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Passively-captured video

A tangle of relevant and irrelevant information
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This talk

Egocentric policies for where to look

1. Where to look for object/scene recognition?
Intelligent view selection and manipulations

2. Where to look when dynamically exploring?
Learning to look around for active exploration

3. Where to look in a wide field of view video?
Automatic cinematography in 360 video



Actively moving to recognize
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Jayaraman and Grauman, ECCV 2016



Actively moving to recognize
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Our idea: End-to-end active recognition +
3D motion look-ahead

Jayaraman and Grauman, ECCV 2016



End-to-end active recognition: tasks

1. Look around scene 2. Manipulate object 3. Move around object




End-to-end active recognition: results
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Faster recognition via intelligent view selection
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End-to-end active recognition: example

[Jayaraman and Grauman, ECCV 2016]



End-to-end active recognition: example

Predicted

GERMS dataset: Malmir et al. BMVC 2015

[Jayaraman and Grauman, ECCV 2016]



Next-active-object prediction

What object will the camera wearer interact with next?
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A. Furnari, S. Battiato, K. Grauman, G. M. Farinella, Next Active Object Prediction from Egocentric Video, under
review at Journal of Visual Communication and Image Representation, 2017



Next-active-object prediction

Approach: learn properties of active object trajectories

Random Decision Forest
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A. Furnari, S. Battiato, K. Grauman, G. M. Farinella, Next Active Object Prediction from Egocentric Video, under
review at Journal of Visual Communication and Image Representation, 2017



Next-active-object prediction

from Egocentric Videos
http://iplab.dmi.unict.it/NextActiveObjectPrediction

SUCCESS EXAMPLES

positive predictions

(score=>0.5)

negative predictions

(score<=0.5)

discarded objects

gt next active object

A. Furnari, S. Battiato, K. Grauman, G. M. Farinella, Next Active Object Prediction from Egocentric Video, under
review at Journal of Visual Communication and Image Representation, 2017



Egomotion and implied body pose

Learn relationship between egocentric scene
motion and 3D human body pose

S

Input: Output:

egocentric video sequence of 3d
joint positions

[Jiang & Grauman, CVPR 2017]



Egomotion and implied body pose

Learn relationship between egocentric scene
motion and 3D human body pose
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[Jiang & Grauman, CVPR 2017]



This talk

Egocentric policies for where to look

1. Where to look for object/scene recognition?
Intelligent view selection and manipulations

2. Where to look when dynamically exploring?
Learning to look around for active exploration

3. Where to look in a wide field of view video?
Automatic cinematography in 360 video



Goal: Learn to “look around”

recognition reconnaissance search and rescue

task predefined task unfolds dynamically

Can we learn look-around policies for visual agents that are
curiosity-driven, exploratory, and generic?



Key idea: Active observation completion

Completion objective: Learn policy for efficiently
inferring (pixels of) all yet-unseen portions of environment
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Agent must choose where to look before looking there.

Jayaraman and Grauman, arXiv 2017



Key idea: Active observation completion

Completion objective: Learn policy for efficiently
inferring (pixels of) all yet-unseen portions of environment

Agent must choose where to look before looking there.

Jayaraman and Grauman, arXiv 2017



Approach: Active observation completion
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Non-myopic: Train to target a
budget of observation time

Jayaraman and Grauman, arXiv 2017



Datasets: Two scenarios

Where to
look next?

How to
manipulate?

¥

environment

observations




per-pixel MSE (x1000)

Active “look around’” results
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per-pixel MSE (x1000)

Active “look around’” results
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Active “look around” visualization -

observed view

Ground truth
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Active “look around” visualization g
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observed view ;‘

Ground truth Visualized internal model over time

Jayaraman and Grauman, arXiv 2017
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Motion policy transfer

Unsupervised observation
completion
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[Jayaraman et al, ECCV 16]
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Recognition accuracy
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This talk

Egocentric policies for where to look

1. Where to look for object/scene recognition?
Intelligent view selection and manipulations

2. Where to look when dynamically exploring?
Learning to look around for active exploration

3. Where to look in a wide field of view video?
Automatic cinematography in 360 video



Challenge of viewing 360° videos

Control by mouse

How to find the right direction to watch?



Proposed problem:

Pano2Vid automatic videography

)
)
)

Input: 360° video
Output: “natural-looking” normal FOV video

_ Task: control virtual camera direction and FOV )

[Su et al. ACCV 2016, CVPR 2017]



Our approach — AutoCam

Learn videography tendencies from unlabeled
Web videos

 Diverse capture-worthy content
* Proper composition

Human-captured NFOV ST-glimpses
videos ("HumanCam?) How i
close?
“ '-!L{i!:

Unlabeled video
[Su etal. ACCV 2016, CVPR 2017]



Example spatio-temporal glimpses

High capture-worthiness Low capture-worthiness

First frame of glimpses scored high/low by our approach




Construct virtual camera trajectory

Densely sample and Pose selection as
score glimpses shortest path(s) problem

» Time
Output smooth view path maximizing capture-worthiness



360 Pano2Vid Dataset

http://vision.cs.utexas.edu/projects/watchable360

* All videos crawled from YouTube using keywords:

‘Hiking”, “Mountain climbing”, “Parade”, “Soccer”

# videos Total length
360° videos 86 7.3 hours
HumanCam 9,171 343 hours

* For evaluation: 480 trajectories / 12 hours of
human edited video



AutoCam results

http://vision.cs.utexas.edu/projects/watchable360/

Output NFOV Video

Automatically select FOV and viewing direction

[Su & Grauman, CVPR 2017]



AutoCam results

http://vision.cs.utexas.edu/projects/watchable360/
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Automatically select FOV and viewing direction

[Su & Grauman, CVPR 2017]



AutoCam results:
Multiple diverse hypotheses

http://vision.cs.utexas.edu/projects/watchable360/
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Results: Quantitative evaluation

Similarity to user-uploaded Similarity to human-selected
standard web videos camera trajectories
6| | |
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. Create plausible videos by learning

“where to look” from unlabeled video
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[Su et al. ACCV 2016, CVPR 2017]
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* From curated images to egocentric video:
challenges in knowing where to look next.

— End-to-end active recognition

— Next-active-object prediction

— First person body pose estimation

— Learning generic “look around” behavior

— Automatic cinematography for 360 video

Antonino Giovanni Maria
Furnari Farinella

Dinesh
Jayaraman
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