Weinberg Symposium on the Shared Frontiers of Artificial Intelligence and Cognitive Science University of Michigan, April 2018

Embodied Visual Learning and Recognition

Kristen Grauman

Department of Computer Science
University of Texas at Austin

Visual recognition

Visual recognition: applications

AI and autonomous robotics

Organizing visual content

Science and medicine

Gaming, HCI, Augmented Reality

Surveillance and security

Personal photo/video collections

Visual recognition: significant recent progress

How do our systems learn about the visual world today?

Recognition benchmarks

BSD (2001)

Caltech 101 (2004), Caltech 256 (2006)

PASCAL (2007-12)

LabelMe (2007)

ImageNet (2009)

SUN (2010)

Places (2014)

MS COCO (2014)

Visual Genome (2016)

Egocentric perceptual experience

Big picture goal: Embodied visual learning

Status quo:

Learn from "disembodied" bag of labeled snapshots.

On the horizon:

Visual learning in the context of acting and moving in the world.

This talk

Towards embodied visual learning

- 1. Learning from unlabeled video and multiple sensory modalities
- 2. Learning policies for how to move for recognition and exploration

The kitten carousel experiment [Held & Hein, 1963]

Idea: Ego-motion ↔ vision

Goal: Teach computer vision system the connection: "how I move" ↔ "how my visual surroundings change"

Unlabeled video

Ego-motion ↔ vision: view prediction

After moving:

Approach idea: Ego-motion equivariance

Learn

Training data

Unlabeled video + motor signals

Equivariant embedding organized by ego-motions

$$\mathbf{z}(\mathbf{g}\mathbf{x}) \approx \mathbf{M}_{\mathbf{g}}\mathbf{z}(\mathbf{x})$$

Pairs of frames related by similar ego-motion should be related by same feature transformation

[Jayaraman & Grauman, ICCV 2015, IJCV 2017]

Results: Recognition

Learn from unlabeled car video (KITTI)

Geiger et al, IJRR '13

Exploit features for static scene classification (SUN, 397 classes)

Pose Mindon's

30% accuracy increase when labeled data scarce

CVPR '10

Passive → complete ego-motions

Pre-recorded video

Comprehensive observation

One-shot reconstruction

Vienderichmenerseiedertson

Key idea: One-shot reconstruction as a proxy task to learn semantic features.

One-shot reconstruction

[Snavely et al, CVPR '06]

[Sinha et al, ICCV'93]

Shape from dense views geometric problem

Shape from one view semantic problem

Approach: ShapeCodes

[Jayaraman & Grauman, arXiv 2017]

One-shot reconstruction example

Observed view

ShapeCodes capture semantics

t-SNE embedding for images of unseen object categories

ShapeCodes for recognition

^{*}Hadsell et al, Dimensionality reduction by Learning an invariant mapping, CVPR 2005

^{**} Masci et al, Stacked Convolutional Autoencoders for Hierarchical Feature Extraction, ICANN 2011 ^Agrawal, Carreira, Malik, Learning to See by Moving, ICCV 2015

Ego-motion and implied body pose

Learn relationship between egocentric scene motion and 3D human body pose

Input: egocentric video

Output: sequence of 3d joint positions

Ego-motion and implied body pose

Learn relationship between egocentric scene motion and 3D human body pose

Wearable camera video

Inferred pose of camera wearer

Videos: http://www.hao-jiang.net/egopose/index.html

[Jiang & Grauman, CVPR 2017]

This talk

Towards embodied visual learning

- 1. Learning from unlabeled video and multiple sensory modalities
 - a) Egomotion / motor signals
 - b) Audio signals
- 2. Learning policies for how to move for recognition and exploration

Recall: Disembodied visual learning

Listening to learn

Listening to learn

woof meow ring clatter

Goal: A repetoire of objects and their sounds

Visually-guided audio source separation

Traditional approach:

- Detect low-level correlations within a single video
- Learn from clean single audio source examples

[Darrell et al. 2000; Fisher et al. 2001; Rivet et al. 2007; Barzelay & Schechner 2007; Casanovas et al. 2010; Parekh et al. 2017; Pu et al. 2017; Li et al. 2017]

Learning to separate object sounds

Our idea: Leverage visual objects to learn from unlabeled video with multiple audio sources

[Gao, Feris, & Grauman, arXiv 2018]

Our approach: training

Deep multi-instance multi-label learning (MIML) to disentangle which visual objects make which sounds

Output: Group of audio basis vectors per object class

Our approach: inference

Given a novel video, use discovered object sound models to guide audio source separation.

Results

Train on 100,000 unlabeled video clips, then separate audio for novel video

original video (before separation)

visual predictions: acoustic guitar & harmonica

Videos:

http://vision.cs.utexas.edu/projects/separating_object_sounds/

Baseline: M. Spiertz, Source-filter based clustering for monaural blind source separation. International Conference on Digital Audio Effects, 2009

[Gao, Feris, & Grauman, arXiv 2018]

Results

Train on 100,000 unlabeled video clips, then separate audio for novel video

Failure cases

Failure cases

Videos:

http://vision.cs.utexas.edu/projects/separating_object_sounds/
[Gao, Feris, & Grauman, arXiv 2018]

Results

	Instrument Pair	Animal Pair	Vehicle Pair	Cross-Domain Pair
Upper-Bound	2.05	0.35	0.60	2.79
K-means Clustering	-2.85	-3.76	-2.71	-3.32
MFCC Unsupervised [65]	0.47	-0.21	-0.05	1.49
Visual Exemplar	-2.41	-4.75	-2.21	-2.28
Unmatched Bases	-2.12	-2.46	-1.99	-1.93
Gaussian Bases	-8.74	-9.12	-7.39	-8.21
Ours	1.83	0.23	0.49	2.53

Visually-aided audio source separation (SDR)

Wooden Horse Violin Yanni Guitar Solo Average							
Sparse CCA (Kidron et al. [43])	4.36	5.30	5.71	5.12			
JIVE (Lock et al. [50])	4.54	4.43	2.64	3.87			
Audio-Visual (Pu et al. [56])	8.82	5.90	14.1	9.61			
Ours	12.3	7.88	11.4	10.5			

Visually-aided audio denoising (NSDR)

Train on 100K unlabeled video clips from AudioSet [Gemmeke et al. 2017]

This talk

Towards embodied visual learning

- 1. Learning from unlabeled video and multiple sensory modalities
- 2. Learning policies for how to move for recognition and exploration

Current recognition benchmarks

Passive, disembodied snapshots at test time, too

Scene recognition

Moving to recognize

Time to revisit active recognition in challenging settings!

Bajcsy 1985, Aloimonos 1988, Ballard 1991, Wilkes 1992, Dickinson 1997, Schiele & Crowley 1998, Tsotsos 2001, Denzler 2002, Soatto 2009, Ramanathan 2011, Borotschnig 2011, ...

Moving to recognize

Difficulty: unconstrained visual input

VS.

ImageNet Web images

Moving to recognize

Difficulty: unconstrained visual input

Opportunity: ability to move to *change* input

End-to-end active recognition

End-to-end active recognition

Look around scene

Manipulate object

Move around an object

End-to-end active recognition

Agents that learn to look around intelligently can recognize things faster.

End-to-end active recognition: example

Plaz & ko corthyard T\$teetetr Lob**Styree**ttium Restaueant Plaza courtyard TSteeter

[Jayaraman and Grauman, ECCV 2016]

End-to-end active recognition: example

GERMS dataset: Malmir et al. BMVC 2015

[Jayaraman and Grauman, ECCV 2016]

Goal: Learn to "look around"

recognition

reconnaissance

search and rescue

task predefined

task unfolds dynamically

Can we learn look-around policies for visual agents that are curiosity-driven, exploratory, and generic?

Key idea: Active observation completion

Completion objective: Learn policy for efficiently inferring (pixels of) all yet-unseen portions of environment

Agent must choose where to look before looking there.

Key idea: Active observation completion

Completion objective: Learn policy for efficiently inferring (pixels of) all yet-unseen portions of environment

Agent must choose where to look before looking there.

Approach: Active observation completion

Jayaraman and Grauman, CVPR 2018

Two scenarios

Where to look next?

Active "look around" results

^{*}Harel et al, Graph based Visual Saliency, NIPS'07

Jayaraman and Grauman, CVPR 2018

Active "look around" visualization

Agent's mental model for 3D object evolves with actively accumulated glimpses

Active "look around" visualization

Inferred scene

= observed views

Agent's mental model for 360 scene evolves with actively accumulated glimpses

Motion policy transfer

Plug observation completion policy in for new task

Motion policy transfer

Unsupervised exploratory policy approaches supervised task-specific policy accuracy!

Summary

- Visual learning benefits from
 - context of action and motion in the world
 - continuous unsupervised observations

- Embodied feature learning via visual and motor signals
- Learning to separate object sound models from unlabeled video
- Active policies for view selection and camera control

Dinesh Jayaraman

Ruohan Gao

Papers

- Learning to Separate Object Sounds by Watching Unlabeled Video. R. Gao, R. Feris, and K. Grauman. arXiv:1804.01665, April 2018. videos
- Learning to Look Around: Intelligently Exploring Unseen
 Environments for Unknown Tasks. D. Jayaraman and K. Grauman.
 CVPR 2018.
- Seeing Invisible Poses: Estimating 3D Body Pose from Egocentric Video. H. Jiang and K. Grauman. CVPR 2017.
- Learning Image Representations Tied to Egomotion from Unlabeled Video. D. Jayaraman and K. Grauman. International Journal of Computer Vision (IJCV), Special Issue for Best Papers of ICCV 2015, Mar 2017.
- Look-Ahead Before You Leap: End-to-End Active Recognition by Forecasting the Effect of Motion. D. Jayaraman and K. Grauman. ECCV 2016.
- Unsupervised learning through one-shot image-based shape reconstruction, D. Jayaraman, R. Gao, K. Grauman. arXiv 2017

http://www.cs.utexas.edu/~grauman/research/pubs.html