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Problem Learning Adapted Attributes
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o Further, attribute terms can be imprecise
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o Similar formulation for binary classifiers (Yang et al. 2007)
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Impact of Adapted Attributes for Personalized Search

“Target is more feminine than A”
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We adapt a generic attribute predictor trained with a large amount of Datasets
majority-voted data with a small amount of user-labeled data. . . . .
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natural light, cold, open area, far-away horizon The personalized attribute models allow the user to more quickly find his/her search target.

Size: 14k images each; Features: GIST, color, HOG, SSIM Implicitly gathering labels for personalization saves the user time, while producing similar results.
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Impact: Capture user’s perception with minimal annotation effort.
Personalization makes attribute-based image search more accurate.




