
CS389L: Automated Logical Reasoning

Lecture 6: First Order Logic
Syntax and Semantics
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Overview

I So far: Automated reasoning in propositional logic.

I Propositional logic is simple and easy to automate, but not
very expressive

I Today: First order logic, also known as relational logic,
predicate logic, or first-order predicate calculus

I Much richer and more expressive, but does not admit
completely automated reasoning (more on this later)
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The Plan

I Syntax and informal semantics (review, today’s lecture)

I Formal semantics, model theory (today’s lecture)

I Semantic argument method for FOL and properties (next
lecture)

I Unification, clausal form (third lecture)

I Resolution and first-order theorem proving (fourth lecture)
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Constants in First-Order Logic

I In propositional logic, we had two constants > and ⊥

I In first order logic, three kinds of constants:

1. object constants

2. function constants

3. relation constants
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Object Constants

I Object constants refer to objects in a universe of discourse.

I Example: If our universe of discourse is people, object
constants can be jack , jane, joe, . . .

I As a convention, we will use letters starting with a − t or
digits to denote object constants.

I Example: a, art, beth, 1 etc. refer to object constants.
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Function Constants

I Function constants refer to functions

I Examples: motherOf, ageOf, plus, times, . . .

I Each function constant has an associated arity indicating its
number of arguments

I Example: mother has arity 1 (unary), times has arity 2
(binary) etc.

I An object constant is really a special case of a function
constant with arity 0

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 6: First Order Logic Syntax and Semantics 6/37

1



Relation Constants

I Relation constants refer to relations between or properties of
objects

I Example: loves, betterthan, ishappy, . . .

I Each relation constant also has an associated arity

I Example: loves has arity 2, ishappy has arity 1 etc.
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Terms

I A set of object, function, and relation constants C , F , R
specifies a first-order language, written L(C ,F ,R)

I C ,F ,R form the signature of the language.

I Terms t for a first order language are generated using C , F

I Basic terms: Any object constant in C and variables, denoted
x , y , z , . . .

I Composite terms: f (t1, . . . , tk ) where f ∈ F is function of
arity k , and t1, . . . tk are terms

I Examples: mary , x , sister(mary), price(x ,macys),
age(mother(y)), . . .
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Formulas

I Formulas of L(C ,F ,R) are formed using the terms of this
language, relation constants R, logical connectives
¬,∧,∨, . . ., and quantifiers ∀,∃.

I Atomic formula (predicate): Expression p(t1, . . . , tn) where
p ∈ R (of arity n), and t1, . . . , tn are terms of L(C ,F ,R)

I If F1 and F2 are formulas, then so is F1 ? F2 where ? is any
binary connective

I If F is a formula, then so is ¬F

I If F is a formula and x a variable, so are ∀x .F (asserts facts
about all objects) and ∃x .F (asserts facts about some object)
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Important Reminder

I Predicates (e.g., p(x )) and function terms (e.g., f (x )) look
similar, but they are very different!

I Function terms can be nested within each other and inside
relation constants: f (f (x )), p(f (x )), . . .

I Predicates such as p(x ) cannot be nested within function
terms or other predicates!

I f (p(x )), p(p(x )) etc. not valid in FOL!
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Quantifiers and Scoping

I The subformula embedded inside a quantifier is called the
scope of that quantifier.

I Example: ∀y .((∀x .p(x ))→ q(x , y))

I An occurrence of a variable is bound if it is in the scope of
some quantifier.

I An occurrence of a variable is free if it is not in the scope of
any quantifiers.
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Free vs. Bound Variable Example

I Consider the formula:

∀y .((∀x .p(x ))→ q(x , y))

I Is variable y bound or free?

I Is first occurrence of x bound or free?

I What about second occurrence of x?
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Closed, Open, and Ground Formulas

I A formula with no free variables is called a closed formula.

I A closed formula is also called a sentence.

I A formula containing free variables is said to be open.

I Example: Is the formula ∀y .((∀x .p(x ))→ q(x , y) closed or
open?

I Is the formula ∀y .((∀x .p(x ))→ (∃x .q(x , y))) a sentence?

I A formula is said to be ground if it contains no variables.

I Example: p(a, f (b))→ q(c) is ground.

I Is ∀x .p(x ) ground?
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FOL example #1

I Fermat’s Last Theorem: No three positive integers x , y , z
satisfy the equation xn + yn = zn for any integer n greater
than 2.

I Assuming universe is integers, how do we express this theorem
in FOL using function constant ˆ and relation constants >,=?
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FOL example #2

I Consider the axiom schema of unrestricted comprehension in
naive set theory:

“There exists a set whose members are precisely those objects
that satisfy predicate P”

I Using predicates IsSet ,∈,P , express this in FOL
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FOL Example #3

I Consider the statement “CS389L is taken only by those
students who do not take CS388L”

I Express thise sentence in FOL using binary relation constant
takes, and unary relation constant student
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One Last Example

I Given binary relation friend, how do we say this in FOL?

I “Every pair of friends has something in common”

I

I
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Semantics of First Order Logic

I In propositional logic, the concepts of interpretation,
satisfiability, validity were all straightforward.

I In FOL, these concepts are a bit more involved . . .

I To give semantics to FOL, we need to talk about a universe of
discourse (also sometimes called just “universe” or ”domain”)
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Universe of Discourse

I A universe of discourse is a non-empty set of objects about
which we want to say something

I Universe of discourse can be finite, countably infinite, or
uncountably infinite, but not empty

I Example universes:

I Set of non-negative integers

I Set of real numbers

I The set of suits in playing cards

I Students in this class
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First-Order Interpretations

I An interpretation for a first order language L(C ,F ,R) is a
mapping I from C ,F ,R to objects in universe U

I I maps every c ∈ C to some member of U : I (c) ∈ U

I I maps every n-ary function constant f ∈ F to an n-ary
function f I : U n → U

I I maps every n-ary relation constant p ∈ R to an n-ary
relation pI such that pI ⊆ U n

I Observe: A first-order interpretation does not talk about
variables (only constants)
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An Example

I Consider the first order language containing object constants
{a, b, c}, unary function constant f , and ternary relation
constant r .

I Universe of discourse: U = {1, 2, 3}

I Possible interpretation I :

I (a) = 1, I (b) = 2, I (c) = 2

I (f ) = {1→ 2, 2→ 3, 3→ 3}

I (r) = {〈1, 2, 1〉, 〈2, 2, 1〉}
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Another Example

I Consider the universe of discourse U = {�,4}

I For an object constant a, what are the possible
interpretations?

I For a unary function constant f , what are the possible
interpretations?

I

I For a unary relation constant r , what are all the possible
interpretations?

I
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First-Order Structures and Variable Assignments

I A structure S = 〈U , I 〉 for a first order language consists of a
universe of discourse of U and an interpretation I .

I This is sometimes also called an algebra.

I A variable assignment σ (or assignment) to a FOL formula φ
in a structure S = 〈U , I 〉 is a mapping from variables in φ to
an element of U .

I Example: Given U = {�,4}, a possible variable assignment
for x : σ(x ) = 4
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Evaluation of Terms

I We define how to evaluate a term t under interpretation I
and assignment σ, written 〈I , σ〉(t)

I Object constants: 〈I , σ〉(a) = I (a)

I Variable terms: 〈I , σ〉(v) = σ(v)

I Function terms:

〈I , σ〉(f (t1, . . . , tk )) = I (f )(〈I , σ〉(t1), . . . , 〈I , σ〉(tk ))
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Example: Evaluation of Terms

I Consider a first-order language containing object constants
a, b and binary function f

I Consider universe {1, 2} and interpretation I :

I (a) = 1 I (b) = 2
I (f ) = {〈1, 1〉 7→ 2, 〈1, 2〉 7→ 2, 〈2, 1〉 7→ 1, 〈2, 2〉 7→ 1}

I Consider variable assignment σ : {x 7→ 2, y 7→ 1}

I Under I and σ, what do these terms evaluate to?

f (a, y) =
f (x , b) =

f (f (x , b), f (a, y)) =
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Evaluation of Formulas, Notation

I We define evaluation of formula F under structure S = 〈U , I 〉
and variable assignment σ.

I If F evaluates to true under U , I , σ, we write U , I , σ |= F

I If F evaluates to false under U , I , σ, we write U , I , σ 6|= F

I We define the semantics of |= inductively.
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Evaluation of Formulas, Bases Cases

I Base case I:
U , I , σ |= > U , I , σ 6|= ⊥

I Base case II:

U , I , σ |= p(t1, . . . , tk ) iff 〈 〈I , σ〉(t1), . . . , 〈I , σ〉(tk ) 〉 ∈ I (p)
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Example I: Evaluation of Formulas

I Consider a first-order language containing object constants
a, b and unary function f , and binary relation constant p

I Consider universe {?, •} and interpretation I :

I (a) = ? I (b) = •
I (f ) = {? 7→ •, • 7→ ?}
I (p) = {〈•, ?〉, 〈•, •〉}

I Consider variable assignment σ : {x 7→ ?}

I Under U , I and σ, what do these formulas evaluate to?

p(f (b), f (x )) =
p(f (x ), f (b)) =
p(a, f (x )) =
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Evaluation of Formulas II

I Inductive semantics for boolean connectives:

U , I , σ |= ¬F iff U , I , σ 6|= F
U , I , σ |= F1 ∧ F2 iff U , I , σ |= F1 and U , I , σ |= F2

U , I , σ |= F1 ∨ F2 iff I , σ |= F1 or U , I , σ |= F2

U , I , σ |= F1 → F2 iff, U , I , σ 6|= F1 or U , I , σ |= F2

U , I , σ |= F1 ↔ F2 iff, U , I , σ |= F1 and U , I , σ |= F2,
or U , I , σ 6|= F1 and I , σ 6|= F2
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Variant of Variable Assignment

I We still need to evaluate formulas containing quantifiers!

I But to do that, we first define an x -variant of a variable
assignment.

I An x -variant of assignment σ, written σ[x 7→ c], is the
assignment that agrees with σ for assignments to all variables
except x and assigns x to c.

I Example: If σ : {x 7→ 1, y 7→ 2}, what is σ[x 7→ 3]?
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Evaluation of Formulas II

I We can now give semantics to quantifiers:

I Universal quantifier:

U , I , σ |= ∀x .F iff for all o ∈ U ,U , I , σ[x 7→ o] |= F

I Existential quantifier:

U , I , σ |= ∃x .F iff there exists o ∈ U s.t U , I , σ[x 7→ o] |= F
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Example III: Evaluation of Formulas

I Consider universe {?, •}, variable assignment σ : {x 7→ ?},
and interpretation I :

I (a) = ? I (b) = •
I (f ) = {? 7→ •, • 7→ ?}
I (p) = {〈•, ?〉, 〈•, •〉}

I Under U , I and σ, what do these formulas evaluate to?

∀x .p(x , a) =
∀x .p(b, x ) =
∃x .p(a, x ) =

∀x . (p(a, x )→ p(b, x )) =
∃x . (p(f (x ), f (x ))→ p(x , x )) =
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Satisfiability and Validity of First-Order Formulas

I A first-order formula F is satisfiable iff there exists a structure
S and variable assignment σ such that

S , σ |= F

I Otherwise, F is unsatisfiable.

I A structure S is a model of F , written S |= F , if for all
variable assignments σ ∈ X → U , S , σ |= F .

I A first-order formula F is valid, written |= F if for all
structures S , S , σ |= F

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 6: First Order Logic Syntax and Semantics 33/37

Satisfiability and Validity Examples

I Is the formula ∀x .∃y .p(x , y) satisfiable?

I Satisfying interpretation:

I Is this formula valid?

I Falsifying interpretation:

I Is the formula ∀x .(p(x , x )→ ∃y .p(x , y)) valid?

I
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More Satisfiability and Validity Examples

I Is the formula (∃x .p(x ))→ p(x ) sat, unsat, or valid?

I Satisfying U , I , σ:

I Falsifying interpretation:

I Is the formula (∀x .p(x ))→ p(x ) sat, unsat, or valid?

I What about (∀x .(p(x )→ q(x )))→ (∃x .(p(x ) ∧ q(x )))?

I Satisfying interpretation:

I Falsifying interpretation:
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Understanding Models

I Recall: A structure S is a model of a formula if for all σ,
S , σ |= F

I Consider a formula F such that S , σ |= F . Is S a model F?

I Consider a sentence F such that S , σ |= F . Is S a model F?

I Consider a ground formula F such that S , σ |= F . Is S a
model of F?
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Summary

I Today: Syntax and formal semantics of FOL

I Next lecture:

I Semantic argument method for FOL

I Properties of first-order logic: decidability results, compactness
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