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ABSTRACTIn this paper, we address the following question: given aspe
i�
 pla
ement of wireless nodes in physi
al spa
e anda spe
i�
 traÆ
 workload, what is the maximum through-put that 
an be supported by the resulting network? Unlikeprevious work that has fo
used on 
omputing asymptoti
performan
e bounds under assumptions of homogeneity orrandomness in the network topology and/or workload, wework with any given network and workload spe
i�ed as in-puts.A key issue impa
ting performan
e is wireless interferen
ebetween neighboring nodes. We model su
h interferen
e us-ing a 
on
i
t graph, and present methods for 
omputingupper and lower bounds on the optimal throughput for thegiven network and workload. To 
ompute these bounds, weassume that pa
ket transmissions at the individual nodes
an be �nely 
ontrolled and 
arefully s
heduled by an om-nis
ient and omnipotent 
entral entity, whi
h is unrealis-ti
. Nevertheless, using ns-2 simulations, we show that theroutes derived from our analysis often yield noti
eably bet-ter throughput than the default shortest path routes evenin the presen
e of un
oordinated pa
ket transmissions andMAC 
ontention. This suggests that there is opportunity fora
hieving throughput gains by employing an interferen
e-aware routing proto
ol.
Categories and Subject DescriptorsC.2.1 [Computer-Communi
ation Networks℄: WirelessNetworks|Multi-hop, Interferen
e
General TermsAlgorithm, Performan
e
KeywordsWireless, Multi-hop, Interferen
e, Performan
e
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1. INTRODUCTIONMulti-hop wireless networks have been a subje
t of mu
hstudy over the past few de
ades [1℄. Mu
h of the originalwork was motivated by military appli
ations su
h as battle-�eld 
ommuni
ations. More re
ently, however, some inter-esting 
ommer
ial appli
ations have emerged, su
h as \
om-munity wireless networks" [2, 26℄, and sensor networks [7℄.A fundamental issue in multi-hop wireless networks is thatperforman
e degrades sharply as the number of hops tra-versed in
reases. For example, in a network of nodes withidenti
al and omnidire
tional radio ranges, going from a sin-gle hop to 2 hops halves the throughput of a 
ow be
ausewireless interferen
e di
tates that only one of the 2 hops 
anbe a
tive at a time.The performan
e 
hallenges of multi-hop networks havelong been re
ognized and have led to a lot of resear
h onthe medium a

ess 
ontrol (MAC), routing, and transportlayers of the networking sta
k. In re
ent years, there hasalso been a fo
us on the fundamental question of what theoptimal throughput of a multi-hop wireless network is. Theseminal paper by Gupta and Kumar [13℄ showed that ina network 
omprising of n identi
al nodes, ea
h of whi
his 
ommuni
ating with another node, the throughput pernode is �( 1pn log n ) assuming random node pla
ement and
ommuni
ation pattern and �( 1pn ) assuming optimal nodepla
ement and 
ommuni
ation pattern. Subsequent work [9,10, 18℄ has 
onsidered alternative models and settings, su
has the presen
e of relay nodes and mobile nodes, and lo
al-ity in inter-node 
ommuni
ation, and their results are lesspessimisti
.This paper also deals with the problem of 
omputing theoptimal throughput of a wireless network. However, a keydistin
tion of our approa
h is that we work with any givenwireless network 
on�guration and workload spe
i�ed as in-puts. In other words, the node lo
ations, ranges et
. aswell as the traÆ
 matrix indi
ating whi
h sour
e nodes are
ommuni
ating with whi
h sink nodes are spe
i�ed as theinput. We make no assumptions about the homogeneity ofnodes with regard to radio range or other 
hara
teristi
s,or regularity in 
ommuni
ation pattern. This is in 
ontrastto previous work that has fo
used on asymptoti
 boundsunder assumptions su
h as node homogeneity and random
ommuni
ation patterns.We use a 
on
i
t graph to model the e�e
ts of wirelessinterferen
e. The 
on
i
t graph indi
ates whi
h groups of



links mutually interfere and hen
e 
annot be a
tive simulta-neously. We formulate a multi-
ommodity 
ow problem [4℄,augmented with 
onstraints derived from the 
on
i
t graph,to 
ompute the optimal throughput that the wireless net-work 
an support between the sour
es and the sinks. Weshow that the problem of �nding optimal throughput is NP-hard, and present methods for 
omputing upper and lowerbounds on the optimal throughput.We show how our methodology 
an a

ommodate a diver-sity of wireless network 
hara
teristi
s su
h as the availabil-ity of multiple non-overlapping 
hannels, multiple radios pernode, and dire
tional antennas. We also show how multipleMAC proto
ol models as well as single-path and multi-pathrouting 
onstraints 
an be a

ommodated.We view the generality of our methodology and the 
on-
i
t graph framework as a key 
ontribution of our work.To 
ompute bounds on the optimal throughput, we as-sume that pa
ket transmissions at the individual nodes 
anbe �nely 
ontrolled and 
arefully s
heduled by an omnis
ientand omnipotent 
entral entity. While this is 
learly an un-realisti
 assumption, it gives us a best 
ase bound againstwhi
h to 
ompare pra
ti
al algorithms for routing, mediuma

ess 
ontrol, and pa
ket s
heduling. Moreover, ns-2 simu-lations show that the routes derived from our analysis oftenyield noti
eably better throughput than the default short-est path routes, even in the presen
e of real-world e�e
tssu
h as un
oordinated pa
ket transmissions and MAC 
on-tention. In some 
ases, the throughput gain is over a fa
torof 2. The reason for this improvement is that in optimizingthroughput, we tend to �nd routes that are less prone towireless interferen
e. For instan
e, a longer route along theperiphery of the network may be pi
ked instead of a shorterbut more interferen
e prone route through the middle of thenetwork.We use our te
hnique to evaluate how the per-node through-put in a multi-hop wireless network varies as the number ofnodes grows. Previous work (e.g., [13℄) suggests that theper-node throughput falls as the number of nodes grows.But this result is under the assumption that nodes alwayshave data to send and are ready to transmit as fast as theirwireless 
onne
tion will allow. In a realisti
 setting, however,sour
es tend to be bursty, so nodes will on average transmitat a slower rate than the speed of their wireless link. In su
ha setting, we �nd that the addition of new nodes 
an a
tuallyimprove the per-node throughput be
ause the ri
her 
onne
-tivity provides in
reased opportunities for routing aroundinterferen
e \hotspots" in the network. This more than o�-sets the in
rease in traÆ
 load 
aused by the new nodes.The rest of this paper is organized as follows. In Se
tion 2,we dis
uss related work. In Se
tion 3, we present details ofour 
on
i
t graph model and methods for 
omputing boundson the optimal network throughput. In Se
tion 4, we presentresults obtained from applying our model to di�erent net-work and workload 
on�gurations. Se
tion 5 
on
ludes thepaper.
2. RELATED WORKA number of papers have been published on the problem ofestimating the throughput of a multi-hop wireless network.Here, we 
onsider the work that is most 
losely related toours.In their seminal paper [13℄, Gupta and Kumar studied thethroughput of wireless networks under two models of inter-

feren
e: a proto
ol model that assumes interferen
e to be anall-or-nothing phenomenon and a physi
al model that 
on-siders the impa
t of interfering transmissions on the signal-to-noise ratio. They show that in a network 
omprising ofn identi
al nodes, ea
h of whi
h is 
ommuni
ating with an-other node, the throughput per node is �( 1pn log n ) assumingrandom node pla
ement and �( 1pn ) assuming optimal nodepla
ement and 
ommuni
ation pattern. These results areshown under the proto
ol model, but the latter result alsoholds in the 
ase of the physi
al model under reasonable as-sumptions. A

ording to the intuitive explanation in [18℄,while the overall one-hop throughput of the network growsas O(n), the average path length grows as O(pn), so thethroughput per node is O( 1pn ).Li et al. [18℄ have extended the work of Gupta and Ku-mar [13℄ by 
onsidering the impa
t of di�erent traÆ
 pat-terns on the s
alability of per node throughput. They pointout that a random traÆ
 pattern represents the worst 
asefrom the viewpoint of per-node throughput. They also showthat for traÆ
 patterns with power law distan
e distribu-tions, the per-node throughput stays roughly 
onstant asthe network size grows, provided the distan
e distributionde
ays more rapidly than the square of the distan
e. Li etal. also 
onsider the intera
tions of pa
ket forwarding withthe 802.11 MAC and show that the use of 802.11 instead ofa global s
heduling s
heme does not a�e
t the asymptoti
bound on per-node throughput derived in [13℄.In [10℄, Grossglauser and Tse introdu
e mobility into themodel presented in [13℄, and show that the average long-termthroughput per sour
e-destination pair 
an be kept 
onstanteven as the number of nodes per unit area in
reases, pro-vided that we allow for delays on the order of the time-s
aleof mobility. This is a
hieved by exploiting mobility to keepdata transfers lo
al, and transmitting only when the trans-mitter and re
eiver are 
lose to ea
h other, at a distan
e ofO( 1pn ), thereby redu
ing total resour
e usage and interfer-en
e. While this is en
ouraging, in many pra
ti
al situationssu
h as 
ommunity wireless networks, mobility may be tooinfrequent or even non-existent to be exploitable.Gastpar and Vetterli [9℄ extend the work of Gupta andKumar [13℄ in a di�erent dire
tion. Instead of the simplepoint-to-point 
oding assumption made in [13℄, whi
h treatsea
h transmitter-re
eiver pair as being independent of otherpairs, they 
onsider a network 
oding model where nodes
ould 
ooperate in arbitrary ways, for instan
e, to boost thetransmit power. Further, they assume that there is a singlesour
e and single destination pi
ked at random, and that therest of the nodes a
t as relays. They show that the through-put of the network under these 
onditions is O(log n), 
om-pared to O(1) for the point-to-point 
oding model of [13℄.While the use of network 
oding in this 
ontext is a promis-ing line of resear
h, we note that the point-to-point 
od-ing model 
orresponds to 
urrent radio te
hnology su
h as802.11.The re
ent work of De Couto et al. [5℄, based on two exper-iments in a 802.11b-based multi-hop wireless testbed showsthat minimizing the hop 
ount of an end-to-end path is notsuÆ
ient for a
hieving good performan
e. The reason theypoint out is that link quality 
an vary widely and long hopsmay be in
luded in \short" paths, resulting in a high pa
keterror rate. In our work, we also rea
h the same 
on
lusionregarding the limitations of the hop 
ount metri
, but for a



somewhat di�erent reason | be
ause wireless interferen
elimits throughput, a 
ir
uitous but less interferen
e-proneroute, say along the periphery of a network, may performbetter than the shortest hop 
ount route.In [21℄, Nandagopal et. al. use a 
onstru
t similar to 
on-
i
t graphs, 
alled 
ow 
ontention graph to 
apture inter-feren
e in wireless networks. However, as the name implies,the 
onstru
t is de�ned on 
ows rather than on links. More-over, the aim of that paper is to study MAC fairness issues,rather than to derive optimal throughput bounds.Yang and Vaidya [27℄ also use the notion of a \
on
i
tgraph" in the 
ontext of their work on priority s
heduling inwireless ad ho
 networks. However, like [21℄, their 
on
i
tgraph is also de�ned on 
ows rather than links. The graphis used only to interpret experimental results showing thatthe 802.11 MAC 
auses 
ows with a high degree of 
on
i
tto su�er disproportionately 
ompared to 
ows with a lowdegree of 
on
i
t. There is no attempt to analyze the 
on
i
tgraph to derive throughput bounds.In [17℄, Kodialam and Nandagopal 
onsider the problemof 
omputing optimal throughput for a given wireless net-work with a given traÆ
 pattern. They assume a limitedmodel of interferen
e in whi
h the only 
onstraint is thatnode may not transmit and re
eive simultaneously. Withthis 
onstraint, they model the problem as a graph 
olor-ing problem. They provide a polynomial time algorithmthat 
omputes routes and s
hedules su
h that the resultingthroughput is guaranteed to be at least 67% of the optimalthroughput. The model we 
onsider in this paper is mu
hmore general and 
exible. Our model 
an take into a

ountinterferen
e from neighboring nodes, impa
t of dire
tionalantennas, availability of multiple non-interfering 
hannelset
. This generality makes the problem harder, so our al-gorithm only provides upper and lower bounds on optimalthroughput.In summary, there is a large body of work on the multi-hopwireless throughput problem, mu
h of it fo
used on asymp-toti
 bounds under assumptions su
h as node homogeneityand random 
ommuni
ation patterns. In 
ontrast, our workfo
uses on 
omputing throughput bounds for a given wire-less network and traÆ
 workload, using a 
on
i
t graph tomodel the 
onstraints imposed by wireless interferen
e. Wedo not 
onsider how fa
tors su
h as mobility [10℄ or 
od-ing [9℄. And like [13℄, we do not 
ompute the informationtheoreti
 
apa
ity of the network.
3. COMPUTING BOUNDS ON OPTIMAL

THROUGHPUTWe now present our framework for in
orporating the 
on-straints imposed by interferen
e in a multi-hop wireless net-work and then present methods for 
omputing bounds onthe optimal throughput that a given network 
an supportfor a given traÆ
 workload. We begin with some ba
kgroundand terminology.
3.1 Background and TerminologyConsider a wireless network with N nodes arbitrarily lo-
ated on a plane. Let ni; 1 � i � N denote the nodes, anddij denote the distan
e between nodes ni and nj . Ea
h node,ni, is equipped with a radio with 
ommuni
ation range Riand a potentially larger interferen
e range R0i. For ease ofexplanation, we start by 
onsidering the 
ase of a single wire-

less 
hannel. (We will generalize the model in Se
tion 3.5.)We 
onsider two models, the Proto
ol Model and the Physi-
al Model , to de�ne the 
onditions for a su

essful wirelesstransmission. These models are similar to those introdu
edin [13℄.Proto
ol Model: In the proto
ol model, if there is a singlewireless 
hannel, a transmission is su

essful if both of thefollowing 
onditions are satis�ed:1. dij � Ri2. Any node nk, su
h that dkj � R0k, is not transmittingNote that the se
ond requirement implies that a node maynot send and re
eive at the same time nor transmit to morethan one other node at the same time. Note also that thismodel di�ers from the popular 802.11 MAC in an importantway | it requires only the re
eiver to be free of interferen
e,instead of requiring that both the sender and the re
eiverbe free of interferen
e. We dis
uss how to adapt the modelfor an 802.11-style MAC in Se
tion 3.5.Physi
al Model: Suppose node ni wants to transmit tonode nj . We 
an 
al
ulate the signal strength, SSij , ofni's transmission as re
eived at nj . The transmission issu

essful if SNRij � SNRthresh, where SNRij denotesthe signal-to-noise ratio at the node nj for transmissionsre
eived from node ni. The total noise, Nj , at nj 
onsistsof the ambient noise, Na, plus the interferen
e due to otherongoing transmissions in the network. Note again that thereis no requirement that the noise level at the sender also below.Our goal is to model wireless interferen
e using a generalframework that would enable us to 
ompute the optimalthroughput the wireless network 
an support for a giventraÆ
 workload. We assume that the workload 
onsists ofgreedy sour
es and destinations, i.e. the sour
es always havedata to send and the destination nodes are always ready toa

ept data. The 
ommuni
ation between the sour
es anddestinations 
an be either dire
t or be routed via interme-diate nodes. We assume that pa
ket transmissions at theindividual nodes 
an be �nely 
ontrolled and s
heduled byan omnis
ient and omnipotent 
entral entity.We say that a network throughputD is feasible if there ex-ists a s
hedule of transmissions su
h that no two interferinglinks are a
tive simultaneously, and the total throughput forthe given sour
e-destination pairs is D. In our problem for-mulation here, we fo
us on maximizing the total throughputbetween sour
e-destination pairs.In the rest of this se
tion, we 
onsider the following threes
enarios in detail: (i) multipath routing under the proto
olinterferen
e model, (ii) multipath routing under the phys-i
al interferen
e model, and (iii) single-path routing underboth models. We end the se
tion by dis
ussing several othergeneralizations, and summarizing our framework.
3.2 Multipath Routing Under the Protocol In-

terference ModelGiven a wireless network with N nodes, we �rst derivea 
onne
tivity graph C as follows. The verti
es of C 
orre-spond to the wireless nodes (NC) and the edges 
orrespondto the wireless links (LC) between the nodes. There is a di-re
ted link lij from node ni to nj if dij � Ri and i 6= j. Weuse the terms \node" and \link" in referen
e to the 
onne
-tivity graph while reserving the terms \vertex" and \edge"for the 
on
i
t graph presented in Se
tion 3.2.1.



max Xlsi2LC fsiSubje
t To:Xlij2LC fij = Xlji2LC fji ni 2 NC n fns; ndg < 1 >Xlis2LC fis = 0 < 2 >Xldi2LC fdi = 0 < 3 >fij � Capij 8i; j j lij 2 LC < 4 >fij � 0 8i; j j lij 2 LC < 5 >Figure 1: LP formulation to optimize the through-put for a single sour
e-destination pair.Let us �rst 
onsider 
ommuni
ation between a single sour
e,ns, and a single destination, nd. In the absen
e of wirelessinterferen
e (e.g., on a wired network), �nding the maximuma
hievable throughput between the sour
e and the destina-tion, given the 
exibility of using multiple paths, 
an beformulated as a linear program 
orresponding to a max-
owproblem, as shown in Figure 1. Here, fij denotes the amountof 
ow on link lij , Capij denote the 
apa
ity of link lij , andLC is a set of all links in the 
onne
tivity graph.The maximization states that we wish to maximize thesum of 
ow out of the sour
e. The �rst 
onstraint represents
ow 
onservation, i.e., at every node, ex
ept the sour
e andthe destination, the amount of in
oming 
ow is equal tothe amount of outgoing 
ow. The se
ond 
onstraint statesthat the in
oming 
ow to the sour
e node is 0. The third
onstraint states that the outgoing 
ow from the destinationnode is 0. The fourth 
onstraint indi
ates the amount of 
owon a link 
annot ex
eed the 
apa
ity of the link. The �nal
onstraint restri
ts the amount of 
ow on ea
h link to benon-negative.Note that the above formulation does not take wirelessinterferen
e into a

ount. We turn to this issue next.
3.2.1 Conflict GraphTo in
orporate wireless interferen
e into our problem for-mulation, we de�ne a 
on
i
t graph, F , whose verti
es 
or-respond to the links in the 
onne
tivity graph, C. There isan edge between the verti
es lij and lpq in F if the links lijand lpq may not be a
tive simultaneously. Based on the pro-to
ol interferen
e model des
ribed in Se
tion 3.1, we drawsu
h an edge if any of the following is true: diq � R0i ordpj � R0p. This en
ompasses the 
ase where a 
on
i
t arisesbe
ause links lij and lpq have a node in 
ommon (i.e., i == por i == q or j == p or j == q). Note, however, that wedo not draw an edge from a vertex to itself in the 
on
i
tgraph.Before we dis
uss how to use the 
on
i
t graph to addinterferen
e 
onstraints in the linear program in Figure 1,we need to state a hardness result and a few de�nitions.
3.2.2 Hardness ResultWe present a hardness result for 
omputing the optimal

throughput under the proto
ol interferen
e model. Givena graph H with vertex set VH , an independent set is a setof verti
es su
h that there is no edge between any two ofthe verti
es. The independen
e number of graph H is thesize of the largest independent set in H. Then, we have thefollowing hardness result.Theorem 1. Given a network and a set of sour
e anddestination nodes, it is NP-hard to �nd the optimal through-put under the proto
ol interferen
e model. Moreover, it isNP-hard to approximate the optimal throughput.It 
an be shown that the problem of �nding the indepen-den
e number of a graph, whi
h is a known hard problemeven to approximate, 
an be redu
ed to the optimal through-put problem. Moreover, this redu
tion is approximation pre-serving. Hen
e the above hardness result. We des
ribe theredu
tion in Appendix A.Sin
e it is NP-hard to approximate the optimal through-put, we now look at heuristi
s for obtaining lower and upperbounds on the optimal throughput. For this, we need to de-�ne some more terms. An independent set I of a graph H
an be 
hara
terized using an independen
e ve
tor, whi
h isa ve
tor of size jVH j. This ve
tor is denoted by xI . Thejth element of this ve
tor is set to 1 if and only if the ver-tex vj is a member of the independent set I, otherwise it iszero. We 
an think of xI as a point in a jVH j-dimensionalspa
e. The polytope de�ned by 
onvex 
ombination of in-dependen
e ve
tors is 
alled the independent set polytope orthe stable set polytope.
3.2.3 Lower BoundThe problem of deriving a lower bound is equivalent tothe problem of �nding a network throughput D that has afeasible s
hedule to a
hieve it. We make the following ob-servation. Links belonging to a given independent set in
on
i
t graph F 
an be s
heduled simultaneously. Supposethere are a total of K maximal independent sets in graphF . A maximal independent set is one that 
annot be grownfurther. Let I1; I2; : : : IK denote these maximal independentsets, and �i; 0 � �i � 1 denote the fra
tion of time allo
atedto the independent set Ii (i.e., the time during whi
h thelinks in Ii 
an be a
tive). If we add the s
hedule restri
-tions imposed by the independent sets to the original linearprogram (Figure 1), the resulting throughput always has afeasible s
hedule, and therefore 
onstitutes a lower boundon the maximum a
hievable throughput.We formalize our above observation as follows. Given a
on
i
t graph F , we de�ne a usage ve
tor, U , of size jVF j,where Ui denotes the fra
tion of time that the link i 
an bea
tive. A usage ve
tor is s
hedulable if the 
orrespondinglinks 
an be s
heduled, 
on
i
t free, for the fra
tion of thetime indi
ated in the usage ve
tor. If we think of the usageve
tor as a point in a jVF j-dimensional spa
e, we have thefollowing theorem.Theorem 2. A usage ve
tor is s
hedulable if and onlyif it lies within the independent set polytope of the 
on
i
tgraph.The proof is given in Appendix B.Theorem 2 implies that the optimal network throughputproblem is a linear program, no matter how many sender-re
eiver pairs we have. In fa
t, the problem is that of max-imizing a linear obje
tive fun
tion over a feasible polytope.



This feasible polytope 
an be des
ribed as the interse
tionof two polytopes | the 
ow polytope and the independentset polytope of the 
on
i
t graph. The 
ow polytope is the
olle
tion of feasible points des
ribed by the 
ow 
onstraints(Figure 1), ignoring wireless 
on
i
ts. The 
ow polytope isa simple stru
ture on whi
h a linear obje
tive fun
tion 
aneasily be optimized. Independent set polytope, on the otherhand, is a diÆ
ult stru
ture and no simple 
hara
terizationof it is known be
ause there may be exponentially manyindependent sets.Theorem 2 implies that any 
onvex 
ombination of in-dependen
e ve
tors is s
hedulable. In general, however, anarbitrary point inside the independent set polytope will be a
onvex 
ombination of an exponentially many independen
eve
tors. To get around this 
omputational problem, we onlywant to pi
k \easy" points in the independent set polytope.An obvious notion of \easy" is that the point pi
ked shouldbe a 
onvex 
ombination of a small number of (i.e., polyno-mially many) independen
e ve
tors. We will be using thisnotion expli
itly in the algorithm as follows. We derive alower bound on the optimal throughput by �nding K0 in-dependen
e ve
tors in the 
on
i
t graph F , and adding thefollowing 
onstraints to the LP formulation shown in Fig-ure 1.� PK0i=1 �i � 1 (be
ause only one maximal independentset 
an be a
tive at a time)� fij �Plij2Ii �iCapij (be
ause the fra
tion of time forwhi
h a link may be a
tive is 
onstrained by the sumof the a
tivity periods of the independent sets it is amember of).Note the solution produ
ed by solving this linear programis always feasible (i.e., s
hedulable). This is due to the fa
tthat all links belonging to independent set Ii 
an be simulta-neously a
tive for �i fra
tion of time, and we have requiredthat the PK0i=1 �i � 1. Moreover, Theorem 2 assures usthat when we in
lude all independent sets, the solution willbe exa
t, i.e., this will be the maximum value of D that isfeasible. To help tighten the lower bound more qui
kly, weshould 
onsider using maximal independen
e sets. While�nding all maximal independent sets is also NP-hard [8℄,the lower bound obtained by 
onsidering a subset of themaximal independent sets has the ni
e property that as weadd more 
onstraints, the bound be
omes tighter, eventu-ally 
onverging to the optimal (i.e., the maximum feasible)throughput when we add all the 
onstraints.
3.2.4 Upper BoundIn this se
tion, we derive an upper bound on the networkthroughput. Consider the 
on
i
t graph. A 
lique in the
on
i
t graph is a set of verti
es that mutually 
on
i
t withea
h other. Theorem 2 implies that the total usage of thelinks in a 
lique is at most 1. This gives us a 
onstraint onthe usage ve
tor. We 
an �nd many 
liques and write 
or-responding 
onstraints to de�ne a polytope. We 
an thenmaximize the throughput over the interse
tion of this poly-tope with 
ow polytope. This will give us an upper boundon the throughput.Unfortunately, it is 
omputationally expensive to �nd allthe 
liques, and even if we 
ould �nd them all, there is stillno guarantee that our upper bound will be tight. This 
anbe illustrated by the following example. Suppose the 
on
i
t
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Figure 2: A pentagon and its 
omplementgraph. The former is an odd hole, and thelatter is an odd anti-hole.
 

Figure 3: An example that shows it isnot suÆ
ient even if we add all 
lique,hole, anti-hole 
onstraints.graph is the pentagon depi
ted in Figure 2. As we 
an see,the only 
liques in the graph are formed by the adja
entpairs of nodes. Adding the 
lique 
onstraints alone to theLP would suggest that a sum of link utilization equal to 2.5is a
hievable. But a
tually at most 2 links 
an be a
tiveat a time. This suggests that we need to add 
onstraints
orresponding to odd holes and odd anti-holes. An odd holeis a 
y
le formed by an odd number of edges, without a
hord in between. For example, the pentagon in Figure 2 isan odd hole. The sum of the link utilizations in an odd hole
ontaining k verti
es 
an be no more than b k2 
. An odd anti-hole is the 
omplementary graph of an odd hole. Figure 2shows an example of an anti-hole with 5 nodes. The sum oflink utilizations in an odd anti-hole 
an be no more than 2.Unfortunately, even if we 
onsider the 
onstraints imposedby the odd holes and odd anti-holes (in addition to thoseimposed by the 
liques), we are not guaranteed to have afeasible solution. For example, 
onsider the 
on
i
t graph,as shown in Figure 3. We 
an assign a utilization of 0.4to all the verti
es on the pentagon and 0.2 to the 
enter ofthe pentagon, while satisfying all 
lique, hole, and anti-hole
onstraints. But there is no feasible s
hedule to a
hieve this,be
ause this solution does not lie in the stable-set polytope.In fa
t, the upper bound based only on 
lique 
onstraints istight only for a spe
ial 
lass of 
on
i
t graphs 
alled perfe
tgraphs. Perfe
t graphs are the graphs without any odd holesor odd anti-holes. Thus, in our present formulation, theupper bounds may not always be tight. We will dis
uss thisfurther in Se
tion 5.
3.3 Multipath Routing Under the Physical In-

terference ModelAs before, we begin by 
reating a 
onne
tivity graph C,whose verti
es 
orrespond to the nodes in the network. Basedon the physi
al interferen
e model, there exists a link, lij ,from ni to nj if and only if SSij=Na � SNRthresh (i.e., theSNR ex
eeds the threshold at least in the presen
e of justthe ambient noise).Using the 
onne
tivity graph, we 
an write an LP formu-



lation to optimize network throughput for a wired network.As dis
ussed before, the solution to the linear program, asshown in Figure 1, provides an upper bound on networkthroughput. However, this bound is not very useful sin
e itdoes not take interferen
e e�e
ts into a

ount.To take interferen
e e�e
ts into a

ount, we 
onstru
t a
on
i
t graph F . Unlike in the proto
ol model, 
on
i
ts inthe physi
al model are not binary. Rather, the interferen
egradually in
reases as more neighboring nodes transmit, andbe
omes intolerable when the noise level rea
hes a thresh-old. This gradual in
rease in interferen
e suggests that weshould have a weighted 
on
i
t graph, where the weight ofa dire
ted edge from verti
es lpq to verti
es lij (denoted bywpqij ) indi
ates what fra
tion of the maximum permissiblenoise at node nj (for link lij to still be operational) is 
on-tributed by a
tivity on link lpq (i.e., node np's transmissionto node nq). Spe
i�
ally, we havewpqij = SSpjSSijSNRthresh �Nawhere SSpj and SSij denote the signal strength at nodenj of transmissions from nodes p and i, respe
tively, andSSijSNRthresh � Na is the maximum permissible interferen
enoise at node nj that would still allow su

essful re
eptionof node ni's transmissions. The edges of the 
on
i
t graphare dire
ted, and in general wpqij may not be equal to wijpq .
3.3.1 Lower BoundIn the proto
ol model, we derive a lower bound on the net-work throughput by �nding independent sets in the 
on
i
tgraph F , and adding the 
onstraints asso
iated with the in-dependent sets to the LP for the wired network. Analogousto independent sets, we introdu
e the notion of s
hedulablesets in the physi
al model. A s
hedulable set Hx is de�nedas a set of verti
es su
h that for every vertex lij 2 Hx,Plpq2Hx wpqij � 1. It follows that all links in a s
hedulableset 
an be a
tive simultaneously. Suppose we s
hedule thelinks belonging to Hx for time �x; 0 � �x � 1. We nowtake the original LP for the wired network (in Figure 1),and in
lude the following 
onstraints:� PK0x=1 �x � 1, where K0 is the number of s
hedulablesets found� fij �Plij2Hx �xCapijTo tighten the bound, we should 
onsider using maximals
hedulable sets in graph F (i.e., a s
hedulable set su
h thatadding additional verti
es to the set will violate the s
hedu-lable property). We have the following theorem, whi
h issimilar to the Theorem 2 in the proto
ol model.Theorem 3. A usage ve
tor is s
hedulable if and only ifit lies in the s
hedulable set polytope of the 
on
i
t graph.The proof is similar to that of Theorem 2.
3.3.2 Upper BoundTo derive an upper bound, we 
onsider maximal sets ofverti
es in F su
h that for any pair of verti
es lpq and lij ,wpqij � 1. These 
orrespond to the 
liques in the proto
olinterferen
e model. Therefore for ea
h su
h set, we add a
onstraint that the sum of their utilization has to be no morethan 1.

These 
onstraints may result in a loose bound sin
e theremay not be very many 
liques. To tighten the upper bound,we further augment the linear program with the followingadditional 
onstraints. After we �nd a maximal s
hedula-ble set, say verti
es v1, v2, ..., vt, adding any additionalvertex, denoted as va, to the set will make the set un-s
hedulable. Therefore we have the following 
onstraint:U1 + U2 + :::Ut + Ua � t, where as before Ui denotes thefra
tion of time for whi
h physi
al link li (
orrespondingto vertex vi in the 
on
i
t graph) is a
tive. By adding asmany su
h 
onstraints as possible, we 
an tighten the upperbound. Still, the bound is not guaranteed to 
onverge to theoptimal even if we in
lude all su
h sets.
3.4 Single-path RoutingSo far we have 
onsidered multipath routing. As manyexisting routing algorithms [15, 25, 24, 23℄ are 
on�ned tosingle-path routing, it is useful to derive a throughput boundfor single-path routing so that we 
an 
ompare how mu
hthe 
urrent proto
ols deviate from the theoreti
al a
hievablethroughput under the same routing restri
tion. The waywe enfor
e the single-path restri
tion for the 
ow from asour
e to a destination is by adding the following additional
onstraints to the LP problem for the wired network (shownin Figure 1):� For ea
h link lij , fij � Capij � zij , where zi;j 2 f0; 1g� At ea
h node ni,P zij � 1Here zij is a 0{1 variable that indi
ates whether or notlink lij is used for transmissions, and fij is the amount of
ow on the link. The basi
 intuition for these 
onstraints isthat in a single-path routing, at any node in the network,there is at most one out-going edge that has a non-zero 
ow.Sin
e zij 
an have only one of two values, either 0 or 1, thetwo 
onditions ensure that at node ni at most one zij willhave a value of 1.In theory, solving integer linear program is a NP-hard [8℄,but in pra
ti
e, software su
h as lp solve [3℄ and CPLEX [6℄
an solve mixed-integer programs.
3.5 Other GeneralizationThe basi
 
on
i
t graph model is quite 
exible, and 
anbe generalized in many ways.Multiple sour
e-destination pairs: We 
an extend ourformulations in the previous se
tions from a single sour
e-destination pair to multiple sour
e-destination pairs using amulti-
ommodity 
ow formulation [4℄ augmented with 
on-straints derived from the 
on
i
t graph. We assign a 
onne
-tion identi�er to ea
h sour
e-destination pair. Instead of the
ow variables fij , we introdu
e the variable fijk to denotethe amount of 
ow for 
onne
tion k on link lij . Referringto Figure 1, the 
ow 
onservation 
onstraints at ea
h nodeapply on a per-
onne
tion basis (
onstraint <1>); the totalin
oming 
ow into a sour
e node is zero only for the 
onne
-tion(s) originating at that node (
onstraint <2>); likewise,the total outgoing 
ow from a sink node is zero only for the
onne
tion(s) terminating at that node (
onstraint <3>);and the 
apa
ity 
onstraints apply to the sum of the 
owsover all 
onne
tions traversing a link (
onstraint <4>).Multiple wireless 
hannels: It may be the 
ase that in-stead of just one 
hannel, ea
h node 
an tune to one of M
hannels,M � 1. This 
an be easily modeled by introdu
ing



M links between nodes i and j, instead of just 1. In gen-eral, links 
orresponding to di�erent 
hannels do not 
on
i
twith ea
h other, re
e
ting the fa
t that the 
hannels do notmutually interfere. However, the links emanating from thesame node do 
on
i
t, re
e
ting the 
onstraint that the sin-gle radio at ea
h node 
an transmit only on one 
hannel ata time.Multiple radios per node: Ea
h wireless node may beequipped with more than one radio. If ea
h node has Mradios, this 
an be modeled by introdu
ingM links betweenea
h pairs of nodes. If we assume that ea
h of these radiosis tuned to a separate 
hannel, and that a node 
an 
ommu-ni
ate on multiple radios simultaneously, then the 
on
i
tgraph will show no 
on
i
t among the M links between apair of nodes.Dire
tional antennas: We 
an 
ombine the use of dire
-tional antennas with the basi
 proto
ol model of 
ommuni
a-tion. Instead of spe
ifying a range for ea
h node, we simplyspe
ify a list of nodes (or points in spa
e) where transmis-sions or interferen
e from this node 
an be per
eived. The
onne
tivity graph and the 
on
i
t graph are modi�ed totake this into a

ount.Multirate radios: Many wireless te
hnologies support mul-tirate radios, whi
h 
an swit
h between a set of dis
rete datarates depending on the quality of the RF 
hannel. For in-stan
e, 802.11b supports 4 rates: 1, 2, 5.5, and 11 Mbps.We 
an model this in our framework by 
reating multiple\virtual" links 
orresponding to a physi
al link in the 
on-ne
tivity graph, one for ea
h rate. The 
on
i
t graph is aug-mented to re
e
t the fa
t that only one of the virtual links
orresponding to a physi
al link 
an be a
tive at a time. Theweights assigned to the edges of the 
on
i
t graph (under thephysi
al interferen
e model) would re
e
t the spe
i�
 noisetoleran
e of the virtual link 
orresponding to ea
h rate.Other models of interferen
e: In the simple example,we 
onsidered an optimisti
 model of interferen
e that didnot require the sender to be free of interferen
e. But a morerealisti
 model, whi
h more 
losely re
e
ts the situation in802:11, would require both the sender and the re
eiver tobe free of interferen
e. This re
e
t the fa
t that 802:11 mayperform virtual 
arrier sensing using an RTS{CTS ex
hange,and that for su

essful 
ommuni
ation, the sender must beable to hear the link layer a
knowledgment transmitted bythe re
eiver. Therefore, we draw an edge in the 
on
i
tgraph between verti
es lij and lpq if dab � R0a for ab =iq; qi; ip; pi; jp; pj; jq; or qj.Non-greedy sour
es or destinations: We 
an easily a
-
ommodate the 
ase where the rate at whi
h nodes generatedata or are willing to a

ept data is bounded. We do so by
reating a virtual sour
e or sink node and 
onne
ting it tothe real sour
e or sink via a virtual link of speed equal to thesour
e or sink rate. The virtual link is spe
ial in that it isassumed not to interfere with any other link in the network.The virtual link is just a 
onvenient 
onstru
t to help usmodel the bound on the sour
e or sink rate.Other obje
tive fun
tions: Our framework is not lim-ited to maximizing the total network throughput. We 
ana

ommodate any obje
tive that 
an be expressed as a linearfun
tion. For example, we 
an assign a linear revenue fun
-tion to ea
h sour
e-destination pair, and then maximize therevenue instead of maximizing the total network through-put. We 
an also maximize the minimum throughput a
rossall sour
e-destination pairs, to provide a degree of fairness.

3.6 SummaryIn this se
tion, we presented the 
on
ept of a 
on
i
tgraph, and dis
ussed how it 
ould be used to derive up-per and lower bounds on the optimal throughput that awireless network 
an support, for a given set of sour
es anddestinations. We show that the 
on
i
t graph model 
an begeneralized to handle a wide range of s
enarios. We haveshown that the lower bound derived from our framework isalways s
hedulable, and will be optimal on
e all the inde-pendent set 
onstraints are in
orporated. If the upper andlower bounds are equal, then these 
orrespond to the opti-mal solution.
4. RESULTSThis se
tion presents several results based on our model.The se
tion is organized as follows. In Se
tion 4.1, wepresent illustrative results that demonstrate the 
exibilityof our model. In Se
tion 4.2, we use our model to provideinsights into the tradeo� between the ri
her 
onne
tivityprovided by the in
rease in the size of a wireless mesh net-work and the in
rease in 
umulative traÆ
 load due to thenew mesh parti
ipants. In Se
tion 4.3, we illustrate howoptimal routing 
an bring bene�ts even in absen
e of opti-mal s
heduling (i.e., in the presen
e of MAC 
ontention andother ineÆ
ien
ies). In Se
tion 4.4, we dis
uss the issue of
onvergen
e of the upper and lower bounds to the optimalthroughput. Finally, in Se
tion 4.5, we present a dis
ussionof the 
omputational 
osts of our model.
4.1 Illustrative ResultsIn this se
tion, we present several illustrative results todemonstrate the 
apabilities of our model. We begin byde�ning a metri
 for 
omputational e�ort. In Se
tion 3, wehave des
ribed the pro
edure for �nding upper and lowerbounds on throughput. Let us 
onsider the proto
ol modelof interferen
e, and fo
us on the lower bound. We haveshown that as we in
lude more distin
t independent sets, thelower bound be
omes progressively tighter. In other words,the more e�ort we spend looking for independent sets in our
on
i
t graph, the better the bound will be. Sin
e we 
annot always hope to �nd optimal solutions, any upper or lowerbounds dis
overed by our model need to be presented alongwith the amount of e�ort required to �nd those bounds.Thus we require a metri
 to measure this e�ort. We use thefollowing simple algorithm to �nd distin
t independent sets:1. Start with an empty independent set IS.2. Consider a random ordering of verti
es in the 
on
i
tgraph.3. Consider the verti
es of the graph in that order. Al-ways add the �rst vertex to IS.4. Add a new vertex if and only if it does not have anedge to any of the verti
es added to IS so far. On
ewe 
onsider all the verti
es, IS will be of size at leastone.5. We 
he
k to see if we have previously dis
overed thisindependent set, and if not, we add 
onstraints basedon this independent set to our linear program. Other-wise we dis
ard the set.
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Figure 4: 3x3 Grid
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tional MACWe 
onsider this entire sequen
e as one unit of e�ort. Notethat one unit of e�ort does not always result in addition ofa 
onstraint or variable to the linear program. Moreover,there is a 
omplex relationship between the number of vari-ables and 
onstraints in a linear program, and the amountof time required to solve it. Thus, the metri
 is only a roughguide for the amount of a
tual time (or CPU 
y
les) spentwhile �nding the bound. In Se
tion 4.5, we will providefurther dis
ussion about the relationship between the e�ortmetri
 and a
tual time spent in 
omputation. The e�ortmetri
 is de�ned in a similar manner by 
onsidering 
liquesin 
ase of sear
hing for the upper bound, and by 
onsiderings
hedulable sets in 
ase of the physi
al model.

4.1.1 A Simple TopologyWe 
onsider the topology shown in Figure 4. The net-work 
onsists of 9 nodes, pla
ed in a 3x3 grid. We make no
laims that this topology is representative of typi
al wire-less networks. We have deliberately 
hosen a small, simpletopology, to fa
ilitate detailed dis
ussion of the results.We start with several simplifying assumptions. We willrelax these assumptions as we pro
eed through the se
tion.We assume that the range of ea
h node is one unit, i.e., justenough to rea
h its lateral neighbors, but not the diagonalones. We also assume that the interferen
e range is equal
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Figure 6: Neighborhood Mapto the 
ommuni
ation range. We assume an 802.11-like pro-to
ol model of interferen
e des
ribed in Se
tion 3.5. Thismodel requires both the sender and the re
eiver to be freeof interferen
e for su

essful 
ommuni
ation. We term thisa bidire
tional MAC. The resulting 
on
i
t graph for thiss
enario is shown in the matrix form in Table 1. A 0 indi-
ates that the links are not in 
on
i
t with ea
h other, while1 indi
ates otherwise. For example, when node 0 is trans-mitting to node 3, node 1 
an hear these transmissions, andhen
e 
an not transmit to node 2. Thus, links 1 (0 ! 3)and 3 (1! 2) are in 
on
i
t.We allow multipath routing. We assume that all wirelesslinks have an identi
al 
apa
ity (i.e., speed) of 1 unit andthat all nodes have in�nite bu�ers. We designate node 0 tobe the sender, and node 8 to be the re
eiver. The senderalways has data to send, and the re
eiver is always willingto 
onsume the data.In this s
enario, it is easy to see that the optimal through-put is 0.5. A 
onvenient way to visualize the optimal trans-mission s
hedule is to imagine that time is divided into slotsof equal size, and in ea
h slot we 
an transmit one pa
ket be-tween neighboring nodes, subje
t to 
onstraints imposed bythe 
on
i
t graph. Then, the following transmission s
hed-ule will a
hieve optimal throughput: (i) 0 ! 1 (ii) 1 ! 2(iii) 0 ! 3 and 2 ! 5 (iv) 3 ! 6 and 5 ! 8 (v) 0 ! 1and 6 ! 7 (vi) : : : We 
an 
ontinue in this manner inde�-nitely. It is easy to see that in alternate timeslots, node 0gets to transmit to either node 1 or 3. Hen
e the optimalthroughput is 0.5.In Figure 5, we show the upper and lower bound on through-put 
al
ulated by our model, as we devote in
reasing amountof e�ort. As shown, the upper bound qui
kly 
onverges tothe stable value of 0.667, whi
h is somewhat higher thanthe optimal value. This is a 
lear indi
ation of the fa
t that
lique 
onstraints alone are not suÆ
ient to guarantee opti-mality, even in su
h a small graph, as noted in Se
tion 3.2.4.The lower bound, on the other hand, steadily 
onverges tothe optimal value of 0.5. We have veri�ed that our pro-gram has dis
overed all independent sets and 
liques with100 units of e�orts.
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t Graph in matrix form
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4.1.2 Community Networking ScenarioOur model 
an also in
orporate single path routing, mul-tiple sour
e-destination pairs, multiple 
hannels as well asmultiple radios. We demonstrate this 
exibility with a 
om-munity mesh networking s
enario, in whi
h multiple usersshare an Internet 
onne
tion, using a multi-hop wireless net-work. We 
onsider a map of a real suburban neighborhoodshown in Figure 6. There are 252 houses in an area of 1square kilometer. We sele
t 35 of these houses at random,and assume that these houses are equipped with hardwarethat enables them to parti
ipate in a wireless mesh network.We assume that 
ommuni
ation range of the wireless te
h-nology is 200 meters, while the interferen
e range is 400 me-ters. In Figure 7, we show the resulting network. We sele
ta node that is roughly at the 
enter of the area and designateit as the Internet a

ess point. We assume that there arefour senders, lo
ated as shown in the Figure. All the senders
ommuni
ate with the Internet a

ess point, and the metri
of interest is the 
umulative throughput of these senders.We assume that all wireless links are of unit 
apa
ity.We begin with a baseline 
ase, for whi
h we assume a

S
enario Optimal ThroughputI 0.5II 0.5III 1IV 1Table 2: Throughput for neighborhood mesh in var-ious s
enariosbidire
tional MAC and single path routing. Our linear pro-gram is set to optimize the sum of the throughputs of thefour 
ows, with no 
onsideration of fairness. In this 
ase,with about 5000 units of e�ort, upper and lower bounds 
on-verge, and our model indi
ates that the maximum possible
umulative throughput is 0.5.We may now ask what we 
an do to improve the 
umula-tive throughput. We 
onsider four possibilities: (I) Employmulti-path routing. (II) Double the range of ea
h radio.We also double the interferen
e range. (III) Leave the radiorange un
hanged, but use two non-overlapping 
hannels in-stead of one. A node may 
ommuni
ate on only one of thetwo 
hannels at any given time, but may swit
h between
hannels as often as ne
essary. (IV) Use two radios insteadof one at ea
h node. The radios are assumed to be tuned totwo �xed, non-overlapping 
hannels, so a node may 
ommu-ni
ate on the two 
hannels simultaneously. The throughputbounds in ea
h of the four s
enarios are shown in Table 2.In ea
h 
ase, the upper and the lower bounds 
onverge tothe same value, whi
h indi
ates that the solution is optimal.The results indi
ate that neither multipath routing nordoubling the range of the radio in
reases 
umulative through-put in the s
enario we 
onsidered. On the other hand, byusing two 
hannels instead of one, the network may a
hievethe maximum possible throughput of 1. The maximum pos-sible throughput is 1 be
ause the Internet a

ess point hasonly one radio. On the other hand, even if we use two radios,the throughput remains at one. It is not hard to see why.The situation is equivalent to having two separate 
opies ofthe baseline network, and then adding up their throughputs.These s
enarios illustrate that the model we have developed
an be used as a tool for analysis and 
apa
ity planning ofwireless multi-hop networks.
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4.2 Tradeoff Between Connectivity and Through-

putIn Se
tion 3, we dis
ussed how our model 
an a

ommo-date nodes whi
h do not send data in a greedy fashion,i.e. they have a lower send rate. In [14, 18℄, the authorshave shown that the per node throughput in the networkde
reases as the number of nodes in the network goes up.These results, however, were derived under the assumptionthat ea
h node sends data as fast as it 
an. In other words,the desired sending rate of the node is assumed to be 1.However, if ea
h node has a lower desired sending rate, theri
her 
onne
tivity provided by additional nodes might helpin
rease per node throughput, by allowing better routes tobe dis
overed. We now explore this hypothesis using ourmodel.We 
onsider a 7x7 grid, whose nodes are 200 meters aparthorizontally, and verti
ally. We assume that the 
ommuni-
ation range is 250 meters, and the interferen
e range is 500meters. We set the link 
apa
ity to 1. We assume a bidire
-tional MAC, similar to the one used to plot Figure 5. Weuse single-path routing.We pi
k N nodes from the 49 available nodes, at random,and without repla
ement. Half of these nodes are designatedas senders, and the other half are designated as re
eivers.The senders and the re
eivers form N=2 
ows in the net-work. Ea
h sender is paired with only one re
eiver. We�rst 
al
ulate the fra
tion of 
ows for whi
h the sour
e andthe destination lie in the same 
onne
ted 
omponent of thetopology. We 
all this fra
tion the 
onne
tivity ratio. The
onne
tivity ratio for various values of N is shown in Fig-ure 8. The results show that after 24 nodes (i.e. 12 
ows)are sele
ted, the 
onne
tivity ratio be
omes 1.We then assign a sending rate of D to ea
h sender. Then,using our model, we 
al
ulate the optimal throughput usingsingle-path routing. We divide the 
umulative throughputby the number of 
ows (i.e. N=2) to obtain average per-
owthroughput, and normalize it further by dividing it by D.The resulting normalized per-
ow throughput for variousvalues of N and D is plotted in Figure 9.Note that when the sending rate is 0.01, the normalizedper-
ow throughput 
ontinues to rise even after the 
onne
-tivity has rea
hed 1. This means that the ri
her 
onne
tivity
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Figure 9: Normalized per-
ow throughputprovided by additional nodes allows for newer routes, andallows extra traÆ
 to be sent through the network. How-ever, if ea
h node sends at rate 1, the node might have little
apa
ity left to forward traÆ
 from other nodes. Thus, theaverage per-
ow throughput peaks early (i.e the network issaturated), and then de
lines slowly, as new nodes join thenetwork, but fail to transmit most of their desired traÆ
.For sending rate of 0.1, the results are between these two
ases. Note that the non-monotoni
 nature of the graphs isdue to 
u
tuation in random runs. As part of our futurework, we plan to verify the generality of this result using awide variety of topologies.We stress that these results have been derived by assumingoptimal routing, as well as optimal s
heduling of pa
kets. Inthe next se
tion, we further dis
uss the impa
t of these twoassumptions.
4.3 Benefits of Optimal Routing in Absence of

Optimal SchedulingAs shown in the previous se
tions, the optimal through-put is a
hieved by sele
ting optimal routes and s
hedulingthe links on the routes appropriately. A natural questionto ask is how mu
h performan
e improvement is due to theoptimal route sele
tion, and how mu
h is due to the optimals
heduling. Motivated by this question, we empiri
ally ex-amine four s
enarios shown in Figure 10. They 
orrespondto (i) optimal routing with optimal s
heduling, (ii) shortest-path routing with optimal s
heduling, (iii) \optimal" rout-ing under 802.11 MAC 1, (iv) shortest-path routing under802.11 MAC. We �rst brie
y des
ribe the approa
h we useto derive throughput for ea
h 
ase, and then present theresults.Given a network topology, we apply the algorithm de-s
ribed in Se
tion 3 to 
ompute the optimal throughput un-der single-path routing. This 
orresponds to s
enario (i).To derive the performan
e of optimal routing under 802.11,we run ns-2 [22℄ simulations. To ensure that the pa
ketsfollow the optimal routes, we spe
ify the optimal routesobtained in S
enario (i) as the stati
 routes in ns-2. The1This means routes derived in (i) used with 802.11 MAC. Itmay also be possible to derive optimal routes for 
ontention-based s
heduling, but that is not our intent here.
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enarios.throughput numbers from these simulations 
orrespond tos
enario (iii).We then repeat our simulation using AODV [25℄, a stan-dard shortest path routing proto
ol. The resulting through-put 
orresponds to the performan
e of the s
enario (iv).To minimize the impa
t of AODV routing overhead, allnodes are stati
 and simulations are run for 50 se
onds, longenough to make the initial route setup overhead negligible.Based on the AODV simulation results, we obtain a setof links that are used in the shortest paths between sour
esand destinations. We then modify the LP formulation inSe
tion 3 to 
ompute bounds on the optimal throughputby ex
luding all but those links that lie on one or more ofthe shortest paths. We do so by setting the 
apa
ity of theex
luded links to zero. We solve the resulting LP, and obtainthe throughput for s
enario (ii).Our aim is to 
ompare throughput in s
enario (i) to through-put in s
enario (ii). Similarly, we 
ompare s
enarios (iii)and (iv) against ea
h other. Note that we do not 
omparethe throughput obtained by solving the LP model with thethroughput obtained from ns-2 simulations.We 
onsider these four s
enarios in a 7x7 grid (49 nodes).The horizontal and verti
al separation between adja
ent nodesis 200 meters. We assume the 
ommuni
ation range to be250 meters, and the interferen
e range to be 500 meters. Allother parameters are at their default settings in ns-2. Forea
h simulation run, we randomly pi
k a few pairs of nodesas sour
es and destinations; the sour
e sends pa
kets to the
orresponding destination at a 
onstant bit rate equal to thewireless link 
apa
ity.Table 3 shows the throughput ratios between optimal rout-ing and shortest path routing, under optimal s
heduling.These numbers are derived from our LP formulation. In all
ases, optimal routing yields 
omparable or better through-put than the shortest path routing when optimal s
hedulingis used. The bene�t of optimal routing varies with the num-ber of 
ows, as well as with the lo
ations of 
ommuni
atingnodes. For instan
e, when the two 
ows are far apart anddo not interfere with ea
h other, the optimal path a
hievesthe same throughput as the shortest path (e.g., numFlow=2and run=1, 5); when the two 
ows interfere with ea
h other,the optimal path takes a detour, whi
h results in redu
edinterferen
e and hen
e higher throughput (e.g., the 
ase ofnumFlow=2 and run= 2, 3, 4).Table 4 shows the throughput ratios between \optimal"routing and shortest path routing, under under the 802.11

numFlow run 1 run 2 run 3 run4 run 52 1.00 1.25 1.60 1.38 1.004 1.41 1.00 1.44 1.43 1.148 2.10 1.00 1.05 1.11 1.11Table 3: Throughput ratios between optimal rout-ing and shortest path routing, both under optimals
heduling in a 7x7 grid.numFlow run 1 run 2 run 3 run4 run 52 1.08 2.43 1.53 1.80 1.194 1.07 1.54 0.79 1.02 1.558 3.55 1.22 0.50 1.14 0.40Table 4: Throughput ratios between \optimal"path routing and shortest path routing, both under802.11 MAC in a 7x7 grid.MAC. These numbers are based on ns-2 simulations. Op-timal path outperforms the shortest path even under the802.11 MAC when number of 
ows in the network is small.On the other hand, the optimal path routing does not alwaysoutperform the shortest path routing under 802.11 MACwhen the number of 
ows is higher. This o

urs be
auseas network load in
reases, it is harder to �nd paths thatdo not interfere with other 
ows in the absen
e of optimals
heduling.The above results are en
ouraging, and suggest that thereis a potential to improve throughput by making route sele
-tion interferen
e-aware. In ongoing work, we are 
ontinuingto investigate the bene�ts of interferen
e-aware routing un-der a wider range of s
enarios.
4.4 Convergence of Upper and Lower BoundsIn most of the previous results in this se
tion, the upperand the lower bounds 
onverged, assuring us of the opti-mality of the solution. When they did not 
onverge, e.g.,Figure 5, we were able to assure ourselves of optimality ofthe lower bound by manual veri�
ation. In general, how-ever, the bounds may not 
onverge, as there is no guaranteethat even after adding all the 
lique 
onstraints the upperbound will be s
hedulable. This leads to the question: howdo we de
ide when to stop looking for even tighter bounds?Given that the 
on
i
t graph may have an arbitrarily 
om-plex stru
ture, we 
annot wait until the upper and lowerbounds are within a small per
entage of ea
h other sin
ethis may never happen. Even after all the 
liques are found,the upper bound may still be well above the optimal feasiblesolution. Thus, there is no easy way to de
ide when to stopthe 
al
ulations. The data we present next does indi
ate,however, that 
onvergen
e is quite good in many s
enarios.
4.5 Computational CostsIn Se
tion 4.1, we mentioned that the e�ort metri
 pro-vides only a rough indi
ation of the 
omputational 
osts of�nding the bounds. We now provide more data in this re-gard. Note that mu
h of the data provided is for the MAT-LAB [19℄ solver to whi
h we had ready a

ess; as notedbelow, the CPLEX [6℄ solver redu
ed the 
omputation timeby a fa
tor of 7, albeit on a somewhat faster CPU. Unfortu-nately, we only had limited a

ess to the CPLEX resour
e



Grid Size Lower Bound Upper Bound Time (minutes)3x3 0.25 0.25 25x5 0.5 0.5 27x7 0.495 0.5 259x9 0.474 0.5 3511x11 0.479 0.5 40Table 5: Lower and upper bounds after 150,000units of e�ortE�ort Lower Bound Upper Bound Time (minutes)10000 0.443 0.5 250000 0.48 0.5 5100000 0.49 0.5 13150000 0.495 0.5 25200000 0.5 0.5 41Table 6: Lower and upper bounds after varying ef-fort for a 7x7 gridand were able to use it for only a few of our experiments.So it is important to note that there is the potential forsigni�
ant improvements over the 
omputational 
osts (forMATLAB) reported here.In Table 5, we 
onsider the relationship between the sizeof the network and the amount of time required to 
omputeupper and lower bounds. The table shows the bounds 
om-puted after 150,000 units of e�orts for several grid sizes, andthe time required to 
ompute them. In ea
h 
ase, there isa single 
ow in the network, with its sour
e and destinationnodes at diagonally opposite 
orners of the grid. The restof the parameters are similar to those used to plot Figure 5.Note that the upper and lower bounds are not equal in all
ases (but they are all 
lose), whi
h indi
ates that we mightnot have found the optimal solution in all 
ases. The 
om-putations were done using MATLAB 6.1 [19℄, on a ma
hinewith 1.7Ghz Pentium pro
essor, and 1.7GB of RAM.In Table 6, we 
onsider the relationship between the amountof e�ort, and the 
loseness of upper and lower bounds, aswell as the time required to 
ompute those bounds. Theresults are based on the 7x7 grid, with rest of the param-eters similar to those used for Table 5. As we dis
ussedin Se
tion 4.1, with more e�ort, we are likely to add morevariables as well as more restri
tive 
onstraints in the linearprogram. So the bounds be
ome tighter.In Table 7, we 
onsider the relationship between the num-ber of 
ows in the network, and the amount of time requiredto 
ompute bounds for a given amount of e�ort. The resultsare based on a 7x7 grid, with multiple 
ows. For ea
h 
ow,the sour
e is in the bottom row of the grid, and it 
ommuni-Flows Lower Bound Upper Bound Time (minutes)2 0.578 0.583 343 0.707 0.75 314 0.758 0.833 295 0.799 0.875 316 0.849 0.925 347 0.861 1.00 36Table 7: 7x7 grid, multiple 
ows, 150,000 units ofe�ort

Flows Lower Bound Upper Bound Time (minutes)6 0.849 0.925 57 0.861 1.00 5Table 8: 7x7 grid, multiple 
ows, 150,000 units ofe�ort, with CPLEX
ates with a destination lo
ated in the same 
olumn, but inthe top row. All other parameters are the same as Table 5.The software used to solve the linear program is also asigni�
ant fa
tor in the amount of time required to �nd theoptimal solution. In Table 8, we show the amount of timetaken by CPLEX [6℄ to solve the 7x7 grid 
ase, with 6 and 7
ows on a 2.7GHz Pentium ma
hine, with 3.7GB of RAM.While we 
an not 
ompare these entries dire
tly with the
orresponding entries in Table 8, as the ma
hines used torun MATLAB and CPLEX are di�erent, the speedup is stillquite signi�
ant: a redu
tion by a fa
tor of 7, from 34-36minutes down to 5 minutes. Moreover, MATLAB 
annotsolve the Mixed Integer Programs resulting from the for-mulation of single-path routing. We 
ould only solve theseusing CPLEX. Unfortunately, we only had limited a

ess tothe CPLEX software, so we are unable to report the full setof numbers for CPLEX.Sin
e these numbers are based on a single run, and arebased only on grid graphs, whi
h have a regular 
onne
tiv-ity pattern, we 
annot draw general 
on
lusions from them.However, some trends are useful to note. We observe thatfor grid networks, the amount of time required to solve theproblem in
reases with the number of nodes. We also seethat for a given e�ort level, the time required to 
omputethe bounds does not depend signi�
antly on the number of
ows in the network. However, the di�eren
e between theupper and lower bounds for a given amount of e�ort tendsto in
rease with in
rease in the number of 
ows.In 
ase of irregular graphs, su
h as the neighborhood graphshown in Figure 7, we have observed that the amount of timerequired to solve depends signi�
antly on 
onne
tivity andinterferen
e patterns.Finally, we note that we have not in
luded any resultsinvolving physi
al model of 
ommuni
ation in this se
tion.We have also not in
luded results that demonstrate the useof links of di�erent 
apa
ities. While we have solved su
hnetworks (physi
al models of interferen
e, links of di�erent
apa
ities et
.), we 
ould not do a detailed study due toresour
e 
onstraints. Therefore, we have 
hosen to fo
us onthe proto
ol model of interferen
e in this se
tion.
4.6 Discussion of LimitationsOur results have demonstrated the 
exibility of our modeland methodology for 
omputing throughput bounds. How-ever, our work does have some limitations, as we dis
ussbelow.First, our model does not provide an easy means for a
-
ommodating node mobility. Node mobility would 
auseboth the 
onne
tivity graph and the 
on
i
t graph to 
hangewith time. At present, we do not have a way of dealing withthe 
hanges in
rementally. We 
ould, in prin
iple, re
om-pute the bounds by working with the new 
onne
tivity and
on
i
ts from s
rat
h, but this is likely to be feasible onlywhen node movement is infrequent, as in a 
ommunity wire-less network s
enario.



Se
ond, time-varying 
hannels may also pose a problem.Time-varying 
hannel 
hara
teristi
s 
ould result either fromthe interferen
e 
aused by other nodes or from physi
al ef-fe
ts, e.g. mobility-indu
ed fading. Our model does a

ountfor 
u
tuations in the noise level at a node due to the in-terfering transmissions of other nodes. However, it doesnot a

ommodate 
u
tuations 
aused by phenomena su
has fading. As with mobility, it may be feasible to re
omputefrom s
rat
h if the 
u
tuations happen slowly.Finally, the 
omputational 
ost numbers presented in Se
-tion 4.5 suggest that our methodology is feasible for modestsized networks of the order of a few hundred nodes, whi
hmay be typi
al of a neighborhood wireless network. How-ever, the methodology in its 
urrent form is likely to betoo expensive for large-s
ale networks 
ontaining thousandsor millions of nodes, e.g. sensor networks. Sin
e energy
onsumption rather than throughput is often the metri
 ofinterest in su
h large-s
ale networks, this limitation may bemoot.
5. CONCLUSION AND FUTURE WORKIn this paper we have presented a model and methodologyfor 
omputing bounds on the optimal throughput that 
anbe supported by a multi-hop wireless network. A key dis-tin
tion 
ompared to previous work is that we work with anygiven wireless network 
on�guration and workload spe
i�edas inputs. No assumptions are made on the homogeneityof nodes with regard to radio range or other 
hara
teristi
s,or regularity in 
ommuni
ation pattern. We use a 
on
i
tgraph to model wireless interferen
e under various 
onditions(multiple radios, multiple 
hannels, et
.). We view the gen-erality of our methodology and the 
on
i
t graph frameworkas a key 
ontribution of our work.Although the bounds that we 
ompute on the optimalthroughput assume the ability to �nely 
ontrol and 
arefullys
hedule pa
ket transmissions, the optimal routes yielded byour analysis often outperform shortest path routes even un-der \real-world" 
onditions su
h as un
oordinated s
hedul-ing and MAC 
ontention. In ns-2 simulations, we have ob-served a throughput improvement of over a fa
tor of 2 insome 
ases. The reason for this signi�
ant improvement isthat the optimal routes often tend to be less interferen
e-prone than the default shortest path routes.We have also 
onsidered the impa
t of new nodes on theper-node throughput in multi-hop wireless networks. Con-trary to previous results, we have found that the additionof new nodes 
an be bene�
ial for all nodes, under the (re-alisti
) assumption that ea
h node is a
tive for only a smallfra
tion of the time. The ri
her 
onne
tivity enabled by newnodes presents in
reased opportunities for routing aroundinterferen
e \hotspots" in the network. This more than o�-sets the in
rease in traÆ
 load 
aused by the new nodes.In ongoing work, we are 
ontinuing to investigate the ben-e�ts of interferen
e-aware routing under a wide range of s
e-narios. Our next step after that would be to design a pra
ti-
al interferen
e-aware routing proto
ol, whi
h addresses in-teresting 
hallenges su
h as 
onstru
ting the 
on
i
t graphand 
omputing optimal routes in a distributed manner.
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APPENDIX

A. PROOF OF THEOREM 1Suppose we are given a graph G and we want to 
omputethe 
ardinality of its maximum independent set. We now
onstru
t a wireless network su
h that the optimal through-put it 
an support under the proto
ol interferen
e model isthe same as the 
ardinality of the maximum independent setof G. Create two wireless nodes, a sour
e s and a re
eiverr. For every vertex in G add a wireless link of unit 
apa
itybetween s and r. For every edge between two nodes in G,assume a 
on
i
t between the 
orresponding wireless linksin the network. (Su
h a network may arise, for instan
e, ifnodes s and r are ea
h equipped with multiple radios seteither to the same (i.e., interfering) 
hannel or to separate(i.e., non-interfering) 
hannels. It is not hard to see thatthe optimal throughput is a
hieved if and only if a maxi-mum independent set in G is s
heduled. Thus �nding theoptimal throughput of the wireless network is equivalent to�nding the 
ardinality of the maximum independent set ofgraph G, whi
h is known to be a hard problem.The above proof may 
ome a
ross as 
ontrived sin
e thewireless network we 
onstru
ted is unlikely to arise in pra
-ti
e. This raises an interesting question of whether realisti
wireless networks 
ould give rise to 
omplex 
on
i
t graphs?Our answer is both yes and no. Our answer is \yes" be-
ause the maximum independent set problem is hard due tothe existen
e of odd holes and odd anti-holes in the givengraph2. As shown in Figure 11, very realisti
 and simplegrid graphs 
ould have 
on
i
t graphs with many odd holesand odd anti-holes. On the other hand, our answer is \no"2If a graph does not have any odd holes or anti-holes thenthe graph is termed perfe
t [20℄, and for perfe
t graphs thereare polynomial time algorithms to solve the maximum inde-pendent set problem [11℄.
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ZFigure 11: A 6x6 grid 
onne
tivity graph. ABCDEand VWXYZ are examples of odd holes in the 
or-responding 
on
i
t graph, assuming an 802.11-styleMAC, 
ommuni
ation range equal to the lateral spa
-ing between neighbors, and interferen
e range equal totwi
e the 
ommuni
ation range. These odd holes alsohappen to be odd anti-holes.be
ause realisti
 
on
i
t graphs may have some spe
ial prop-erty or stru
ture that 
ould make the problem of �nding themaximum independent set easy. We have been unable toidentify any su
h property, but our failure does not meanthat no su
h property exists (though the 
omplex 
on
i
tgraphs arising from the simple grid graphs, as in Figure 11,diminish our optimism). In view of this, we believe that theheuristi
 approa
h presented in Se
tion 3 is reasonable.
A.1 Polynomial Time Algorithm in Special CaseEven in spe
ial 
ases where polynomial time algorithmsmay exist, they may be too expensive to be of pra
ti
al in-terest. One su
h spe
ial 
ase arises in the 
ontext of gridgraphs when the 
on
i
t radius is zero. By zero 
on
i
tradius we mean that two links 
on
i
t if and only if theyshare an endpoint. In this simple and somewhat unrealisti
setting, the 
on
i
t graph is nothing but the line graph ofthe underlying grid network. (The line graph, L(G), of agraph, G, is a graph on the edges of G, i.e., the verti
es ofL(G) 
orrespond to the edges of G. There is an edge be-tween two verti
es of L(G) if the 
orresponding edges in Ghave a vertex in 
ommon.) Our network in this 
ase is agrid. A grid is a bipartite graph, and bipartite graphs areperfe
t. The line graph of a perfe
t graph is perfe
t too.Hen
e the 
on
i
t graph of a grid graph with a zero 
on
i
tradius is a perfe
t graph. A perfe
t graph has the prop-erty that its set of 
lique 
onstraints de�ne its independentset polytope. So if we write a linear program with all the
lique 
onstraints together with the 
ow 
onstraints thenwe 
an �nd the optimal network throughput. The problem,however, is that the number of 
liques 
ould still be expo-nentially many. (Although this does not happen with gridgraphs, it 
ould very well happen with other perfe
t graphs.)A solution is to use the ellipsoid algorithm [16℄ to optimizelinear fun
tions over a polytope. This algorithm does notrequire all the 
onstraints in an expli
it form to optimizea linear fun
tion over a polytope, hen
e we do not have to



enumerate the exponentially many 
lique 
onstraints. Theellipsoid algorithm only needs a subroutine that given a po-tential solution indi
ates whether the 
onstraints are satis-�ed or not, and if not identi�es at least one 
onstraint whi
his not satis�ed. Su
h a subroutine is 
alled separation or-a
le. The separation ora
le for our problem would be onethat �nds a violated 
lique 
onstraint given a usage ve
tor.This 
an be a

omplished using the Grots
hel semide�niteprogramming algorithm for �nding the heaviest 
lique [12℄.However, both the ellipsoid algorithm and the semide�nitealgorithm have a running time of O(n3), so in 
ombinationtheir running time is O(n6). Thus this polynomial time al-gorithm is not very pra
ti
al. As dis
ussed in Se
tion 2,Kodialam and Nandagopal [17℄ present an approximationalgorithm for this 
ase.
A.2 Finding Violated Odd Hole ConstraintsNow we present a separation ora
le that given a 
on
i
tgraph G and a 
andidate solution � �nds a violated oddhole 
onstraint, if any. Su
h an ora
le 
ould be used toimprove the 
onvergen
e rate of the algorithm presented inSe
tion 3. Note that this separation ora
le is appli
able togeneral graphs; for the perfe
t 
on
i
t graph 
onsidered inSe
tion A.1 above, there are no odd holes anyway.Consider an odd hole, H, of the given 
on
i
t graph G.Any ve
tor � inside the independent set polytope of G mustsatisfy the following: Pi2H �i � (jHj � 1)=2. A violatedodd hole is one for whi
h this 
onstraint is not satis�ed.Before attempting to �nd a violated odd hole, we may as-sume that the given � satis�es all the edge 
onstraints, i.e.,�i + �j � 1 for every edge in G, be
ause if it does not thenwe 
an in
lude the violated edge 
onstraint to shrink theupperbounding polytope. After making this assumption wede�ne a weight fun
tion on the edges. For every edge ij ofthe graph G, we de�ne its weight to be 1 � �i � �j , whi
his guaranteed to be non-negative. With this weight fun
-tion we �nd the lightest (i.e., least-weight) odd 
y
le in thegraph. The lightest odd 
y
le 
an be found using a bipartitegraph 
onstru
t as explained in the next paragraph. Let Cbe the lightest odd 
y
le. Pij2C(1� �i � �j) < 1 is equiv-alent to Pi2C �i > jCj�12 . So, if the weight of the lightestodd 
y
le is less than 1 then the 
y
le is a violated odd hole.If the weight of the lightest odd 
y
le is 1 or more then thereis no violated odd hole.Now we 
ome to the question of eÆ
iently �nding thelightest odd 
y
le. Let G be the graph in whi
h we need to�nd the lightest odd 
y
le. We 
onstru
t a bipartite graph,B, as follows. For every vertex v in G we put two verti
esvl and vr in B (the subs
ripts l and r 
an 
on
eptually bethought of as representing the left and right \halves" of thethe bipartite graph B). For every edge uv in G we put twoedges ulvr and urvl in B. Now an odd 
y
le in G be
omesan odd length path in B e.g., uvwu be
omes ulvrwlur. Sofor every vertex u in G we �nd the shortest path from ul tour in B. The shortest su
h path in B yields the lightest odd
y
le in G.

B. PROOF OF THEOREM 2Let us �rst show that a s
hedulable usage ve
tor lies inthe independent set polytope of the 
on
i
t graph. In otherwords, we want to show that the usage ve
tor is a 
onvex
ombination of independen
e ve
tors.Consider a s
hedulable usage ve
tor, U . Consider oneunit of time, and assume that we have s
heduled the linksover fra
tions of this unit time, su
h that the usage ve
torhas been satis�ed. Sin
e the ve
tor is s
hedulable, su
h as
hedule must exist. This s
hedule will tell us whi
h linksare a
tive at any given instan
e of time.Also, sin
e the usage ve
tor is s
hedulable, at any instan
ein this s
hedule, the links that are a
tive are not in 
on-
i
t with ea
h other. That is, the verti
es 
orrespondingto these links must form an independent set in the 
on
i
tgraph. Find ea
h su
h independent set I and denote itsindependen
e ve
tor by xI (see Se
tion 3.2.2). De�ne �Ias the fra
tion of the unit time independent set I is a
tive.Sin
e the total time is one unit, the sum of �I 's over all theindependent sets equals to one. Thus:U = XI is an independent set�IxI :Now we show that a usage ve
tor that is a 
onvex 
ombi-nation of independen
e ve
tors is always s
hedulable. Con-sider a usage ve
tor U that is obtained by a 
onvex 
ombi-nation of independen
e ve
tors:U = XI is an independent set�IxIIt follows that U is s
hedulable sin
e ea
h independent setI 
an be s
heduled for �I fra
tion of the time.


