
Centaur Technology Media Unit Verification

Warren A. Hunt, Jr. and Sol O. Swords

June, 2009

Computer Sciences Department
University of Texas

1 University Way, M/S C0500
Austin, TX 78712-0233

E-mail:
{hunt,sswords}@cs.utexas.edu

TEL: +1 512 471 {9748,9744}
FAX: +1 512 471 8885

Centaur Technology, Inc.
7600-C N. Capital of Texas Hwy

Suite 300
Austin, Texas 78731

E-mail:
{hunt,sswords}@centtech.com
TEL: +1 512 418 {5797,5751}

FAX: +1 512 794 0717

Page 1 (Hunt, Swords: Centaur, UT Austin) Centaur Media Unit Verification June, 2009 1 / 15

Introduction

We have verified more than 50 media-unit (adds, subs, compares,
converts, logicals, shuffles, blend, insert, extract, min-max) instructions
from Centaur’s 64-bit, X86-compatible microprocessor.

Media unit implements over 100 X86 SSE and X87 instructions.

Unit can add/subtract four pairs of floating-point numbers every
clock cycle with an industry-leading two-cycle latency.

For our verifications, we use a combination of AIG- and BDD-based
symbolic simulation, case splitting, and theorem proving.

We create a theorem for each instruction to be verified.

We use ACL2 to mechanically verify each proposed theorem.

Here, we discuss our verification of Centaur NanoTM floating-point
addition/subtraction instructions – the NanoTM is used by Dell, HP,
OLPC, and Samsung.

Page 2 (Hunt, Swords: Centaur, UT Austin) Centaur Media Unit Verification June, 2009 2 / 15

Centaur NanoTM X86-64 Microprocessor

Contemporary Example

Full X86-64 design
including VMX

65-nanometer design
of 94.5M transistors

AES, DES, SHA, and
random-number
generator hardware

Built-in security
processor

Runs 40 operating
systems and four VMs

Page 3 (Hunt, Swords: Centaur, UT Austin) Centaur Media Unit Verification June, 2009 3 / 15

Centaur NanoTM Media Unit – FADD

Adder Adder Adder Adder

DP SP EP
Adder

Control

Clocks
Control

Instruction
Flags Data A

Data B

1074 inputs

Completion
Signals

Exceptions
Results

394 outputs

SP

33,700 line Verilog description of 680 modules
Modules represent 432,322 transistors
Unit has 374 outputs and 1074 inputs (26 clocks)
Implements over 100 media instructions
Two-cycle-latency for floating-point additions/subtractions

Page 4 (Hunt, Swords: Centaur, UT Austin) Centaur Media Unit Verification June, 2009 4 / 15

Toolflow

We begin, by translating Nano’s Verilog specification into our
formally-defined, E-language HDL.

Verilog is simplified into single-assignment form.

Create environment suitable for media unit verification.

We extract its equation by symbolic simulation.

We specialize this equation to the instruction of interest.

We then, as appropriate, convert this equation into BDDs.

The specification is written in ACL2.

Integer operations are used to specify media-unit instructions.

Such operations are symbolically simulated and specialized.

These specification are proven to implement floating-point operations.

Finally, the results of both paths are compared.

Page 5 (Hunt, Swords: Centaur, UT Austin) Centaur Media Unit Verification June, 2009 5 / 15

The Centaur Media-Unit, Verification Tool Flow

Hardware
Output
BDDs

Spec
Output
BDDs

=?

Verilog
Files

fadd
EMOD

module

EMOD

�����

Symbolic
Simulator

fadd AIG
function

AIG2BDD

Specialize

Instruction
Spec

Symbolic
Spec

Case-splitting,
Parametrization

Per-instruction
AIGs

Page 6 (Hunt, Swords: Centaur, UT Austin) Centaur Media Unit Verification June, 2009 6 / 15

The Verilog-to-E Translator (Jared Davis)

Logic

Library Files (.v)

Processor Files (.v)

ROM Images

makeTop
Script

top.v

VL

Loader

~550,000 lines
Everything but some libraries

reader
preprocessor

lexer
parser

"loader"

ACL2 Program

Parse Tree

Tr
a
n

sf
o
rm

a
ti

o
n

s

Cut Down Modules (Optional)
Make Reasonable
Unparameterize
Fill in Wires
Resolve Argument Lists
Resolve Constant Expressions
Standardize Ranges and Selects
Rewrite Operators
Compute Signs
Self-Determine Sizes
Fix Integer Size to 32 Bits
Context-Determine Sizes
Split Expressions
Replicate Instance Arrays
Truncate Expressions for Lvalues
Optimize
Assignments to Occurrences (Occform)
Eliminate Always Blocks (In progress)

ACL2 Object
(not on disk)

"Conservatively
 Approximates"

Parse Tree
ACL2 Object
(not on disk)

Writer

E Modules
(defm ...)
(defm ...)
(defm |*fadd*| ...)

Xformed Verilog
module ...
module ...
module fadd ...

FV

Q.E.D.
P(x)

"Differ By Parens"

DV

Simulation
Centaur's

Regression Suite

"Pass/Fail
 Together?"

Page 7 (Hunt, Swords: Centaur, UT Austin) Centaur Media Unit Verification June, 2009 7 / 15

E-Language Features

The E language is deeply embedded in ACL2, and it is:

hierarchical, and

occurrence-oriented.

We use the E language much like a database; it includes:

HDL descriptions

Hierarchical state representation

Signal sense and direction

Clock discipline

Properties

Annotations

E-language has multiple symbolic simulators

BDD and AIG (both two- and four-valued) simulators

Symbolic information-flow simulator

Delay estimator

Page 8 (Hunt, Swords: Centaur, UT Austin) Centaur Media Unit Verification June, 2009 8 / 15

E-Language Example

(defm *simple-ff-latch*
‘(:i (clk a)
:o (o)
:s (l- l+)
:c (clk)
:cd ((t) (nil))
:occs
((:u l+ :o (n n~) :op ,*latch+* :i (clk a))
(:u o1 :o (clk~) :op ,*not1* :i (clk))
(:u l- :o (o o~) :op ,*latch+* :i (clk~ n)))))

Simple two-latch, flip-flop

Interface: :i, :o, and :s fields.

Clock: :c and :cd fields.

Occurrences are in a list, but treated as a set

Multi-phase and gated clocking supported (and used by Centaur)

Page 9 (Hunt, Swords: Centaur, UT Austin) Centaur Media Unit Verification June, 2009 9 / 15

Symbolic Simulation in ACL2

We have created developed a verified framework for ACL2 that provides a
means for symbolic simulation.

Defined functions can be mechanically generalized.

Such generalized functions, given finite sets, can be symbolically
executed.

Our framework allows the results of symbolic simulation of ACL2
functions to be used as a part of a proof.

Our work provides a symbolic-simulation capability for the entire ACL2
logic.

Page 10 (Hunt, Swords: Centaur, UT Austin) Centaur Media Unit Verification June, 2009 10 / 15

The Centaur Media-Unit, Verification Tool Flow

Hardware
Output
BDDs

Spec
Output
BDDs

=?

Verilog
Files

fadd
EMOD

module

EMOD

�����

Symbolic
Simulator

fadd AIG
function

AIG2BDD

Specialize

Instruction
Spec

Symbolic
Spec

Case-splitting,
Parametrization

Per-instruction
AIGs

Page 11 (Hunt, Swords: Centaur, UT Austin) Centaur Media Unit Verification June, 2009 11 / 15

Symbolic Simulation of the Media Unit

Using the E-language model, we perform a four-valued, AIG-based
symbolic simulation of entire design for eight half-cycles.

AIGs specialized for the instruction under investigation

AIGs are converted to BDDs

For some instructions, a property may be too big to verify directly, so
case splitting employed
For each case, BDD approximated until exact
For each case, compared to symbolic simulation of specification

Cases are shown to be exhaustive

Page 12 (Hunt, Swords: Centaur, UT Austin) Centaur Media Unit Verification June, 2009 12 / 15

The Centaur Media-Unit, Case-Splitting Approach

For floating-point add/subtract,
problem is too big to verify all at
once.

Case split by exponent
differences

Separately, account for
special cases (e.g., NaNs,
Infinity)

For each case, generate
symbolic inputs that cover
exactly the specified set of
inputs

BDDs are parametrized
Approach used for all FP
sizes

Exponent 10 Max

Outer Triangle

In
ne

r D
ia

go
na

ls

Outer Triangle

Denorms, Zeros

NaNs, Infinities

E
x
p

o
n

e
n

t
2

0
M

a
x

Page 13 (Hunt, Swords: Centaur, UT Austin) Centaur Media Unit Verification June, 2009 13 / 15

Centaur Media-Unit, Verification

We attempted to verify single, double, and extended precision
addition/subtraction operations.

Single precision (32-bit) results and flags OK.

Double precision (64-bit) results and flags OK.

Extended precision (80-bit) results had an error.

Exactly one pair of numbers returned an incorrect answer
Sort of like a perfect storm; a 64-bit cancellation
Answer returned was twice as big as it should have been.

A fix was developed, and this bug has been eliminated. We have checked
the correctness of the new design – it took less than an hour.

Robert Krug proved that our Boolean-based adder/subtracter specification
is correct.

Page 14 (Hunt, Swords: Centaur, UT Austin) Centaur Media Unit Verification June, 2009 14 / 15

Conclusion

ACL2 is in everyday commercial use at Centaur Technology.

Each night, entire design is translated

550,000 lines of Verilog translated to E
Unable to translate some modules – working to finish translation

New ACL2 executable containing all E-based modules is built each
day.

Entire translation and build time about 30 minutes
Human verifiers get newest design version each morning

Each night we recheck our proofs on the new model

Extending ACL2:

by deeply embedding the E HDL,

with AIG and BDD algorithms, which we mechanically verified, and

by providing generalized symbolic simulation of all ACL2 functions,

it is possible to use a theorem prover to support an industrial hardware
verification flow.

Page 15 (Hunt, Swords: Centaur, UT Austin) Centaur Media Unit Verification June, 2009 15 / 15

