

Example	Example cont.
 Is the following T_A formula valid? F: a[i] = e → (∀j. a⟨i ⊲ e⟩[j] = a[j]) For any j = i, old value of j was already e, so its value didn't change Let's prove its validity using the semantic argument method Assume there exists a model M and variable assignment σ that does not satisfy F and derive contradiction. 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Ipil Dillig. CS389L: Automated Logical Reasoning Lecture 10: Overview of First-Order Theories 37/43	Ipil Dillig. CS389L: Automated Logical Reasoning Lecture 10: Overview of First-Order Theories 38/43
Decidability Results for T_A	Combination of Theories
 The full theory of arrays if not decidable. The quantifier-free fragment of T_A is decidable. Unfortunately, the quantifier-free fragment not sufficiently expressive in many contexts Thus, people have studied other richer fragments that are still decidable. Example: array property fragment (disallows nested arrays, restrictions on where quantified variables can occur) 	 So far, we only talked about individual first-order theories. Examples: T₌, T_{PA}, T_Z, T_A, But in many applications, we need combined reasoning about several of these theories Example: The formula f(x) + 3 = y isn't a well-formed formula in any individual theory, but belongs to combined theory T_Z ∪ T₌
Ipil Dillig. C\$3894: Automated Logical Reasoning Lecture 10: Overview of First-Order Theories 39/43	Ipil Dillig. CS309L: Automated Logical Reasoning Lecture 10: Overview of First-Order Theories 40/43
Combined Theories • Given two theories T_1 and T_2 that have the = predicate, we define a combined theory $T_1 \cup T_2$ • Signature of $T_1 \cup T_2$: $\Sigma_1 \cup \Sigma_2$ • Axioms of $T_1 \cup T_2$: $A_1 \cup A_2$ • Is this a well-formed $T_= \cup T_{\mathbb{Z}}$ formula? $1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$ • Is this formula satisfiable according to axioms $A_{\mathbb{Z}} \cup A_=$?	 Decision Procedures for Combined Theories Given decision procedures for individual theories T₁ and T₂, can we decide satisfiability of formulas in T₁ ∪ T₂? In the early 80s, Nelson and Oppen showed this is possible Specifically, if quantifier-free fragment of T₁ is decidable quantifier-free fragment of T₂ is decidable and T₁ and T₂ meet certain technical requirements then quantifier-free fragment of T₁ ∪ T₂ is also decidable Also, given decision procedures for T₁ and T₂, Nelson and Oppen's technique allows deciding satisfiability T₁ ∪ T₂
Ial Dillic. CS380L: Automated Logical Reasoning Lecture 10: Overview of First-Order Theories 41/43	In Dille CS001 - Automated Logical Personies - Letture 10: Duranism of Eint Order Theories - 42/43

Plan for Next Few Lectures

- We'll talk about decision procedures for some interesting first order-theories
- ► Next lecture: Quantifier-free theory of equality
- Later: Theory of rationals, Presburger arithmetic

CS389L: Aut

- Initially, we'll only focus on decision procedures for formulas without disjunctions
- Ok because we can always convert to DNF to deal with disjunctions – just not very efficient!
- Later in the course, we'll see about how to handle disjunctions much more efficiently

ted Logical Reasoning Lecture 10: Overview of First-Order The