
Centaur Verification Approach

Jared Davis, Warren Hunt, Jr., Anna Slobodova, Sol Swords
August, 2011

Computer Sciences Department
University of Texas

1 University Way, M/S C0500
Austin, TX 78712-0233

hunt@cs.utexas.edu
TEL: +1 512 471 9748
FAX: +1 512 471 8885

Centaur Technology, Inc.
7600-C N. Capital of Texas Hwy

Suite 300
Austin, Texas 78731

hunt@centtech.com
TEL: +1 512 418 5797
FAX: +1 512 794 0717

Page 1 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 1 / 36

Outline

1 Core Technology: ACL2

2 The ACL2 Theorem Prover

3 ACL2 Clause Processors

4 The GL clause processor

5 Symbolic Simulation in ACL2

6 Symbolic Simulation Proof Examples

7 A Simple Embedded Language

8 The Centaur Verification Tool Relationships

9 The Verilog-to-E Translator

10 ECC Example

11 Centaur Formal Verification Toolflow

12 The Centaur Nano Multiplier Units

13 Conclusion

Page 2 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 2 / 36

Introduction

We have verified add, sub, multiply, divide (microcode), compare, convert,
logical, shuffle, blend, insert, extract, min-max instructions from Centaur’s
64-bit, X86-compatible, NanoTM microprocessor.

Media unit implements over 100 X86 SSE and X87 instructions.

Multiplier implements scalar & packed X86, X87, and FMA.

For our verifications, we use a combination of AIG- and BDD-based
symbolic simulation, case splitting, and theorem proving.

We create a theorem for each instruction to be verified.

We use ACL2 to mechanically verify each proposed theorem.

We discuss our verification approach for formally verifying execution-unit
instructions for the Centaur NanoTM – the NanoTM is used by Dell, HP,
Lenovo, OLPC, and Samsung.

Page 3 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 3 / 36

VIA Isaiah TM – X86-64 Microprocessor

X86 designs are complicated, and to be cost and performance competitive,
they are necessarily full custom.

64-bit (Intel EMT64-compatible) architecture

Latest SSEx instructions

Complex micro-architecture for performance

Up to three instructions can be issues each cycle

Lots of microcode

Low cost, small size, low power, AND high performance

64-bit EA, 48-bit Virtual Address, 40-bit Physical Address

Requires full custom design
Targeted at low-power, low-cost products:
netbooks, low-power workstations, and embedded designs.
Used by Dell, Lenovo, OLPC, HP, and others...

Page 4 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 4 / 36

VIA NanoTM Microprocessor

Contemporary Example

Full X86-64 compatible
two-core design

40nm technology, 97.6
million transistors per
core (195.7)

AES, DES, SHA, and
random-number
generator hardware

Built-in security processor

Runs 40 operating
systems, four VMs

Page 5 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 5 / 36

The Dual-Processor VIA Processor

Page 6 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 6 / 36

Centaur Technology

Centaur Technology, Inc., is a whole-owned subsidiary of VIA.

Entire X86 processor design team is in Austin, Texas

100+ people specify, design, validate, bring up, test, build burn-in
fixtures and programs – everything but chip manufacturing

Roughly 20 people write RTL
Around 20 work in validation
Approximately 25 work in design
About 30 work in test, manufacturing, bring up
Three systems support
Ten or so group leads, flat management
Three support (payroll, benefits, reception, etc.)
FV group is about 4 FTEs – high ratio!

Extremely efficient organization, flat management, everyone
expected to pull their own weight and then some...

Page 7 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 7 / 36

Core Technology: ACL2

Core Technology: ACL2

First-order predicate calculus with recursion and equality.

Atomic data objects
Complex rationals: 5, -12, 3/4, \#C(3 4)
Characters: #\a, #\8, #\Tab
Strings: "abc", "aBc", "ABC"
Symbols: X, DEF, |abc|, |54-fifty4|

Data constructor
Pairs: (CONS 7 "ghi"), ’(7 . "ghi")
Sophisticated quotation and abbreviation mechanisms

Functions – subset of Common Lisp
31 primitive functions
200+ defined functions
Guards defined for all functions

Efficient execution – models are often validated by co-simulation

In use commercially by AMD, Centaur, and Rockwell-Collins

Critical feature is the overall capacity of the ACL2 system

Page 8 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 8 / 36

The ACL2 Theorem Prover

The ACL2 Theorem Prover

Associated with the ACL2 Logic, is the ACL2 theorem prover.

Rewriter-based theorem-prover
Simplifier include:

Clausification
Simplification
Linear arithmetic solver
Term type analysis

Destructor elimination, generalization, induction
Proof checker

Allows a manual proof, with each step checked
If successful, the proof developed can be re-used
Good to use, when it’s not obvious why something fails.

Symbolic simulation based on BDDs and AIGs
Clause processors

Extensions to the ACL2 proving process
Clause processors can be verified, and then become part of ACL2
Symbolic simulation proof method included as a clause processor

Page 9 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 9 / 36

ACL2 Clause Processors

What is a clause processor?

From ACL2 documentation: “A simplifier at the level of goals, where a
goal is represented as a clause.”

User function that takes goal clause and produces a list of clauses

Soundness contract: proving that new clauses suffices to prove goal

May be verified or not (requires trust tag)

Clause
Clause

Processor
(implies
 (foo a b)
 (bar a b c))

Derived
Clauses

The GL system is a symbolic simulator for nearly all of the ACL2 logic by
encoding data (objects) as BDDs or AIGs and symbolic versions of all
primitive and user-defined functions

Page 10 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 10 / 36

The GL clause processor

GL Clause Processor Flow

A is an 8-bit even natural

B is a 6-bit odd integer

Hypothesis

Bindings
A symbolic 9-bit integer

B symbolic 6-bit integer

spec(A, B)
=

impl(A, B)

Conclusion

Hints

Clause
If A is an 8-bit even
natural and B is a

6-bit odd integer, then
spec(A, B) = impl(A, B)

Clause Processor

Side
Conditions

Relevance
Proving

(Hyp => Concl)
suffices to prove

Clause

Coverage
Hypothesis

holds for (a, b)
=>

Bindings
 cover (a, b)

Symbolic
Interpreter

A[0] = A[8] = 0

B[0] = 1

Predicate

Parametrize

Restricted Bindings
A sym. 8-bit even natural

B sym. 6-bit odd integer

Symbolic
Interpreter

True
or

Counterexample

Result

Page 11 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 11 / 36

The GL clause processor

GL Clause Processor: Inputs

A is an 8-bit even natural

B is a 6-bit odd integer

Hypothesis

Bindings
A symbolic 9-bit integer

B symbolic 6-bit integer

spec(A, B)
=

impl(A, B)

Conclusion

Hints

Clause
If A is an 8-bit even
natural and B is a

6-bit odd integer, then
spec(A, B) = impl(A, B)

Clause: the goal to be proved

Hypothesis, conclusion, bindings:
hints to the clause processor

Bindings associate a symbolic object
to each free variable in the clause

Hypothesis gives “type”/”shape”
constraints on variables

Conclusion may further restrict
variables (may itself be an IMPLIES
term).

Page 12 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 12 / 36

The GL clause processor

GL Clause Processor: Side Conditions

A is an 8-bit even natural

B is a 6-bit odd integer

Hypothesis

Bindings
A symbolic 9-bit integer

B symbolic 6-bit integer

spec(A, B)
=

impl(A, B)

Conclusion

Hints

Clause
If A is an 8-bit even
natural and B is a

6-bit odd integer, then
spec(A, B) = impl(A, B)

Coverage:

Symbolic simulation (if successful)
proves: The conclusion holds of input
vector x if x is a possible value of the
symbolic inputs used in the simulation.
To relate this to the hypothesis, must
show: If input vector x satisfies the
hypothesis, then it is a possible value of
the symbolic inputs.

Side
Conditions

Relevance
Proving

(Hyp => Concl)
suffices to prove

Clause

Coverage
Hypothesis

holds for (a, b)
=>

Bindings
 cover (a, b)

Page 13 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 13 / 36

The GL clause processor

GL Clause Processor: Side Conditions

A is an 8-bit even natural

B is a 6-bit odd integer

Hypothesis

Bindings
A symbolic 9-bit integer

B symbolic 6-bit integer

spec(A, B)
=

impl(A, B)

Conclusion

Hints

Clause
If A is an 8-bit even
natural and B is a

6-bit odd integer, then
spec(A, B) = impl(A, B)

Relevance:

Clause, hypothesis, conclusion are
independent clause processor inputs
Symbolic simulation (with coverage)
effectively proves

hypothesis⇒ conclusion

Therefore, prove that this implies the
clause and we’re done.
Typically trivial by construction.

Side
Conditions

Relevance
Proving

(Hyp => Concl)
suffices to prove

Clause

Coverage
Hypothesis

holds for (a, b)
=>

Bindings
 cover (a, b)

Page 14 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 13 / 36

The GL clause processor

GL Clause Processor: Parametrization

A is an 8-bit even natural

B is a 6-bit odd integer

Hypothesis

Bindings
A symbolic 9-bit integer

B symbolic 6-bit integer

spec(A, B)
=

impl(A, B)

Conclusion

Hints

Clause
If A is an 8-bit even
natural and B is a

6-bit odd integer, then
spec(A, B) = impl(A, B)

Symbolic bindings may cover more than is
accepted by the hypothesis - often better
symbolic simulation performance is
achievable if inputs cover less

Symbolically simulating the hypothesis on
the inputs yields a symbolic predicate

Parametrization by that predicate yields
new symbolic objects with coverage
restricted to the space recognized by the
hypothesis.

Symbolic
Interpreter

A[0] = A[8] = 0

B[0] = 1

Predicate

Parametrize

Restricted Bindings
A sym. 8-bit even natural

B sym. 6-bit odd integer

Page 15 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 14 / 36

The GL clause processor

GL Clause Processor: Simulation

Symbolically execute the
conclusion to determine
whether it holds on the
space represented by the
restricted bindings

Result: often T or a set of
counterexamples

May fail or produce an
ambiguous result (stack
depth overrun,
unimplemented primitive)

spec(A, B)
=

impl(A, B)

Conclusion

Restricted Bindings
A sym. 8-bit even natural

B sym. 6-bit odd integer

Symbolic
Interpreter

True
or

Counterexample

Result

Page 16 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 15 / 36

The GL clause processor

GL Clause Processor Flow: Recap

A is an 8-bit even natural

B is a 6-bit odd integer

Hypothesis

Bindings
A symbolic 9-bit integer

B symbolic 6-bit integer

spec(A, B)
=

impl(A, B)

Conclusion

Hints

Clause
If A is an 8-bit even
natural and B is a

6-bit odd integer, then
spec(A, B) = impl(A, B)

Clause Processor

Side
Conditions

Relevance
Proving

(Hyp => Concl)
suffices to prove

Clause

Coverage
Hypothesis

holds for (a, b)
=>

Bindings
 cover (a, b)

Symbolic
Interpreter

A[0] = A[8] = 0

B[0] = 1

Predicate

Parametrize

Restricted Bindings
A sym. 8-bit even natural

B sym. 6-bit odd integer

Symbolic
Interpreter

True
or

Counterexample

Result

Page 17 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 16 / 36

Symbolic Simulation in ACL2

Symbolic Simulation in ACL2

Thus, we have developed a verified framework for ACL2 that provides a
means for symbolic simulation.

Defined functions can be mechanically generalized.

Each mechanically defined generalized function is automatically
verified.

Such generalized functions, given finite sets, can be symbolically
executed.

Our framework allows the results of symbolic simulation of ACL2
functions to be used as a part of a proof.

Our work provides a symbolic-simulation capability for (almost all of) the
ACL2 logic.
We use both BDDs and AIGs to support our symbolic-simulation
capability; we have verified our BDD package and we verify the result of
our AIG-based SAT checker.

Page 18 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 17 / 36

Symbolic Simulation in ACL2

Fibonacci Function Example

(defun fib (x)
(declare (xargs :guard (natp x)))
(mbe :logic

(if (zp x)
0

(if (= x 1)
1

(+ (fib (- x 2)) (fib (- x 1)))))
:exec
(if (< x 2)

x
(+ (fib (- x 2)) (fib (- x 1))))))

Aside: most ACL2 functions can be memoized.

(memoize ’fib :condition ’(< 40 x))

Page 19 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 18 / 36

Symbolic Simulation Proof Examples

Symbolic Simulation Proof Examples

An obvious observation about the factorial function.

(def-gl-thm fib-in-range

:hyp (and (natp x)

(<= 4 x) (<= x 6))

:concl (or (equal (fib x) 3)

(equal (fib x) 5)

(equal (fib x) 8))

:g-bindings ‘((x ,(g-number (list (list 0 1 2 3)))))

:rule-classes nil)

A simple arithmetic fact.

(def-gl-thm 4-5-6-is-less-than-7-8-9

:hyp (and (natp x) (natp y)

(<= 4 x) (<= 7 y)

(<= x 6) (<= y 9))

:concl (< x y)

:g-bindings ‘((x ,(g-number (list (list 0 1 2 3 4))))

(y ,(g-number (list (list 5 6 7 8 9)))))

:rule-classes nil)

Page 20 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 19 / 36

Symbolic Simulation Proof Examples

Population Count, by S. Anderson: Bit Twiddling Hacks

Let’s consider a simple problem; find the population of 1’s in an integer.

int popcount_bits (int v) {
v = v - ((v >> 1) & 0x55555555);
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
v = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
return(v); }

Question: is this code correct?

int popcount (unsigned int v) {
return ((v == 0) ? 0 : (v & 1) + popcount(v / 2)); }

By exhaustive simulation, we can attempt to validate our program with
respect to another program.

if (popcount_bits(i) != popcount(i)) {
... return 1; ...}

Page 21 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 20 / 36

Symbolic Simulation Proof Examples

Population Count Example, continued

Let’s model this C-program in Lisp (ACL2). System DEMO!

(defmacro & (x y) ‘(logand ,x ,y))
(defmacro >> (x y) ‘(ash ,x (- ,y)))
(defmacro 32* (x y) ‘(mod (* ,x ,y) *2^32*))

(defun fast-logcount-32 (v)
(declare (xargs :guard (natp v)))
(let*
((v (- v (& (>> v 1) #x55555555)))
;v = v - ((v >> 1) & 0x55555555);

(v (+ (& v #x33333333) (& (>> v 2) #x33333333)))
;v = (v & 0x33333333) + ((v >> 2) & 0x33333333);

(c (>> (32* (& (+ v (>> v 4)) #xF0F0F0F) #x1010101) 24))
;c = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
)
c))

Page 22 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 21 / 36

Symbolic Simulation Proof Examples

Population Count Example, continued

(def-gl-thm fast-logcount-32-correct
:hyp (unsigned-byte-p 32 x)
:concl (equal (fast-logcount-32 x)

(logcount x))
:g-bindings ‘((x ,(g-int 0 1 33))))

The proof completes in 0.09 seconds and results in the ACL2 theorem:

(defthm fast-logcount-32-correct
(implies (unsigned-byte-p 32 x)

(equal (fast-logcount-32 x)
(logcount x)))

:hints ((gl-hint ...)))

Page 23 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 22 / 36

A Simple Embedded Language

A Simple Embedded Language

To illustrate embedding a HDL within ACL2, we define the semantics of a
Boolean logic based on IF trees.

(defun if-termp (term) (defun if-evl (term alist)

(declare (xargs :guard t)) (declare

(if (atom term) (xargs :guard

(eqlablep term) (and (if-termp term)

(let ((fn (car term)) (eqlable-alistp alist))))

(args (cdr term))) (if (atom term)

(and (consp args) (cdr (assoc term alist))

(consp (cdr args)) (if (if-evl (cadr term) alist)

(consp (cddr args)) (if-evl (caddr term) alist)

(null (cdddr args)) (if-evl (cadddr term) alist))))

(eql fn ’if)

(if-termp (car args))

(if-termp (cadr args))

(if-termp (caddr args))))))

Page 24 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 23 / 36

A Simple Embedded Language

Example IF Tree and Verification by Symbolic Execution

(to-if ’(implies (and x y) (or x y)))

==>

’(IF (IF X Y NIL) (IF X T Y) T)

Our language of IF trees only contains one logical connective.

(def-gl-thm if-evl-example

:hyp (and (booleanp a) (booleanp b))

:concl (if-evl ’(IF (IF X Y NIL) (IF X T Y) T)

‘((NIL . nil)

(T . t)

(X . ,a)

(Y . ,b)))

:g-bindings ‘((a ,(g-boolean 0))

(b ,(g-boolean 1))))

Page 25 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 24 / 36

The Centaur Verification Tool Relationships

The Centaur Verification Tool Relationships

EMOD(type, , inputs, st)

Symbolic

ACL2 Transistor Analyzer

Netlist

Translators?
Available

Simulation

Nano Spice

Cadence

Database

Nano GDS2 Nano OPC GDS2

Switches with strengths

Sized capacitors

Integer specifications and microcode

X86 ISA specification

fragments

X86 binary

code

Node

Equations

Wire and State

Equations

Output and Next

State Equations

SYM_SIM(, inputs, st)

Simulation

Equality

ACL2
TP

ACL2

ACL2 Verilog
Translator

Nano "Golden"

Verilog

VIA Nano

VIA Nano

Nano Masks

Model

E (EMOD)

Page 26 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 25 / 36

The Verilog-to-E Translator

The Verilog-to-E Translator

Logic

Library Files (.v)

Processor Files (.v)

ROM Images

makeTop
Script

top.v

VL

Loader

~550,000 lines
Everything but some libraries

reader
preprocessor

lexer
parser

"loader"

ACL2 Program

Parse Tree

Tr
a
n

sf
o
rm

a
ti

o
n

s

Cut Down Modules (Optional)
Make Reasonable
Unparameterize
Fill in Wires
Resolve Argument Lists
Resolve Constant Expressions
Standardize Ranges and Selects
Rewrite Operators
Compute Signs
Self-Determine Sizes
Fix Integer Size to 32 Bits
Context-Determine Sizes
Split Expressions
Replicate Instance Arrays
Truncate Expressions for Lvalues
Optimize
Assignments to Occurrences (Occform)
Eliminate Always Blocks (In progress)

ACL2 Object
(not on disk)

"Conservatively
 Approximates"

Parse Tree
ACL2 Object
(not on disk)

Writer

E Modules
(defm ...)
(defm ...)
(defm |*fadd*| ...)

Xformed Verilog
module ...
module ...
module fadd ...

FV

Q.E.D.
P(x)

"Differ By Parens"

DV

Simulation
Centaur's

Regression Suite

"Pass/Fail
 Together?"

Page 27 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 26 / 36

ECC Example

ECC Example

64
648

72
8 8

64

1

1

64

errors

data

corrected_output_bits

correctable_error

uncorrectable_error

syn2

8

syn164

"Memory"

Error Injection

ecc_gen

ecc_gen

ecc_decode

data_err

syn_err

Model to analyze the ECC circuitry.

Syndrome unit produces error-correcting code

ECC unit decodes syndrome to produce 1-hot, correction position

Page 28 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 27 / 36

ECC Example

Verilog for ECC Model

module ecc_model (data, // Input Data

errors, // Error Injection

corrected_output_bits, // Output Data

correctable_error, // Corrected?

uncorrectable_error); // Can’t be corrected

ecc_gen gen1 (syn1, data); // Generate syndrome bits for "memory"

assign data_err = data ^ errors[63:0]; // Fault injection

assign syn_err = syn1 ^ errors[71:64]; // Fault injection

ecc_gen gen2 (syn2, data_err); // Syndrome bits for "memory" output

assign syn_backwards_xor = syn_err ^ syn2; // Compute syndrome

ecc_decode make_outs (bit_to_correct, // One-Hot output correction

correctable_error, // Correctable error?

uncorrectable_error, // UnCorrectable error?

syn_backwards_xor); // Syndrome input

assign corrected_output_bits = bit_to_correct ^ data_err;

endmodule

Page 29 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 28 / 36

ECC Example

E-Language for ECC Model

(:n |*ecc_model*|

:i (|data[0]| |data[1]| |data[2]| |data[3]| |data[4]|

|data[5]| |data[6]| |data[7]| |data[8]| |data[9]| ...)

:o (|corrected_output_bits[0]| |corrected_output_bits[1]|

|corrected_output_bits[2]| |corrected_output_bits[3]|

|corrected_output_bits[4]| |corrected_output_bits[5]|

|corrected_output_bits[6]| |corrected_output_bits[7]|

|corrected_output_bits[8]| |corrected_output_bits[9]| ...)

:occ ((:full-i #@53# :full-o #@54# :u |_gen_3|

:op #.*vl_64_bit_buf* :o #@55# . #@56#)

(:full-i #@57# :full-o #@58# :u |_gen_4|

:op #.*vl_8_bit_buf* :o #@59# . #@60#)

(:full-i #@61# :full-o #@62# :u |_gen_5|

:op #.*vl_64_bit_pointwise_xor*

:o #@63# . #@64#)

(:full-i #@19# :full-o #@20#

:u |gen1|

:op #.|*ecc_gen*|

:o #@21#

:i #@22#) ...))

Page 30 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 29 / 36

ECC Example

ACL2 Specification for ECC Model

(defn our-one-bit-error-predicate (bad-bit)

;; Check output correctness if one error injected.

(declare (xargs :guard (natp bad-bit)))

(let* ((data (qv-list 0 1 64))

(errors (q-not-nth bad-bit

(make-list 72 :initial-element nil)))

(inputs (ap data errors)))

(equal (mv-let (s o)

(emod ’two |*ecc_model*| inputs nil)

(declare (ignore s))

(list :corrected-bits

(take 64 o)

:correctable_error

(nth 64 o)

:uncorrectable_error

(nth 65 o)))

(list :corrected-bits

data

:correctable_error

(< bad-bit 64)

:uncorrectable_error

NIL))))

Page 31 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 30 / 36

Centaur Formal Verification Toolflow

Centaur Formal Verification Toolflow

We begin, by translating Nano’s Verilog specification into our
formally-defined, E-language HDL.

Verilog is simplified into single-assignment form.

Create environment suitable for media unit verification.

We extract its equation by symbolic simulation.

We specialize this equation to the instruction of interest.

We then, as appropriate, convert this equation into BDDs.

The specification is written in ACL2.

Integer operations are used to specify media-unit instructions.

Such operations are symbolically simulated and specialized.

These specification are proven to implement floating-point operations.

Finally, the results of both paths are compared.

Page 32 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 31 / 36

The Centaur Nano Multiplier Units

The Centaur Nano Multiplier Units

B−vector

Product−vector

A−vector

Calculation

Exponent

Booth

Encoding

Booth

Encoding

32 x 32

 CSA

 Tree

32 x 32

 CSA

Tree

Add / Round / Normalize

Prepare, Special Cases, Multiple Rounds

Combine, Calculate Flags, Special Cases

Many multiplier configurations

two copies of diagram

signed and unsigned: 8x8,
16x16, 32x32, 64x64

packed-integer multiply:
16x16, 32x32

packed-integer
multiply-and-add

floating-point: X87 and
SSE2 with single, double,
and extended precisions

floating-point multiply-add

Page 33 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 32 / 36

The Centaur Nano Multiplier Units

Nano Multiplier Unit Characteristics

Accommodates execution of most micro-operations that involve
multiplication:

8-, 16-, and 32-bit packed signed, unsigned integer multiplications
and multiply-add

64-bit integer multiplication

Different flavors of x87 floating-point multiplication

SSE2 single and double precision packed floating-point multiplication

floating-point multiply add

Performance and latency:

Fixed latency depends on micro-operation

Back-to-back pipelined instructions

Special operands including denormal numbers

Page 34 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 33 / 36

The Centaur Nano Multiplier Units

Centaur Processor Multiplier Unit Proofs

Nano multiplier proofs broken into pieces to accommodate capabilities of
our symbolic simulator — multiple passes complicate decomposition!

2 proofs for 8-, 16- and 32-bit multiplication:
sources to partial products
partial products to write-back

3 proofs for 64-bit integer multiplication:
sources to partial products
2 proofs for partial products to mantissa products

3 proofs for SSE2 single precision FP packed multiplication:
sources to partial products
partial products to mantissa product
mantissa product to rounded result

4 proofs for x87 and SSE2 double precision FP packed multiplication:
sources to partial products
2 proofs for partial products to mantissa product
mantissa product to rounded result

Partial proofs using GL clause processor
Composition of theorems obtained in previous step using ACL2

Page 35 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 34 / 36

The Centaur Nano Multiplier Units

Verification of Full-Custom Circuitry

The Nano design is largely custom – meaning designers implement
transistor-level circuits to satisfy Verilog specifications.

Equivalence checking used to validate transistor-level circuits.

Not all modules can be checked by equivalence checking

Module sub-divided
Individual submodules checked
Composition of submodules verified with ACL2

When automatic verification not possible, Verilog is further partitioned so
as to permit automatic equivalence check.

Capability useful because vendor tools do not have adequate capacity.

Page 36 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 35 / 36

Conclusion

Conclusion

ACL2 is in everyday commercial use at Centaur Technology.

Each night, entire design is translated

640,000 lines of Verilog translated to E
Unable to translate some modules – working to finish translation

New ACL2 containing all E-based modules is built each day.

Entire translation and build time about 15 minutes
Human verifiers get newest design version each morning

Each night we recheck our proofs on the new model

Extended ACL2:

by deeply embedding the E HDL, transistor-level HDL,

with AIG and BDD algorithms, which we mechanically verified, and

by providing generalized symbolic simulation of all ACL2 functions,

It is possible to use a theorem prover to support
an industrial hardware verification flow.

Page 37 (Centaur Technology, UT Austin) Centaur Verification Approach August, 2011 36 / 36

	Core Technology: ACL2
	The ACL2 Theorem Prover
	ACL2 Clause Processors
	The GL clause processor
	Symbolic Simulation in ACL2
	Symbolic Simulation Proof Examples
	A Simple Embedded Language
	The Centaur Verification Tool Relationships
	The Verilog-to-E Translator
	ECC Example
	Centaur Formal Verification Toolflow
	The Centaur Nano Multiplier Units
	Conclusion

