CS389L: Automated Logical Reasoning
Lecture 2: Normal Forms and DPLL
Ispll Dillig

Normal Forms

- A normal form of a formula F is another formula F^{\prime} such that F is equivalent to F^{\prime}, but F^{\prime} obeys certain syntactic restrictions.
- There are three kinds of normal forms that are interesting in propositional logic:
- Negation Normal Form (NNF)
- Disjunctive Normal Form (DNF)
- Conjunctive Normal Form (CNF)

Conversion to NNF I

- To make sure the only logical connectives are \neg, \wedge, \vee, need to eliminate \rightarrow and \leftrightarrow
- How do we express $F_{1} \rightarrow F_{2}$ using \vee, \wedge, \neg ?
- How do we express $F_{1} \leftrightarrow F_{2}$ using only $\neg, \wedge . \vee$?

Overview

- An algorithm called DPLL for determining satisfiability
- Many SAT solvers used today based on DPLL
- However, requires converting formulas to a respresentation called normal forms
${ }_{\text {Isill Dilifg }}$ CS389L: Automated Logical Ressoning Lecture 2: Nomal Forms and DPLL

Negation Normal Form (NNF)

Negation Normal Form requires two syntactic restrictions:

- The only logical connectives are $\neg, \wedge, \vee($ i.e., no $\rightarrow, \leftrightarrow)$
- Negations appear only in literals
- i.e., negations not allowed inside \wedge, \vee, or any other \neg
- Is formula $p \vee(\neg q \wedge(r \vee \neg s))$ in NNF?
- What about $p \vee(\neg q \wedge \neg(\neg r \wedge s))$?
- What about $p \vee(\neg q \wedge(\neg \neg r \vee \neg s))$?

Ssll Dillig. CS389: Automated Logicial Resosoning Lecture 2: Normal Forms and DPLL

Conversion to NNF II

- Also need to ensure negations appear only in literals: push negations in
- Use DeMorgan's laws to distribute \neg over \wedge and \vee :

$$
\begin{aligned}
& \neg\left(F_{1} \wedge F_{2}\right) \Leftrightarrow \neg F_{1} \vee \neg F_{2} \\
& \neg\left(F_{1} \vee F_{2}\right) \Leftrightarrow \neg F_{1} \wedge \neg F_{2}
\end{aligned}
$$

- We also disallow double negations:

$$
\neg \neg F \Leftrightarrow F
$$

bsil Dilig.
CS399L: Automated Logical Ressoning Lecture 2: Normal Forms and DPLL

Conjunctive Normal Form (CNF) - A formula in conjuctive normal form is a conjunction of disjunction of literals. $\bigwedge_{i} \bigvee_{j} \ell_{i, j} \quad \text { for literals } \ell_{i, j}$ - i.e., \wedge not allowed inside \vee, \neg. - Called conjunctive normal form because conjucts are at the outer level - Each inner disjunction is called a clause - Is formula in CNF also in NNF?	Conversion to CNF - To convert formula to CNF, first convert it to NNF. - Then, distribute \vee over \wedge : $\begin{aligned} & \left(F_{1} \wedge F_{2}\right) \vee F_{3} \Leftrightarrow\left(F_{1} \vee F_{3}\right) \wedge\left(F_{2} \vee F_{3}\right) \\ & F_{1} \vee\left(F_{2} \wedge F_{3}\right) \Leftrightarrow\left(F_{1} \vee F_{2}\right) \wedge\left(F_{1} \vee F_{3}\right) \end{aligned}$
Fir inic	${ }_{\text {mal }}$
CNF Conversion Example Convert $F:(p \leftrightarrow(q \rightarrow r))$ into CNF	DNF vs. CNF - Fact: Unlike DNF, it is not trivial to determine satisfiability of formula in CNF. - Does CNF conversion cause exponential blow-up in size? - News: But almost all SAT solvers first convert formula to CNF before solving!
Why CNF? - Interesting Question: If it is just as expensive to convert formula to CNF as to DNF, why do solvers convert to CNF although it is much easier to determine satisfiability in DNF?	Equisatisfiability - Two formulas F and F^{\prime} are equisatisfiable iff: \square F is satisfiable if and only if F^{\prime} is satisfiable - If two formulas are equisatisfiable, are they equivalent? - Example: - Equisatisfiability is a much weaker notion than equivalence. - But useful if all we want to do is determine satisfiability.
Wionte	

The Plan
- To determine satisfiability of F, convert formula to
equisatisfiable formula F^{\prime} in CNF
- Use an algorithm (DPLL) to decide satisfiability of F^{\prime}
- Since F^{\prime} is equisatisfiable to F, F is satifiable iff algorithm
decides F^{\prime} is satisfiable
- Big question: How do we convert formula to equisatisfiable
formula without causing exponential blow-up in size?

Tseitin's Transformation I

- Step 1: Introduce a new variable p_{G} for every subformula G of F (unless G is already an atom).
- For instance, if $F=G_{1} \wedge G_{2}$, introduce two variables $p_{G_{1}}$ and $p_{G_{2}}$ representing G_{1} and G_{2} respectively.
- $p_{G_{1}}$ is said to be representative of G_{1} and $p_{G_{2}}$ is representative of G_{2}.

Tseitin's Transformation II

- Given original formula F, let p_{F} be its representative and let S_{F} be the set of all subformulas of F (including F itself).
- Then, introduce the formula

$$
p_{F} \wedge \bigwedge_{G=\left(G_{1} \circ G_{2}\right) \in S_{F}} C N F\left(p_{g} \leftrightarrow p_{g_{1}} \circ p_{g_{2}}\right)
$$

- Claim: This formula is equisatisfiable to F.
- The proof is by structural induction
- Formula is also in CNF because conjunction of CNF formulas is in CNF.

Tseitin's Transformation

Tseitin's transformation converts formula F to equisatisfiable formula F^{\prime} in CNF with only a linear increase in size.

CS389L: Automated Logical Resosoning Lecture 2: Normal Forms and DPLII,
20/39

Tseitin's Transformation II

- Step 2: Consider each subformula
$G: G_{1} \circ G_{2} \quad$ (○ arbitrary boolean connective)
- Stipulate representative of G is equivalent to representative of $G_{1} \circ G_{2}$

$$
p_{G} \leftrightarrow p_{G_{1}} \circ p_{G_{2}}
$$

- Step 3: Convert $p_{G} \leftrightarrow p_{G_{1}} \circ p_{G_{2}}$ to equivalent CNF (by converting to NNF and distributing \vee 's over \wedge 's).
- Observe: Since $p_{G} \leftrightarrow p_{G_{1}} \circ p_{G_{2}}$ contains at most three propositional variables and exactly two connectives, size of this formula in CNF is bound by a constant.

Tseitin's Transformation and Size

- Using this transformation, we converted F to an equisatisfiable CNF formula F^{\prime}.
- What about the size of F^{\prime} ?

$$
p_{F} \wedge \bigwedge_{G=\left(G_{1} \circ G_{2}\right) \in S_{F}} C N F\left(p_{g} \leftrightarrow p_{g_{1}} \circ p_{g_{2}}\right)
$$

- $\left|S_{F}\right|$ is bound by the number of connectives in F.
- Each formula $C N F\left(p_{g} \leftrightarrow p_{g_{1}} \circ p_{g_{2}}\right)$ has constant size.
- Thus, trasformation causes only linear increase in formula size.
- More precisely, the size of resulting formula is bound by $30 n+2$ where n is size of original formula

\|sal Dilig,	CS389L: Automated Logical Ressoning Lecture 2: Normal Forms and DPLL	23/39

Tseitin's Transformation Example
Convert $F:(p \vee q) \rightarrow(p \wedge \neg r)$ to equisatisfiable CNF formula.
1.
2.
3.

DPLL: Historical Perspective

- 1962: the original algorithm known as DP (Davis-Putnam) \Rightarrow "simple" procedure for automated theorem proving

- Davis and Putnam hired two programmers, George Logemann and David Loveland, to implement their ideas on the IBM 704.
- Not all of their ideas worked out as planned \Rightarrow refined algorithm to what is known today as DPLL

Deduction in DPLL

- Deductive principle underlying DPLL is propositional resolution
- Resolution can only be applied to formulas in CNF
- SAT solvers convert formulas to CNF to be able to perform resolution

SAT Solvers

- Almost all SAT solvers today are based on an algorithm called DPLL (Davis-Putnam-Logemann-Loveland)

DPLL insight

- There are two distinct ways to approach the boolean satisfiability problem:
- Search
- Find satisfying assignment in by searching through all possible assignments \Rightarrow most basic incarnation: truth table!
- Deduction
- Deduce new facts from set of known facts \Rightarrow application of proof rules, semantic argument method
- DPLL combines search and deduction in a very effective way!

CS389L: Automanted Logical Ressoning Lecture 2: Normal Forms and DPLL

Propositional Resolution

- Consider two clauses in CNF:

$$
C_{1}: \quad\left(l_{1} \vee \ldots p \ldots \vee l_{k}\right) \quad C_{2}: \quad\left(l_{1}^{\prime} \vee \ldots \neg p \ldots \vee l_{n}^{\prime}\right)
$$

- From these, we can deduce a new clause C_{3}, called resolvent:

$$
C_{3}: \quad\left(l_{1} \vee \ldots \vee l_{k} \vee l_{1}^{\prime} \vee \ldots \ldots \vee l_{n}^{\prime}\right)
$$

- Correctness:
- Suppose p is assigned T : Since C_{2} must be satisfied and since $\neg p$ is $\perp,\left(l_{1}^{\prime} \vee \ldots \ldots \vee l_{n}^{\prime}\right)$ must be true.
- Suppose p is assigned \perp : Since C_{1} must be satisfied and since p is $\perp,\left(l_{1} \vee \ldots \ldots \vee l_{k}\right)$ must be true.
- Thus, C_{3} must be true.
CS389L: Automated Logical Ressoning Leeture 2: Normal Forms and DPLL \quad 29/39

Unit Resolution

- DPLL uses a restricted form of resolution, known as unit resolution.
- Unit resolution is propositional resolution, but one of the clauses must be a unit clause (i.e., contains only one literal)
- $C_{1}: p \quad C_{2}:\left(l_{1} \vee \ldots \neg p \ldots \vee l_{n}\right)$
- Resolvent: $\left(l_{1} \vee \ldots \vee l_{n}\right)$
- Performing unit resolution on C_{1} and C_{2} is same as replacing p with true in the original clauses.
- In DPLL, all possible applications of unit resolution called Boolean Constraint Propagation (BCP).
|sal Dilily.
CS389L: Automameded Logical Reasoning Leecture 2: Normal Forms and DPLL

Basic DPLL

$$
\begin{aligned}
& \text { bool } \operatorname{DPLL}(\phi) \\
& \{ \\
& \text { 1. } \phi^{\prime}=\operatorname{BCP}(\phi) \\
& \text { 2. if }\left(\phi^{\prime}=\mathrm{T}\right) \text { then return SAT; } \\
& \text { 3. else if }\left(\phi^{\prime}=\perp\right) \text { then return UNSAT; } \\
& \text { 4. } p=\operatorname{choose} \operatorname{var}\left(\phi^{\prime}\right) ; \\
& \text { 5. if }\left(\operatorname{DPLL}\left(\phi^{\prime}[p \mapsto \mathrm{~T}]\right)\right) \text { then return SAT; } \\
& \text { 6. else return }\left(\operatorname{DPLL}\left(\phi^{\prime}[p \mapsto \perp]\right)\right) ;
\end{aligned}
$$

- Recursive procedure; input is formula in CNF
- Formula is T if no more clauses left
- Formula becomes \perp if we derive \perp due to unit resolution

DPLL with Pure Literal Propagation

```
bool DPLL \((\phi)\)
\{
    1. \(\phi^{\prime}=\operatorname{BCP}(\phi)\)
    \(\phi^{\prime \prime}=\operatorname{PLP}\left(\phi^{\prime}\right)\)
    if \(\left(\phi^{\prime \prime}=\mathrm{T}\right)\) then return SAT;
    else if \(\left(\phi^{\prime \prime}=\perp\right)\) then return UNSAT;
    . \(p=\) choose_var \(\left(\phi^{\prime \prime}\right)\);
    6. if \(\left(\operatorname{DPLL}\left(\phi^{\prime \prime}[p \mapsto \mathrm{~T}]\right)\right)\) then return SAT;
    7. else return \(\left(\operatorname{DPLL}\left(\phi^{\prime \prime}[p \mapsto \perp]\right)\right)\);
\}
```

Boolean Constraint Propagation (BCP) Example

- Apply BCP to CNF formula:

$$
(p) \wedge(\neg p \vee q) \wedge(r \vee \neg q \vee s)
$$

- Resolvent of first and second clause:
- New formula:
- Apply unit resolution again:
- No more unit resolution possible, so this is the result of BCP.

Cssl Dilig. CS389L: Automated Logical Resosoning Lecture 2: Normal Forms and DPLL
32/39

An Optimization: Pure Literal Propagation

- If variable p occurs only positively in the formula (i.e., no $\neg p), p$ must be set to T
- Similarly, if p occurs only negatively (i.e., only appears as $\neg p$), p must be set to \perp
- This is known as Pure Literal Propagation (PLP).

Csil Dilig. CS38gL: Automated Logical Ressoning Lecture 2: Normal Forms and DPLL

Example

$F:(\neg p \vee q \vee r) \wedge(\neg q \vee r) \wedge(\neg q \vee \neg r) \wedge(p \vee \neg q \vee \neg r)$

- No BCP possible because no unit clause
- No PLP possible because there are no pure literals
- Choose variable q to branch on:

$$
F[q \mapsto \top]:(r) \wedge(\neg r) \wedge(p \vee \neg r)
$$

- Unit resolution using (r) and $(\neg r)$ deduces $\perp \Rightarrow$ backtrack

Example Cont.

$F:(\neg p \vee q \vee r) \wedge(\neg q \vee r) \wedge(\neg q \vee \neg r) \wedge(p \vee \neg q \vee \neg r)$

- Now, try $q=\perp$

$$
F[q \mapsto \perp]: \quad(\neg p \vee r)
$$

- By PLP, set p to \perp and r to \top
- $F[q \mapsto \perp, p \mapsto \perp, r \mapsto \top]: \top$
- Thus, F is satisfiable and the assignment $[q \mapsto \perp, p \mapsto \perp, r \mapsto \top$] is a model (i.e., a satisfying interpretation) of F.

CS389L: Automamed Logical Reasoning Leecture 2: Normal Forms and DPLL

Next Lecture

- Substantial improvements over basic DPLL used by modern SAT solvers: non-chronological backtracking and learning
- Implementation tricks used to perform BCP very efficiently
- Useful heuristics for choosing variable to branch on

Summary

- Normals forms: NNF, DNF, CNF (will come up again)
- For every formula, there exists an equivalent formula in normal form
- But equivalence-preserving transformation to DNF and CNF causes exponential blowup
- However, Tseitin's transformation gives an equisatisfiable formula in CNF with only linear increase in size
- Almost all SAT solvers work on CNF formulas to perform BCP
- DPLL basis of most state-of-the-art SAT solvers
CS389L: Automated Logical Resosoning Lecture 2: Normal Forms and DPLL

