CS389L: Automated Logical Reasoning
Lecture 10: Overview of First-Order Theories
Issl Dillig

Signature and Axioms of First-Order Theory

- A first-order theory T consists of:

1. Signature Σ_{T} : set of constant, function, and predicate symbols
2. Axioms A_{T} : A set of FOL sentences over Σ_{T}

- Σ_{T} formula: Formula constructed from symbols of Σ_{T} and variables, logical connectives, and quantifiers.
- Example: We could have a theory of heights T_{H} with signature $\Sigma_{H}:\{$ taller $\}$ and axiom:

$$
\forall x, y .(\operatorname{taller}(x, y) \rightarrow \neg \operatorname{taller}(y, x))
$$

- Is $\exists x . \forall z . \operatorname{taller}(x, z) \wedge \operatorname{taller}(y, w)$ legal Σ_{H} formula? Yes
- What about $\exists x . \forall z . \operatorname{taller}(x, z) \wedge \operatorname{taller}(j o e$, tom $)$? No

Models of T

- A structure $M=\langle U, I\rangle$ is a model of theory T, or T-model, if $M \models A$ for every $A \in A_{T}$.
- Example: Consider structure consisting of universe $U=\{A, B\}$ and interpretation $I($ taller $):\{\langle A, A\rangle,\langle B, B\rangle\}$
- Is this a model of T ? No
- Now, consider same U and interpretation $\{\langle A, B\rangle\}$. Is this a model? Yes
- Suppose our theory had another axiom:

$$
\forall x, y, z .(\operatorname{taller}(x, y) \wedge \operatorname{taller}(y, z) \rightarrow \operatorname{taller}(x, z))
$$

- Consider $I($ taller $):\{\langle A, B\rangle,\langle B, C\rangle\}$. Is (U, I) a model? No

Motivation

- Last few lectures: Full first-order logic
- In FOL, functions/predicates are uninterpreted (i.e., structure can assign any meaning)
- But in many cases, we have a particular meaning in mind (e.g., $=, \leq$ etc.)
- First-order theories allow us to give meaning to the symbols used in a first-order language

Axioms of First-Order Theory

- The axioms A_{T} provide the meaning of symbols in Σ_{T}.
- Specifically, axioms ensure that some interpretations legal in standard FOL are not legal in T
- Example: Consider relation constant taller, and $U=\{A, B, C\}$
- In FOL, possible interpretation: I (taller) : $\{\langle A, B\rangle,\langle B, A\rangle\}$
- In our theory of heights, this interpretation is not legal b/c does not satisfy axioms

Satisfiability and Validity Modulo T

- Formula F is satisfiable modulo T if there exists a T-model M and variable assignment σ such that $M, \sigma \models F$
- Formula F is valid modulo T if for all T-models M and variable assignments $\sigma, M, \sigma \models F$
- Question: How is validity modulo T different from FOL-validity?
- Answer: Disregards all structures that do not satisfy theory axioms.
- If a formula F is valid modulo theory T, we will write $T \models F$.
- Theory T consists of all sentences that are valid in T.

\|sal Dilig.	3389: Automated Logical Reasoning Lecture 10: Overiew of Firs-Order Theories	5/43

Questions
Consider some first order theory T :
- If a formula is valid in FOL, is it also valid modulo T ? Yes
- If a formula is valid modulo T, is it also valid in FOL? No
- Counterexample: This formula is valid in "theory of heights":
\neg taller (x, x)

Completeness of Theory

- A theory T is complete if for every sentence F, if T entails F or its negation:

$$
T \models F \text { or } T \models \neg F
$$

- Question: In first-order logic, for every closed formula F, is either F or $\neg F$ valid?
- Answer: No! Consider $p(a)$: Neither $p(a)$ nor $\neg p(a)$ is valid.

Overview of the Theory of Equality $T_{=}$

- Extends first-order logic with a "built-in" equality predicate $=$
- Signature:

$$
\Sigma_{=}:\{=, a, b, c, \cdots, f, g, h, \cdots, p, q, r, \cdots\}
$$

- =, a binary predicate, interpreted by axioms.
- all constant, function, and predicate symbols.

Equivalence Modulo T

- Two formulas F_{1} and F_{2} are equivalent modulo theory T if for every T-model M and for every variable assignment σ :

$$
M, \sigma \models F_{1} \text { iff } M, \sigma \mid=F_{2}
$$

- Another way of stating equivalence of F_{1} and F_{2} modulo T :

$$
T \models F_{1} \leftrightarrow F_{2}
$$

- Example: Consider a theory $T_{=}$with predicate symbol $=$and suppose A_{T} gives the intended meaning of equality to $=$.
- Are $x=y$ and $y=x$ equivalent modulo $T_{=}$? Yes
- Are they equivalent according to FOL semantics? No

Fsl Dilitg.
CS38gL: Automated Logical Resosoning Lecture 10: Overiew of First-Order Theories
8/43

The Plan

- Remainder of this lecture: Introduction to commonly-used first-order theories:

1. Theory of equality
2. Peano Arithmetic
3. Presburger Arithmetic
4. Theory of Rationals
5. Theory of Arrays

- In the following lectures, we will further explore these theories and look at decision procedures.

CS389: Automated Logical Ressoning Lecture 10: Overiew of first-Order Theories

Axioms of the Theory of Equality

- Axioms of $T_{=}$define the meaning of equality predicate $=$
- Equality is reflexive, symmetric, and transitive:

1. $\forall x \cdot x=x$	(reflexivity)
2. $\forall x, y \cdot(x=y \rightarrow y=x)$	(symmetry)
3. $\forall x, y, z \cdot(x=y \wedge y=z \rightarrow x=z)$	(transitivity)

Example

- Consider universe $U=\{\circ, \bullet\}$.
- Which interpretations of $=$ are allowed according to axioms?

$$
\text { - } I(=):\{\langle 0, \bullet\rangle,\langle\bullet, 0\rangle\} ?
$$

- $I(=):\{\langle 0, \circ\rangle,\langle\bullet, \bullet\rangle\}$?
- $I(=):\{\langle 0, \circ\rangle,\langle 0, \bullet\rangle,\langle\bullet, \bullet\rangle,\langle\bullet, \circ\rangle\}$?

Dilig.
CS389L: Automated Logical Ressoning Lecture 10: Overiew of First-Order Theories
13/43

Congruence and Axiom Schemata

- Function/predicate congruence "axioms" stand for a set of axioms, instantiated for each function and predicate symbol.
- Thus, these are not really axioms, but axiom schemata.
- Example: For unary functions g and h, function congruence axiom scheme stands for two axioms:

1. $\forall x, y .(x=y \rightarrow g(x)=g(y))$
2. $\forall x, y .(x=y \rightarrow h(x)=h(y))$

Cssl Dilis.		

Proving Validity in $T_{=}$using Semantic Arguments

- Semantic argument method can be used to prove $T_{=}$validity.
- In addition to proof rules for FOL, our proof can also use axioms of $T_{=}$.
- As before, if we derive contradiction in every branch, formula is valid modulo $T_{=}$.

Axioms of the Theory of Equality, cont.

- Function congruence:

For any n-ary function f, two terms $f(\vec{x})$ and $f(\vec{y})$ are equal if \vec{x} and \vec{y} are equal:
$\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} . \bigwedge_{i} x_{i}=y_{i} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$

- Predicate congruence:

For any n-ary predicate p, two formulas $p(\vec{x})$ and $p(\vec{y})$ are equivalent if \vec{x} and \vec{y} are equal:
$\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} . \bigwedge_{i} x_{i}=y_{i} \rightarrow\left(p\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow p\left(y_{1}, \ldots, y_{n}\right)\right)$
|ssil Dilig. CS389: Automated Logical Ressoning Lecture 10: Overiew of First-Order Theories

Example

- Consider universe $\{\circ, \bullet, \star\}$, and

$$
I(=):\{\langle\circ, \circ\rangle,\langle\circ, \bullet\rangle,\langle\bullet \bullet \bullet\rangle,\langle\bullet, \circ\rangle,\langle\star, \star\rangle\}
$$

- Are the following valid interpretations?
- $I(f)=\{\bullet \mapsto \circ, \circ \mapsto \star, \star \mapsto \star\}$
- $I(f)=\{\bullet \mapsto \bullet, \circ \mapsto \bullet, \star \mapsto \bullet\}$
- $I(f)=\{\bullet \mapsto \circ, \circ \mapsto \bullet, \star \mapsto \star\}$

Is, Dilifi,
CS389: Automated Logical Resononing Lecture 10: Overiew of firs-Order Theories

Example

Prove

$$
F: a=b \wedge b=c \rightarrow g(f(a), b)=g(f(c), a) \quad T_{E} \text {-valid. }
$$

1.	M, σ	$\nmid \neq$	F	assumption
2.	M, σ	1	$a=b \wedge b=c$	$1, \rightarrow$
3.	M, σ	\neq	$g(f(a), b)=g(f(c), a)$	$1, \rightarrow$
4.	M, σ	$1=$	$a=b$	2, \wedge
5.	M, σ	$1=$	$b=c$	2, \wedge
6.	M, σ	=	$a=c$	4, 5, (transitivity)
7.	M, σ	1	$f(a)=f(c)$	6 , (congruence)
8.	M, σ	1	$b=a$	6, (symmetry)
9.	M, σ	$1=$	$g(f(a), b)=g(f(c), a)$	7, 8, (congruence)
10.	M, σ	$1=$	\perp	3,9

Decidability and Completeness Results for $T_{=}$
- Is the full theory of equality decidable?
- No, because it is an extension of FOL
- However, quantifier-free fragment of $T_{=}$is decidable but
NP-complete
- Is $T_{=}$complete? (i.e., for any $F, T_{=} \models F$ or $T_{=} \models \neg F$?)
-

Peano Arithmetic Signature
- The theory of Peano arithmetic $T_{P A}$ has signature:
$\qquad \Sigma_{P A}:\{0,1,+, \cdot,=\}$
- 0,1 are constants
-,$+ \cdot$ binary functions
- $=$ is a binary predicate

The Axioms

- Includes equality axioms, reflexivity, symmetry, and transitivity
- In addition, axioms to give meaning to remaining symbols:

1. $\forall x . \neg(x+1=0): 0$ minimal element of \mathbb{N}
(zero)
2. $\forall x \cdot x+0=x: 0$ identity for addition
(plus zero)
3. $\forall x, y \cdot x+1=y+1 \rightarrow x=y \quad$ (successor)
4. $\forall x, y \cdot x+(y+1)=(x+y)+1 \quad$ (plus successor)
5. $\forall x \cdot x \cdot 0=0$
(times zero)
6. $\forall x, y \cdot x \cdot(y+1)=x \cdot y+x$
(times successor)

Theories Involving Natural Numbers and Integers

- There are three major logical first-order theories involving natural numbers and arithmetic.
- Peano arithmetic: Allows multiplication and addition over natural numbers
- Presburger arithmetic: Allows only addition over natural numbers
- Theory of integers: Equivalent in expressiveness to Presburger arithmetic, but more convenient notation
${ }^{\text {bsll }}$ Dilig.
CS389L: Automated Logical Ressoning Lecture 10: Overview of First-Order Theories

Peano Arithmetic Examples

- Question: Is the following a well-formed formula in $T_{P A}$?

$$
x+y=1 \vee f(x)=1+1
$$

-
- What about $\forall x \cdot \exists y \cdot \exists z \cdot x+y=1 \vee z \cdot x=1+1$?
- What about $2 x=y$?
- But can be rewritten to equivalent $T_{P A}$ formula:

$$
(1+1) \cdot x=y
$$

Last Axiom

- One last axiom schema for induction:

$$
(F[0] \wedge(\forall x . F[x] \rightarrow F[x+1])) \rightarrow \forall x . F[x]
$$

- States that any valid interpretation must obey induction

Inequalities and Peano Arithmetic
- The theory of Peano arithmetic doesn't have inequality
symbols $<, \leq,<, \geq$
- But all of these are expressible in $T_{P A}$
- Example: How can we express $x \cdot y \geq z$ in $T_{P A}$?
- Example: How can we express $x \cdot y<z$ in $T_{P A}$?

Presburger Arithmetic
- The theory of Presburger arithmetic T_{N} has signature:
$\qquad \Sigma_{\mathrm{N}}:\{0,1,+,=\}$
- Axioms define meaning of symbols:
1. $\forall x \cdot \neg(x+1=0)$ 2. $\forall x \cdot x+0=x$ (zero) 3. $\forall x, y \cdot x+1=y+1 \rightarrow x=y$ (plus zero) 4. $\forall x, y \cdot x+(y+1)=(x+y)+1$ (successor) (plus successor) 5. $F[0] \wedge(\forall x \cdot F[x] \rightarrow F[x+1]) \rightarrow \forall x . F[x]$ (induction)

Theory of Integers $T_{\mathbb{Z}}$

- Signature:
$\Sigma_{\mathbb{Z}}:\{\ldots,-2,-1,0,1,2, \ldots,-3 \cdot,-2 \cdot, 2,3,, \ldots,+,-,=,>\}$
- Also referred to as the theory of linear arithmetic over integers
- Equivalent in expressiveness to Presburger arithmetic (i.e.,
every $T_{\mathbb{Z}}$ can be encoded as a formula in Presburger
arithmetic)

Decidability and Completeness Results for Peano Arithmetic

- Validity in full $T_{P A}$ is undecidable. (Gödel)
- Validity in even the quantifier-free fragment of $T_{P A}$ is undecidable. (Matiyasevitch, 1970)
- $T_{P A}$ is also incomplete. (Gödel)
- Implication of this: There are valid propositions of number theory that are not valid according to $T_{P A}$
- To get decidability and completeness, we need to drop multiplication!

Decidability and Completeness Results for Presburger

 Arithmetic- Validity in quantifier-free fragment of Presburger arithmetic is decidable (coNP-complete).
- Validity in full Presburger arithmetic is also decidable (Presburger, 1929)
- But super exponential complexity: $O\left(2^{2^{n}}\right)$
- Presburger arithmetic is also complete: For any sentence F, $T_{\mathbb{N}} \models F$ or $T_{\mathbb{N}} \models \neg F$
- Admits quantifier elimination: For any formula F in $T_{\mathbb{N}}$, there exists an equivalent quantifier-free formula F^{\prime}.

Theory of Rationals

- So far, looked at theories involving arithmetic over integers
- Next: the theory of rationals $T_{\mathbb{Q}}$, which is much more efficiently decidable
- Defined by signature:

$$
\Sigma_{\mathbb{Q}}:\{0,1,+,-,=, \geq\}
$$

- Signature does not allow strict inequality, but easy to express:

$$
\forall x, y \cdot \exists z \cdot x+y>z \Rightarrow \forall x, y \cdot \exists z \cdot \neg(x+y=z) \wedge x+y \geq z
$$

Theories about Data Structures

- So far, we only considered first-order theories involving numbers and arithmetic
- There are also theories that formalize data structures used in programming
- We'll look at one example: theory of arrays
- Commonly used in software verification

Example Formulas in Theory of Arrays

- Example: $(a\langle 2 \triangleleft 5\rangle)[2]=5$
- Says: "The value stored at position 2 of an array to whose second position we wrote the value 5 is 5 "
- Example: $(a\langle 2 \triangleleft 5\rangle)[2]=3$
- Says: "The value stored at position 2 of an array to whose second position we wrote the value 5 is 3 "
- According to the usual semantics of array read and write, is the first formula valid/satisfiable/unsat?
- What about second formula?

Decidability and Complexity Results for $T_{\mathbb{Q}}$

- Full theory of rationals is decidable, but doubly exponential
- Conjunctive quantifier-free fragment efficiently decidable (polynomial time)

CS389: Automated Logical Ressoning Lecture 10: Overiiligew of first-Order Theories
32/43

Theory of Arrays

Signature

$$
\Sigma_{:}\{\cdot[\cdot], \cdot\langle\cdot \triangleleft \cdot\rangle,=\}
$$

where

- $a[i]$ binary function read array a at index i ("read (a, i) ")
- $a\langle i \triangleleft v\rangle \quad$ ternary function write value v to index i of array a ("write (a, i, e) ")
- $a\langle i \triangleleft v\rangle$ represents the resulting array after writing value v at index i

Axioms of T_{A}

- To define 'intended semantics of array read and write", we need to provide axioms of T_{A}.
- Axioms of T_{A} include reflexivity, symmetry, and transitivity
- In addition, they include axioms unique to arrays:

1. $\forall a, i, j . i=j \rightarrow a[i]=a[j]$	(array congruence)
2. $\forall a, v, i, j . i=j \rightarrow a\langle i \triangleleft v\rangle[j]=v$	(read-over-write 1)
3. $\forall a, v, i, j . i \neq j \rightarrow a\langle i \triangleleft v\rangle[j]=a[j]$	(read-over-write 2)

(array congruence)
(read-over-write 1)
(read-over-write 2)

Example

- Is the following T_{A} formula valid?

$$
F: a[i]=e \rightarrow(\forall j . a\langle i \triangleleft e\rangle[j]=a[j])
$$

- For any $j=i$, old value of j was already e, so its value didn't change
- Let's prove its validity using the semantic argument method
- Assume there exists a model M and variable assignment σ that does not satisfy F and derive contradiction.

CS389L: Automated Logical Reasoning Lecture 10: Overiew of First-Order Theories

Decidability Results for T_{A}

- The full theory of arrays if not decidable.
- The quantifier-free fragment of T_{A} is decidable.
- Unfortunately, the quantifier-free fragment not sufficiently expressive in many contexts
- Thus, people have studied other richer fragments that are still decidable.
- Example: array property fragment (disallows nested arrays, restrictions on where quantified variables can occur)

Combined Theories

- Given two theories T_{1} and T_{2} that have the $=$ predicate, we define a combined theory $T_{1} \cup T_{2}$
- Signature of $T_{1} \cup T_{2}: \Sigma_{1} \cup \Sigma_{2}$
- Axioms of $T_{1} \cup T_{2}: A_{1} \cup A_{2}$
- Is this a well-formed $T_{=} \cup T_{\mathbb{Z}}$ formula?

$$
1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

- Is this formula satisfiable according to axioms $A_{\mathbb{Z}} \cup A_{=}$?

Example cont.

1.	M, σ	$\not \models$	$a[i]=e \rightarrow(\forall j . a\langle i \triangleleft e\rangle[j]=a[j])$	assumption
2.	M, σ	\models	$a[i]=e$	$1, \rightarrow$
3.	M, σ	$\not \models$	$\forall j . a\langle i \triangleleft e\rangle[j]=a[j]$	$1, \rightarrow$
4.	$M, \sigma[j \mapsto k]$	$\not \models$	$a\langle i \triangleleft e\rangle[j]=a[j]$	$3, \forall$
5.	$M, \sigma[j \mapsto k]$	\models	$a\langle i \triangleleft e\rangle[j] \neq a[j]$	$4, \neg$
6.	$M, \sigma[j \mapsto k]$	\models	$i=j$	$5, r-\mathrm{o}-\mathrm{w} 2$
7.	$M, \sigma[j \mapsto k]$	\models	$a[i]=a[j]$	6, cong
8.	$M, \sigma[j \mapsto k]$	\models	$a\langle i \triangleleft e\rangle[j]=e$	$6, \mathrm{r}-\mathrm{o}-\mathrm{w} 1$
9.	$M, \sigma[j \mapsto k]$	\models	$a\langle i \triangleleft e\rangle[j]=a[i]$	2,8, trans
10.	$M, \sigma[j \mapsto k]$	\models	$a\langle i \triangleleft e\rangle[j]=a[j]$	9,7, trans
11.	$M, \sigma[j \mapsto k]$	\models	\perp	5,10

Combination of Theories

- So far, we only talked about individual first-order theories.
- Examples: $T_{=}, T_{P A}, T_{\mathbb{Z}}, T_{A}, \ldots$
- But in many applications, we need combined reasoning about several of these theories
- Example: The formula $f(x)+3=y$ isn't a well-formed formula in any individual theory, but belongs to combined theory $T_{\mathbb{Z}} \cup T_{=}$

Decision Procedures for Combined Theories

- Given decision procedures for individual theories T_{1} and T_{2}, can we decide satisfiability of formulas in $T_{1} \cup T_{2}$?
- In the early 80s, Nelson and Oppen showed this is possible
- Specifically, if

1. quantifier-free fragment of T_{1} is decidable
2. quantifier-free fragment of T_{2} is decidable
3. and T_{1} and T_{2} meet certain technical requirements

- then quantifier-free fragment of $T_{1} \cup T_{2}$ is also decidable
- Also, given decision procedures for T_{1} and T_{2}, Nelson and Oppen's technique allows deciding satisfiability $T_{1} \cup T_{2}$
|lsil Dililg. \quad CS38L: Automated Logical Ressoning Lecture 10: Overiew of First-Order Theories $\quad 41 / 43$

Plan for Next Few Lectures

- We'll talk about decision procedures for some interesting first order-theories
- Next lecture: Quantifier-free theory of equality
- Later: Theory of rationals, Presburger arithmetic
- Initially, we'll only focus on decision procedures for formulas without disjunctions
- Ok because we can always convert to DNF to deal with disjunctions - just not very efficient!
- Later in the course, we'll see about how to handle disjunctions much more efficiently

