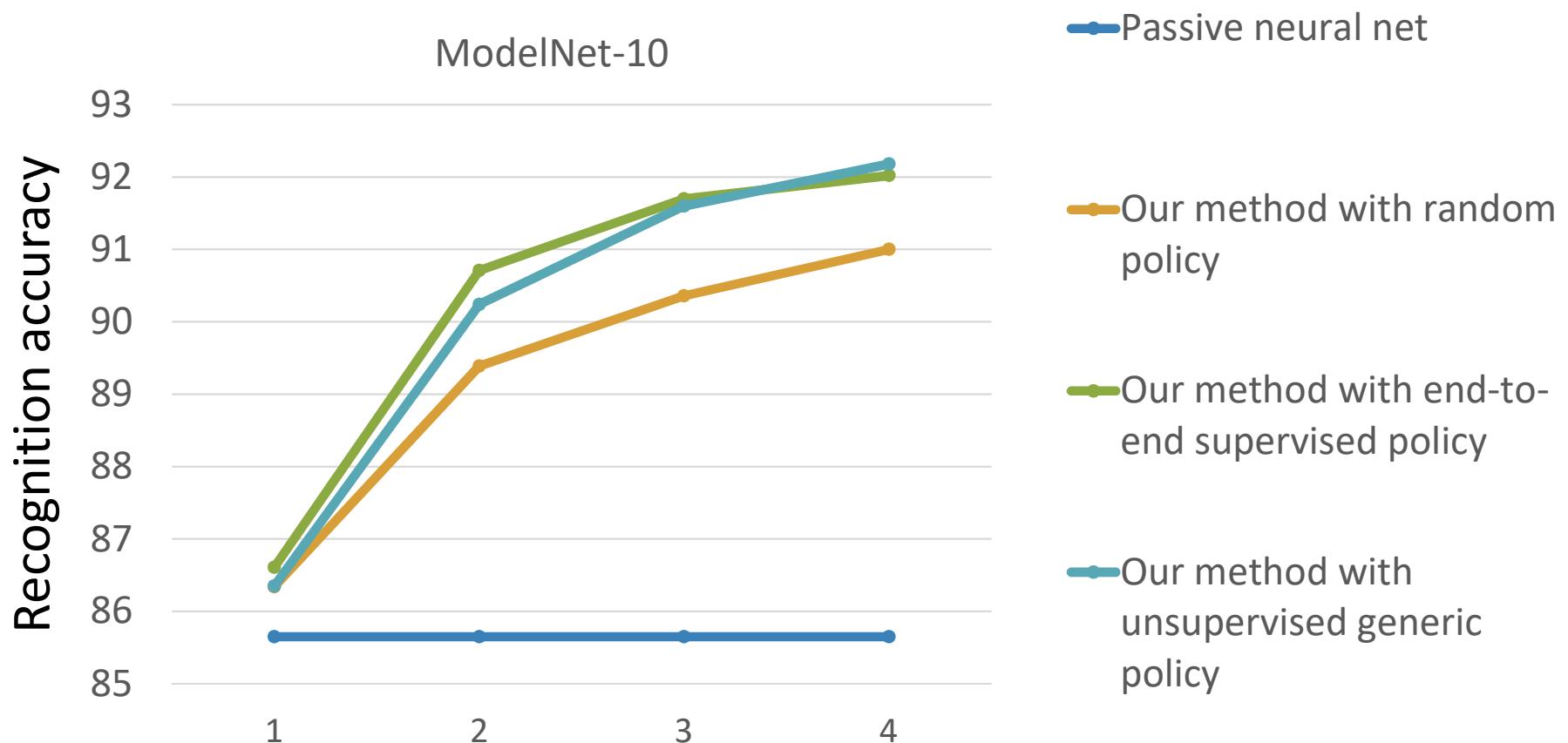


Motion policy transfer



Plug observation completion policy in for **new** task

Motion policy transfer



Unsupervised exploratory policy approaches
supervised task-specific policy accuracy!

This talk

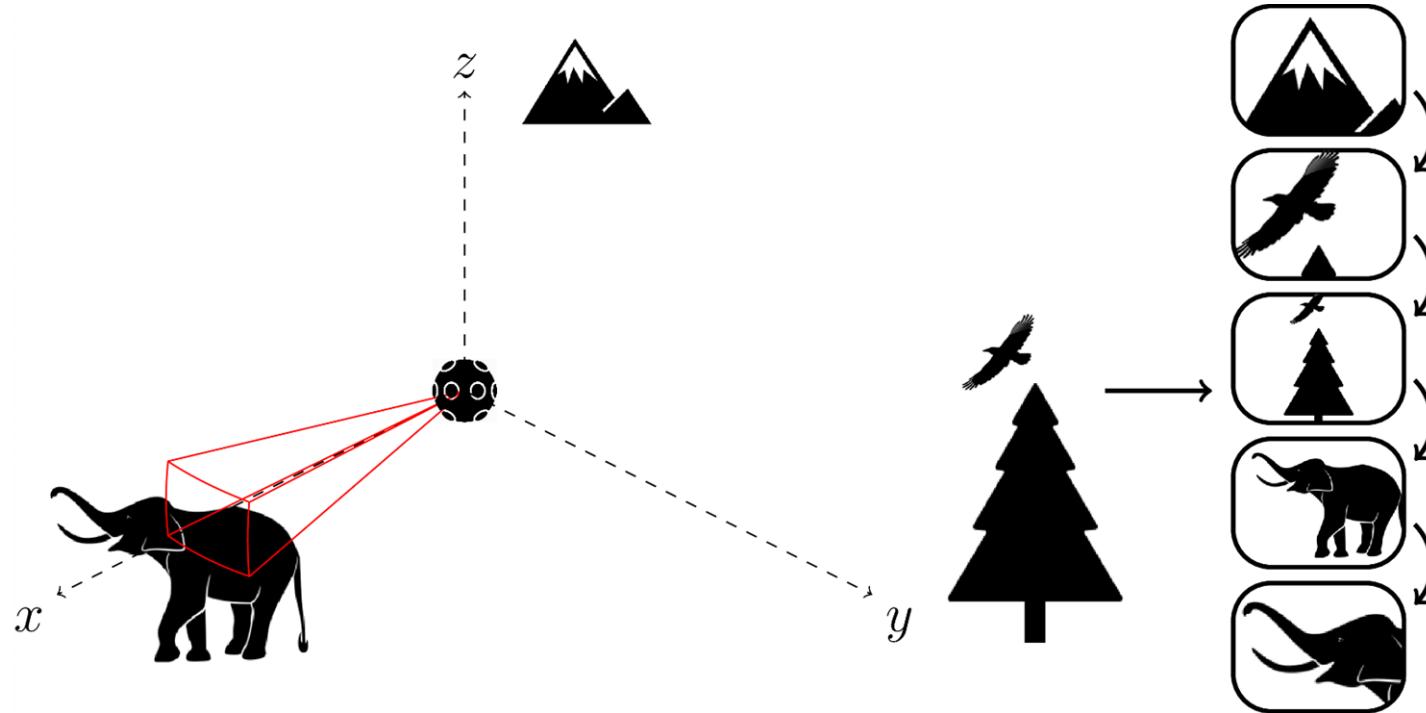
Egocentric policies for where to look

1. **Where to look** for object/scene recognition?
Intelligent view selection and manipulations
2. **Where to look** when dynamically exploring?
Learning to look around for active exploration
3. **Where to look** in a wide field of view video?
Automatic cinematography in 360 video

Challenge of viewing 360° videos

How to find the right direction to watch?

Proposed problem: Pano2Vid automatic videography



Definition

Input: 360° video

Output: “natural-looking” normal FOV video

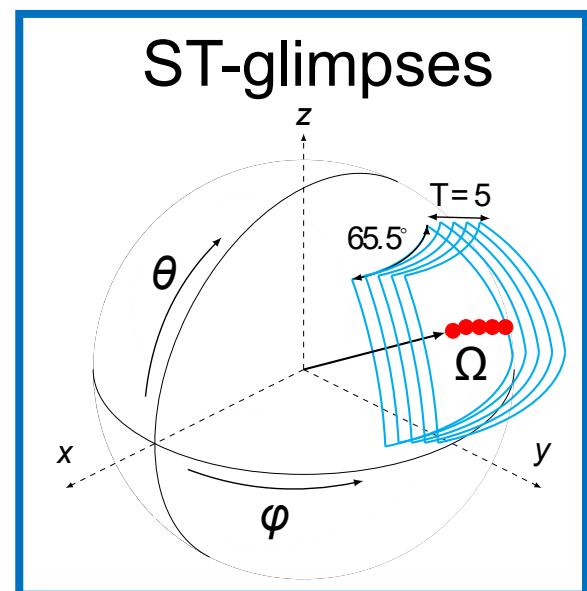
Task: control virtual camera direction and FOV

Our approach – AutoCam

Learn videography tendencies from **unlabeled** Web videos

- Diverse capture-worthy content
- Proper composition

How
close?

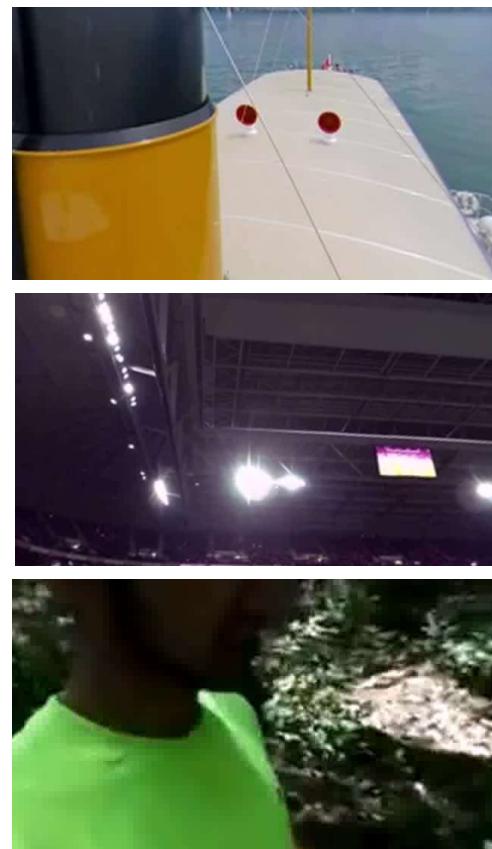


[*Su et al. ACCV 2016, CVPR 2017*]

Example spatio-temporal glimpses

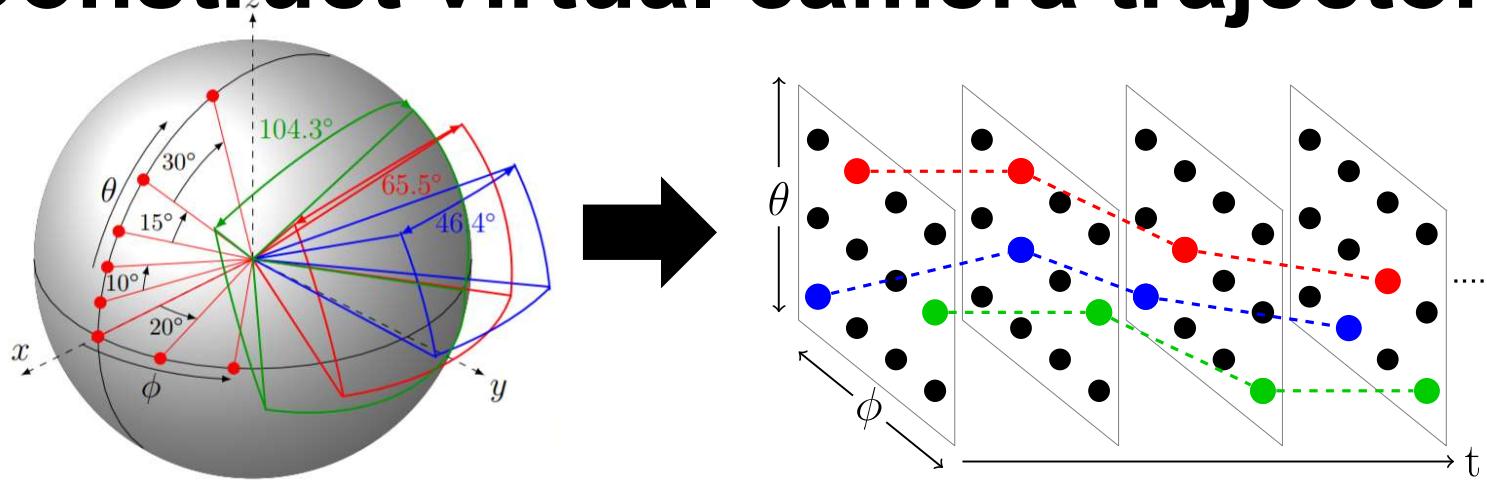
High capture-worthiness

Low capture-worthiness



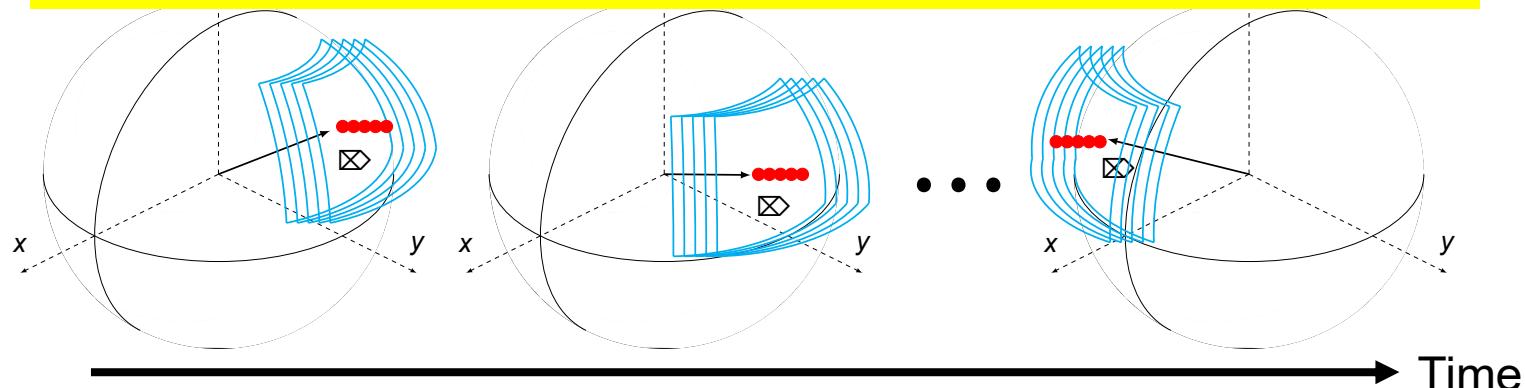
First frame of glimpses scored high/low by our approach

Construct virtual camera trajectory



Pose selection as shortest path(s) problem

Optimize for *multiple diverse hypotheses*



Output smooth view path maximizing capture-worthiness

360 Pano2Vid Dataset

<http://vision.cs.utexas.edu/projects/watchable360>

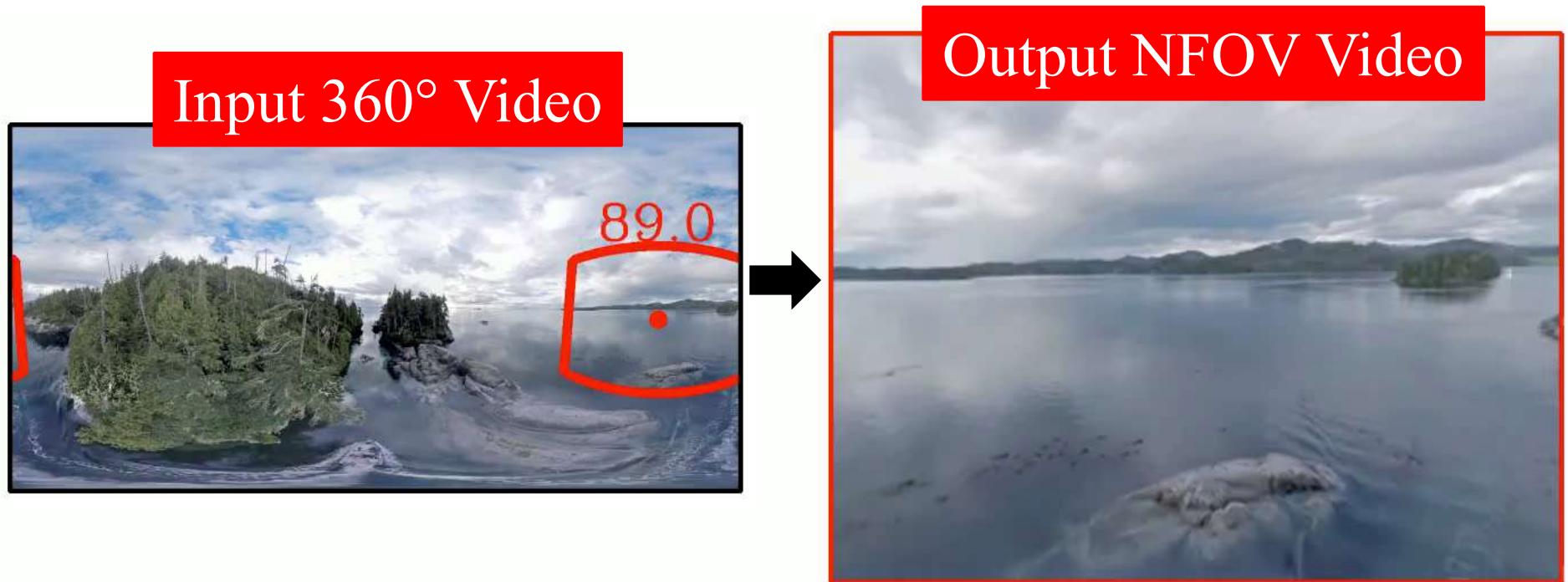
- All videos crawled from YouTube using keywords:
“*Hiking*”, “*Mountain climbing*”, “*Parade*”, “*Soccer*”

	# videos	Total length
360° videos	86	7.3 hours
HumanCam	9,171	343 hours

- **For evaluation:** 480 trajectories / 12 hours of human edited video

AutoCam results

<http://vision.cs.utexas.edu/projects/watchable360/>



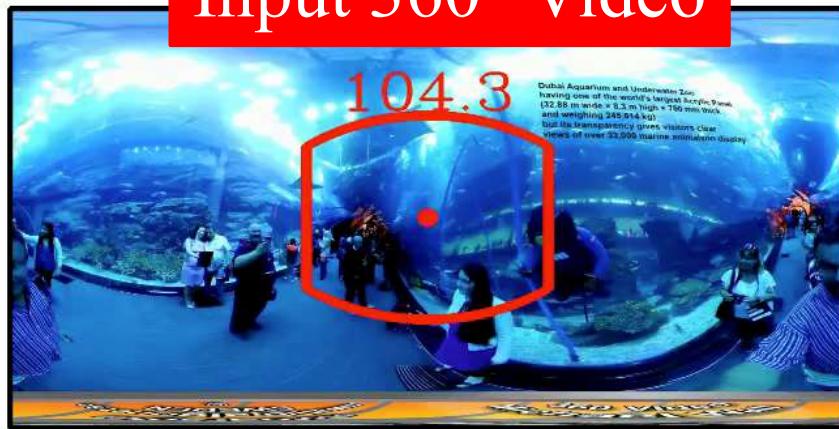
Automatically select FOV and viewing direction

[Su & Grauman, CVPR 2017]

AutoCam results

<http://vision.cs.utexas.edu/projects/watchable360/>

Input 360° Video



Output NFOV Video

Automatically select FOV and viewing direction

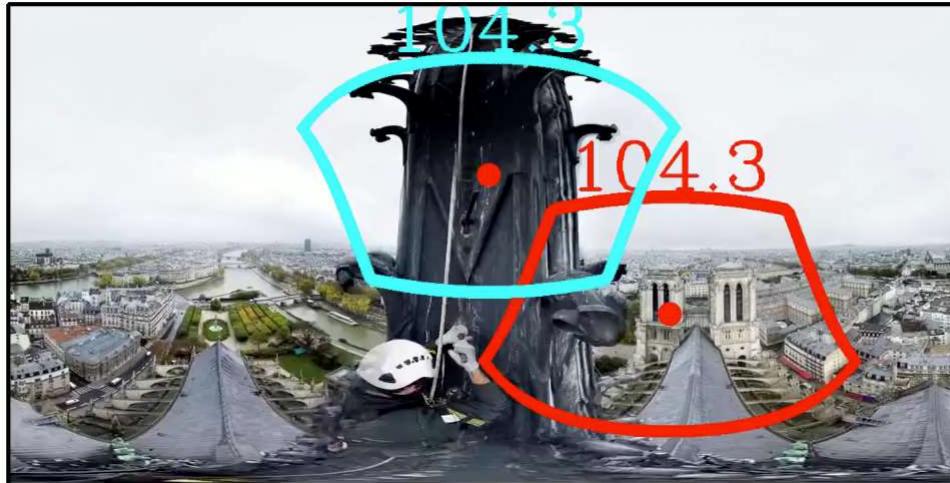
[*Su & Grauman, CVPR 2017*]

AutoCam results:

Multiple diverse hypotheses

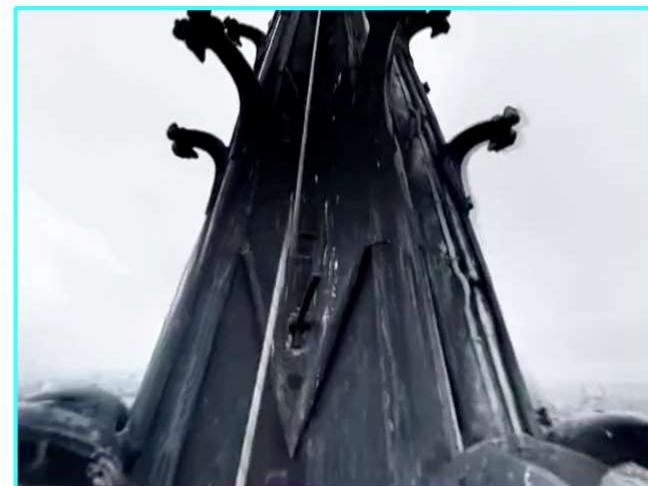
<http://vision.cs.utexas.edu/projects/watchable360/>

Input Video &
Cam. Trajectory



Output
Videos

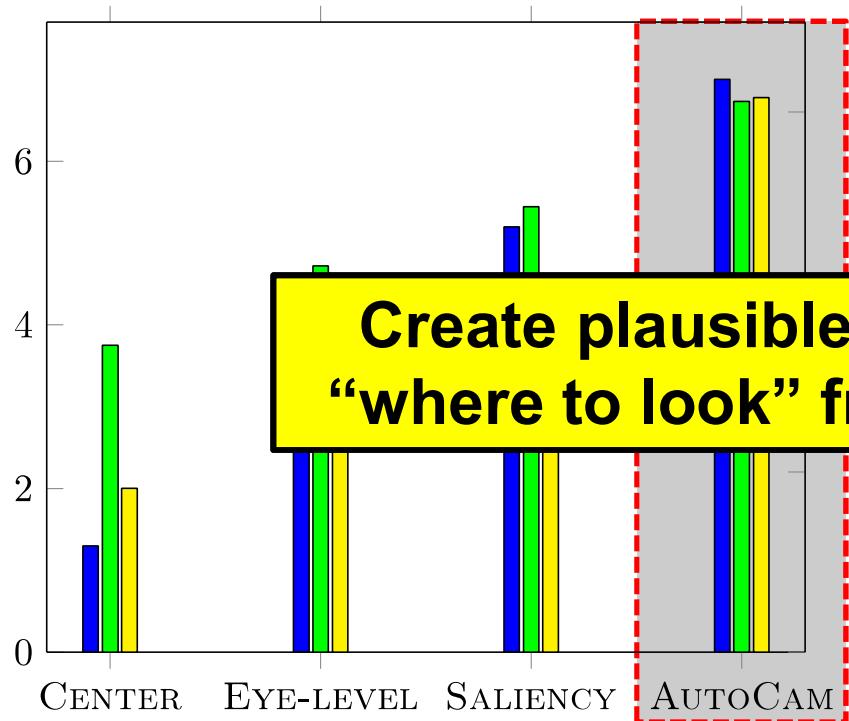
Hypothesis 1



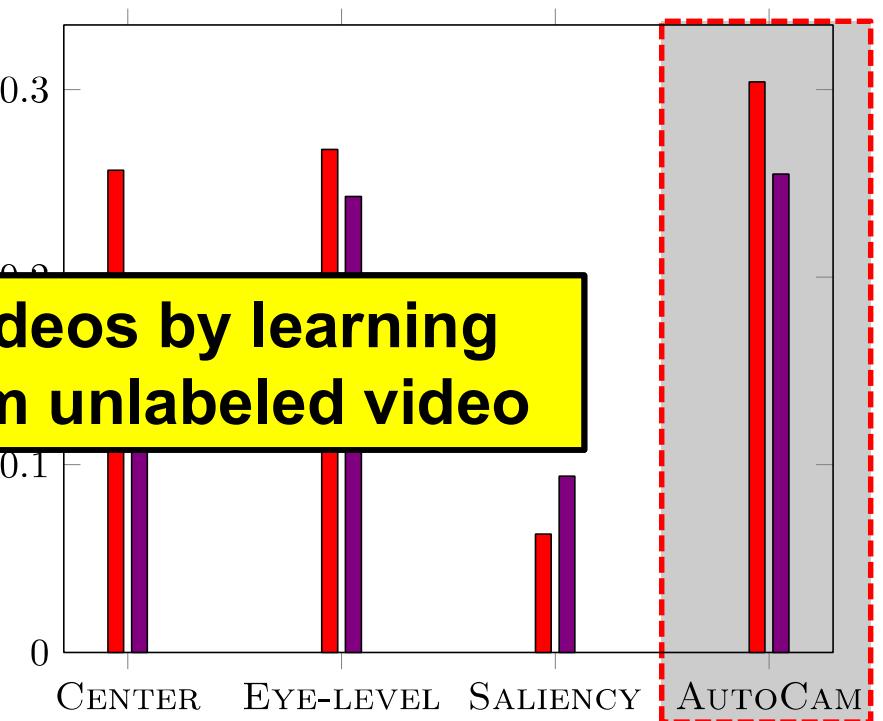
Hypothesis 2

Results: Quantitative evaluation

Similarity to user-uploaded
standard web videos



Similarity to human-selected
camera trajectories



**Create plausible videos by learning
“where to look” from unlabeled video**

■ Distinguishability
■ HumanCam-Likeness
■ Transferability

■ Cosine
■ Overlap

Summary

- From curated images to egocentric video: challenges in knowing where to look next.
 - End-to-end active recognition
 - Next-active-object prediction
 - First person body pose estimation
 - Learning generic “look around” behavior
 - Automatic cinematography for 360 video

Dinesh
Jayaraman

Yu-Chuan
Su

Hao
Jiang

Antonino
Furnari

Giovanni Maria
Farinella

Papers

- **Look-Ahead Before You Leap: End-to-End Active Recognition by Forecasting the Effect of Motion.** D. Jayaraman and K. Grauman. Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, October 2016.
- **Learning to look around,** [Dinesh Jayaraman](#), [Kristen Grauman](#), arXiv Sept 2017.
- **Seeing Invisible Poses: Estimating 3D Body Pose from Egocentric Video.** H. Jiang and K. Grauman. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, July 2017.
- **Making 360 Video Watchable in 2D: Learning Videography for Click Free Viewing.** Y-C. Su and K. Grauman. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, July 2017.
- **Pano2Vid: Automatic Cinematography for Watching 360 Videos.** Y-C. Su, D. Jayaraman, and K. Grauman. Invited talk, 6th Workshop on Intelligent Cinematography and Editing, Lyon, France, April 2017.
- **Next-Active-Object Prediction from Egocentric Videos.** A. Furnari, S. Battiato, K. Grauman, G. Farinella. To appear, Journal of Visual Communication and Image Representation, 2017.