Learning the right thing with visual attributes

Kristen Grauman Department of Computer Science University of Texas at Austin

With Chao-Yeh Chen, Aron Yu, and Dinesh Jayaraman

THE UNIVERSITY OF TEXAS AT AUSTIN

Beyond image labels

What does it mean to understand an image?

Attributes

- Mid-level semantic properties shared by objects
- Human-understandable and machine-detectable

[Ferrari & Zisserman 2007, Kumar et al. 2008, Farhadi et al. 2009, Lampert et al. 2009, Endres et al. 2010, Wang & Mori 2010, Berg et al. 2010, Parikh & Grauman 2011, ...]

Using attributes: Visual search

Suspect #1: <u>Male</u>, <u>sunglasses</u>, <u>black and white</u> hat, <u>blue</u> shirt

Person search [Kumar et al. 2008, Feris et al. 2013]

Relative feedback [Kovashka et al. 2012]

Using attributes: Interactive recognition

[Branson et al. 2010, 2013]

Using attributes: Semantic supervision

Band-tailed pigeons:

- ✓ White collar
- ✓ Yellow feet
- ✓ Yellow bill
- ✗ Red breast

Zero-shot learning

[Lampert et al. 2009]

Mules:

- Shorter legs than donkeys
- Shorter tails than horses

Training with relative descriptions [Parikh & Grauman 2011,

Shrivastava & Gupta 2012]

Problem

With attributes, it's easy to learn the wrong thing.

- Incidental correlations
- Spatially overlapping properties
- Subtle visual differences
- Partially category-dependent
- Variance in human-perceived definitions

...yet applications demand that correct meaning be captured!

Goal

Learn the right thing.

- How to decorrelate attributes that often occur simultaneously?
- Are attributes really class-independent?
- How to detect fine-grained attribute differences?

The curse of correlation

What will be learned from this training set?

Object Learning

Cat

The curse of correlation

What will be learned from this training set?

Attribute Learning

Forest animal? Brown? Has ears? Combinations?

Problem: Attributes that often co-occur cannot be distinguished by the learner

The curse of correlation

Problem: Attributes that often co-occur cannot be distinguished by the learner

Idea: Resist the urge to share

Problem: Attributes that often co-occur cannot be distinguished by the learner

Semantic attribute groups

- Closely related attributes *may* share features
- Assume attribute "groups" from external knowledge.

Standard approach: learning separately

 $\mathsf{Loss}(\mathsf{un}(\mathsf{ction}) \coloneqq \sum \quad \mathsf{low}(\mathsf{un}(\mathsf{tion}))))$ m(x((m)))) Casantastes

m: attribute index

Proposed group-based formulation

JAYARAMAN ET AL., CVPR 2014

Formulation effect

Sparse features (no relationships among attributes)

Features

Attributes

Forest animal Brown

Ours (inter-group competition, in-group sharing)

Attributes

 $\sum \sum \|w_d^{S_l}\|_2$

Standard multi-task learning (sharing and conflation across groups)

Attributes

Forest animal Brown

JAYARAMAN ET AL., CVPR 2014

Results – Attribute detection

By decorrelating attributes, our attribute detectors generalize much better to novel unseen categories.

(*) Argyriou et al, Multi-task Feature Learning, NIPS 2007
(~) Farhadi et al, Describing Objects by Their Attributes, CVPR 2009

Attribute detection example

Failure cases

furry

vegetation

JAYARAMAN ET AL., CVPR 2014

Attribute localization examples

Standard

Our method avoids conflation to learn the correct semantic attribute.

Ours

JAYARAMAN ET AL., CVPR 2014

Goal

Learn the right thing.

- How to decorrelate attributes that often occur simultaneously?
- Are attributes really class-independent?
- How to detect fine-grained attribute differences?

Problem

Are attributes really category-independent?

An intuitive but impractical solution

• Learn category-specific attributes?

Impractical!

Would need examples for **all** category-attribute combinations...

Idea: Analogous attributes

• Given sparse set of category-specific models, infer "missing" analogous attribute classifiers

Chen & Grauman, CVPR 2014

Transfer via tensor completion

Bayesian probabilistic tensor factorization [Xiong et al., SDM 2010].

Datasets

ImageNet attributes

- 9600 images
- 384 object categories
- 25 attributes
- 1498 object-attribute pairs available

SUN attributes

- 14340 images
- 280 object categories
- 59 attributes
- 6118 object-attribute pairs available

[Russakovsky & Fei-Fei 2010]

[Patterson & Hays 2012]

Inferring class-sensitive attributes

Our approach infers all 18K "missing" classifiers → savings of 348K labeled images

Category-sensitive outperforms status 76% of the time average gain of 1 points in AP

Chen & Grauman, CVPR 2014

Which attributes are analogous?

Chen & Grauman, CVPR 2014

Goal

Learn the right thing.

- How to decorrelate attributes that often occur simultaneously?
- Are attributes really class-independent?
- How to detect fine-grained attribute differences?

Problem: Fine-grained attribute comparisons

Which is *more comfortable*?

Relative attributes

Use ordered image pairs to train a ranking function:

[Parikh & Grauman, ICCV 2011; Joachims 2002]

Relative attributes

Rather than simply label images with their properties,

Not bright

Not natural

Relative attributes

We can compare images by attribute's "strength"

natural

Idea: Local learning for fine-grained relative attributes

- Lazy learning: train query-specific model on the fly.
- Local: use only pairs that are similar/relevant to test case.

comparison

Relevant nearby training pairs

Yu & Grauman, CVPR 2014

Idea: Local learning for fine-grained relative attributes

Yu & Grauman, CVPR 2014

UT Zappos50K Dataset

Large shoe dataset, consisting of 50,025 catalog images from Zappos.com

- 4 relative attributes
- High quality pairwise labels from mTurk workers
- 6,751 ordered labels + 4,612
 "equal" labels
- 4,334 twice-labeled fine-grained labels (no "equal" option)

"open"

Results: Fine-grained attributes

	Zap50K-1	Zap50K-2	OSR	PubFig
RelTree [2]	_	_	90.41	83.37
Global [3]	89.57	61.62	88.80	80.56
RandPair	84.34	57.98	86.93	72.46
FG-LocalPair	91.64	66.43	92.37	89.72

Accuracy of comparisons – all attributes

Accuracy on the 30 hardest test pairs

Yu & Grauman, CVPR 2014

Predicting useful neighborhoods

- Most relevant points = most similar points?
- Pose as large-scale multi-label classification problem

[Yu & Grauman NIPS 2014]

Predicting useful neighborhoods

SUN Attribute Dataset: 14,340 images, 707 classes

Yu & Grauman, NIPS 2014

Summary

- Attribute learning is more nuanced than object learning
- Essential that language and visual concepts align
- Ideas:
 - Explicitly decorrelate attribute classifiers
 - Transfer between analogous attribute-object models
 - Fine-grained comparisons via lazy local learning

