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Introduction Problem Our Approach Results Conclusions

Object Detection

Challenge: Best results
require large amount of
cleanly labeled training
examples.
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Introduction Problem Our Approach Results Conclusions

Ways to Reduce Effort

Active learning

minimize effort by focusing
label requests on the most
informative examples
[Kapoor et al. ICCV 2007, Qi et al. CVPR 2008,
Vijayanarasimhan et al. CVPR 2009, Joshi et al.
CVPR 2009, Siddique et al. CVPR 2010]

Crowd-sourced annotations

package annotation tasks to
obtain from online human
workers
[von Ahn et al. CHI 2004, Russell et al. IJCV
2007, Sorokin et al. 2008, Welinder et al.
ACVHL 2010, Deng et al, CVPR 2009]
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Problem

Thus far techniques are only tested in artificially controlled settings:

use “sandbox” datasets - dataset’s source and scope is fixed

computational cost of active selection and retraining the model
generally ignored - linear/quadratic time

crowd-sourced collection requires iterative fine-tuning
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Goal

Goal

Take active learning and crowd-sourced annotation collection out of
the “sandbox”.

break free from dataset-based learning

collect information on the fly (no manual intervention)

large-scale data

Our Approach: Live Learning

Live active learning system that
autonomously builds models for object
detection

“bicycle”

Category model
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Main Contributions

Linear classification
part-based linear detector based on non-linear feature coding

Large-scale active selection
sub-linear time hashing scheme for efficiently selecting
uncertain examples [ Jain, Vijayanarasimhan & Grauman, NIPS 2010]

Live learning results
for active detection of unprecedented scale and autonomy for
the first time
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Object Representation and Classifier

Part based object representation

Score windows as linear sum:

f (O) = wTϕ(O)

= wrϕ(r) +
P∑
i=1

wpiϕ(pi )

+
C∑
i=1

wciϕ(ci ),

w - linear SVM weights

Sparse Max Pooling [Yang et al. ’10] – similar to bag of words:

sparse coding – fuller representation of original features

max pooling – better discriminability in clutter [Boureau ’10].
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Object Representation and Classifier

Relationship to existing detection models

Spatial pyramid (SP)
[Lazebnik et al. ’06, Vedaldi et al. ’09]

Latent SVM (LSVM)
[Felzenswalb et al. ’09]

+ +

Hard VQ 

+avg pooling

flocal features,

discard locs per window

++

root parts deformations

dense gradients at fixed locs within window

Ours
Sparse code

+max pooling

root parts

+

 (p1) … (pP) (r)

local features,

discard locs per window
 ( )

faster training (linear SVM)

results comparable to non-linear detectors
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Active Selection of Object Windows

SVM margin criterion for active selectionSVM margin criterion for active selection

Select point nearest to 
hyperplane decision 
boundary for labeling.

[Tong & Koller, 2000; Schohn & Cohn, 
2000; Campbell et al. 2000]

Problem: With massive unlabeled pool, cannot 
afford exhaustive linear scan to make selection.

w

?

Select point nearest to hyperplane
decision boundary for labeling.

x∗ = argmin
xi∈U

|wTxi |

[Tong & Koller, 2000; Schohn & Cohen, 2000;

Campbell et al. 2000]

Problem: With massive unlabeled pool, cannot afford exhaustive
linear scan to make selection.
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Active Selection of Object Windows

Sub-linear time selection through hyperplane hashing

hash function h(.) - high
probability of collision when
ϕ(O) close to w

preprocess - hash unlabeled
windows into table

active learning loop - hash
classifier w and retrieve
examples

evaluate ∼ 103 windows vs.
∼ 106 for exhaustive

[Jain, Vijayanarasimhan and Grauman, NIPS 2010]
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Online Annotation Collection

Mechanical Turk Interface

post same image to multiple (5-10) annotators

cluster all bounding boxes to obtain consensus
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Summary: Live Learning
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Results

PASCAL 2007 challenge

20 different objects under changes in
viewpoint, scale, and background clutter.
∼ 5000 training and test examples
given an image detect all objects

Live learning on Flickr

6 of the most challenging PASCAL objects
New Flickr testset

Features

30,000 SIFT features densely extracted
60,000 words with hierarchical kmeans
sparse coding using LLC [Yang et al. ’10]

Implementation

12 parts from LSVM detector
100 images per active iteration
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Sandbox Results (PASCAL 2007)

Comparison to state-of-art

aero. cat dog sheep sofa train bicyc. bird boat bottl bus

· · ·

Mean

BoF SP 30.4 17.7 18.0 19.1 14.7 35.7 43.1 6.9 3.5 10.8 35.8 23.0
Ours 48.4 30.7 21.8 28.8 33.0 47.7 48.3 14.1 13.6 15.3 43.9 30.5

LSVM+HOG1 32.8 21.3 8.8 16.2 24.4 39.2 56.8 2.5 16.8 28.5 39.7 29.1
SP+MKL2 37.6 30.0 21.5 23.9 28.5 45.3 47.8 15.3 15.3 21.9 50.7 32.1

1[Felzenszwalb et al. ’09] 2[Vedaldi et al. ’09]

part-based, single feature representation, linear model

competitive with state-of-art (better for 6 classes)
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Live Learning Results

Live learning tested on PASCAL testset

bird boat dog potted plant sheep chair
Ours 15.8 18.9 25.3 11.6 28.4 9.1

Previous best 15.3 16.8 21.5 14.6 23.9 17.9

Significant improvements in state-of-art on challenging categories

Computation Time

Active selection Training Detection per image
Ours + active 10 mins 5 mins 150 secs

LSVM [Felzenszwalb et al. 2009] 3 hours 4 hours 2 secs
SP+MKL [Vedaldi et al. 2009] 93 hours > 2 days 67 secs

Our approach’s efficiency makes live learning feasible.
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Live Learning Results

Live learning tested on Flickr testset

General test set of web images

Annotations added, out of 3 million examples
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randomly select a
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keyword filtered
image and obtain
binary label

dramatic improvements for most categories

outperforms status quo approach of learning
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Conclusions

autonomous online learning - break-free from sandbox learning

no intervention in example/annotation selection or pruning

obtains results better than state-of-art on challenging
PASCAL dataset

largest scale active learning results to our knowledge
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