
CS389L: Automated Logical Reasoning

Lecture 2: Normal Forms and DPLL

Işıl Dillig

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 1/39

Overview

I An algorithm called DPLL for determining satisfiability

I Many SAT solvers used today based on DPLL

I However, requires converting formulas to a respresentation
called normal forms

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 2/39

Normal Forms

I A normal form of a formula F is another formula F ′ such that
F is equivalent to F ′, but F ′ obeys certain syntactic
restrictions.

I There are three kinds of normal forms that are interesting in
propositional logic:

I Negation Normal Form (NNF)

I Disjunctive Normal Form (DNF)

I Conjunctive Normal Form (CNF)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 3/39

Negation Normal Form (NNF)

Negation Normal Form requires two syntactic restrictions:

I The only logical connectives are ¬,∧,∨ (i.e., no →, ↔)

I Negations appear only in literals

I i.e., negations not allowed inside ∧, ∨, or any other ¬

I Is formula p ∨ (¬q ∧ (r ∨ ¬s)) in NNF?

I What about p ∨ (¬q ∧ ¬(¬r ∧ s))?

I What about p ∨ (¬q ∧ (¬¬r ∨ ¬s))?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 4/39

Conversion to NNF I

I To make sure the only logical connectives are ¬,∧,∨, need to
eliminate → and ↔

I How do we express F1 → F2 using ∨,∧,¬?

I How do we express F1 ↔ F2 using only ¬,∧.∨?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 5/39

Conversion to NNF II

I Also need to ensure negations appear only in literals: push
negations in

I Use DeMorgan’s laws to distribute ¬ over ∧ and ∨:

¬(F1 ∧ F2)⇔ ¬F1 ∨ ¬F2

¬(F1 ∨ F2)⇔ ¬F1 ∧ ¬F2

I We also disallow double negations:

¬¬F ⇔ F

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 6/39

1

NNF Example

Convert F : ¬(p → (p ∧ q)) to NNF

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 7/39

Disjunctive Normal Form (DNF)

I A formula in disjunctive normal form is a disjunction of
conjunction of literals.

∨

i

∧

j

`i ,j for literals `i ,j

I i.e., ∨ can never appear inside ∧ or ¬

I Called disjunctive normal form because disjuncts are at the
outer level

I Each inner conjunction is called a clause

I Question: If a formula is in DNF, is it also in NNF?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 8/39

Conversion to DNF

I To convert formula to DNF, first convert it to NNF.

I Then, distribute ∧ over ∨:

(F1 ∨ F2) ∧ F3 ⇔ (F1 ∧ F3) ∨ (F2 ∧ F3)

F1 ∧ (F2 ∨ F3) ⇔ (F1 ∧ F2) ∨ (F1 ∧ F3)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 9/39

Example

Convert F : (q1 ∨ ¬¬q2) ∧ (¬r1 → r2) into DNF

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 10/39

DNF and Satisfiability

I Claim: If formula is in DNF, trivial to determine satisfiability.
How?

I

I

I Idea: To determine satisfiability, convert formula to DNF and
just do a syntactic check.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 11/39

DNF and Blow-up in formula size

I This idea is completely impractical. Why?

I Consider formula: (F1 ∨ F2) ∧ (F3 ∨ F4)

I In DNF:

(F1 ∧ F3) ∨ (F1 ∧ F4) ∨ (F2 ∧ F3) ∨ (F2 ∧ F4)

I Every time we distribute, formula size doubles!

I Moral: DNF conversion causes exponential blow-up in size!

I Checking satisfiability by converting to DNF is almost as bad
as truth tables!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 12/39

2

Conjunctive Normal Form (CNF)

I A formula in conjuctive normal form is a conjunction of
disjunction of literals.

∧

i

∨

j

`i ,j for literals `i ,j

I i.e., ∧ not allowed inside ∨,¬.

I Called conjunctive normal form because conjucts are at the
outer level

I Each inner disjunction is called a clause

I Is formula in CNF also in NNF?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 13/39

Conversion to CNF

I To convert formula to CNF, first convert it to NNF.

I Then, distribute ∨ over ∧:

(F1 ∧ F2) ∨ F3 ⇔ (F1 ∨ F3) ∧ (F2 ∨ F3)

F1 ∨ (F2 ∧ F3) ⇔ (F1 ∨ F2) ∧ (F1 ∨ F3)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 14/39

CNF Conversion Example

Convert F : (p ↔ (q → r)) into CNF

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 15/39

DNF vs. CNF

I Fact: Unlike DNF, it is not trivial to determine satisfiability of
formula in CNF.

I Does CNF conversion cause exponential blow-up in size?

I News: But almost all SAT solvers first convert formula to
CNF before solving!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 16/39

Why CNF?

I Interesting Question: If it is just as expensive to convert
formula to CNF as to DNF, why do solvers convert to CNF
although it is much easier to determine satisfiability in DNF?

I

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 17/39

Equisatisfiability

I Two formulas F and F ′ are equisatisfiable iff:

F is satisfiable if and only if F ′ is satisfiable

I If two formulas are equisatisfiable, are they equivalent?

I Example:

I

I Equisatisfiability is a much weaker notion than equivalence.

I But useful if all we want to do is determine satisfiability.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 18/39

3

The Plan

I To determine satisfiability of F , convert formula to
equisatisfiable formula F ′ in CNF

I Use an algorithm (DPLL) to decide satisfiability of F ′

I Since F ′ is equisatisfiable to F , F is satifiable iff algorithm
decides F ′ is satisfiable

I Big question: How do we convert formula to equisatisfiable
formula without causing exponential blow-up in size?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 19/39

Tseitin’s Transformation

Tseitin’s transformation converts formula F
to equisatisfiable formula F ′ in CNF
with only a linear increase in size.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 20/39

Tseitin’s Transformation I

I Step 1: Introduce a new variable pG for every subformula G
of F (unless G is already an atom).

I For instance, if F = G1 ∧G2, introduce two variables pG1 and
pG2 representing G1 and G2 respectively.

I pG1 is said to be representative of G1 and pG2 is
representative of G2.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 21/39

Tseitin’s Transformation II

I Step 2: Consider each subformula

G : G1 ◦G2 (◦ arbitrary boolean connective)

I Stipulate representative of G is equivalent to representative of
G1 ◦G2

pG ↔ pG1 ◦ pG2

I Step 3: Convert pG ↔ pG1 ◦ pG2 to equivalent CNF (by
converting to NNF and distributing ∨’s over ∧’s).

I Observe: Since pG ↔ pG1 ◦ pG2 contains at most three
propositional variables and exactly two connectives, size of
this formula in CNF is bound by a constant.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 22/39

Tseitin’s Transformation II

I Given original formula F , let pF be its representative and let
SF be the set of all subformulas of F (including F itself).

I Then, introduce the formula

pF ∧
∧

G=(G1◦G2)∈SF

CNF (pg ↔ pg1 ◦ pg2)

I Claim: This formula is equisatisfiable to F .

I The proof is by structural induction

I Formula is also in CNF because conjunction of CNF formulas
is in CNF.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 23/39

Tseitin’s Transformation and Size

I Using this transformation, we converted F to an
equisatisfiable CNF formula F ′.

I What about the size of F ′?

pF ∧
∧

G=(G1◦G2)∈SF

CNF (pg ↔ pg1 ◦ pg2)

I |SF | is bound by the number of connectives in F .

I Each formula CNF (pg ↔ pg1 ◦ pg2) has constant size.

I Thus, trasformation causes only linear increase in formula size.

I More precisely, the size of resulting formula is bound by
30n + 2 where n is size of original formula

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 24/39

4

Tseitin’s Transformation Example

Convert F : (p ∨ q)→ (p ∧ ¬r) to equisatisfiable CNF formula.

1.

2.

3.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 25/39

SAT Solvers

I Almost all SAT solvers today are based on an algorithm called
DPLL (Davis-Putnam-Logemann-Loveland)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 26/39

DPLL: Historical Perspective

I 1962: the original algorithm known as DP (Davis-Putnam)
⇒“simple” procedure for automated theorem proving

I Davis and Putnam hired two
programmers, George Logemann
and David Loveland, to implement
their ideas on the IBM 704.

I Not all of their ideas worked out as
planned ⇒ refined algorithm to
what is known today as DPLL

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 27/39

DPLL insight

I There are two distinct ways to approach the boolean
satisfiability problem:

I Search
I Find satisfying assignment in by searching through all possible

assignments ⇒ most basic incarnation: truth table!

I Deduction
I Deduce new facts from set of known facts ⇒ application of

proof rules, semantic argument method

I DPLL combines search and deduction in a very effective way!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 28/39

Deduction in DPLL

I Deductive principle underlying DPLL is propositional
resolution

I Resolution can only be applied to formulas in CNF

I SAT solvers convert formulas to CNF to be able to perform
resolution

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 29/39

Propositional Resolution

I Consider two clauses in CNF:

C1 : (l1 ∨ . . . p . . . ∨ lk) C2 : (l ′1 ∨ . . .¬p . . . ∨ l ′n)

I From these, we can deduce a new clause C3, called resolvent:

C3 : (l1 ∨ . . . ∨ lk ∨ l ′1 ∨ ∨ l ′n)

I Correctness:

I Suppose p is assigned >: Since C2 must be satisfied and since
¬p is ⊥, (l ′1 ∨ ∨ l ′n) must be true.

I Suppose p is assigned ⊥: Since C1 must be satisfied and since
p is ⊥, (l1 ∨ ∨ lk) must be true.

I Thus, C3 must be true.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 30/39

5

Unit Resolution

I DPLL uses a restricted form of resolution, known as unit
resolution.

I Unit resolution is propositional resolution, but one of the
clauses must be a unit clause (i.e., contains only one literal)

I C1 : p C2 : (l1 ∨ . . .¬p . . . ∨ ln)

I Resolvent: (l1 ∨ . . . ∨ ln)

I Performing unit resolution on C1 and C2 is same as replacing
p with true in the original clauses.

I In DPLL, all possible applications of unit resolution called
Boolean Constraint Propagation (BCP).

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 31/39

Boolean Constraint Propagation (BCP) Example

I Apply BCP to CNF formula:

(p) ∧ (¬p ∨ q) ∧ (r ∨ ¬q ∨ s)

I Resolvent of first and second clause:

I New formula:

I Apply unit resolution again:

I No more unit resolution possible, so this is the result of BCP.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 32/39

Basic DPLL

bool DPLL(φ)
{
1. φ′ = BCP(φ)
2. if(φ′ = >) then return SAT;
3. else if(φ′ = ⊥) then return UNSAT;
4. p = choose var(φ′);
5. if(DPLL(φ′[p 7→ >])) then return SAT;
6. else return (DPLL(φ′[p 7→ ⊥]));
}

I Recursive procedure; input is formula in CNF

I Formula is > if no more clauses left

I Formula becomes ⊥ if we derive ⊥ due to unit resolution

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 33/39

An Optimization: Pure Literal Propagation

I If variable p occurs only positively in the formula (i.e., no
¬p), p must be set to >

I Similarly, if p occurs only negatively (i.e., only appears as
¬p), p must be set to ⊥

I This is known as Pure Literal Propagation (PLP).

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 34/39

DPLL with Pure Literal Propagation

bool DPLL(φ)
{
1. φ′ = BCP(φ)
2. φ′′ = PLP(φ′)
3. if(φ′′ = >) then return SAT;
4. else if(φ′′ = ⊥) then return UNSAT;
5. p = choose var(φ′′);
6. if(DPLL(φ′′[p 7→ >])) then return SAT;
7. else return (DPLL(φ′′[p 7→ ⊥]));
}

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 35/39

Example

F : (¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r)

I No BCP possible because no unit clause

I No PLP possible because there are no pure literals

I Choose variable q to branch on:

F [q 7→ >] : (r) ∧ (¬r) ∧ (p ∨ ¬r)

I Unit resolution using (r) and (¬r) deduces ⊥ ⇒ backtrack

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 36/39

6

Example Cont.

F : (¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r)

I Now, try q = ⊥

F [q 7→ ⊥] : (¬p ∨ r)

I By PLP, set p to ⊥ and r to >

I F [q 7→ ⊥, p 7→ ⊥, r 7→ >] : >

I Thus, F is satisfiable and the assignment
[q 7→ ⊥, p 7→ ⊥, r 7→ >] is a model (i.e., a satisfying
interpretation) of F .

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 37/39

Summary

I Normals forms: NNF, DNF, CNF (will come up again)

I For every formula, there exists an equivalent formula in
normal form

I But equivalence-preserving transformation to DNF and CNF
causes exponential blowup

I However, Tseitin’s transformation gives an equisatisfiable
formula in CNF with only linear increase in size

I Almost all SAT solvers work on CNF formulas to perform BCP

I DPLL basis of most state-of-the-art SAT solvers

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 38/39

Next Lecture

I Substantial improvements over basic DPLL used by modern
SAT solvers: non-chronological backtracking and learning

I Implementation tricks used to perform BCP very efficiently

I Useful heuristics for choosing variable to branch on

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 2: Normal Forms and DPLL 39/39

7

