Large-Scale Live Active Learning: Training Object Detectors with Crawled Data and Crowds

Sudheendra Vijayanarasimhan Kristen Grauman

Department of Computer Science University of Texas at Austin Austin, Texas

Challenge: Best results require large amount of cleanly labeled training examples.

Introduction	Problem	Our Approach	Results	Conclusions
●	O	0000000000	0000	
Ways to Redu	uce Effort			

• minimize effort by focusing label requests on the most informative examples

Introduction	Problem	Our Approach	Results	Conclusions
•	0	0000000000	0000	
Ways to Red	uce Effort			

• minimize effort by focusing label requests on the most informative examples

 minimize effort by focusing label requests on the most informative examples

 Introduction
 Problem
 Our Approach
 Results
 Conclusions

 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •

Active learning

 minimize effort by focusing label requests on the most informative examples

 minimize effort by focusing label requests on the most informative examples

 Introduction
 Problem
 Our Approach
 Results
 Conclusions

 •
 •
 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •
 •

Active learning

 minimize effort by focusing label requests on the most informative examples

 Introduction
 Problem
 Our Approach
 Results
 Conclusions

 •
 •
 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •
 •
 •

Active learning

 minimize effort by focusing label requests on the most informative examples

 minimize effort by focusing label requests on the most informative examples

[Kapoor et al. ICCV 2007, Qi et al. CVPR 2008, Vijayanarasimhan et al. CVPR 2009, Joshi et al. CVPR 2009, Siddique et al. CVPR 2010]

Crowd-sourced annotations

 package annotation tasks to obtain from online human workers

[von Ahn et al. CHI 2004, Russell et al. IJCV 2007, Sorokin et al. 2008, Welinder et al. ACVHL 2010, Deng et al, CVPR 2009]

Introduction	Problem	Our Approach	Results	Conclusions
O	○	0000000000	0000	
Problem				

Introduction	Problem	Our Approach	Results	Conclusions
O	○	0000000000	0000	
Problem				

• use "sandbox" datasets - dataset's source and scope is fixed

Introduction	Problem	Our Approach	Results	Conclusions
O	○	0000000000	0000	
Problem				

- use "sandbox" datasets dataset's source and scope is fixed
- computational cost of active selection and retraining the model generally ignored - linear/quadratic time

Introduction	Problem	Our Approach	Results	Conclusions
O	○	0000000000	0000	
Problem				

- use "sandbox" datasets dataset's source and scope is fixed
- computational cost of active selection and retraining the model generally ignored - linear/quadratic time
- crowd-sourced collection requires iterative fine-tuning

Introduction	Problem	Our Approach	Results	Conclusions
O	●	0000000000	0000	
Goal				

Take active learning and crowd-sourced annotation collection out of the "sandbox".

Introduction	Problem	Our Approach	Results	Conclusions
O	●	0000000000	0000	
Goal				

Take active learning and crowd-sourced annotation collection out of the "sandbox".

• break free from dataset-based learning

Introduction	Problem	Our Approach	Results	Conclusions
O	●	0000000000	0000	
Goal				

Take active learning and crowd-sourced annotation collection out of the "sandbox".

- break free from dataset-based learning
- collect information on the fly (no manual intervention)

Introduction	Problem	Our Approach	Results	Conclusions
O	●	0000000000	0000	
Goal				

Take active learning and crowd-sourced annotation collection out of the "sandbox".

- break free from dataset-based learning
- collect information on the fly (no manual intervention)
- large-scale data

Introduction	Problem	Our Approach	Results	Conclusions
O	●	0000000000	0000	
Goal				

Take active learning and crowd-sourced annotation collection out of the "sandbox".

- break free from dataset-based learning
- collect information on the fly (no manual intervention)
- Iarge-scale data

Our Approach: Live Learning

Live active learning system that autonomously builds models for object detection

Introduction	Problem	Our Approach	Results	Conclusions
O	●	0000000000	0000	
Goal				

Take active learning and crowd-sourced annotation collection out of the "sandbox".

- break free from dataset-based learning
- collect information on the fly (no manual intervention)
- Iarge-scale data

Our Approach: Live Learning

Live active learning system that autonomously builds models for object detection

"bicycle"

Introduction	Problem	Our Approach	Results	Conclusions
		••••••		
Our Appro	ach: Live Le	earning		

"bicycle"

Introduction O	Problem 0	Our Approach	Results 0000	Conclusions
Our Approach	n: Live Lea	rning		

images

Introduction O	Problem 0	Our Approach	Results 0000	Conclusions
Our Approac	n: Live Le	earning		

Introduction O	Problem O	Our Approach	Results 0000	Conclusions
Main Cont	ributions			

• Linear classification

part-based linear detector based on non-linear feature coding

Introduction 0	Problem O	Our Approach	Results 0000	Conclusions
Main Cont	ributions			

• Linear classification

part-based linear detector based on non-linear feature coding

• Large-scale active selection

sub-linear time hashing scheme for efficiently selecting uncertain examples [Jain, Vijayanarasimhan & Grauman, NIPS 2010]

Introduction 0	Problem O	Our Approach	Results 0000	Conclusions
Main Cont	ributions			

• Linear classification

part-based linear detector based on non-linear feature coding

• Large-scale active selection

sub-linear time hashing scheme for efficiently selecting uncertain examples [Jain, Vijayanarasimhan & Grauman, NIPS 2010]

• Live learning results

for active *detection* of unprecedented scale and autonomy for the first time

Introduction O	Problem O	Our Approach	Results 0000	Conclusions
Outline				

Introduction O	Problem O	Our Approach	Results 0000	Conclusions
Outline				

Introduction 0	Problem O	Our Approach	Results 0000	Conclusions
Outline				

Linear classification

- fast/incremental training using linear SVM
- efficient active selection using our hyperplane hash functions

 Introduction
 Problem
 Our Approach
 Results
 Conclusions

 Object Representation and Classifier

Part based object representation

 Introduction
 Problem
 Our Approach
 Results
 Conclusions

 Object Representation and Classifier

Part based object representation

Root

 Introduction
 Problem
 Our Approach
 Results
 Conclusions

 Object Representation and Classifier

Part based object representation

Root Parts

Root Parts

Context

• sparse coding - fuller representation of original features

- sparse coding fuller representation of original features
- max pooling better discriminability in clutter [Boureau '10].

- sparse coding fuller representation of original features
- max pooling better discriminability in clutter [Boureau '10].

• faster training (linear SVM)

- faster training (linear SVM)
- results comparable to non-linear detectors

Selecting Images to Annotate

SVM margin criterion for active selection

Select point nearest to hyperplane decision boundary for labeling.

$$\mathbf{x}^* = \underset{\mathbf{x}_i \in \mathcal{U}}{\operatorname{argmin}} |\mathbf{w}^T \mathbf{x}_i|$$

[Tong & Koller, 2000; Schohn & Cohen, 2000;

Campbell et al. 2000]

SVM margin criterion for active selection

Select point nearest to hyperplane decision boundary for labeling.

$$\mathbf{x}^* = \operatorname*{argmin}_{\mathbf{x}_i \in \mathcal{U}} |\mathbf{w}^T \mathbf{x}_i|$$

[Tong & Koller, 2000; Schohn & Cohen, 2000; Campbell et al. 2000]

Problem: With massive unlabeled pool, cannot afford exhaustive linear scan to make selection.

 Introduction
 Problem
 Our Approach
 Results
 Conclusions

 Active Selection of Object Windows
 Vindows
 Vindows
 Vindows
 Vindows

Sub-linear time selection through hyperplane hashing

[Jain, Vijayanarasimhan and Grauman, NIPS 2010]

 hash function h(.) - high probability of collision when φ(O) close to w
 Introduction
 Problem
 Our Approach
 Results
 Conclusions

 Active Selection of Object Windows
 Vindows
 Vindows
 Vindows
 Vindows

Sub-linear time selection through hyperplane hashing

[Jain, Vijayanarasimhan and Grauman, NIPS 2010]

 hash function h(.) - high probability of collision when φ(O) close to w

Unlabeled windows

- [Jain, Vijayanarasimhan and Grauman, NIPS 2010] 1100 $h(\phi(C$ Hash table I Inlabeled windows
- hash function h(.) high probability of collision when $\varphi(O)$ close to **w**
- preprocess hash unlabeled windows into table

- hash function h(.) high probability of collision when φ(O) close to w
- preprocess hash unlabeled windows into table

- hash function h(.) high probability of collision when φ(O) close to w
- preprocess hash unlabeled windows into table
- active learning loop hash classifier w and retrieve examples

- hash function h(.) high probability of collision when φ(O) close to w
- preprocess hash unlabeled windows into table
- active learning loop hash classifier w and retrieve examples

- hash function h(.) high probability of collision when φ(O) close to w
- preprocess hash unlabeled windows into table
- active learning loop hash classifier w and retrieve examples

- hash function h(.) high probability of collision when φ(O) close to w
- preprocess hash unlabeled windows into table
- active learning loop hash classifier w and retrieve examples
- evaluate $\sim 10^3$ windows vs. $\sim 10^6$ for exhaustive

Online Annotation Collection

- on the fly
- reliable annotations without pruning

Introduction Problem Our Approach Results Conclusions

Online Annotation Collection

Mechanical Turk Interface

Mechanical Turk Interface

• post same image to multiple (5-10) annotators

- post same image to multiple (5-10) annotators
- cluster all bounding boxes to obtain consensus

- post same image to multiple (5-10) annotators
- cluster all bounding boxes to obtain consensus

Introduction	Problem	Our Approach	Results	Conclusions
O	O	0000000000	●000	
Results				

- 20 different objects under changes in viewpoint, scale, and background clutter.
- $ho~\sim$ 5000 training and test examples
- given an image detect all objects

Introduction	Problem	Our Approach	Results	Conclusions
O	O	0000000000	●000	
Results				

- 20 different objects under changes in viewpoint, scale, and background clutter.
- ${\rm \circ}~\sim$ 5000 training and test examples
- given an image detect all objects

Live learning on Flickr

- 6 of the most challenging PASCAL objects
- New Flickr testset

Introduction	Problem	Our Approach	Results	Conclusions
O	O	0000000000	●000	
Results				

- 20 different objects under changes in viewpoint, scale, and background clutter.
- ${\rm \circ}~\sim$ 5000 training and test examples
- given an image detect all objects

Live learning on Flickr

- 6 of the most challenging PASCAL objects
- New Flickr testset

Features

- 30,000 SIFT features densely extracted
- 60,000 words with hierarchical kmeans
- sparse coding using LLC [Yang et al. '10]

Introduction	Problem	Our Approach	Results	Conclusions
O	O	0000000000	●000	
Results				

- 20 different objects under changes in viewpoint, scale, and background clutter.
- ${\rm \circ}~\sim$ 5000 training and test examples
- given an image detect all objects

Live learning on Flickr

- 6 of the most challenging PASCAL objects
- New Flickr testset

Features

- 30,000 SIFT features densely extracted
- 60,000 words with hierarchical kmeans
- sparse coding using LLC [Yang et al. '10]

Implementation

- 12 parts from LSVM detector
- 100 images per active iteration

ntroduction Problem		Problem	Our Approach	Results	Conclusions
O O		O	0000000000	o●oo	
с II	D				

Sandbox Results	(PASCAL 2007)	
-----------------	---------------	--

Comparison to state-of-art												
	aero.	cat	dog	sheep	sofa	train	bicyc.	bird	boat	bottl	bus	Mean
BoF SP	30.4	17.7	18.0	19.1	14.7	35.7	43.1	6.9	3.5	10.8	35.8	23.0
Ours	48.4	30.7	21.8	28.8	33.0	47.7	48.3	14.1	13.6	15.3	43.9	 30.5
	-											

• part-based, single feature representation, linear model

Sandbox Results (PASCAL 2007)

Comparison to state-of-art												
	aero.	cat	dog	sheep	sofa	train	bicyc.	bird	boat	bottl	bus	Mean
BoF SP	30.4	17.7	18.0	19.1	14.7	35.7	43.1	6.9	3.5	10.8	35.8	23.0
Ours	48.4	30.7	21.8	28.8	33.0	47.7	48.3	14.1	13.6	15.3	43.9	 30.5
LSVM+HOG ¹	32.8	21.3	8.8	16.2	24.4	39.2	56.8	2.5	16.8	28.5	39.7	29.1
SP+MKL ²	37.6	30.0	21.5	23.9	28.5	45.3	47.8	15.3	15.3	21.9	50.7	32.1
*[Felzenszwalb et	al. '09]	²[Ve	daldi e	t al. '09]								

- part-based, single feature representation, linear model
- competitive with state-of-art (better for 6 classes)

Introduction	Problem	Our Approach	Results	Conclusions
O	O	0000000000	○○●○	
Live Learning	Results			

Live learning tested on PASCAL testset
Introduction	Problem	Our Approach	Results	Conclusions
O	O	0000000000	○○●○	
Live Learning	Results			

ive learning tested on PASCAL testset								
		bird	boat	dog	potted plant	sheep	chair	
	Ours	15.8	18.9	25.3	11.6	28.4	9.1	
	Previous best	15.3	16.8	21.5	14.6	23.9	17.9	
Significant improvements in state-of-art on challenging categories								

I

Introduction	Problem	Our Approach	Results	Conclusions
O	O	0000000000	○○●○	
Live Learning	Results			

Live learning tested on PASCAL testset

	bird	boat	dog	potted plant	sheep	chair
Ours	15.8	18.9	25.3	11.6	28.4	9.1
Previous best	15.3	16.8	21.5	14.6	23.9	17.9

Significant improvements in state-of-art on challenging categories

Computation Time

	Active selection	Training	Detection per image
Ours + active	10 mins	5 mins	150 secs
LSVM [Felzenszwalb et al. 2009]	3 hours	4 hours	2 secs
SP+MKL [Vedaldi et al. 2009]	93 hours	> 2 days	67 secs

Our approach's efficiency makes live learning feasible.

Introduction	Problem	Our Approach	Results	Conclusions
O	O	0000000000	○○○●	
Live Learning	Results			

Live learning tested on Flickr testset

General test set of web images

dramatic improvements for most categories

- dramatic improvements for most categories
- outperforms status quo approach of learning

Introduction	Problem	Our Approach	Results	Conclusions
O	O	0000000000	0000	
Conclusions				

- autonomous online learning break-free from sandbox learning
- no intervention in example/annotation selection or pruning
- obtains results better than state-of-art on challenging PASCAL dataset
- largest scale active learning results to our knowledge