
Summary Transfer: Exemplar-based Subset Selection for Video Summarization

Ke Zhang*¹, Wei-Lun Chao*¹, Fei Sha², and Kristen Grauman³
¹University of Southern California ²University of California Lo

¹University of Southern California, ²University of California, Los Angeles, ³University of Texas at Austin

SumMe

Highlights

- **★** Propose a non-parametric method for supervised video summarization
- **★** Transfer the summarization structure from humanannotated videos to new ones
- **★** Exploit side information (e.g., video categories) for semantically guided transfer

Introduction

Video summarization is indispensable:

>300 hours of new Youtube video per min **Popular ways:** key frame (shot) selection

Previous work

- Unsupervised: hand-crafted criteria
- Supervised: (complex) parametric modeling

Motivation

- Similar videos ought to have similar compositional structures in their summaries (Wedding: bride entering, groom waiting...)

- Transfer summaries from humanannotated videos to new ones by selecting sequentially ordered frames w/ high visual similarity

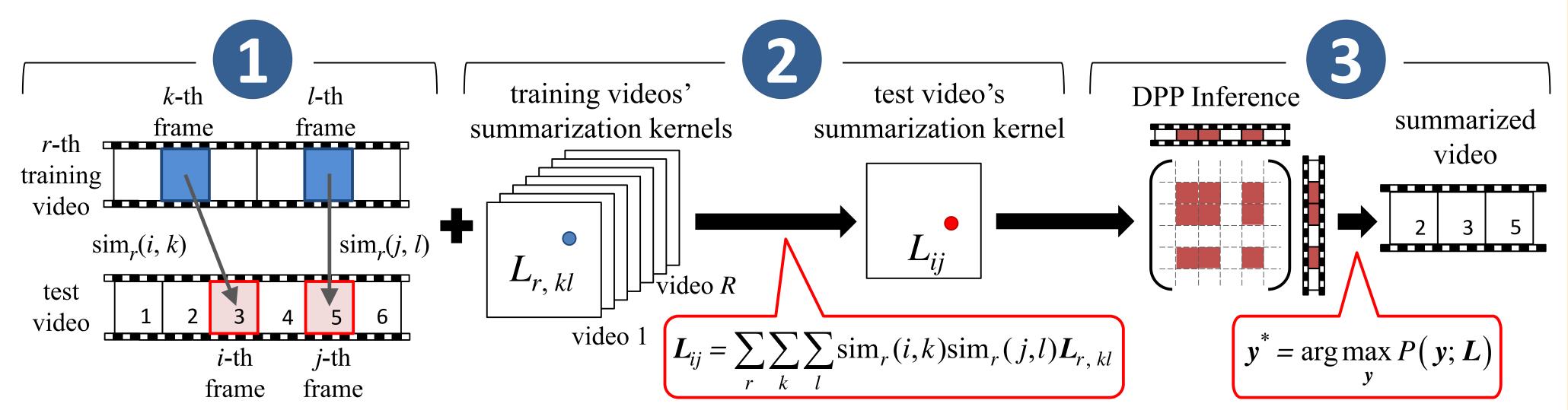
Approach

Challenges of video summarization:

- 1) A structured prediction problem
- 2) Transfer summarization labels (selected vs. not selected) fails to consider relatedness of frames

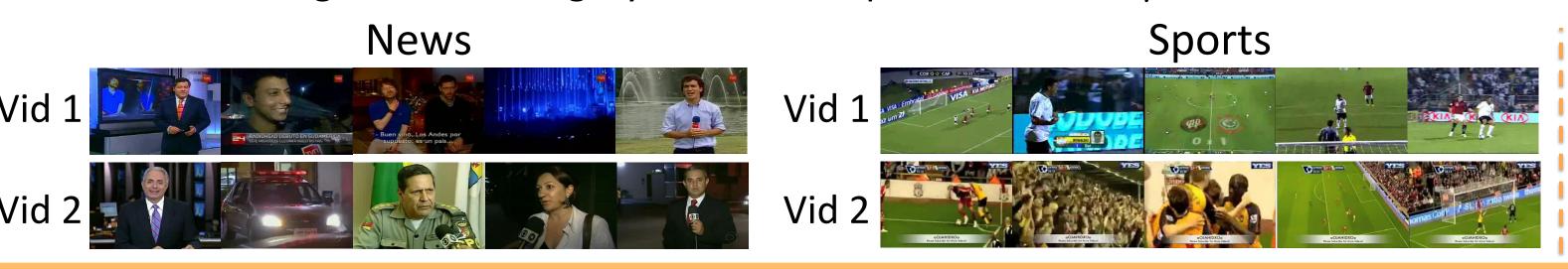
Solution: Transfer the "underlying" summarization structure

Determinantal Point Process (DPP) for modeling the structure


DPPs define the probability of selecting a subset y from a N-item ground set: given the similarity kernel L, diverse & representative subsets are highly probable

How to obtain the similarity (summarization) kernel L_r for a human-annotated video r ?

 $L_r = \alpha_r \begin{bmatrix} \delta(1 \in \mathbf{y}_r) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \delta(N_r \in \mathbf{y}_r) \end{bmatrix}$


 $P(y;L) = \frac{\det(L\{y\})}{\det(L+I)}$

Summary Transfer constructing $m{L}$ for the test video

Learning: adjust parameters $lpha_r$ using MLE (leave-one-out on training videos)

Category-specific summary transfer: Videos from the same category have close high-level semantic cues **Solution**: Learning for each category of videos a specific set of α_r

Other details: sub-shot based summarization, sequential modeling, and complexity, etc.

Oracle

Experiments

Dataset: SumMe (50), OVP (50), Youtube (31), Kodak (18), and MED (160)

Evaluation: F-score, average or maximum over multiple human-created summaries

Feature: SIFT & Color histogram

Comparison: seqDPP [Gong '14], Submodular [Gygli '15], and unsupervised methods

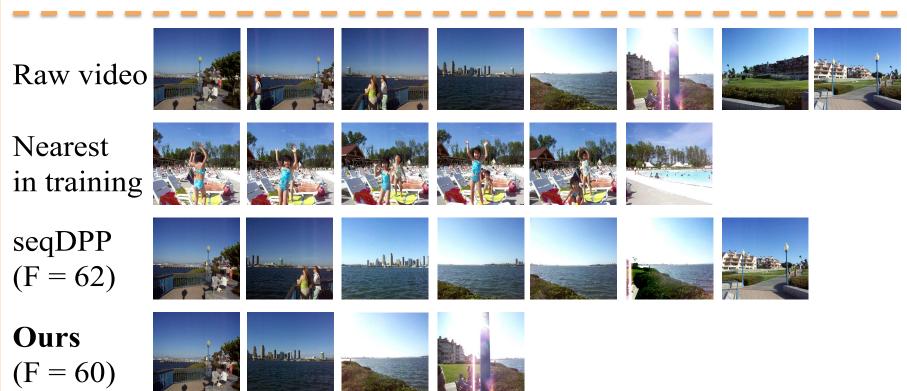
Setting	Kodak	OVP	YouTube	MED	I	You
VSUMM	69.5	70.3	59.9	28.9	Setting	
seqDPP	78.9	77.7	60.8	_	w/o cs	6
Ours	82.3	76.5	61.8	30.7	cs hard	6
'		ı	1			

Despite the **variety** of the datasets, we obtain state-of-the-art performance on most of them

	•			
	VSUMM	SumMe	Submodular	Our
SumMe	33.7	39.3	39.7	40.9

cs hard61.530.440.9cs soft60.630.740.2Video category information helps

(10)


summarization

rs (cs stands for category-specific, # of categories in the brackets)

Positive example

- supervised learning helps identify representative contents
- non-parametric transfer leads to better kernel L, eliminating uninformative frames

Negative example

 Fail to capture the relationship between frames within the test video

K.G. is partially supported by NSF IIS-1514118. Others are partially supported by USC Annenberg and Viterbi Graduate Fellowships, NSF IIS - 1451412, 1513966, and CCF - 1139148