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Abstract– Mobile social networks extend social networks in
the cyberspace into the real world by allowing mobile users
to discover and interact with existing and potential friends
who happen to be in their physical vicinity. Despite their
promise to enable many exciting applications, serious security
and privacy concerns have hindered wide adoption of these
networks. To address these concerns, in this paper we develop
novel techniques and protocols to compute social proximity
between two users to discover potential friends, which is an
essential task for mobile social networks. We make three major
contributions. First, we identify a range of potential attacks
against friend discovery by analyzing real traces. Second,
we develop a novel solution for secure proximity estimation,
which allows users to identify potential friends by computing
social proximity in a privacy-preserving manner. A distinctive
feature of our solution is that it provides both privacy and
verifiability, which are frequently at odds in secure multi-
party computation. Third, we demonstrate the feasibility and
effectiveness of our approaches using real implementation
on smartphones and show it is efficient in terms of both
computation time and power consumption.

I. INTRODUCTION

Motivation. Online social networks, such as Facebook and
Myspace, have experienced an explosive growth recently.
Mobile social networks, which bring social networking to
mobile phones, represent a natural next step and have already
generated a lot of excitement. For example, cell phone man-
ufacturers and cellular service providers have developed their
own social networks (e.g., Nokia, Virgin Mobile) and provided
software support for mobile social networks (e.g., Motorola).
Compared to (Internet-based) online social networks, mobile
social networks offer several distinctive advantages: (i) much
larger potential user base, with 4 billion mobile phone sub-
scribers [33] compared to only 300 million broadband sub-
scribers [7], (ii) the built-in localization capability of mobile
phones which enables rich and new location-based services,
and (iii) applicable to a wider range of application scenarios
because unlike online social networks, they do not necessarily
require access to a computer or the Internet.

An essential capability offered by mobile social networks is
to allow mobile users to discover and interact with friends who
happen to be in their physical vicinity. Suppose you are waiting
for your flight in an airport and your mobile phone discovers
your friend’s friend is in the next aisle and you can talk with
face-to-face. Or you visit a new place and your mobile phone
finds someone in your vicinity shares similar attributes as you
so that you can interact with.

While mobile social networks hold great promise for en-
abling many exciting new applications, they also create serious
privacy and security concerns. In particular, people are often
reluctant to reveal their presence and personal profile to an
arbitrary person in their vicinity. It is also unwise to blindly
trust information received from an arbitrary person. While
similar issues also exist in online social networks, these
concerns become more serious because mobile social networks

blur the boundary between the cyberspace and the physical
world. Moreover, the broadcast nature of wireless medium
also makes it easy for a malicious user to spoof and inject
traffic into the mobile social networks. It is thus imperative
to address these privacy and security concerns before mobile
social networks can receive wide adoption.

One way to address the privacy and security issues is to
take advantage of a trusted central server, which collects
information from individual users, computes and disseminates
the proximity results on demand. Server-based solution is not
suitable for mobile social networks for the following reasons.
First, users in a mobile social network may not have direct
access to a computer or the Internet. While cellular data
service increases in popularity, the number of data service
subscribers is still very limited due to its high cost [23],
[36]. As a result, a server-based solution cannot work in such
an environment unless dedicated servers are deployed locally
to support mobile social networks, which is prohibitively
expensive if not infeasible. A distributed solution is more
appealing because it obviates the need of always having access
to a server. Second, as people are increasingly concerned about
their location privacy and personal data, they may not want
to reveal their current location or other personal information
even to a trusted server. Wills et al. [18], [24] studied 13
mobile online social networks, such as Facebook, Friendster,
Hi5, LinkedIn, Myspace, Twitter, and found all of them leaked
some private information to tracking sites and several of them
passed users’ location information to a third party. Third, the
server can easily become a bottleneck, a single point of failure,
and the target for denial-of-service attack. These limitations
of server-based approach motivate us to move away from a
centralized solution and design distributed secure protocols for
friend discovery in mobile social networks.
Approach and contributions. We consider how to identify
potential friends in one’s physical vicinity, which is essential
to mobile social network. We assume that users only have
occasional connectivity with a trusted server on the Internet
(e.g., once a day) and immediate communication occurs locally
within a mobile social network and does not need access to the
server; moreover the server does not know users’ locations.

This is an important yet challenging problem because it
involves joint computation between two parties that do not
trust each other. The standard approach for predicting friend-
ship is based on the notion of proximity measure, which
quantifies the closeness or similarity between nodes in a
social network. Many proximity measures have been proposed,
including the number of common neighbors, the number of
common attributes, cosine similarity, and path-ensemble-based
measures. As shown in Section II, they can all be cast as a
dot product operation on two vectors. Therefore we consider
proximity computation as a dot product operation without
loss of generality. To identify potential friends, two users
can exchange their social coordinates (i.e., a user’s attributes)
and compute the proximity between them; if their proximity
exceeds a threshold, they try to make friends with each other.

However, directly exchanging social coordinates and com-
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puting their dot product opens door to a variety of attacks. In
particular, we identify two serious attacks: (i) fingerprinting
an individual user (based on either her social coordinate or
her proximity with another known social coordinate), and (ii)
falsifying proximity (e.g., an attacker forges a social coordinate
close to a target user’s social coordinate to trick the user to
make friend with the attacker). Defending against these attacks
is particularly challenging because we want to simultaneously
achieve two conflicting goals: ensuring verifiability (so that a
malicious user cannot forge his/her social coordinate or forge
the outcome of proximity computation), yet preserving privacy
(i.e., divulge no private information if the true proximity
between two users is below the desired threshold).

To address the challenge, we develop novel techniques and
protocols for computing proximity in a privacy-preserving,
verifiable, and efficient manner. Specifically, we first develop
a proximity pre-filtering protocol for determining whether the
proximity between two users exceeds a given threshold. The
protocol ensures that the initiator can only learn the compari-
son result between the estimated proximity and the threshold.
The protocol does not involve any expensive cryptographic
computation and is thus highly efficient. However in this
protocol a malicious user can forge the comparison result. To
defend against such attacks, we then develop two secure dot
product protocols: one is based on homomorphic cryptography
and the other leverages both homomorphic cryptography and
obfuscation for higher efficiency. To the best of our knowledge,
they are the first secure dot product protocols that are both
privacy-preserving and verifiable.

This paper makes three major contributions: (i) identify a
range of security attacks against friend discovery in mobile
social networks and use real traces to analyze their impact,
(ii) develop secure proximity computation protocols to identify
potential friends, and (iii) demonstrate the effectiveness of
our approach using both analysis and real implementation
on smartphone. A key component of our solution is the first
secure dot product protocol that is both privacy-preserving and
verifiable. It has applications beyond mobile social networks
because dot product is a fundamental primitive in secure multi-
party computation and privacy-preserving data mining.

II. COORDINATE-BASED PROXIMITY ESTIMATION

In this section, we first introduce the notion of proximity
measure and describe how one can compute social proximity
based on social coordinate. Our key assumption is that users
are already part of a common (online or physical) social
network. We can then identify potential friends by checking
whether two users are sufficiently close in this social network.

Proximity measure in social networks. A social network
[35] is a social structure modeled as a graph, where nodes
represent people and edges represent relationships between
them (e.g., friendship). A central concept in social networks is
proximity measure, which quantifies the closeness or similarity
between nodes in a social network. Proximity measure serves
as the basis for many social network applications (e.g., [5],
[11], [14], [37]). As a result, a variety of proximity mea-
sures have been proposed. The simplest proximity measures
include the number of common neighbors or the number of
common attributes between the two users. More sophisticated
proximity measures involve infinite sums over the ensemble
of all paths between two nodes in the social networks (e.g.,
Katz measure [16], rooted PageRank [19], [20], and escape

probability [31]). Compared to simple proximity measures,
path-ensemble based proximity measures capture more infor-
mation about the underlying social structure and have been
shown to be more effective in social networks [19], [20], [31].
In particular, the Katz measure is shown to be particularly
effective in predicting new links in social networks [19], [20],
[30]. It is defined as

Katz[x, y] =
∑∞

ℓ=1 βℓ
Katz · |paths

〈ℓ〉
x,y| (1)

where paths
〈ℓ〉
x,y is the set of length-ℓ paths from x to y in a

social network, and βKatz < 1 is a damping factor. We focus on
computing Katz measure in our evaluation, but our protocols
are general and can be applied to many other proximity
measures including those simple proximity measures, since
proximity computation can be considered as a dot product
operation (also known as the inner product) without loss of
generality (as shown below).

Estimating proximity from social coordinates. [30] de-
veloped a technique called proximity embedding for efficient
and accurate computation of path-ensemble based proximity
measure (e.g., Katz measure, rooted PageRank, escape prob-
ability) in large social networks with millions of nodes. It
approximates the entire m × m proximity matrix P , where
P (i, j) denotes the proximity between users i and j, as
the product of two rank-r factor matrices U and V , where
m can be millions but r is much smaller (e.g., r = 30):
Pm×m ≈ Um×r ·V

T
m×r While proximity embedding was orig-

inally designed for centralized social network analysis [30],
once the decomposition P ≈ UV T becomes available, we
can immediately use U and V to enable efficient, distributed
computation of social proximity. Specifically, each node i is
associated with a pair of vectors U [i, ∗] and V [i, ∗], which
we term as i’s social coordinates since they represent a user’s
position in the social network. The proximity from node i to
node j can then be approximated as the dot product of their
social coordinates U [i, ∗] and V [j, ∗], which can be efficiently
computed in O(r) time. Similarly, the proximity from node j
to node i is simply the dot product of U [j, ∗] and V [i, ∗].

In addition, dot product can be used to compute many
other proximity measures. For example, given a global list
of attributes, each user is assigned a vector with 0s or 1s,
where 0 means that the user does not have the attribute and 1
otherwise. The dot product of two vectors essentially captures
the number of matches between two users and can also be used
to predict new friendship. When the list gets too long, a bloom
filter can be used to summarize the list in a compact fashion.
One can then estimate the similarity between two sets based
on the dot product of the corresponding two bloom filters. As
another example, consider two feature vectors u and v. If we
normalize them to have unit length, the dot product u◦v gives
the cosine similarity between the two feature vectors.

A main component of our solution for secure proximity
computation is the first secure dot product protocol that is both
privacy-preserving and verifiable. Since secure dot product is
a fundamental primitive in privacy-preserving data mining and
secure multi-party computation, our technique can have many
applications beyond mobile social networks.

Problem formulation. The social coordinates for individual
users can be precomputed by a trusted central server in the
social network that users belong to. For example, one can
imagine that existing online social networking site, such as
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Facebook and Myspace, to provide such a service. Our goal
then is to determine whether the dot product of two users’
social coordinates exceeds a given threshold. Only when the
dot product is large enough, will the two users start further
communication. We want such computation to be efficient,
privacy-preserving, and verifiable: (i) no user can forge social
coordinates or the result of dot product without getting caught,
and (ii) if the dot product between two users is below the
threshold, they learn only this fact and nothing more.

III. ATTACK MODELS

Adversaries are curious about other users’ personal informa-
tion and location information and will try their best to extract
information from every message. They may also lie or even
collude in order to get more information. Below we identify
a range of potential attacks against coordinate-based social
proximity computation and quantify their effectiveness using
analysis of real traces.

Compromising location privacy. A number of attacks can
be launched to breach a user’s location privacy based on her
social coordinate or her social proximity to a known social
coordinate. We identify four such attacks below.

• Fingerprinting users based on social coordinates. A
naı̈ve way to support proximity computation is to let every
user publish her social coordinate for computing dot product.
However, if the social coordinates of a user are relatively
unique, it becomes easy to identify a user based on them. To
assess the potency of such an attack, we use five popular social
networks: Digg, Flickr, LiveJournal, Myspace and YouTube,
as shown in Table I. Figure 1(a) plots the percentage of unique
social coordinates in a given social network as a function
of the number of digits used to represent one dimension in
each coordinate. The curve is based on the first snapshot
but the results from the second snapshot are similar. It is
evident from the figure that with just 4 decimal-point precision,
which is required for accurately computing proximity metric
between any user pair, 35%-80% of the users become uniquely
identifiable by their social coordinates. Even with 1 decimal
point precision, there are still 5%-50% unique social coordi-
nates. Further inspection suggests that most non-unique social
coordinates belong to socially inactive users with few friends.
For example, all users with zero friends have the same all-zero
social coordinate. To illustrate this effect, Figure 1(b) plots the
percentage of unique social coordinates for users with at least
five friends. We see a dramatic increase in the fraction of
unique social coordinates. Therefore, social coordinate based
fingerprinting is more potent against socially active users.

Network Date # Connected nodes Links
Digg 9/15/2008 535,071 4,432,726

10/25/2008 567,771 4,813,668
Flickr 3/01/2007 1,932,735 26,702,209

4/15/2007 2,172,692 30,393,940
LiveJournal 11/13/2008 1,769,493 61,488,262

12/05/2008 1,769,543 61,921,736
Myspace 12/11/2008 2,128,945 89,138,628

1/11/2009 2,137,773 90,629,452
YouTube 4/30/2007 2,012,280 9,762,825

6/15/2007 2,532,050 13,017,064

TABLE I
DATASET SUMMARY.

• Fingerprinting users based on social proximity. Even if
the social coordinates are encrypted, a smart adversary can try
to infer the social coordinates based on the proximity metric.
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Fig. 1. Percentage of unique social coordinates as a function of precision.
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Fig. 2. Percentage of unique dot products as a function of precision.

This is demonstrated by the following analysis. Figure 2 shows
the uniqueness of the dot product value between a users’ social
coordinate and a given random coordinate that an attacker
would use. As we can see, with 1 decimal point precision,
5-55% of all users are uniquely identifiable; as the precision
increases to 4 decimal points, around 30-80% of the users
are uniquely identifiable. Moreover, the fraction of unique
social proximity is much higher among users with at least five
friends. So social proximity based fingerprinting is a more
serious attack against socially active users.

• Inferring social coordinates from proximity measure.
Apart from acting as an identifier, knowing exact proximity
to a given user may even allow an adversary to reconstruct
a user’s social coordinates. Specifically, since the proximity
between two users is a dot product between their coordinates,
each proximity value gives one linear constraint on the social
coordinates of the other party. An adversary just needs d
linearly independent constraints to reconstruct a d-dimension
social coordinate. This can be achieved by having an adversary
generate d (fake) linearly independent coordinates and then
compute the proximity with an intended victim, using each of
the d different coordinates or having d colluding adversaries.

• Binary search on social proximity. The above attacks sug-
gest that we should protect privacy of both social coordinates
and proximity measure. In order to facilitate the decision of
whether to make friends with a user, ideally we only want
to reveal 1 bit of information, i.e., whether the dot product
is above or below a threshold (instead of its exact value).
However, even this 1 bit of information could be potentially
exploited by a patient adversary to launch a binary search
attack that adaptively adjusts the threshold to quickly narrow
down the value range for the social proximity between the
victim and a social coordinate chosen by the adversary.

Tracking users. We further observe that social coordinates
are relatively stable over time. Figure 3 plots the cumulative
distribution function of the cosine similarity (which measures
the angle between two vectors) between a user’s social co-
ordinates across the two snapshots indicated in Table I for
all the social networks. As shown in Figure 3, for most
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networks, a large fraction of users’ coordinates have high
cosine similarity across the two snapshots. Around 50-60%
people in Digg and Flickr have social coordinates’ cosine
similarity above 0.9, and around 90% of users in Myspace
have cosine similarity over 0.9. Such high stability in social
coordinates indicates that an adversary could potentially link
social coordinate announcements at different times, locations,
and networks to the same user and enable continuous user
tracking.
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Fig. 3. CDF of cosine similarity of social coordinates in two snapshots.

Other attacks. Other attacks include forgery and DoS.
Since users rely on the social coordinates to make friendship
decisions, it would be very damaging if an adversary is able
to lie about her social coordinate to trick others in to believing
that the adversary is socially close. Also existing private dot
product computation protocols are not verifiable (e.g., [15],
[34]), making it possible to lie about the computation result.
Finally, an adversary may send many fake social coordinates
for proximity computation and overwhelm the victim.

IV. OUR APPROACH

A. Design Goals

Based on the above attacks, our design goals are as follows:

1. Preserving the privacy of social coordinates. Due to the
uniqueness of social coordinates, we should encrypt social
coordinates. Since each dot product reveals one linear
constraint about the social coordinates, d independent
constraints would reveal the whole coordinate. Therefore
we should limit the number of linear constraints revealed.

2. Preserving the privacy of social proximity. Due to
uniqueness of proximity values and the possibility of re-
constructing social coordinates based on proximity values,
ideally a scheme should just reveal whether the proximity
value is above a threshold used for making friendship
decisions, while protecting against binary search attacks.

3. Preventing user tracking. Even when a user’s social
coordinate does not change, her social coordinate an-
nouncement should look different to prevent tracking.

4. Providing authentication and verification. Users should
not be able to forge their social coordinates. Any user
should be able to authenticate another user’s identity and
social coordinate.

5. Efficient filtering. Since a user is interested in quickly
finding potential friends and the number of potential
friends is usually much smaller than the total number of
users in the network, we should efficiently filter out social
coordinates with low proximity values.

B. Overview

To achieve the above design goals, we develop a novel
secure proximity computation protocol, which consists of
three major components: (i) authentication without long-term
linkability (Section IV-C), (ii) efficient and privacy-preserving

proximity pre-filtering (Section IV-D), and (iii) private and
verifiable proximity computation (Section IV-E).

Specifically, in (i) users use virtual ID to announce their
presence and social coordinates to remove long-term linka-
bility and prevent user tracking, and use digital signatures
for authentication (i.e., design goals 3 and 4). Then the
proximity prefiltering in (ii) allows users to quickly filter out
users that are unlikely to become friends (i.e., design goals
1, 2, 5). However it does not prevent an adversary from
forging social coordinates or the final proximity result. So we
further develop a technique for private and verifiable proximity
computation based on homomorphic cryptography in (iii) to
check the validity of social coordinates and proximity result
(i.e., design goals 1 and 4). The step (iii) is only invoked
when proximity pre-filtering determines that the proximity
exceeds the threshold because (1) homomorphic cryptography
is computationally expensive and should be called upon for
verification only when necessary, and (2) this step reveals
the exact proximity value. It is unacceptable to reveal the
exact proximity value to an arbitrary user, which can easily
compromise location privacy (see Section III). However, we
believe that it is acceptable to reveal the exact proximity value
to those users that are sufficiently close socially and thus likely
to become friends. A lying adversary can get caught by this
step and reported.

C. Authentication Without Long-Term Linkability

When two strangers encounter each other, proximity compu-
tation needs to be performed on their social coordinates though
they may not trust each other. To support authentication in such
an untrusted environment, we require a trusted server, which
can be the same server that computes social coordinates. Note
that the server is only used for bootstrapping trust. It does not
need to be contacted in a mobile social network.

To protect Alice’s identity and prevent long-term linkability,
the trusted server assigns Alice a separate virtual ID, which
is the only ID sent during communication. The virtual ID
is essentially a temporary private/public key pair, which is
valid for only a specified time period. Alice needs to get her
new virtual ID by contacting the trusted server when it is
reachable. Every time Alice contacts the server, the server can
use standard digital signature techniques to authenticate Alice
(as in Internet server) before issuing her new virtual ID.

After authenticating Alice, the server sends Alice her new
virtual ID, expiration time, encrypted social coordinates, and
the server’s digital signature. Others can use the server’s
signature and Alice’s own signature to authenticate Alice and
her encrypted social coordinates to prevent Alice from faking
invalid IDs and coordinates. The encrypted social coordinates
are used for computation in a verifiable secure dot product
protocol introduced in Section IV-E. In this way, we cannot
link messages sent before and after changing virtual IDs,
which prevents long-term linkability. To reduce the frequency
of contacting the server, the server may issue Alice multiple
virtual IDs at a time, each with a different valid period.

D. Proximity Pre-filtering

The goal of proximity pre-filtering is to quickly identify
potential friends from all the users in a mobile social net-
work. Our requirement is to efficiently compute whether the
proximity between two social coordinates is below or above
a threshold without revealing the actual social coordinates or
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the exact proximity. The threshold depends on a user’s interest
in making new friends. In this step, we do not verify the
correctness of the coordinates or proximity values, which will
be handled by the private and verifiable proximity computation
in Section IV-E.

There are several existing protocols that compute dot prod-
uct while preserving the privacy of the vectors (e.g., [15],
[34]), however they reveal the final value of the dot product
to one of the parties and do not satisfy our requirements (i.e.,
preserve the privacy of the proximity value and only reveal
whether it is above or below the threshold). We first review
one of the existing secure dot product proposed [15], which
we use as the basis for our protocol. Then we present our
modifications to achieve our design goal.

Existing secure dot product protocol [15]. Suppose Alice
has a d-dimensional vector v and Bob has a d-dimensional
vector u. s is a security parameter that controls the amount of
random information we use to hide the social coordinate.

1. Alice initiates the dot product computation by asking Bob
to start the computation. Bob constructs a s×(d+1) matrix
X. Its i-th row xi is defined as

xi =

{

〈u1, u2, . . . , ud, 1〉, i = r,
ki, ∀i 6= r,

(2)

where r is a randomly chosen row, which contains the
social coordinate, and the other row vectors ki (i 6= r) are
all randomly generated.
Bob also creates an s × s random matrix Q, a random
(d + 1)-dimensional vector f , and three random numbers
r1, r2, r3. He computes the following five terms: (i) b =
∑s

i=1 Qir, (ii) c =
∑s

i=1,i6=r(xi ·
∑s

j=1 Qji), (iii) Q ·X,
(iv) c′ = c + r1 · r2 · f , and (v) g = r1 · r3 · f . Bob then
sends Q · X, c′,g to Alice.

2. Alice chooses a random number α and creates a vector
v′ = 〈v1, v2, ....vd, α〉. Alice then computes the following
four terms: (i) y = Q · X · v′, (ii) z =

∑s
i=1 yi, (iii)

a = z− c′◦v′, and (iv) h = g◦v′. Here v1◦v2 represents
the dot product (i.e., inner product) of two given vectors
v1 and v2. Alice then sends a and h to Bob.

3. Bob computes β = a+h·(r2/r3)
b and sends it to Alice.

4. Alice computes β−α, which is the desired dot product as
shown in [15] (i.e., β − α = v ◦ u).

Proximity pre-filtering. Our goal is to only reveal whether
the dot product is above a threshold to Alice and Bob, and
prevents both of them from learning the exact dot product.
Since in the last step of the above protocol the dot product is
given by β − α, a simple way to hide the true dot product is
to let Alice choose a threshold T and send T + α to Bob. If
β is larger than T +α, Bob replies YES; otherwise he replies
NO. The problem with this approach is that Bob can guess a
reasonable T in this system, and with T + α and β he can
estimate β − α, which is the dot product.

To address this issue, we propose a proximity pre-filtering
protocol by making the following modifications to the original
secure dot product protocol. At the beginning of the protocol,
instead of using her real vector, Alice uses a scaled version
of her vector ρ · v, where ρ is a random number chosen by
Alice. At the end of the protocol, along with a and h, Alice
also picks another random number ρ′ such that 0 ≤ ρ′ < ρ,
computes γ = α+ρ·T +ρ′ and sends γ to Bob. Bob compares

Public key: (g, n), Private key: σ
Encryption:

Plaintext m < n
Select random r < n
Ciphertext c = E(m, r) = gm+nrmod n2

Decryption:

Ciphertext c < n2

Plaintext m = D(c) = L(cσmod n2)

L(gσmod n2)
mod n, where L(u) = u−1

n

Fig. 4. The fast variant of Paillier’s Cryptosystem

γ with β, and replies YES only when β > γ, and otherwise
replies No. All the other operations remain the same as [15].

Correctness. Since Alice scales her vector by ρ, we have
β − α = ρ · p, where p is the dot product. β − γ = β − α −
ρ ·T − ρ′ = ρ · (p−T )− ρ′. Given p and T are both integers,
we have that β > γ implies p > T and β < γ implies p ≤ T .

Setting the threshold. Allowing users to set an arbitrary
threshold T is undesirable since users do not have the knowl-
edge and it complicates liar detection. We assume a system
suggests minimum threshold for all users. Users can set a
higher threshold to be more selective but are prohibited from
setting lower thresholds than the suggested value. Therefore
whenever the outcome of proximity prefiltering is YES the
proximity value must be larger than this suggested minimum
threshold, which can be used as ground truth for liar detection.

E. Private and Verifiable Proximity Computation

Proximity pre-filtering alone is insufficient because adver-
saries can falsify their social coordinates or the final proximity
result. In this section, we develop a solution to address these
issues. It achieves both privacy and verifiability, which are two
conflicting goals in secure multi-party computation. We first
introduce an existing homomorphic protocol for computing
a dot product. It preserves privacy but does not provide
authentication or verification. Then we describe our approach
to provide both privacy and verification.

Homomorphic encryption. Homomorphic encryption is an
effective solution to privacy-preserving computation. It allows
certain algebraic operations on the plaintext to be performed
using (possibly different) algebraic operations directly on the
ciphertext. There are several homomorphic cryptosystems. We
use the fast variant of Paillier’s cryptosystem [25], shown in
Figure 4. Its semantic security relies on the premise that the
Decisional Partial Discrete Logarithm Problem [25] is hard.
This cryptosystem has the following two useful properties:

1. Additive Homomorphic Property: Multiplication of the
ciphertexts results in addition of the plaintexts:

E(m1, r1)E(m2, r2) mod n2 = E(m1 + m2, r1 + r2)
E(m1, r1)

m2 mod n2 = E(m1 · m2, r1 · m2)

2. Self-Blinding Property: Any ciphertext can be changed to
another without affecting the plaintext:

D(E(m, r1)) = D(E(m, r1 + r2))

For our protocol, we expect the trusted server to generate
the required keys and send them to the user in addition to the
virtual ID information specified in Section IV-C.

Homomorphic dot product protocol. A secure dot product
protocol has been proposed based on homomorphic encryption
[12]. It achieves the design goal that Alice gets the dot
product, but neither Alice nor Bob learns any other useful
information about other party’s vector, under certain security
assumptions. To summarize, let H+

A and H+
B denote Alice
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and Bob’s homomorphic public keys, respectively. Suppose
Alice’s vector is v = 〈v1, v2, . . . , vd〉 and Bob’s vector is
u = 〈u1, u2, . . . , ud〉. The protocol works as follows:

1. For each dimension of vector v, Alice generates a random
number ri and sends EH+

A
(vi, ri) to Bob.

2. Bob computes w =
∏d

i=1 EH+
A

(vi, ri)
ui (we will refer to

this operation as multiplication throughout our paper), gen-
erates a random number r′, and sends w′ = w ·EH+

A
(0, r′)

back to Alice.
3. Alice then decrypts w′ to get the dot product.

This protocol is provably privacy-preserving. However, it
assumes an honest-but-curious adversary model and provides
neither authentication nor verification. Malicious participants
can lie about their encrypted vectors and the resulting dot
product of the two vectors, since Bob knows Alice’s public
key and can encrypt an arbitrary value to send back to Alice
instead of the real dot product. In the rest of the paper we
refer to this protocol as Protocol 0.

Designing a verifiable secure dot product protocol. Au-
thentication and verification are essential to guard against ma-
licious users who falsify the social coordinates and proximity
metric. Section IV-C describes authentication, and below we
discuss how to make the protocol verifiable.

Note that for both parties to obtain the dot product, both
Alice and Bob run two separate instances of protocol in
parallel. Then, a naı̈ve verification approach for Bob may
be to first decrypt the result sent by Alice using his private
key and encrypt it using Alice’s public key and compare it
with w that he computed before for consistency. However,
since encryption in Paillier’s cryptosystem involves a random
number, the same plaintext may generate different ciphertext,
causing this approach to fail.

Suppose Alice picks r1 = 〈r11, r12, . . . , r1d〉 as her random
numbers and Bob picks r2 = 〈r21, r22, . . . , r2d〉 as his random
numbers. Let r′1 and r′2 be the numbers used for self-blinding
by Alice and Bob, respectively. Alice’s encrypted vector
is E

H
+
A

(v, r1) = 〈E
H

+
A

(v1, r11), E
H

+
A

(v2, r12), . . . , E
H

+
A

(vd, r1d)〉,

and Bob’s encrypted vector EH+
B

(u, r2) is similar.

In order to solve the verification problem, we observe that
when the fast variant of Paillier’s cryptosystem is used, the
value computed by Alice (before self-blinding) is EH+

B
(v ◦

u, r2 ◦ v). This is because

d
Q

i=1

E
H

+
B

(ui, r2i)
vi =

d
Q

i=1

E
H

+
B

(ui · vi, r2i · vi) = E
H

+
B

(v ◦ u, r2 ◦ v)

Assume Alice decrypts the result received from Bob and
gets result1, without knowing r2 ◦ v, Alice cannot generate
EH+

B
(result1, r2 ◦ v) to test the consistency with EH+

B
(v ◦

u, r2 ◦ v) computed by herself.
To overcome such difficulty, below we design two protocols

that support verification.

Verifiable secure dot product protocol 1: Here, we apply
Protocol 0 to compute r2 ◦ v in addition to v ◦ u so that the
dot product value obtained can be verified.

1. As in Protocol 0, Alice and Bob start by exchanging their
encrypted vectors EH+

A
(v, r1) and EH+

B
(u, r2).

2. Alice computes EH+
B

(v◦u, r2◦v) and EH+
B
(r1◦u, r1◦r2)

and send them to Bob after self-blinding. Bob computes

EH+
A

(v◦u, r1 ◦u) and EH+
A

(r2 ◦v, r1 ◦r2) and also send

them after self-blinding.
3. Alice decrypts and gets two numbers result1 and result2,

which are supposed to be v◦u and r2 ◦v. Alice computes
EH+

B
(result1, result2) and compares with EH+

B
(v◦u, r2◦

v). If they are consistent, the dot product result1 is
correct. Bob decrypts and verifies in the same way.

To ensure that Alice can properly decrypt v ◦ u and r2 ◦ v
in step 3 of the protocol, we require that v ◦ u < nA and
r2 ◦ v < nA, where (gA, nA) = H+

A is Alice’s homomorphic
public key given in Figure 4. This can be achieved by limiting
the number of bits of each element in u, v and r2. In our
current implementation, nA has 1024 bits, each element in u
and v is a 32-bit integer, and the number of dimensions d is a
16-bit integer. As a result, each element in r2 can have as many
as 1024−16−32 = 976 bits without causing r2 ◦v to exceed
nA. Such a large number of bits suffice to defend attacks that
enumerate all possible ciphertexts for certain plaintext in a
brute-force fashion.

Compared to the original Protocol 0, our new protocol has
slightly more communication overhead and more than twice
computation overhead since it computes two dot products
using the Protocol 0 and has a verification phase, which is
essentially an encryption. Also note that the second dot prod-
uct incurs more computation overhead because the elements
of the random vectors can be much larger than elements of v
and u. Therefore, we call the multiplication operation with
random vector as BigMul. Next we develop a light-weight
protocol with much less computation overhead, but slightly
more communication overhead.

Verifiable secure dot product protocol 2: The idea is to only
compute v ◦u using Protocol 0 and compute r2 ◦v using the
secure dot product protocol [15], which is much cheaper than
the homomorphic protocol.

1. Alice and Bob exchange their encrypted vectors
EH+

A
(v, r1) and EH+

B
(u, r2) as before.

2. Alice computes EH+
B
(v ◦ u, r2 ◦ v) and sends it to Bob

after self-blinding. Bob computes EH+
A
(v ◦ u, r1 ◦ u) and

does the same thing.
3. Alice uses the secure dot product protocol [15] to compute

v ◦ r2 with Bob. We denote the result she gets from this
step as result2. Similarly, Bob uses secure dot product
protocol to compute u ◦ r1.

4. Alice decrypts the received message from step 2 and get
result1. With result1 and result2, verification is the
same as Protocol 1. The same holds for Bob.

Compared to Protocol 0, the additional computation cost is
close to just one more encryption for verification, since the
additional secure dot product computation is much cheaper
than the encryption. In terms of communication, the secure dot
product protocol requires at least four messages, which slightly
increases communication cost. Since the computation cost
dominates, the small increase in communication is worthwhile.

Homomorphic encryption with negative numbers: Neg-
ative numbers in the social coordinates do not affect the
correctness of the protocols since the homomorphic properties
still hold. A negative dot product can cause ambiguity on
the results because the decrypted result x may imply that the
original result may be x, x − n, or x − 2 · n, etc. To handle
this issue, we leverage the fact that n is a 1024-bit number,
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which is huge, whereas all proximity values comparatively
small. Therefore, whenever the proximity is too large (i.e.,
> n/2), this indicates that the real value is negative and the
actual result is result − n.

F. Security Analysis

1) Proximity Pre-filtering: Here we analyze the information
flow between Alice and Bob. The first several steps of our pro-
tocol are the same as the secure dot product protocol, except
that we scale the coordinate. As shown in [15], from Bob to
Alice, Q · X, c′ and g do not leak any information. From Alice
to Bob, h reveals one equation about Alice’s coordinate v.
This is possible because we have two relationships h = g ◦v′

and β = p + α; canceling out α from both relationships
give us one constraint on v. Now we consider the additional
information flow introduced in our protocol. The final result
from Bob to Alice contains 1 bit information, which is the
outcome of the protocol and required. From Alice to Bob, γ
reveals ρ · (p − T ) − ρ′. So essentially we hide p − T using
two random numbers ρ and ρ′. [17] used the same hiding
technique in Yao’s millionaire’s protocol, which is shown to
be secure when the range of ρ is big enough and one can
increase the difficulty of guessing p − T by randomly using
many possible distributions for choosing random numbers. It
will reveal p = T only when ρ · (p − T ) − ρ′ = 0, which
occurs with a very low probability.

Next we examine if binary search is still possible. There
are two ways to perform binary search: (i) an adversary
computes proximity measure with the victim multiple times,
each time using a different threshold, or (ii) an adversary
colludes with others and fakes the same social coordinate
and compute proximity measure between the fake coordinate
with the victim’s coordinate multiple times, each time using
a different threshold. The first attack can be easily prevented
by permitting only one proximity computation between any
two users. To defend the second attack, we note that in binary
search about half of the trials will have YES result. Whenever
the result is YES, we run our verifiable secure dot product
protocol, which will detect the liar. So binary search is still
possible, but each trial will be caught with 50% probability
and the success probability of binary search exponentially
decreases with the number of trials involved in binary search.

The pre-filtering protocol does not have authentication or
verification on the vectors used by participants. It is easy for
either side to manipulate the final result. Alice can manipulate
γ and make the result NO even when the real result is YES.
This means that Alice decides not to make friend with Bob
despite the high proximity measure, which should be permitted
as Alice should have freedom to choose friends even when the
proximity measure exceeds Bob’s threshold. Similarly, Bob
is allowed to reply NO when the actual result is YES. But
anyone that makes the result YES while it is actually NO
is considered cheating and can be detected by our verifiable
secure dot product protocol.

2) Private and Verifiable Proximity Computation:
Theorem 1 (Privacy of Coordinates in Protocol 1):

Assuming the fast variant of Paillier’s cryptosystem is
semantically secure, Alice and Bob only get the dot product
and no more useful information about each other’s coordinate.

Proof: Assuming the cryptosystem is semantically secure,
Protocol 0 reveals no useful information other than the re-
sult [12]. In Protocol 1, each participant gets two dot product

by running two instances of Protocol 0. Thus each of them
gets no more useful information than two dot products. The
extra dot product used for verification, i.e., r2 ◦ v, does not
reveal more information about u because r2 is hard to guess.
In fact, guessing r2 based on r2 ◦v is just as hard as guessing
u based on v ◦ u.

Theorem 2 (Privacy of Coordinates in Protocol 2):
Assuming the fast variant of Paillier’s cryptosystem is
semantically secure, Alice and Bob get the dot product and
one more linear constraint about the other party’s coordinate.

Proof: The only difference between Protocol 1 and Pro-
tocol 2 is that in Protocol 2 result2 is computed using secure
dot product protocol [15], which reveals one more constraint
about the other user’s coordinate.

Theorem 3 (Verification Guarantee): If Alice’s verification
is successful in Protocol 1 or Protocol 2, Alice gets the real
dot product.

Proof: The only case when verification is successful
but Alice gets a wrong number is Bob found two numbers
result1 < min(nA, nB) and result2 < min(nA, nB) such
that result1 6= v ◦ u, EH+

B
(result1, result2) = EH+

B
(v ◦

u, r2 ◦ v). This is impossible because decryption result is
unique in Paillier’s cryptosystem.

V. EVALUATION

We implement our protocols on HP IPAQ 910, which
has Marvell PXA270 416 MHz Processor, 128 MB RAM,
Windows Mobile 6.1 Professional operating system, 802.11
b/g WiFi card, and .NET Compact Framework. Since the
cryptosystem involves very large numbers, which is not sup-
ported by the Compact Framework, we use a public BigInteger
Library for C# [6]. The communication uses 802.11b ad
hoc mode. We also implemented all computations in all the
protocols on Motorola Droid. It has 550 MHz Arm Cortex
A8 processor, 230 MB RAM, and uses Java and the Android
development toolkit. We use a publicly available implemen-
tation [26] of Paillier’s Cryptosystem in Java as a basis for
our Fast Variant implementation. Since the Android Platform
has not yet supported wireless ad-hoc mode, we quantify
the communication cost using 802.11b infrastructure mode.
For comparison, we also evaluate our protocols on a laptop
PC with Windows Vista system, P8600 processor, and 2GB
memory. Our implementation uses Java. We perform power
measurement on the Droid using PowerTutor [29]. All the
implementations use 30-dimension social coordinates. Unless
otherwise specified, the performance numbers are based on
computing a proximity metric between a pair of nodes.

A. Proximity Pre-filtering

The efficiency of pre-filtering depends on the security
parameter s, which controls the amount of random information
we add. We use s = 2 in our evaluation as in [15].

This protocol altogether involves 4 messages: (i) a con-
trol message to initiate proximity pre-filtering, (ii) a reply
containing a matrix and two vectors, which has altogether
(s+2)·(d+1) numbers, (iii) a response containing 3 numbers,
and (iv) a final answer containing 1-bit: either YES or NO to
the question whether the proximity exceeds the threshold. The
message size depends on the selected random numbers.

Table II shows the mean, maximum, minimum and average
execution time for prefiltering over 100 runs on PC, IPAQ and
Droid. The average time is 0.17 second on the IPAQ and 0.044
second on the Droid. Both are fast enough for practical use.
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Device Mean Max Min Std Median

PC 0.44 2.15 0.29 0.30 0.32
IPAQ 172 633 44 78 154
Droid 44 112 22 23 23

TABLE II
EXECUTION TIME OF PROXIMITY PREFILTERING (MS)

PC

Operation Mean Max Min Std Median

Authentication 0.48 1.31 0.37 0.12 0.46
Encryption 77.79 96.07 76.77 2.23 77.20
Decryption 14.11 17 13 0.5667 14
Multiplication 81.92 124 78 5.25 81
BigMul 2253.8 2581 2223 52.02 2238
Self-blinding 83 120 81 4.73 82
Verification 82.43 93 80 2.27 82

IPAQ

Operation Mean Max Min Std Median

Authentication 27.02 61 24 7.7485 25
Decryption 2193.2 2620 2176 48.3319 2178
Multiplication 4055.2 6033 2312 1134.7 4146
BigMul 382026 390237 375463 7523.6 380378
Self-blinding 12615 13353 12280 196.74 12606
Verification 12807 14270 12452 240.10 12776

Droid

Operation Mean Max Min Std Median

Authentication 2.54 54.4 2.23 3.01 2.32
Decryption 27.01 63 24 8.6416 24
Multiplication 160.41 554 150 44.5594 153
BigMul 3780.7 4250 3733 71.48 3760.5
Self-blinding 144.69 596 136 47.6366 137
Verification 144.18 192 136 14.1581 138

TABLE III
BREAKDOWN OF COMPUTATION TIME FOR VERIFIABLE SECURE DOT

PRODUCT PROTOCOLS ON PC, IPAQ, AND DROID (MS)

B. Private and Verifiable Proximity Computation

We implement both versions of our verifiable secure dot
product protocols. Our implementation is based on the fast
variant of the Paillier’s cryptosystem, where n has 1024 bits
and σ has 160 bits according to [25]. The random numbers
used have 900 bits, big enough to prevent brute force attacks.

Table III shows the breakdown of the computation time
on PC, IPAQ, and Droid. Protocol 1 involves one authen-
tication, one multiplication, one BigMul, two self-blindings,
two decryptions, and one verification. Protocol 2 includes
one authentication, one multiplication, one self-blinding, one
decryption, one secure dot product protocol [15], and one
verification. We do not show the performance of secure dot
product protocol because it has almost the same performance
as the proximity pre-filtering shown in Table II. As we would
expect, the PC is faster than Droid, which is faster than IPAQ.
The average computation time for protocol 1 is 2.61 seconds
on PC, 4.4 seconds on Droid, and 6 minutes on IPAQ. The
time for protocol 2 is 0.276 seconds on PC, 0.523 seconds on
Droid, and 31.869 seconds on IPAQ. The difference between
computation time on IPAQ and Droid comes from two factors:
(i) the IPAQ is older and has a slower processor, and (ii)
more importantly, the built-in Java BigInteger implementation
is much more efficient than C# implementation [6] for the
IPAQ. Microsoft is planning to introduce built-in BigInteger
class in their new .NET framework and we expect the running
time on IPAQ can reduce significantly with a more efficient
library. The server pre-computes vector encryption on behalf
of a mobile host. The time to perform encryption for a single
dimension on PC is 77.79 ms, as shown in Table III.

Table IV shows CPU power consumption for running pro-
tocol 1 and 2 on Droid. To put the number into perspective,

Protocol Power Consumption (mJ)

Announcement - precompute 0.4773
Announcement - identify 2.907
Proximity Prefiltering 43.388
Protocol 1 2277.9
Protocol 2 286.3608

TABLE IV
CPU POWER CONSUMPTION ON DROID

a fully charged Droid has 18,648,000 mJ. So the computation
involved in the two protocols consume 0.0122% and 0.0015%
total power, respectively. These numbers indicate that both
protocols are practical in terms of power, as well.

In terms of operation, BigMul is the most expensive since
it involves d 900-bit random numbers. Self-blinding cost
also depends on the random number used (900 bits). In our
evaluation, we do not use negative numbers. While negative
numbers affect the performance of multiplication (since raising
a negative power requires an inverse operation), their influence
can be eliminated by letting the server pre-compute the inverse
of each dimension in the encrypted vector and giving them to
users. This increases the communication cost between users
without leaking more information.

In terms of message sizes, for protocol 1, request message
contains the homomorphic public key (n, g) and encrypted
vector. n is a 1024-bit number, and g has at most 2048 bits.
The encrypted vector has d encrypted numbers, each with at
most 2048 bits. Hence the total request message is at most
8064 bytes for 30-dimensional social coordinates. The reply
message contains two encrypted numbers, each having at most
2048 bits. So the total size is within 512 bytes. Protocol 2
contains only one encrypted number in the reply but involves
4 additional messages as in proximity prefiltering (described in
Section V-A) except the last message contains the dot product
value instead of YES or NO, and Alice does not send γ,
and the numbers are much bigger because one participant is
now using the random vector. The total message size in our
implementation is around 8900 bytes for protocol 1 and around
16K bytes for protocol 2. The exact value may vary depending
on the encryption result and the random numbers.

The largest message among all protocols is the protocol 1
request message (8K bytes), which takes 3.96 ms and 0.195
mJ to transmit on average over 200 runs on the Droid. Hence,
the communication cost for the protocols is not significant
compared to the computation costs.

VI. RELATED WORK

Our work is related to the following research areas:

Social networks: The explosive growth of online social
networks has attracted significant attention [1]–[3], [22]. Pre-
vious studies (e.g., [19], [20], [31]) show that path-ensemble
based proximity measures, such as Katz measure [16], rooted
PageRank [19], [20], and escape probability [31], are effective
in predicting links between users. [30] develops proximity
embedding algorithm for efficient and accurate proximity
estimation in large social networks. It is applicable to all path-
ensemble based proximity measures, so we use it in our study.

Mobile social networks: The popularity of mobile social
networks has increased rapidly. [9] describes social serendipity
to perform matchmaking in mobile social networks. Loopt
[21] is a mobile geo-location service that notifies users of
friends’ location and activities via detailed interactive maps.
Both schemes rely on a centralized server. Since users are
often reluctant to share their personal information like location
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and status information with a server, this limits applicability.
Mobiclique [28] is a middleware that allows mobile phone
users to connect to others over ad-hoc networks to exchange
social network identity information and forward messages. It
assumes all users are trusted, and ignores privacy and security.

Privacy in online social networks: [4] applies attribute-
based encryption to provide fine-grained access control to
the personal information. [32] proposes a social attestation
that certifies a social relationship between any two parties.
The recipient of a social attestation can use it to prove to a
third party (e.g., an online system) that (s)he has a certain
relationship with the sender and get access to the restricted
content. These works are complementary to our protocols. [11]
develops a cryptographic private matching technique that ex-
ploits friend-of-friend relationships to automatically generate
whitelists for email senders, and [10] proposes enhancement.
Since set intersection is a special case of dot product, our
verifiable secure dot product protocol can be applied to their
context to provide stronger security guarantees.

Privacy in wireless networks: Wireless network privacy is a
serious concern due to ease of eavesdropping. [27] identifies
several explicit identifiers in 802.11 MAC header that can
be used to identify and track users. SlyFi [13] is an 802.11-
like link layer protocol that obfuscates all transmitted bits to
remove explicit identifiers and increase privacy. [8] provides
flexible presence sharing between users with social relation-
ships by broadcasting clique signals. It provides presence
sharing among strangers by letting users broadcast opaque
identifiers, which can be resolved to an identity at a centralized
trusted broker. This is related to our virtual ID, but we use
virtual ID as a public key to communicate directly with other
users in the mobile social network.

Privacy-preserving computation: There are two classes of
privacy-preserving computation: encryption-based techniques
and obfuscation-based techniques. Encryption-based protocols
like [12] are based on homomorphic encryption and are
computationally expensive. The obfuscation based schemes
[15], [34] are light weight but tend to leak some information.
Privacy-preserving dot product protocols are important in the
area of distributed range query computing and association
mining [12], [15]. A unique feature of our approach is that
it is both privacy-preserving and verifiable.

VII. CONCLUSION

With increasing popularity of mobile social networks, it is
important to develop secure and practical protocols to enable
users to effectively interact with each other. In this paper, we
develop a secure friend discovery protocol for mobile social
networks, and use both analysis and real implementation to
demonstrate its feasibility and effectiveness. We hope that this
paper will inspire other researchers to explore protocol design
for mobile social networks, which is a rapidly growing area.

Acknowledgments: This research is supported in part by
NSF Grants CNS-0916106, CNS-0546755, and CNS-0916309.

REFERENCES

[1] L. A. Adamic, O. Buyukkokten, and E. Adar. A social network caught
in the web. First Monday, 2003.

[2] Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong. Analysis of
topological characteristics of huge online social networking services. In
Proc. of WWW, 2007.

[3] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group
formation in large social networks: Membership, growth, and evolution.
In Proc. of KDD, 2006.

[4] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin.
Persona: An online social network with user-defined privacy. In Proc.
of ACM SIGCOMM, Aug. 2009.

[5] R. M. Bell, Y. Koren, and C. Volinsky. Chasing $1,000,000: How we
won the Netflix Progress Prize. Statistical Computing and Statistical
Graphics Newsletter, 18(2):4–12, 2007.

[6] The code project: C# BigInteger class. http://www.codeproject.com/KB/
cs/biginteger.aspx.

[7] Broadband Internet statistics. http://www.internetworldstats.com/dsl.htm.
[8] L. Cox, A. Dalton, and V. Marupadi. SmokeScreen: flexible privacy

controls for presence sharing. In Proc. of ACM MobiSys, 2007.
[9] N. Eagle and A. Pentland. Social serendipity: Mobilizing social software.

IEEE Pervasive Computing, Apr. 2005.
[10] M. J. Freedman and A. Nicolosi. Efficient private techniques for

verifying social proximity. In Proc. of IPTPS, Feb. 2007.
[11] S. Garriss, M. Kaminsky, M. J. Freedman, B. Karp, D. Mazieres, and

H. Yu. RE: Reliable Email. In Proc. of NSDI, 2006.
[12] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikäinen. On private scalar
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