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Learning visual categories

• Recent major strides in category recognition

• Facilitated by large labeled datasets

80M Tiny Images
[Torralba et al.]

ImageNet
[Deng et al.]

SUN Database 
[Xiao et al.]

[Papageorgiou& Poggio 1998,Viola & Jones 2001, Dalal & Triggs 2005, Grauman & Darrell 2005, Lazebnik

et al. 2006, Felzenszwalbet al. 2008, Krizhevsky et al. 2012, Russakovsky IJCV 2015…] 



Big picture goal: Embodied vision

Status quo: 

Learn from “disembodied” 
bag of labeled snapshots.

Our goal:

Learn in the context of acting
and moving in the world.
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Beyond “bags of labeled images”?

Visual development in nature

is based on:

• continuous observation

• multi-sensory feedback

• motion and action

… in an environment.

[Held et al, 1964][Moravec et al, 1984][Wilson et al, 2002]

Evidence from: psychology, evolutionary biology, 

cognitive science.

Inexpensive, and unrestricted in scope



Talk overview

1. Learning representations 
tied to ego-motion

2. Learning representations 
from unlabeled video

3. Learning how to move 
and where to look
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The kitten carousel experiment
[Held & Hein, 1963]

active kitten passive kitten

Key to perceptual development:

self-generated motion + visual feedback
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Goal: Teach computer vision system the connection:

“how I move” ↔ “how my visual surroundings change”

Our idea: Ego-motion ↔ vision

+

Ego-motion motor signals Unlabeled video
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Ego-motion ↔ vision: view prediction

After moving:

Kristen Grauman, UT Austin



Ego-motion ↔ vision for recognition

Learning this connection requires:

 Depth, 3D geometry

 Semantics

 Context

Can be learned without manual labels!

Also key to 

recognition!

Our approach: unsupervised feature learning 

using egocentric video + motor signals

Kristen Grauman, UT Austin



Approach idea: Ego-motion equivariance

Invariant features: unresponsive to some classes of 

transformations

𝐳 𝑔𝐱 ≈ 𝐳(𝐱)

Simard et al, Tech Report, ’98

Wiskott et al, Neural Comp ’02

Hadsell et al, CVPR ’06

Mobahi et al, ICML ’09

Zou et al, NIPS ’12
Sohn et al, ICML ’12

Cadieu et al, Neural Comp ’12

Goroshin et al, ICCV ’15

Lies et al, PLoS computation biology ’14

…

Kristen Grauman, UT Austin



Approach idea: Ego-motion equivariance

Invariant features: unresponsive to some classes of 

transformations

𝐳 𝑔𝐱 ≈ 𝐳(𝐱)

Invariance discards information;

equivariance organizes it. 

Equivariant features: predictably responsive to 

some classes of transformations, through simple 

mappings (e.g., linear)

𝐳 𝑔𝐱 ≈ 𝑀𝑔𝐳(𝐱)

“equivariance map”

Kristen Grauman, UT Austin



Equivariant embedding 

organized by ego-motions

Pairs of frames related by 

similar ego-motion should 

be related by same 

feature transformation

left turn

right turn

forward

Learn

Approach idea: Ego-motion equivariance

time →
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Training data

Unlabeled video + 

motor signals
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Equivariant embedding 

organized by ego-motions

Learn
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Approach overview

Our approach: unsupervised feature learning using 

egocentric video + motor signals

1. Extract training frame pairs from video

2. Learn ego-motion-equivariant image features

3. Train on target recognition task in parallel

Kristen Grauman, UT Austin



Training frame pair mining

Discovery of ego-motion clusters

Right turn

=forward

=right turn

=left turn

y
a

w
 c

h
a

n
g

e

forward distance

𝑔

𝑔

𝑔
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∥ 𝑀𝑔𝐳𝛉(𝐱𝑖) − 𝐳𝛉(𝑔𝐱𝑖) ∥𝟐

Ego-motion equivariant feature learning

𝐱𝑖

𝑔𝐱𝑖

𝐳𝛉(𝐱𝑖)

𝐳𝛉(𝑔𝐱𝑖)

𝑀𝑔

Desired: for all motions 𝑔 and all images 𝐱,

𝐳𝛉 𝑔𝐱 ≈ 𝑀𝑔𝐳𝛉(𝐱)

𝛉

𝛉

Given:

𝛉 𝐳𝛉(𝐱𝑘)𝐱𝑘 𝑊 softmax loss 𝐿𝐶(𝐱𝑘 , y𝑘)

Unsupervised training

Supervised training

class y𝑘 𝛉, 𝑀𝑔 and 𝑊 jointly trained

𝑔
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Ego-motion training pairs Neural network training Equivariant embedding

Scene and object recognition
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S Football field?

Pagoda?

Airport?

Cathedral?

Army base?

Next-best view selection

cup frying pan

Method recap

𝑀𝑔𝛉

𝛉

𝛉 𝑊 𝐿𝐶

𝐿𝐸
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Datasets

KITTI video
[Geiger et al. 2012]

Car platform

Egomotions: yaw and 

forward distance

SUN images
[Xiao et al. 2010]

Large-scale scene 

classification task with 

397 categories (static 

images)

NORB images
[LeCun et al. 2004]

Toy recognition

Egomotions: elevation 

and azimuth Kristen Grauman, UT Austin



Results: Equivariance check

Visualizing how well equivariance is preserved

Query pair left

Neighbor pair (our features)
left

Neighbor pair (pixel space)
zoom

Kristen Grauman, UT Austin



Results: Equivariance check

How well is equivariance preserved?

Normalized error:

Recognition loss only

Temporal coherence

Ours

Temporal coherence: Hadsell et al. CVPR 2006, Mohabi et al. ICML 2009
Kristen Grauman, UT Austin



Results: Recognition

Learn from unlabeled car video (KITTI)

Exploit features for static scene classification 

(SUN, 397 classes)

Geiger et al, IJRR ’13

Xiao et al, CVPR ’10
Kristen Grauman, UT Austin



KITTI⟶ SUN

Do ego-motion equivariant features improve recognition?

397 classes
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**Mobahi et al., Deep Learning from Temporal Coherence in Video, ICML’09 

*Hadsell et al., Dimensionality Reduction by Learning an Invariant Mapping, CVPR’06

Results: Recognition

6 labeled training 

examples per class

KITTI⟶KITTI

NORB⟶NORB

Up to 30% accuracy increase 

over state of the art!

0.25

0.70

1.02

1.21

1.58

invariance
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Recap so far

 New embodied visual feature learning paradigm

 Ego-motion equivariance boosts performance 

across multiple challenging recognition tasks

 Future work: volition at training time too

http://vision.cs.utexas.edu/projects/egoequiv/

Kristen Grauman, UT Austin



Talk overview

1. Learning representations 
tied to ego-motion

2. Learning representations 
from unlabeled video

3. Learning how to move 
and where to look
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Learning from arbitrary
unlabeled video?

Unlabeled video 

+ ego-motion

Unlabeled video
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Learning from arbitrary
unlabeled video?

Unlabeled video 

+ ego-motion

Unlabeled video

Kristen Grauman, UT Austin



Background: Slow feature analysis
[Wiskott & Sejnowski, 2002]

Figure: Laurenz Wiskott, http://www.scholarpedia.org/article/File:SlowFeatureAnalysis-OptimizationProblem.png

Find functions g(x) that map

quickly varying input 

signal x(t)
slowly varying 

features y(t)
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• Existing work exploits 
“slowness” as temporal 
coherence in video → learn 
invariant representation

[Hadsell et al. 2006; Mobahi et al. 2009; 
Bergstra & Bengio 2009; Goroshin et al. 
2013; Wang & Gupta 2015,…]

• Fails to capture how visual 
content changes over time

Background: Slow feature analysis
[Wiskott & Sejnowski, 2002]

in learned embedding

Kristen Grauman, UT Austin



• Higher order temporal 
coherence in video → learn 
equivariant representation

Our idea: Steady feature analysis

[Jayaraman & Grauman, CVPR 2016]

Second order slowness operates on frame triplets:

in learned embedding

Kristen Grauman, UT Austin



Learn classifier W and representation θ jointly, 

with unsupervised regularization loss:

Approach: Steady feature analysis

Contrastive loss 

that also exploits 

“negative” tuples 

slow

steady

Kristen Grauman, UT Austin



Approach: Steady feature analysis

[Jayaraman & Grauman, CVPR 2016]

slow

steady
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Equivariance ≈ “steadily” varying frame features!  

d²𝐳𝛉(𝐱t)/dt²≈ 𝟎

Recap: Steady feature analysis

[Jayaraman & Grauman, CVPR 2016]

Kristen Grauman, UT Austin



Datasets
Unlabeled video Target task (few labels)

Human Motion 

Database (HMDB)
PASCAL 10 Actions

KITTI Video SUN 397 Scenes

NORB NORB 25 Objects

32 x 32 images or 96 x 96 images



Results: Sequence completion

Given sequential pair, infer next frame (embedding)

Our top 3 estimates for

KITTI dataset Kristen Grauman, UT Austin



Results: Sequence completion

Given sequential pair, infer next frame (embedding)

Percentile rank of correct completion (lower is better)

**Mobahi et al., Deep Learning from Temporal Coherence in Video, ICML’09 

*Hadsell et al., Dimensionality Reduction by Learning an Invariant Mapping, CVPR’06

*

**

slow

slow

slow & steady
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Results: Recognition

**Mobahi et al., Deep Learning from Temporal Coherence in Video, ICML’09 

*Hadsell et al., Dimensionality Reduction by Learning an Invariant Mapping, CVPR’06

*

**

Multi-class recognition accuracy

Kristen Grauman, UT Austin



Pre-training a representation

Unlabeled video

Labeled images

from a related domain

𝛉 𝑊

Few labeled images

for target task

𝛉

𝑊

Fine-tune

𝛉

Few labeled images

for target task

𝑊

Supervised 

pre-training

Unsupervised 

“pre-training”

Kristen Grauman, UT Austin



Results: Can we learn more from unlabeled 
video than “related” labeled images? 

HMDB

(unlabeled)

PASCAL 

(few labels)

Kristen Grauman, UT Austin



Results: Can we learn more from unlabeled 
video than “related” labeled images? 

CIFAR-100 

(labeled for other 

categories)

HMDB

(unlabeled)

PASCAL 

(few labels)
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Results: Can we learn more from unlabeled 
video than “related” labeled images? 

Better even than providing 50,000 extra manual 

labels for auxiliary classification task!

CIFAR-100 

(labeled for other 

categories)

HMDB

(unlabeled)

PASCAL 

(few labels)

Kristen Grauman, UT Austin



Talk overview

1. Learning representations 
tied to ego-motion

2. Learning representations 
from unlabeled video

3. Learning how to move 
and where to look
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Learning how to move
for recognition

Time to revisit active recognition in 
challenging settings!

[Bajcsy 1985, Schiele & Crowley 1998, Dickinson et al. 1997, Tsotsos et al. 2001, Soatto 2009,…]

Kristen Grauman, UT Austin



Leverage proposed ego-motion equivariant

embedding to select next best view

cup frying pan

cup/bowl/pan? cup/bowl/pan?
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NORB data

Learning how to move
for recognition

[Jayarman & Grauman, ICCV 2015]
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Best sequence of glimpses in 3D scene?

Learning how to move
for recognition

Requires:

• Action selection

• Per-view processing

• Evidence aggregation

• Look-ahead prediction

• Final class belief prediction

Learn all end-to-end

Jayaraman and Grauman, UT TR AI15-06

Kristen Grauman, UT Austin



Active visual recognition

cup/bowl/pan?

Requires several separate functionalities:
• Action selection
• Per-view processing
• Across-view evidence aggregation
• Next-view prediction
• Final class belief prediction

Learn all end-to-end

Kristen Grauman, UT Austin



P(“Plaza courtyard”):
Top 3 guesses:

(6.28)
Restaurant

Train interior
Shop

(11.95)
Theater

Restaurant
Plaza courtyard

(68.38)
Plaza courtyard

Street
Theater

Active recognition: example results

Jayaraman and Grauman, UT TR AI15-06



Active recognition: Results

Active selection + look-ahead → better scene 
categorization from sequence of glimpses in 360 panorama

Kristen Grauman, UT Austin



Summary

• Visual learning requires 

– context of action and motion in the world

– with continuous self-acquired feedback

• New ideas:

– “Embodied” feature learning using both visual and motor 

signals

– Feature learning from unlabeled video via higher order 

temporal coherence

– Steps towards active view selection in 360 scenes

Kristen Grauman, UT Austin
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