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Acknowledgments

In my research, I have received assistance from many people.

Calvin Lin, an assistant professor in Computer Sciences, ismy supervising

professor. He has been deeply involved in guiding my research and is a co-author

on all of my recent publications. Many of the ideas presentedin this dissertation

were formed in discussions with Calvin, and many of the successful ideas I came up

with on my own were ideas I almost gave up on when Calvin said “let’s take another

look at this.” Calvin has made it his responsibility to make sure that I, as well as

all of his other students, have had the financial support we need to accomplish our

goals; he is a staunch advocate for each of us, and although heleads a busy life, it

seems he always has time to meet with us and discuss whatever is on our minds; we

are all thankful for him.

The members of my dissertation committee are: Doug Burger, Steve Keck-

ler, Calvin Lin, Hugh Maynard, Kathryn McKinley and Yale Patt. Each of them has

made invaluable contributions to this dissertation through discussions, feedback on

my writings, and the proposal process.

Steve Keckler, an assistant professor in Computer Sciences, has contributed

several distinctive insights to my research through many fruitful discussions as well

as actual work on my ideas. It was his idea to study how technology scaling will

vi



affect branch predictors, providing the foundation upon which this dissertation is

built. Steve is a co-author on our paper on hierarchical branch predictors [32]. It

was his suggestion to use a Wallace-tree to implement the perceptron predictor.

Heather Hanson, a graduate student in Electrical & ComputerEngineering,

has helped me understand the tools used for studying CMOS circuits. She is a

co-author on our paper on the Boolean formula predictor. Shehelped design the

circuit for that predictor and she set up the scripts used to measure its power and

delay. She helped me understand the HSPICE tool so that I could use it for studying

the perceptron predictor.

Vikas Agarwal, a graduate student in Electrical & Computer Engineering,

modified the CACTI 2.0 cache simulator for technology scaling for his research.

He provided me with his enhanced versions of CACTI and, through a detailed dis-

cussion, helped Calvin and me understand the results his predictor yields.

Rajagopalan Desikan, a graduate student in Electrical & Computer Engi-

neering, has helped me understand various aspects of the Alpha 21264 microarchi-

tecture, including the operation of the branch predictor.

Samuel Z. Guyer, a doctoral candidate in Computer Sciences,and Ibrahim

Hur, a doctoral candidate in Electrical & Computer Engineering, provided useful

suggestions and feedback on drafts of papers.

Many other fellow students have contributed to my research by providing

useful feedback at practice talks. They are: Kartik K. Agaram, Vikas Agarwal,

Emery D. Berger, Mary D. Brown, Brendon D. Cahoon, Rich J. Cardone, Ra-

jagopalan Desikan, Samuel Z. Guyer, Heather L. Hanson, Ibrahim Hur, Maria E.

Jump, Ramgopal R. Mettu, Hrishikesh S Murukkathampoondi, Ramadass Nagara-

jan, Erik H. Reeber, Juan C. Rubio, Karthikeyan Sankaralingam, Alison N. Smith,

Teck Bok Tok, Francis Tseng and Phoebe K. Weidmann.

vii



During the course of my research, I have submitted several papers to peer-

reviewed conferences. The anonymous reviewers have provided valuable insights,

pointers to literature, and criticisms that I have used to make my research stronger.

Last, but not least, my wife, Stella L. Jiménez, has enduredthe several years
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Accurate branch prediction is an essential component of a modern, deeply

pipelined microprocessors. Because the branch predictor is on the critical path

for fetching instructions, it must deliver a prediction in asingle cycle. However,

as feature sizes shrink and clock rates increase, access delay will significantly de-

crease the size and accuracy of branch predictors that can beaccessed in a single

cycle. Thus, there is a tradeoff between branch prediction accuracy and latency.

Deeper pipelines improve overall performance by allowing more aggressive clock

rates, but some performance is lost due to increased branch misprediction penalties.

Ironically, with shorter clock periods, the branch predictor has less time to make

a prediction and might have to be scaled back to make it faster, which decreases

accuracy and reduces the advantage of higher clock rates.
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We propose several methods for breaking the tradeoff between accuracy and

latency in branch predictors. Our methods fall into two broad categories: hierarchi-

cal predictors using purely hardware implementations, andcooperative predictors

that off-load some prediction work to the compiler. We describe hierarchical or-

ganizations that extend traditional predictors. We then describe a highly accurate

branch predictor based on a neural learning technique. Using a hierarchical orga-

nization, this complex multi-cycle predictor can be used asa component of a fast

delay-sensitive predictor. We introduce a novel cooperative branch predictor that

off-loads most of the prediction work to the compiler with profiling. The com-

piler communicates profiled information to the microprocessor using extensions to

the instruction set. ThisBoolean formula predictorhas a small and fast hardware

implementation, and will work in less than one cycle in even the smallest technolo-

gies with the most aggressive projected clock rates. Finally, we present another

cooperative technique,branch path re-aliasing, that moves complexity off of the

critical path for making a prediction and into the compiler;this technique increases

accuracy by reducing destructive aliasing during the less critical update stage.
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Chapter 1

Introduction

Modern microprocessors achieve good performance by executing many instructions

in parallel. Thisinstruction-level parallelism(ILP) can be limited by various bot-

tlenecks, so microprocessors often perform speculative work to reduce the impact

of these bottlenecks. One particularly important type of speculation isdynamic

branch prediction. When a conditional branch instruction is fetched, it may take

several cycles for the branch condition to be determined, and until then, it is not

clear which path should be followed. A branch predictor usesstatistical informa-

tion to predict which direction the branch will take and to and speculatively fetch

and execute instructions along the predicted path. This technique yields a tremen-

dous increase in performance by keeping the pipeline full even in the presence of

control hazards. Since about one in seven executed instructions is a branch, branch

prediction is essential for modern pipelines that may have tens or even hundreds

of instructions simultaneously in flight. If a prediction isincorrect, i.e. there is

a misprediction, a considerable number of cycles is wasted executing the wrong

instructions and restoring the processor state such that the correct path can be exe-

cuted. Thus, branch predictors must be highly accurate to avoid mispredictions.
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Current techniques can achieve correct branch prediction rates of 95% [41],

i.e., misprediction ratesof 5%, but the high cost of recovering from mispredic-

tions [12] remains one of the largest impediments to performance on current and

future processors. Because of the large penalty of a branch misprediction, small

improvements in accuracy can have a large impact on performance. As pipelines

become deeper to support higher clock rates, the penalty fora mispredicted branch

will increase. For instance, the Pentium 4 microprocessor has a 20-stage pipeline,

with a branch misprediction penalty of approximately 20 cycles [26]. For a simu-

lated processor with a 20-stage pipeline, increasing the branch misprediction rate

from 4% to 7% decreases performance by 11% in terms of instructions executed

per cycle (IPC). Thus, we are motivated to find more accurate branch predictors for

future technologies.

1.1 The Problem: Delay in Branch Predictors

It takes work to accurately predict branches. The amount of time available to do

this work has a large impact on the accuracy of the branch predictor. Branch pre-

dictor access delay is a crucial component in determining the performance of the

processor, since it has an impact on both clock rate and instruction throughput. This

delay is affected by trends in technology. In this section, we explain the source of

branch predictor delay and the consequences of ignoring delay.

Modern branch predictors are based on the two-level adaptive branch pre-

diction technique introduced by Yeh and Patt [62]. This scheme uses a table of

counters to find correlations between previous branch outcomes to make a predic-

tion. For the branch predictor to be accurate, this table should have hundreds or

thousands of entries, causing it to resemble a small cache memory.
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In the past three decades, performance improvements in microprocessors

have been driven in large part by improvements inprocess technology, i.e., the pro-

cess with which microprocessors are fabricated on wafers ofsilicon. As process

technology improves, the sizes and delays of the transistors and wires on a mi-

croprocessor decrease, allowing computer architects to squeeze more functionality

onto the chip, and run the chip at a higher clock frequency. Recent studies, how-

ever, have shown that as feature sizes have been shrinking incurrent and future

process technology, increasingly aggressive clock rates and larger wire delays will

lead to multi-cycle access to large on-chip structures [1] such as caches and branch

predictors.

Until now, the huge body of branch prediction research has focused on only

two dimensions of the problem—area and accuracy—and has found that larger

hardware budgets yield higher accuracy for two reasons: They allow the use of

longer history lengths, and they reducealiasing,which occurs when two unrelated

branches destructively share the same hardware branch prediction resources. In-

deed, much of the recent work has focused on methods for reducing aliasing [52,

41, 38, 57, 18]. With growing chip capacities, the focus of the research community

on area and accuracy has led to large elaborate predictors, some of which require

16K to 64K byte structures [20], and to complex prediction schemes that add levels

of logic to combat destructive aliasing [18, 38].

Since dynamic branch predictors use large tables to find correlations and

make predictions, future branch predictors will need to consider a third dimension:

delay. Figure 1.1 illustrates the problem of ignoring delay. Using an idealized delay

of one cycle to access the pattern history table (PHT), thegsharepredictor [41] sees

improvedinstructions per cycle(IPC)—due to improved prediction accuracy—as

the size of the PHT is increased. By contrast, with an aggressive clock frequency
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(1.9 GHz) and a realistic delay model for today’s 180 nanometer technology, the

curve drops off at 512 bytes where the PHT requires two cyclesto access, and drops

again at 64KB where delay becomes three cycles. This problemwill be exacerbated

by the smaller process technologies of the future, as shown by the curve for 50nm

technology and a projected 6.9 GHz clock rate. In this technology, wire delay

causes the table access times to slip above one cycle even earlier.
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Figure 1.1:Instruction Throughput versus Capacity for thegsharepredictor.

As an example of a real-world instance of this problem, the branch predictor

for the AMD Athlon microprocessor represents a step backward when compared to

its predecessor, the K6. While the K6 has a highly accurate 8K-entry GAs predictor,

the Athlon uses a less accurate 2K-entry GAs predictor [16].This change reduces

the delay and real estate costs of the branch predictor and could be one reason why

the Athlon is able to achieve an aggressive clock rate of 1.4 GHz. Nevertheless,

the Athlon has decreased performance in terms of IPC becauseof the less accurate

branch predictor.
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Higher clock rates also increase the need for higher branch prediction accu-

racy. As pipelines become deeper to create less work per cycle, the penalty of a

misprediction increases. For example, the Pentium 4 has a 20stage misprediction

pipeline [26]. Table 1.1 shows the clock rates and pipeline depths of several current

microprocessors.

In a nutshell, the problem is this: Using smaller branch prediction tables

results in lower IPC because of lower accuracy. Naively using larger tables in future

technologies results in even lower IPC because of aggressive clock scaling trends

and increased relative wire delay. The question that this dissertation addresses is:

how can we get both high accuracy and low latency?

1.2 Dimensions of the Problem

As microarchitecture designs evolve and process technology improves, several di-

mensions of the branch predictor delay problem are emerging. In this section, we

explore these dimensions, and ask important questions for the future of branch pre-

dictors.

1.2.1 Extending Traditional Predictors in the Near Future

In the near future, i.e., the next few years, we would like to be able to continue

using the traditional branch predictors that have providedsuch good performance

in the past. Table-based branch predictors have been researched heavily. Industrial

and academic researchers have very good ideas about how to extract a great deal

of accuracy using variations of two-level adaptive predictors; we survey several of

these efforts in Chapter 2. However, the impressive performance of these predic-
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tors comes at the cost of high access delay. As pipelines deepen to support more

and more aggressive clock rates in the near future, the viability of these schemes is

threatened by the delay they impose. We can’t simply throw away these schemes

without having something to replace them with. Thus, we are highly motivated to

find ways around the delay problem, so that we can extend the utility of these pre-

dictors into the future and continue building traditional cores with deeper pipelines

and higher clock rates.

1.2.2 Increasing Accuracy in the Face of Delay

Simply sustaining traditional branch predictors is not sufficient, especially since

mispredictions are becoming more costly. How can we make thebranch predictor

more accurate if it has less time? As we have noted, a large amount of research

has been done to improve the accuracy of table-based branch predictors. However,

by no means do we believe that this research effort is finished. We believe that

there are many more ideas yet to be discovered. Indeed, we introduce one such

technique of our own in Chapter 5. How can highly accurate predictors with high

access delays be used in processors with very short clock periods? Similarly, are

there ways to use table-based predictors that result in highaccuracy but are more

economical with their time?

1.2.3 Addressing Technology Scaling

As the limits of CMOS process technology scaling are approached in the next

decade, wire delay and power will become dominant forces shaping processor de-

sign. Because of wire delay, the time it takes to access a reasonably large branch

predictor may be a significant fraction of the time it takes aninstruction to traverse

6



Microprocessor Integer Pipeline Depth Clock Frequency (MHz)

PowerPC 7400 4 733
HP PA-8700 7 800
Alpha 21264 7 833
AMD Athlon 9 1400

Intel Pentium 4 20 1760

Table 1.1:Pipeline depth vs. clock rate for various processors.

the pipeline. Thus, traditional table-based branch predictors may become infeasible

or even useless in this new setting, and we will be forced to look for something

new. Are there ways to accurately predict branches without tables or other expen-

sive components?

1.3 Our Solutions

Our solution to the problem of delay in branch predictors is to divide the prediction

work into parts with different delays. During one part of theprediction, a fast branch

predictor operates in a single cycle. During another part ofthe prediction, either off-

line through profiling, or on-line through hardware, more time is spent working on

making the branch predictor more accurate. We explore two main techniques for

dividing the work:

Hierarchical Predictors We propose hierarchical organizations for branch pre-

dictors. We describe three branch predictor organizations, each with the common

goal of combining a fast predictor with a slower but more accurate predictor to

achieve accurate prediction in a single cycle. We apply these ideas in two contexts:� We demonstrate how these techniques can be applied to conventional predic-
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tors whose delay comes from table access time. Thus, we show how tradi-

tional predictors can be extended into the next several years of clock scaling

and technology improvements.� We explore the space of more complex predictors that would otherwise be

infeasible because of delay: we describe a novel branch predictor based on

a neural learning technique. Thisperceptron predictorhas unique properties

that allow it to yield high accuracy. Using the techniques described above,

this complicated multi-cycle predictor can be used as a component of a fast

delay-sensitive predictor. Thus, we show that ever more complex and accu-

rate predictors are still feasible, even in the face of the branch predictor delay

problem.

Cooperative Predictors Another way to tolerate delay is to off-load some of the

prediction work to the compiler, with profiling. In this way,the compiler and hard-

ware cooperate to produce the prediction. Prediction work takes place in two stages:

First, an off-line profiling algorithm analyzes the program’s behavior on a training

input. The compiler communicates profiled information to the microprocessor us-

ing extensions to the instruction set architecture (ISA), indicating how to perform

the branch prediction with high accuracy. Second, the instruction set communi-

cates the hints to the branch predictor in the running program such that prediction

is quick. We describe two novel techniques:� Branch path re-aliasing, a technique that moves complexity off of the critical

path for making a prediction and into the compiler. This technique increases

accuracy by reducing destructive aliasing during the less critical update stage.

This technique allows us to reduce branch predictor delay byshrinking a
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branch predictor from one generation to the next without sacrificing accuracy.

This technique is specific to one particular family of branchpredictors.� A branch predictor in which a profiling phase finds a function used to perform

branch prediction for each branch. Each function is encodedas a compact

Boolean formula in the branch instruction. The PHT is eliminated, so it is

no longer a source of delay. ThisBoolean formula predictorhas a small

and fast hardware implementation and will work in less than one cycle even

in the small technologies and aggressive clock rates for which conventional

table-based predictors are infeasible.

1.3.1 Scope and Limitations of the Research

In this dissertation, we focus mainly on the effects of technology scaling on the

branch direction predictor. Thus, we mainly study the branch direction predictor

in isolation, assuming for the sake of simplicity that othermicroarchitectural struc-

tures are not affected by technology scaling. We only brieflyconsider other related

aspects of microarchitecture, such as branch target bufferdelay, instruction cache

delay, and branch predictor power, and we do not propose complete solutions to

these problems. This methodology allows us to make strongerstatements about the

future of branch predictors themselves without relying on predictions of other com-

ponents; however, without taking into account these other components, it is more

difficult to interpret our simulated performance numbers. It is important to note that

other problems may form more important bottlenecks, such asthe increasing dis-

parity between DRAM and CPU speeds, and that our IPC results may be optimistic

by assuming that these problems will not get any worse.
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1.4 Thesis Statement

The central thesis of this dissertation is this:

Despite the effects of aggressive clock scaling, wire delay, and complex

organizations, future branch direction predictors can have improved ac-

curacy while still providing a prediction in a single cycle.

1.5 Contributions

This dissertation makes the following contributions:

1. We show that delay in the predictor significantly erodes performance, so fu-

ture branch prediction work must consider delay in their designs. We show

that increasing delay to improve accuracy is never a good tradeoff. We show

that structures with multi-cycle access times can be exploited by hierarchical

organizations for branch predictors.

2. We introduce the perceptron predictor, the first dynamic predictor to success-

fully use neural networks, and we show that it is more accurate than existing

dynamic global branch predictors. For example, for a 4K bytehardware bud-

get, our global predictor achieves a misprediction rates onthe SPEC 2000

integer benchmarks of 1.94%, compared with 4.13% for agsharepredictor

of the same size and 2.66% for the McFarling-style hybrid predictor of the

Alpha 21264. A version of our predictor that uses both globaland per-branch

information improves the misprediction rate to 1.71%, an improvement of

36% over the hybrid predictor. By comparing our predictor against a multi-

component hybrid predictor, we provide evidence that the perceptron predic-

tor is the most accurate fully dynamic branch predictor known. We suggest
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how, using hierarchical organizations, the perceptron predictor can be imple-

mented and used in modern CPUs. We show that the perceptron predictor can

improve IPC by 15.8% overgshareand 5.7% over a hybrid predictor.

3. We present branch path re-aliasing, a technique in which the compiler re-

duces destructive aliasing by setting a hint bit in the ISA, thereby allowing

some dynamic predictors to use smaller tables more effectively. We describe

an algorithm for using path profiles to set these hint bits. Wepresent exper-

imental evidence that branch path re-aliasing allows smallbranch predictors

to achieve greater accuracy than other, slower predictors.Our simulations

show that a 2048-entry GAg predictor enhanced with branch path re-aliasing

has a misprediction rate of 6.5%, 21% lower than the misprediction rate of

8.2% for the same sized, but more complicated,gsharepredictor, and equiv-

alent to the misprediction rate of agsharepredictor with twice the size. We

also show that our technique improves accuracy even for theagreepredictor,

which was designed to convert destructive aliasing into constructive alias-

ing, and we show that our technique can improve the accuracy of complex

predictors, such as the hybrid predictor of the Alpha 21264.

4. We present a new method for branch prediction based on Boolean formulas

that breaks the trade-off between delay and accuracy. For instance, in one

cycle, our predictor can deliver a prediction with the accuracy of a 8K-entry

gsharepredictor in a technology where only a 512-entrygsharepredictor can

be accessed in one cycle. We describe the hardware implementation of our

predictor, showing that it has one third of the delay and consumes 1% of the

power of a conventional branch predictor. We describe a profiling algorithm

for training our predictor.
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Chapter 2

Background

To familiarize the reader with the ideas of branch prediction, as well as help place

our work in its proper context, we now provide some background into branch pre-

diction. We review the history of branch prediction, explain the basic mechanism,

describe characteristics of branch predictors, and reviewsome implemented branch

predictors. We also provide background into the technologyscaling issues ad-

dressed by our work.

2.1 History of Branch Prediction

Branch prediction has a long history in high performance computing. In first sur-

vey of branch prediction strategies, Smith describes mechanisms already in place in

mainframe computers at the end of the 1970’s [56]. Most of these mechanisms are

simple, and are based on static characteristics of the program. For example, some

IBM System 360/370 models predict whether a branch will be taken based on the

branch instruction opcode, since certain opcodes are used for loop back edges and

other are used forIF/THEN/ELSE statements [56]. Another simple static mecha-

nism is to predict that a backward branch will be taken, whilea forward branch will
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not, observing that backwards loop back edges are frequently traversed more than

once. Smith also proposes simple dynamic branch predictors. The basic idea is to

use a hash of the branch address as an index into a table of counters that are incre-

mented when the branch is taken, decremented otherwise. When branch prediction

is required, the high bit of the corresponding counter is used as the prediction;

1 meanspredict taken, and 0 meanspredict not taken. These historical predic-

tion mechanisms were moderately accurate, but as branch misprediction penalties

started to increase, more accurate techniques became necessary.

An important breakthrough came in 1991 when Yeh and Patt observed that

the outcome of a given branch is often highly correlated withthe outcomes of other

recent branches [62]. This history of branch outcomes formsa pattern that can be

used to provide a dynamic context for prediction. Most modern branch predictors

are based on this pattern history. In the scheme of Yeh and Patt, every time a branch

outcome becomes known, a single bit (0 fornot taken, 1 for taken) is shifted into a

pattern history register. A pattern history table (PHT) of two-bit saturating counters

is indexed by a combination of branch address and history register. The high bit

of the counter is taken as the prediction. Once the branch outcome is known, the

counter is decremented if the branch isnot taken,or incremented otherwise, and

the pattern history is updated. Recent branch prediction work focuses on refining

this scheme of Yeh and Patt. Several predictors have been proposed to deal with

the problem of destructive aliasing, which occurs when two unrelated branches

contend for the same PHT resources, resulting in decreased accuracy [38, 57, 18].

Hybrid predictors that combine two branch predictors to improve accuracy have

been proposed [41, 20] and implemented [35]. The 1990’s produced a great deal

of research in improving branch predictor accuracy and studying characteristics of

branch prediction, and we expect this research to continue.
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2.2 Characteristics of Branch Prediction

Several factors influence the design of branch predictors:

Branches are biased. Branches, which can only have two outcomes,takenand

not taken,are highly biased. For instance, a branch that transfers control from the

end of a loop back to the beginning will usually betaken, since loops usually iterate

many times before finishing. Figure 2.1 shows the bias of dynamic branches in the

SPEC 2000 integer benchmark suite. Thex axis gives thebiasof a branch, i.e., the

percentage of time a branch istaken, and they axis shows the number of branches

with a given bias in the SPEC 2000 integer benchmarks. Of all branches, 53% are

takenat least 98% or at most 2% of the time. The graph on the right excludes these

branches, again showing clear biases and a number of branches taken exactly half

the time.

Only frequent branches matter. For a conditional branch to have a significant

impact on the performance of a program, it must be executed many millions of

times. It doesn’t matter if a low-frequency branch is incorrectly predicted, because

its overall impact on the program’s speed is low. Most branches are executed very

few times, so it makes sense to concentrate our effort on those few branches that

are executed frequently.

Branch predictors must be fast. Branch predictors must meet strict physical

constraints. They must operate in one CPU cycle and be small enough to fit on a

chip. Most of the hardware devoted to branch predictors is memory for large tables,

so thehardware budgetof a predictor, i.e., the cost of the predictor as a component

of the chip, is appropriately measured in kilobytes. A typical predictor occupies 4K
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bytes of SRAM [35]. However, as we will see, the amount of areareachable in one

cycle will decrease in future technologies.

Aliasing is a problem. One problem with dynamic branch prediction schemes

is aliasing, where the limited resources cause two unrelated branches to use the

same prediction resources, resulting in poor performance.Many techniques have

been proposed to reduce the impact of aliasing [41, 38, 57, 18]. As the amount of

resources reachable in one cycle decreases, this problem will become more difficult

to solve.
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Figure 2.1:Bias in branches.

2.3 Branch Prediction Mechanisms

This section provides background in several branch prediction mechanisms, paying

particular attention to branch predictors that directly relate to the research presented

in this dissertation.
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2.3.1 GAg and GAs Predictors

Our work on branch path re-aliasing focuses on improving theaccuracy of GAg

branch predictors. Although more accurate predictors exist, GAg and its close rela-

tive, GAs, are both used as components of implemented branchpredictors in mod-

ern machines, as we will see in Section 2.3.6. Yeh and Patt taxonomize two-level

branch predictors using a three-letter naming scheme [63].The first letter represents

how the first level branch history is kept. G means a single global history register is

used. The second letter denotes the prediction mechanism: Ameans that a two-bit

saturating counter is used. The third letter indicates how the second level table is in-

dexed; g means a single column of counters is used for all addresses while s means

that bits extracted from the branch address are used to select a set of counters, and

the set is indexed by the history register. Thus, a GAs predictor selects a set of

counters from a pattern history table (PHT) using bits from the branch address, and

chooses a particular counter from that set using bits from the global history. A GAg

predictor uses only the global history to index the PHT.

2.3.2 gshare predictor

One popular variant of the GAs predictor isgshare[41]. A gsharepredictor com-

bines the branch history and branch address by exclusive-ORing them together. The

exclusive-OR operation has the effect of evenly distributing accesses to the PHT,

which would otherwise be unequally distributed due to the non-uniform nature of

branch histories. In this way,gshareincreases accuracy by reducing the probability

that two different branches will interfere with each other in the PHT.
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2.3.3 Agree predictors

A branch direction predictor can be enhanced using theagreemechanism [57].

Rather than correlating with branch outcome, the PHT entries in anagreepredictor

keep track of whether a branch outcome will agree with a bias bit set in the branch

instruction. Theagreemechanism turns destructive interference into constructive

interference, increasing accuracy. However, since the branch instruction opcode

must be read and combined with the PHT prediction, the instruction cache is on

the critical path for branch prediction. Note that branch biases can be learned and

stored in the branch target buffer rather than branch instruction.

2.3.4 Bi-Mode predictor

Several other branch predictor organizations have been proposed to reduce destruc-

tive aliasing in the PHT. We choose the Bi-Mode predictor [38] as a representative

of these predictors. The Bi-Mode predictor uses three history tables: two PHTs and

a choice table that is used to indicate which PHT to use for a particular combination

of branch address and history. Details of this predictor allow it to reduce aliasing by

separating into different tables histories that would destructively alias one another,

at the cost of increased complexity in the organization.

2.3.5 Static Branch Prediction

A purely static branch predictor always predicts the same outcome for a particular

static branch. The prediction can be derived from the structure of the branch itself,

e.g., the “backwards taken/forwards not taken” approach ofthe Alpha AXP-21064,

or encoded into the branch instruction itself as a bias bit, as in the IA-64 instruction

set. The compiler, through profiling or static heuristics [6, 11], can provide hints to
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the microarchitecture about the likely direction of the branch. Given enough state,

dynamic branch predictors are more accurate than static branch predictors, since

dynamic predictors take into account changing conditions at run-time.

2.3.6 Branch Predictors in Current CPUs

Current microprocessors use two-level branch predictors.The following are three

notable examples:� The AMD K6 and K7 (Athlon) processors use GAs predictors [16].� The HP-PA 8700 uses a 2048-entry GAs with theagreemechanism [39, 59].� The Alpha 21264 core uses a hybrid predictor composed of two two-level

predictors [35]: a 4K-entry GAg is indexed by a 12-bit globalbranch his-

tory while a 1K-entry PHT of 3-bit saturating counters is indexed by one of

1024 local 10-bit branch histories. The final branch prediction is chosen by

indexing a third predictor that keeps track of the relative accuracies of the two

predictors for a particular global history. The Alpha predictor is very accu-

rate; indeed, it is the most accurate of implemented branch predictors that we

have observed. However, its implementation complexity comes with a cost.

The Alpha branch predictor overrides a less accurate instruction cache line

predictor, introducing a single-cycle bubble into the pipeline whenever the

two disagree [35].

2.4 Technology Scaling

Branch predictors, like other microarchitecture structures, are affected by two tech-

nology scaling trends. Microprocessor designers continueto aggressively increase
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the clock rates, outstripping the speed improvements achieved by transistors that

have smaller gate lengths in each successive technology [1]. Furthermore, at smaller

feature sizes, wire delay grows in significance relative to transistor speeds and can

affect the latency of the fetch engine and the branch predictor. Faster clocks exac-

erbate the tradeoff between capacity and delay in microprocessor components. As

these trends continue, the chip area reachable in a single cycle will decrease. This

means that large banks of SRAM, such as caches and branch prediction tables, will

have to either decrease in size or increase in delay. Branch prediction tables are

particularly hard hit by clock scaling because they requiremore address lines than

similarly sized caches because caches have wide lines, while branch predictors have

narrow two-bit entries. These extra address lines cause significant decoder delay.

To account for accelerating clock rates, we use a technologyindependent

metric, thefanout-of-four(FO4) delay metric, to measure clock period [27]. One

FO4 delay is the time for an inverter to drive 4 copies of itself. Reasonable models

show that under typical conditions, the FO4 delay, measuredin picoseconds, is

equal to360�Ldrawn, whereLdrawn is the minimum gate length for a technology,

measured in microns. The number of FO4 delays in a clock period is an indicator

of the number of levels of logic in a pipeline stage. An example of an aggressive

clock rate isf8, which corresponds to a clock period of 8 FO4 delays. The current

trends in pipeline depths and clock rates suggest that a clock rate nearf8 may be

used in real microprocessors in the near future.
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Chapter 3

Methodology

In this chapter, we explain the general methodology we use toobtain our experi-

mental results. Later sections will go into more detail where appropriate. There are

three main types of results that we gather: branch misprediction rates, instructions

per cycle (IPC), and circuit timings. We gather these statistics in the context of a

out-of-order core simulator based on the SimpleScalar/Alpha simulator [10].

3.1 Simulated Microprocessor

We use the SimpleScalar/Alpha out-of-order simulator, configured with microar-

chitectural parameters similar to those of the Alpha 21264 [35]. We choose this

microarchitecture because it is recognized as a leading-edge high performance mi-

croprocessor. Since we are focusing solely on the branch predictor, we keep the

other structure sizes constant at values shown in Table 3.1.This means that, as we

scale feature sizes and clock rates, we assume that the number of cycles to access

other structures will not change. Although this is an optimistic assumption, it allows

us to isolate the effect of the branch predictor. We assume a baseline microarchi-

tecture with a five-stage pipeline and issue width of four; however, we investigate
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Capacity
(bits) # entries Bits/entry Ports

BTB 48K 512 96 1
Reorder buffer 8K 64 128 8
Issue window 800/320 20 56 8
Integer RF 5K 80 64 10
FP RF 5.6K 72 80 10
L1 I-Cache 512K 1K 512 1
L1 D-Cache 512K 1K 512 2
L2 Cache 16M 16K 1024 2
I-TLB 14K 128 112 1
D-TLB 14K 128 112 2

Table 3.1:Parameters used for the simulations, similar to the Alpha 21264.

multiple pipeline depths simulated by changing the misprediction penalty. Note that

an issue width of four is conservative; as issue width increases, branch prediction

becomes even more important since more work is wasted on a misprediction.

By changing the number of cycles for the branch misprediction penalty and

for accessing the branch predictor, we simulate the effect of increasing the clock

rate and the depth of the pipeline.

3.2 Benchmarks

We simulate the 12 programs in the SPEC CPU 2000 suite of integer benchmarks.

The programs are compiled on an Alpha 21264 workstation using the Compaq C

compiler V6.3-025 and g++ compiler version 2.9-gnupro-99r1 The optimization

levels are chosen from thepeak settings for the SPEC-supplied configuration files.

Table 3.2 shows the name of each benchmark, along with a shortdescription.

21



Benchmark Description
164.gzip LZ77 compression
175.vpr Place and route for FPGAs
176.gcc C compiler for Motorola 88100
181.mcf Minimum cost network flow solver
186.crafty Chess playing program
197.parser Natural language processing
252.eon Ray-tracing program
253.perlbmk Perl
254.gap Computational group theory
255.vortex Database
256.bzip2 Block-sorting compression
300.twolf Place and route

Table 3.2:SPEC 2000 integer benchmark suite.

3.3 Branch Misprediction Rates

We use the following methodology when reporting branch misprediction rates.

3.3.1 Simulated Branch Predictors

Most of the branch predictors studied are simulated in a C++ framework that is

patched into the SimpleScalar/Alpha branch prediction system. The framework

can also function in a stand-alone trace-driven simulator.The framework currently

supports the following branch predictors:

1. Two-level adaptive branch prediction [62]. This category includes predictors

such asgshareand other predictors that index a pattern history table (PHT)

using a combination of branch address and global (e.g. as ingshare) or per-

branch history information. The parameters to a two-level predictor are his-

tory length, size of the PHT, number of per-branch historiesto keep, number
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of bits per counter, and whether or not to exclusive-OR the branch address

with the branch history (as ingshare).

2. Hybrid branch prediction [20]. Any two simulated branch predictors can

be combined into a hybrid predictor. A table of two-bit saturating counters

indexed by global history and/or branch address is used to keep track of which

predictor performs best for which branch, and the prediction from the better

predictor is returned. The hybrid predictor of the Alpha 21264 is simulated

using this mechanism. The parameters are the size of the chooser table and

the sort of information that should be used to index it.

3. Thebi-modepredictor [38]. The parameters are the size of each pattern his-

tory table and the global history length.

4. The Agree predictor [57]. A method call allows the user to read a table of

bias bits into any branch predictor. The table is then used toimplement the

agreemechanism in that predictor.

5. Perceptron prediction [33]. The parameters are the number of perceptrons,

the number of per-branch history bits, the number of global history bits, the

number of per-branch histories to keep, and the threshold value �.

We used this framework to write many trace-driven simulators, testing different

areas of our research. The Boolean Formula predictor is simulated alongside this

framework, using separate data structures.

3.3.2 Tuning Branch Predictors

It has been observed that branch predictor accuracy is sensitive to history length [41].

We tune each predictor for history length using traces gathered from the each of the
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12 benchmarks and thetrain inputs. The traces record the address and outcome

(i.e., taken or not taken) of up to 300 million branches for each benchmark. We

exhaustively test every possible history length at each hardware budget for each

predictor, keeping the history length that yields the lowest harmonic mean mispre-

diction rate. For theagreemechanism, we set bias bits in the branch instructions

using branch biases learned from thetrain inputs.

3.3.3 Testing Branch Predictors

For each benchmark, we gather traces giving the branch address and outcome for

300 million branches for bothtrain andref inputs. Each benchmark executes

over one billion instructions before the simulation ends. In our simulations, we skip

the first 50 million branches before beginning to record branch prediction accuracy;

we have observed that the benchmarks exhibit highly predictable initialization be-

havior before this time, and then settle into a steady-state.

3.4 Instructions per Cycle

For generating instructions per cycle (IPC) results, we usea modified version of

thesim-outorder simulator from SimpleScalar/Alpha that uses our branch pre-

diction framework. We simulate each benchmark, measuring the number of cycles

and instructions executed, and add in a number of cycles equivalent to the various

delays or penalties associated with the particular experiments. We then divide the

number of retired instructions by the number of cycles used.Note that this method-

ology fails to capture some of the wrong-path effects such ascache pollution that

would actually be observed in a real latency-sensitive branch predictor; however,

these effects are small. For experiments that require fewerthan 1000 executions
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of the performance simulator, we run each benchmark for one billion instructions.

For experiments that require more than 1000 executions, we run each benchmark

for 500 million instructions. For instance, tuning a predictor to search a large de-

sign space may require many thousands of executions, but getting results using an

already tuned set of configurations may require only dozens or hundreds of execu-

tions.

3.5 Circuit Timings

Several of our experiments require analysis to determine the delay of circuit com-

ponents such as pattern history tables and computational elements related to the

perceptron and Boolean formula branch predictors.

3.5.1 HSPICE

We simulate combinational logic circuits using the HSPICE simulator. The HSPICE

simulations use transistor models tailored to fabricationprocesses to simulate the

circuit behavior for several technology generations, fromcurrent generations with

minimum feature (transistor and wires) sizes of 180nm down to future generations

that will have minimum feature sizes of 35nm.

3.5.2 CACTI

To estimate pattern history table access times for a range ofcurrent and future in-

tegrated circuit generations, we use circuit simulations and a modified version [2]

of the CACTI 2.0 tool for simulating cache delay. This modified version of CACTI

is more accurate than the original in several ways. First, while the original version

of CACTI 2.0 [49] uses a simplistic linear scaling for delay estimates, the modified
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simulator uses separate wire models to account for the physical layout of wire in-

terconnects: thin local interconnect, taller and wider wires for longer distances, and

the widest and tallest metal traces for global interconnect. Second, wire resistance

is based on copper rather than aluminum material properties. Third, all capaci-

tance values are derived from three-dimensional electric field equations. Fourth,

bit-lines are placed in the middle layer metal, where resistance is lower. Finally,

bit-addressing is allowed instead of byte-addressing. Ourversions of HSPICE and

CACTI both use the same parameters for technology scaling.

3.6 Computing Facilities

We run our simulations on a network of approximately 200 Pentium III computers

using the Condor system for coordinating the execution of many jobs [8].
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Chapter 4

Hierarchical Organizations

In this chapter, we examine three organizational approaches for dealing with delay

in future process technologies: (1) a two level caching scheme, (2) anoverrid-

ing scheme that allows a first prediction to be overturned by a more accurate sec-

ond prediction, and (3) acascadinglookahead scheme that exploits cycles between

branches to do prediction work. We show that delay in the predictor significantly

erodes performance, so future branch prediction work must consider delay in their

designs. We show that increasing delay to improve accuracy is never a good trade-

off. We show that there are approaches to branch prediction that can effectively

use large structures with multi-cycle access times, and give experimental results

showing that IPC can be sustained using these techniques.

4.1 Motivation

Larger branch prediction structures lead to larger access delays. Aggressively in-

creasing clock rates (as the marketplace demands) increases the structure access

time as measured in clock cycles.

Our studies show that it is never worth increasing the delay of a branch pre-
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Figure 4.1:Inter-branch latencies

dictor for the sake of improved accuracy [32]. For example, Figure 1.1 shows that

as we increase the capacity of the tables ingshare, we increase delay and decrease

IPC. This effect can be explained with the following equation which roughly ap-

proximates the costC of executing a branch instruction:C = d+ (r � p)
whered is the delay of branch predictor,r is the misprediction rate, andp is the mis-

prediction penalty. While the delayd may not always be on the critical path of the

pipeline, increasingd will reduce the instruction fetch bandwidth to the execution

cores. Because misprediction rates tend to be below 10%, changes in delay have a

larger impact than small changes inr for practical values ofd (i.e., for forseeable

pipeline depths).
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4.2 Branch Frequency

A program’s control behavior is based not only on the predictability of its branches,

but also on the branch frequency. If branch prediction is required on every clock

cycle, any delay in branch prediction will substantially slow the instruction fetch

rate. However, if branches are widely spaced, then branch prediction latency will

have less impact on performance. While the common wisdom is that branches oc-

cur on average every fourth or fifth instruction, we find that,in our framework (i.e.,

a real-world optimizing compiler on the Alpha), branches actually occur one every

nine instructions, on average. The actual dynamic distribution of inter-branch laten-

cies is more instructive. We use SimpleScalar/Alpha [10] tomeasure the average

branch frequency the twelve SPEC 2000 integer benchmarks ona 4-way out-of-

order machine configuration. Figure 4.1 is a histogram of average inter-branch

latencies, measured in cycles between prediction requests, for the SPEC 2000 in-

teger benchmarks. Over 67% of the prediction requests occurmore than one cycle

after the previous request. The unused cycles provide additional time to predict

future branches. For wider issue machines, there is less additional time to make a

prediction.

4.3 Hierarchical Organizations for Latency Sensitive
Branch Predictors

In this section, we describe three ways to configure branch predictors to increase

accuracy in the face of increasing latency. These techniques are appropriate when

standard techniques for branch prediction might exceed onecycle, and these are

general techniques that can be applied to most prediction algorithms.

To achieve high prediction accuracy, the branch predictor may require larger
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tables. The goal of the microarchitect is to achieve accuracy approaching that of

a large table, with the latency of a small table. We examine three methods for

achieving this goal.

4.3.1 Caching Prediction Tables

The first strategy to combat the long latency of large branch prediction tables is

to build a small cache of branch prediction table entries. This strategy allows us

to realize the benefits of reduced aliasing and increased history length without the

added latency of the large table, since the cache will have anaccess time of one

cycle. For instance, a 128K-entry PHT accessible in two cycles can be cached

using a 1K-entry PHT accessible in one cycle. Figure 4.2 shows the organization of

thegsharepredictor augmented by a cache. The branch history and branch address

are hashed using the XOR gate, and the resulting address is sent to both the pattern

history table cache (PHTC) and the pattern history table (PHT). The PHT consists

of 2-bit saturating counters, with the number of counters equal to the number of

combinations of addresses produced by the hash function. The PHTC caches a

subset of those counters in a smaller table that can be accessed more quickly than
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the PHT. If the correct counter is found in the PHTC, then the prediction can be

made immediately. If a miss in the PHTC occurs, then the PHT must be consulted

to find the correct saturating counter. Like traditional caches, an entry in the PHTC

is replaced with the correct counter from the PHT. When the branch direction is

determined during a later stage of the execution pipeline, the counters in the PHT

and PHTC are updated to reflect the correct or incorrect prediction of that branch.

If a PHTC miss occurs, the wait for the correct prediction from the PHT

will delay instruction fetch and will degrade overall performance. Two alternatives

can be used to prevent this additional delay. First, the prediction produced by the

PHTC, albeit for the wrong branch, can be used. Alternatively, we suggest building

a small auxiliary branch predictor (ABP) that can be accessed at the same time as

the PHTC. If the PHTC misses, then the result from the ABP is used.

4.3.2 Cascading Lookahead Branch Prediction

Lookahead branch prediction has been proposed as a mechanism to increase fetch

bandwidth by generating addresses for future branches [64,54] (see Chapter 8 for

more related work). The same technique can be applied to reduce the impact of
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longer latency branch predictors. If the branch predictor is not needed on every

cycle, then natural spacing between branches can be used to perform a prediction

for the next branch that is likely to arrive. Thus, if branches are spaced so that

the predictor is accessed only every other cycle, the predictor can have a two cycle

latency without introducing additional delay. Figure 4.1 shows us that the predictor

is usually needed at most once every other cycle.

Thegsharepredictor can be adapted to look one branch ahead. Whilegshare

uses the branch history register and branch address to compute the PHT address, a

lookahead predictor uses the predicted history and the address of the most recently

fetched branch. Since the prediction can complete before the next branch arrives at

the predictor, prediction is instantaneous. However, if the prediction requires mul-

tiple cycles (due to a large table) and the next branch arrives before the prediction

is complete, the instruction fetch engine stalls.

Cascading lookahead branch prediction implements a seriesof tables of as-

cending size and latency. Figure 4.3 shows a two-level cascading predictor. Like a

lookahead predictor, the next prediction is based on the last prediction and the last

branch address. Prediction begins simultaneously on both levels of the cascading

predictor. If the latency to the next branch to be predicted is large, then the predic-

tion from the second level table is selected. If the next branch arrives before the

second level table can complete its access, then the prediction from the first level

table is used.

Thus, the combination of a small first level table and a largersecond level

table can provide better aggregate accuracy with the minimum latency. However,

the utility of the larger table depends on its access time andthe inter-branch latency.

If branches occur extremely frequently, the second level ofthe cascade will not

be used. The cascading design can be trivially extended to more than two levels.
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Furthermore, hybrid predictors of varying latencies can beincorporated into the

cascading strategy. In our description above, the logic that selects the prediction to

use is based only on the arrival time of the next branch. More complicated selectors

could trade off latency versus accuracy by predicting whichof many predictions is

best for the subsequent branch.

4.3.3 Overriding Branch Predictor

An overriding branch predictor (Figure 4.4) provides two predictions. The first

prediction comes from a fast PHT (PHT1), and the second prediction comes from

a slower, but more accurate PHT (PHT2). When branch prediction is requested,

the first prediction is used and acted upon while the second prediction is still being

made. If the second prediction differs from the first prediction, the actions taken

based on the first prediction are squashed and instructions are fetched using the

second prediction; thus, the second predictor overrides the first predictor. For the

overriding scheme, we assume that the penalty of restartingan overridden fetch is

equal to the delay of PHT2. A similar technique is used in the Alpha 21264, in

which the branch predictor, whose results become known onlyin the second stage
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Gate 8FO4 Clk
(nm) f8 (GHz)
180 1.9
130 2.7
100 3.5
70 5.0
50 7.0
35 10.0

Table 4.1:Projected clock rates using 8 FO4 Clock scaling.

of the pipeline, can override the less accurate instructioncache line predictor [35]

with a single-cycle penalty. We assume the predictor is pipelined such that no

branch needs to wait for the completion of a PHT2 lookup for a previous branch.

4.4 Technology Scaling

Table 4.1 lists the technologies that we consider and the clock rates that result from

aggressive (f8) scaling. We base our estimates of branch predictor delay onthe ac-

cess time of the memory-oriented structures such as the pattern history table (PHT).

To model PHT delay, we use the methodology described by Agarwal, et al. [1],

which augments the CACTI cache delay modeling tool [49] withscaled technology

parameters. We convert the access time produced by the augmented CACTI model

into cycles, according to thef8 clock scaling strategy. As shown in Figure 4.5, only

small tables of 1024 entries can be accessed in a single cycle, and at 35nm, only

512 entries can be accessed in one cycle. Accepting a 2 or 3 cycle delay increases

the capacity to 16K and 64K entries, respectively.
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4.5 Results and Analysis

In this section we evaluate the three latency sensitive branch predictors and compare

them togshareacross a spectrum of process technologies. In addition, we evaluate

a fourth predictor that combines the cascading and overriding predictors. This pre-

dictor uses a cascading predictor that continues predicting after the branch has been

encountered, overriding the first prediction if the second prediction is different.

We used the methodology outlined in Chapter 3 to evaluate thedifferent

prediction strategies described above using delay estimates at seven process tech-

nologies ranging from 180 nm to 35 nm, representing technologies from today to

the predicted smallest feature sizes for which conventional CMOS will be feasible.

Eachsim-outorder simulation runs for 500 million instructions. In the simula-

tions, the global pattern history register is updated speculatively and backed up on a

mispredict, while updates to the PHTs are done when the updating branch commits.

We report two types of results. First, we give results using an aggressive
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eight FO4 (f8) clock rate, an aggressive clock rate for future technologies [1] that

emphasizes the scaling difficulties of branch predictor structures. Next, we give

results for a fixed process technology with a clock rate varying from 5 FO4 to 16

FO4, to show the effect of aggressive clock rates independent of process technology

scaling. This set of clock rates allows us to explore a wide range of processor design

philosophies, from sophisticated wide-issue low clock rate processors to deeply

pipelined, high clock rate processors.

4.5.1 Process Technology Scaling

For each process technology, we configure the simulator withthe largest branch

prediction structures (predictor tables, cache, etc.) reachable at the given number

of cycles allocated to branch prediction. The structure sizes are obtained using

the modified version of CACTI described in Chapter 3. For eachbenchmark we

measure IPC, aggregate branch predictor accuracy, and other statistics related to the

branch prediction schemes. Aggregate branch prediction performance is computed

as the arithmetic mean over the benchmarks. Note that the capacity of each structure

is set by its access time, rather than any chip area limitation. With smaller feature

sizes, this assumption is reasonable, as the amount of effective chip area is far larger

than is reachable in the number of cycles we consider.

Predictor Configuration For each predictor, we consider several configurations

of structure capacity and latency in search of the best configuration at each tech-

nology generation. In the caching predictor, the two structures are the PHTC and

the PHT, while in the overriding and cascading predictor thetwo structures are the

PHT1 and PHT2. As the secondary structure access times increase, the resulting

IPC is slightly worse for the overriding predictor and slightly better for the cascad-
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Technology PHT1 PHT1 PHT2 PHT2
(nm) Delay Entries Delay Entries
180 1 1K 2 128K
130 1 1K 2 128K
100 1 1K 2 128K
70 1 1K 2 128K
50 1 512 2 64K
35 1 512 2 64K

Table 4.2:The best configurations of the PHT1 and PHT2 for the cascadingand overriding
predictors.

ing predictor. The size of the secondary structure for the caching predictor makes

little difference in performance. The rest of our results are reported using the best

configurations found for each prediction technique.

In the caching predictor, we varied the latency of the PHT from 2 to 4 cycles,

keeping the PHTC at a 1-cycle access time. Note that increasing the latency of each

table also increases its capacity.

For the cascading and overriding predictors, we keep accessto the primary

PHT at one cycle while varying access to the secondary PHT from from 2 to 4

cycles. Increasing the second level (PHT2) latency reducesIPC slightly for the

overriding predictor, but increases IPC slightly for the cascading predictor.

Initially, while tuning the caching predictor, we noticed that the PHTC has

an unusually small number of entries compared with the otherstructures. Unlike a

normal cache that has large cache lines, our caching predictor requires many times

more tag bits than data bits. The extra wire length involved in accessing the tag

bits severely restricts the number of cache entries, limiting the effectiveness of this

scheme. Other prediction components in which the size of thebasic prediction ele-

ment is large with respect to the number of tag bits, such as the perceptron predictor,
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may be more amenable to a caching scheme. For this study, we chose a 2-way set-

associative cache with a line size equal to the square root ofthe number of cached

prediction table entries. Thus, we trade tag bits for locality. We can access a larger

structure, but, due to the absence of spatial locality in branch prediction table access

patterns, we must settle for high miss rates in the cache.

The best configurations for the cascading predictor at thef8 clock rate are

shown in Table 4.2. The best configurations for the overriding predictor are iden-

tical to those of the cascading predictor, since the two predictors have much the

same architecture and differ only in their policy of when andwhether to use the

second-level PHT. Indeed, the stream of updates to the PHT1 and PHT2 structures

should be the same in both overriding and cascading predictors; the only differ-

ence is that the overriding predictor always uses the PHT2 prediction, while the

cascading predictor only uses the PHT2 prediction when it has enough time.

Accuracy and Performance: Figure 4.6 shows the accuracies of the best con-

figurations of the various predictors at thef8 clock rates. As shown in the graph,

accuracy tends to decrease with feature sizes, because the prediction table capaci-

ties decrease. The accuracy of the overriding predictor increases slightly from 100

to 70nm, since the best configuration for 70nm technology allows the PHT2 to take

three cycles, while the best configuration in 100nm allows only two cycles. The

combination of the cascading and overriding predictors achieves the highest accu-

racy because it always uses a larger second-level predictor, either because it agrees

with or overrides the first-level predictor. The cascading predictor by itself per-

forms worse because it sometimes uses the less accurate first-level predictor when

there are not enough cycles to use the second-level predictor. Thus this predictor

faces the challenge of branch misprediction as well as branch target misprediction.
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Finally, caching performs less well, not even exceeding theaccuracy of a single

levelgsharepredictor due to the fact that pattern history table accesses exhibit very

little locality.

Of course, accuracy is not necessarily indicative of performance, particularly

when prediction time is a variable. Figure 4.7 show the instruction throughput (IPC)

for each of the configuration described above. The predictors follow parallel trajec-

tories with performance reflecting the overall accuracy of the predictor. Clearly, the

combination of cascading and overriding predictors, with it higher accuracy, is best

for every process technology at the aggressivef8 clock rate.

4.5.2 Clock Rate Scaling

We have seen how wire delay will affect branch predictor delay at the fixedf8
clock rate in future technologies. Now, we illustrate the problem along a different

dimension. We look at a fixed technology, 130 nm feature size,and vary the clock

rate from 1.3 GHz to 3.6 GHz. This technology is especially relevant since it is in

the process of being adopted by manufacturers as we write this dissertation. This

range of clock rates is equivalent to clock periods fromf16 down tof5. As the clock

rate increases, the size of the largest PHT accessible in a single cycle decreases.

Figure 4.8 shows the misprediction rates of the various predictors as the

clock rate is increased. The misprediction rate forgshareincreases dramatically

as the clock rate is increased. At 1.3 GHz (f16), the misprediction rate of a 32KB

gshareis 1.76%. The rate increases to 2.3% at for a 4KBgshareat 1.8GHz, a clock

rate equivalent tof11. At 3.5 GHz orf5, the misprediction rate is a distressing

8.26%, because only a very small 4-bytegsharecan be built at this aggressive clock

rate. It’s important to note that at this point, the CACTI models of circuit behavior

are unrealistic, since we would not use a cache-like structure to address 32 bits of
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Figure 4.8:Misprediction Rate vs. Clock Rate in 130 nm Technology.

SRAM.

The misprediction rate of the overriding predictor remainsthe lowest of all

the techniques. At 1.3 GHz, the misprediction rate is 1.83%.At 3.6 GHz, the

misprediction rate is still low at 2.52%, an improvement of 70% overgshare.

Figure 4.9 shows the IPCs yielded by the predictors as the clock rate is in-

creased. As expected, all of the IPCs go down as clock rate increases. Nevertheless,

using hierarchical organizations, we can reduce the percentage by which IPCs de-

crease. Usinggshare, going from 16 FO4s to 5 FO4s results in a reduction in IPC

due to increase branch misprediction of 16%, from 1.90 to 1.61. By combining

overriding and cascading, IPC is reduced by only 2.6%, down to 1.85%.
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4.6 Summary

In this chapter we have examined a number of hierarchical branch predictor orga-

nizations and evaluated them in the context of aggressive clock rates and future

process technologies. The predictor that caches a pattern history table (PHT) for

gshareperforms no better thangshareby itself. The tags needed to implement a

caching scheme requires more bits than the cache itself, andlimits both cache ca-

pacity and utility. The cascading lookahead predictor thatuses the time in between

branches to make predictions performs reasonably well at aggressive clock rates.

An overriding predictor that allows a slow predictor to cancel the prediction of a

faster, but less accurate predictor performs even better than the cascading approach.

We achieve the best performance by combining the cascading and overriding ap-

proaches.

To continue supplying a sufficient number of instructions tothe execution
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core while continuing to use large table-based branch predictors, future microarchi-

tectures must move branch prediction latency off of the critical path. The schemes

we present, particularly the combination of cascading and overriding predictors, can

be augmented by using something other thangshareas the primary or secondary

predictor. We believe that the secondary predictor is the ideal place for a more

complex and longer latency predictor, as it can be kept off ofthe critical path. We

explore hierarchical organizations for one such predictorin the next chapter.
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Chapter 5

Perceptron Predictor

We have seen that hierarchical predictor organizations allow us to tolerate some la-

tency in the branch predictor, and still deliver a prediction in a single cycle. Rather

than simply extend existing predictors to use larger tablesfor increased accuracy,

we explore the use of computationally complex branch predictors that have previ-

ously been infeasible because of delay. We propose a new predictor, theperceptron

predictor, based on neural learning. This predictor provides a case study for hi-

erarchical delay-sensitive predictors, since the neural method used takes multiple

cycles to provide a prediction. Our work builds on the observation that all existing

two-level techniques use tables of saturating counters. Neural networks are another

prediction mechanism capable of providing good predictions. It is interesting to

ask whether we can improve accuracy by replacing these counters with neural net-

works. Since most neural networks would be prohibitively expensive to implement

as branch predictors, we explore the use of perceptrons, oneof the simplest possi-

ble neural networks. Perceptrons are easy to understand, simple to implement, and

have several attractive properties that differentiate them from more complex neural

networks, such as a space-efficient representation and a relatively quick method for

computing the prediction.
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We propose a two-level scheme that uses fast perceptrons instead of two-bit

counters [33]. Ideally, each static branch is allocated itsown perceptron to predict

its outcome. Traditional two-level adaptive schemes use a pattern history table

(PHT) of two-bit saturating counters, indexed by a global history shift register that

stores the outcomes of previous branches. This structure limits the length of the

history register to the logarithm of the number of counters.Our scheme not only

uses a more sophisticated prediction mechanism, but it can consider much longer

histories than saturating counters.

We give results showing that our predictor outperforms other predictors at

moderate and large hardware budget, providing evidence that the perceptron pre-

dictor is the most accurate fully dynamic branch predictor known. We explain why

and when our predictor performs well. We show that the neuralnetwork we have

chosen works well a class oflinearly separable branches, a term we introduce. We

also show that programs tend to have many linearly separablebranches, and that

linearly inseparable branches are predicted just as well bythe perceptron predictor

as by other predictors.

This chapter describes our technique for doing branch prediction using neu-

ral learning. We motivate the idea, describe neural methodsfor branch prediction,

discuss implementation of the predictor, and give results showing how a hierarchi-

cal organization can enable our complex predictor to provide a prediction in a single

cycle.

5.1 Neural Methods for Dynamic Branch Prediction

Artificial neural networks learn to compute a function usingexample inputs and

outputs. Neural networks have been used for a variety of applications, including
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pattern recognition, classification [23], and image understanding [36, 30]. In this

section, we explain how neural methods might be applied to dynamic branch pre-

diction. We discuss the general idea, then explain why we chose the perceptron in

particular for branch prediction.

5.1.1 Prediction with Neural Methods

Suppose a setS is partitioned inton classes, and we are faced with the problem

of determining, for an arbitrary elements 2 S, what classs is in. The elements

of S have certain features which correlate with their classifications. An artificial

neural network can learn correlations between these features and the classification.

An artificial neural network is a collection of neurons, someof which receive input

and some of which produce output, that are connected by links. Each link has a

weight associated with it that determines the strength of the connection [23]. For

a classification problem such as deciding to which ofn classes an inputs belongs,

there aren output neurons. In the special case where there are only two classes,

there is only one output neuron. Each neuron computes its output from the sum

of its input using anactivation function. During a training phase, the weights are

adjusted using a training algorithm. The algorithm uses a set of training data, which

are ordered pairs of inputs and corresponding outputs. The neural network learns

correlations between the inputs and outputs, and generalize this learning to other

inputs. To predict which class a new inputs is in, we supplys to the input units of

the trained neural network, propagate the values through the network, and examine

the n output neurons. We classifys according to the neuron with the strongest

output. In the special case wheren = 2, there is only one output neuron; in this case,

we classifys according to whether the output value exceeds a certain threshold,

typically 0 or 12 .
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5.1.2 Neural Learning for Dynamic Branch Prediction

For dynamic branch prediction, the inputs to a neural learning method are the binary

outcomes of recently executed branches, and the output is a prediction of whether

or not a branch will be taken. Each time a branch is executed and the true outcome

becomes known, the history that led to this outcome can be used to train the neural

method on-line to produce a more accurate result in the future.

5.1.3 Choosing a Neural Method

There are many types of neural networks. Most of them are inappropriate for branch

prediction because they require much longer than several machine cycles to oper-

ate. Thus, for our discussion, we limit ourselves to neural network architectures

that could feasibly be made to operate at the high speeds required for branch pre-

diction. We consider four methods: multi-layer perceptrons with back-propagation,

the ADALINE neuron [60], Hebb learning [23], and the Block perceptron [9]. In pre-

liminary work, we measured the misprediction rates yieldedby each method on the

SPEC95 benchmarks. Hebb learning, ADALINE neurons and Block perceptrons are

simple neural learning methods, in which a single neuron is used for computation

and is trained with a simple algorithm. Hebb learning yieldspoor branch prediction

accuracy. While ADALINE and the perceptron yield similar prediction accuracy,

the ADALINE neuron requires twice as much space to represent the weightswith

sufficient accuracy. Back-propagation is infeasible because of its implementation

complexity, since there is no way to implement back-propagation in hardware such

that a prediction can be produced in just a few cycles. Moreover, in our preliminary

experiments we find that the perceptron learns faster and yields more accurate pre-

diction than back-propagation. For instance, on the SPEC95benchmark126.gcc,
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perceptrons achieve a 2.44% misprediction rate, compared with 3.33% for back-

propagation [34].

One benefit of perceptrons is that by examining theirweights, i.e., the cor-

relations that they learn, it is easy to understand the decisions that they make. By

contrast, a criticism of many neural networks is that it is difficult or impossible to

determine exactly how the neural network is making its decision. Techniques have

been proposed to extract rules from neural networks [53], but these rules are not

always accurate. Perceptrons do not suffer from this opaqueness; the perceptron’s

decision-making process is easy to understand as the resultof a simple mathemati-

cal formula.

5.2 Branch Prediction with Perceptrons

This section provides the background needed to understand our predictor. We de-

scribe perceptrons, explain how they can be used in branch prediction, and discuss

their strengths and weaknesses. Our method is essentially atwo-level predictor,

replacing the pattern history table with a table of perceptrons.����1 ����x1 ... ����xi ... ����xn
����y

SSSSSSww0 BBBBBBNw1 ������ wi ������/ wn
Figure 5.1:Perceptron Model.
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5.2.1 How Perceptrons Work

The perceptron was introduced in 1962 [50] as a way to study brain function. We

consider the simplest of many types of perceptrons [9], asingle-layer perceptron

consisting of one artificialneuronconnecting severalinput unitsby weighted edges

to oneoutput unit. A perceptron learns a target Boolean functiont(x1; :::; xn) of n
inputs. In our case, thexi are the bits of a global branch history shift register, and

the target function predicts whether a particular branch will be taken. Intuitively,

a perceptron keeps track of positive and negative correlations between branch out-

comes in the global history and the branch being predicted.

Figure 5.1 shows a graphical model of a perceptron. A perceptron is repre-

sented by a vector whose elements are the weights. For our purposes, the weights

are signed integers. The output is the dot product of the weights vector,w0::n, and

the input vector,x1::n (x0 is always set to 1, providing a “bias” input). The outputy
of a perceptron is computed asy = w0 + nXi=1 xiwi:

The inputs to our perceptrons arebipolar, i.e., eachxi is either -1, meaning

not takenor 1, meaningtaken.A negative output is interpreted aspredict not taken.

A non-negative output is interpreted aspredict taken.

5.2.2 Training Perceptrons

Once the perceptron outputy has been computed, the following algorithm is used

to train the perceptron. Lett be -1 if the branch was not taken, or 1 if it was taken,

and let� be thethreshold, a parameter to the training algorithm used to decide when

enough training has been done.
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if sign(yout) 6= t or jyoutj � � then
for i := 0to n dowi := wi + txi
end for

end if

Sincet andxi are always either -1 or 1, this algorithm increments theith

weight when the branch outcome agrees withxi, and decrements the weight when

it disagrees. Intuitively, when there is mostly agreement,i.e., positive correlation,

the weight becomes large. When there is mostly disagreement, i.e., negative corre-

lation, the weight becomes negative with large magnitude. In both cases, the weight

has a large influence on the prediction. When there is weak correlation, the weight

remains close to 0 and contributes little to the output of theperceptron.

5.2.3 Linear Separability

A limitation of perceptrons is that they are only capable of learninglinearly sep-

arable functions [23]. Imagine the set of all possible inputs to a perceptron as ann-dimensional space. The solution to the equationw0 + nXi=1 xiwi = 0
is a hyperplane (e.g. a line, ifn = 2) dividing the space into the set of inputs for

which the perceptron will respondfalseand the set for which the perceptron will

respondtrue [23]. A Boolean function over variablesx1::n is linearly separable

if and only if there exist values forw0::n such that all of thetrue instances can be

separated from all of thefalseinstances by that hyperplane. Since the output of a

perceptron is decided by the above equation, only linearly separable functions can

be learned perfectly by perceptrons. For instance, a perceptron can learn the logical
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AND of two inputs, but not the exclusive-OR, since there is noline separating

true instances of the exclusive-OR function fromfalseones on the Boolean plane.

Figure 5.2 graphs the bipolar AND and XOR functions. A solid line separates

the true instance of AND from thefalseinstances, but the dotted line is unable to

separatedtrue instance of XOR from thefalseinstances.

As we will show later, many of the functions describing the behavior of

branches in programs are linearly separable. Also, since weallow the perceptron

to learn over time, it can adapt to the non-linearity introduced by phase transitions

in program behavior. A perceptron can still give good predictions when learning a

linearly inseparable function, but it will not achieve 100%accuracy. By contrast,

two-level PHT schemes likegsharecan learn any Boolean function if given enough

training time.

5.2.4 Branch Prediction with Perceptrons

We can use a perceptron to learn correlations between particular branch outcomes

in the global history and the behavior of the current branch.These correlations are

represented by the weights. The larger the weight, the stronger the correlation, and

the more that particular branch in the global history contributes to the prediction of

the current branch. The input to the bias weight is always 1, so instead of learning

a correlation with a previous branch outcome, the bias weight, w0, learns the bias

of the branch, independent of the history.

The processor keeps a table ofN perceptrons in fast SRAM, similar to the

table of two-bit counters in other branch prediction schemes. The number of per-

ceptrons,N , is dictated by the hardware budget and number of weights, which itself

is determined by the amount of branch history we keep. Special circuitry computes

the value ofy and performs the training. We discuss this circuitry in Section 5.3.
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When the processor encounters a branch in the fetch stage, the following steps are

conceptually taken:

1. The branch address is hashed to produce an indexi 2 0::N � 1 into the table

of perceptrons.

2. The ith perceptron is fetched from the table into a vector register,P0::n, of

weights.

3. The value ofy is computed as the dot product ofP and the global history

register.

4. The branch is predicted not taken wheny is negative, or taken otherwise.

5. Once the actual outcome of the branch becomes known, the training algo-

rithm uses this outcome and the outputy to update the weights inP .

6. P is written back to theith entry in the table.

It may appear that prediction is slow because many computations and SRAM

transactions take place in steps 1 through 5. However, Section 5.3 shows that a

number of arithmetic and microarchitectural tricks enablea prediction in a single

cycle. It is important to note that training occurs continously, on-line.

5.3 Implementation

This section describes details of the implementation of theperceptron predictor.

We explore the design space for perceptron predictors and discuss details of the

circuit-level implementation.
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5.3.1 Design Space

Given a fixed hardware budget, three parameters need to be tuned to achieve the best

performance: the history length, the number of bits used to represent the weights,

and the threshold.

History length. Long history lengths can yield more accurate predictions [21] but

also reduce the number of table entries, thereby increasingaliasing. In our exper-

iments, the best history lengths ranged from 4 to 50, depending on the hardware

budget. The perceptron predictor can use more than one kind of history. We have

used both purely global history as well as a combination of global and per-branch

history.

Representation of weights. The weights for the perceptron predictor are signed

integers. Although many neural networks have floating-point weights, we found

that integers are sufficient for our perceptrons, and they simplify the design. We find

that using 8 bit weights provides the best trade-off betweenaccuracy and hardware

budget.

Threshold. The threshold is a parameter to the perceptron training algorithm that

determines whether the predictor needs more training. If the magnitude of the out-

put of the perceptron is below the threshold, or if the prediction is incorrect, then

the training algorithm adjusts the perceptron weights; otherwise, the perceptron is

judged to have been trained enough.
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5.3.2 Circuit-Level Implementation

Here, we discuss general techniques that will allow us to implement a quick per-

ceptron predictor, then give more detailed results of a transistor-level simulation.

Computing the Perceptron Output. Computing the output of the perceptron is

on the critical path for making a branch prediction. Thus, the circuit that evaluates

the perceptron should be as fast as possible. Several properties of the problem allow

us to make a fast prediction. Since -1 and 1 are the only possible input values to the

perceptron, multiplication is not needed to compute the dotproduct. Instead, we

simply add when the input bit is 1 and subtract (add the two’s-complement) when

the input bit is -1. In practice, we have found that adding theone’s-complement,

which is a good estimate for the two’s-complement, works just as well and lets us

avoid the delay of a small carry-propagate adder in favor of aset of inverters to

perform the negation. This computation is similar to that performed by multiplica-

tion circuits, which must find the sum of partial products that are each a function

of an integer and a single bit. Furthermore, only the sign bitof the result is needed

to make a prediction, so the other bits of the output can be computed more slowly

without having to wait for a prediction. In this chapter, we report only results that

simulate this complementation idea.

Training. The training algorithm of Section 5.2.2 can be implemented efficiently

in hardware. Since there are no dependences between loop iterations, all iterations

can execute in parallel. Since in our case bothxi andt can only be -1 or 1, the loop

body can be restated as “incrementwi by 1 if t = xi, and decrement otherwise,” a

quick arithmetic operation since thewi are 8-bit numbers:

for each bit in parallel
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if t = xi thenwi := wi + 1
elsewi := wi � 1
end if

Circuit-Level Simulation. Using a custom logic design program and the HSPICE

and CACTI 2.0 simulators we designed and simulated a hardware implementation

of the elements of the critical path for the perceptron predictor for several table sizes

and history lengths. We used CACTI, a cache modeling tool, toestimate the amount

of time taken to read the table of perceptrons, and we used HSPICE to measure the

latency of our perceptron output circuit.

The perceptron output circuit accepts input signals from the weights array

and from the history register. As weights are read, they are bitwise exclusive-ORed

with the corresponding bits of the history register. If theith history bit is set, then this

operation has the effect of taking the one’s-complement of theith weight; otherwise,

the weight is passed unchanged. After the weights are processed, their sum is found

using a Wallace-tree of 3-to-2 carry-save adders [15], which reduces the problem

of finding the sum ofn numbers to the problem of finding the sum of2 numbers.

The final two numbers are summed with a carry-lookahead adder. The Wallace-

tree has depthO(logn), and the carry-lookahead adder has depthO(logn), so the

computation is relatively quick. The sign of the sum is inverted and taken as the

prediction.

Table 5.1 shows the delay of the perceptron predictor for several hardware

budgets and history lengths, simulated with HSPICE and CACTI for 180nm process

technology. We obtain these delay estimates by selecting inputs designed to elicit

the worst-case gate delay. We measure the time it takes for one of the input signals
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to cross half ofVDD until the time the perceptron predictor yields a steady, usable

signal. For a 4KB hardware budget and history length of 24, the total time taken

for a perceptron prediction is 2.4 nanoseconds. This delay works out to slightly less

than 2 clock cycles for a CPU with a clock rate of 833 MHz, the clock rate of the

fastest 180 nm Alpha 21264 processor as of this writing. The Alpha 21264 branch

predictor itself takes 2 clock cycles to deliver a prediction, so our predictor is within

the bounds of existing technology. Note that a perceptron predictor with a history

of 23 instead of 24 takes only 2.2 nanoseconds; it is about 10%faster because a

predictor with 24 weights (23 for history plus 1 for bias) canbe organized more

efficiently than predictor with 25 weights, since decreasing the number of weights

to 24 decreases the depth of the Wallace-tree by one.

History Table Size Table Perceptron Total
Length (bytes) Delay (ps) Delay (ps) Delay (ps)

4 128 386 811 1197
7 256 411 808 1219
9 512 432 725 1157
13 1K 468 1090 1558
17 2K 504 1170 1674
23 4K 571 1700 2271
24 4K 571 1860 2431

Table 5.1:Perceptron Predictor Delay.

5.4 Results and Analysis

We use simulations of the SPEC 2000 integer benchmarks to compare the per-

ceptron predictor against two well-known techniques from the literature. We give

results showing how an overriding version of the perceptronpredictor outperforms
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a hybrid predictor. Finally, we present analysis to explainwhy the perceptron pre-

dictor performs well.

5.4.1 Methodology

Here we describe our experimental methodology. We discuss the other predictors

simulated, the benchmarks used, the tuning of the predictors, and other issues.

Predictors simulated. We compare our new predictor againstgshare[41], and

bi-mode[38], and a McFarling-style combinationgshareand PAg hybrid predictor

similar to that of the Alpha 21264, with all tables scaled exponentially for increas-

ing hardware budgets. For the perceptron predictor, we simulate both a purely

global predictor, as well as a predictor that uses both global and local history. This

global/local predictor takes some input to the perceptron from the global history

register, and other input from a set of per-branch histories; all other details of the

perceptron implementation remain the same. For the global/local perceptron pre-

dictor, the extra state used by the table of local histories was constrained to be within

35% of the hardware budget for the rest of the predictor, reflecting the design of the

Alpha 21264 hybrid predictor. Forgshareand the perceptron predictors, we also

simulate theagreemechanism [57], which predicts whether a branch outcome will

agree with a bias bit set in the branch instruction. Theagreemechanism turns de-

structive aliasing into constructive aliasing, increasing accuracy at small hardware

budgets.

Our methodology differs from our previous work on the perceptron predic-

tor [33] in which used traces from x86 executables of SPEC2000 and only explored

global versions of the perceptron predictor. Using the Alpha instruction set, we find

that the improvement yielded by the perceptron predictor over other predictors is
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higher than with the x86 instruction set. We believe that this is because the Al-

pha’s RISC instruction set requires more dynamic branches to accomplish the same

work, thus longer histories will be required. The perceptron predictor can make use

of longer histories than other predictors.

Tuning the predictors. We tune each predictor for history length using traces

gathered from the each of the 12 benchmarks and thetrain inputs. We exhaus-

tively test every possible history length at each hardware budget for each predictor,

keeping the history length yielding the lowest harmonic mean misprediction rate.

For the global/local perceptron predictor, we exhaustively test each pair of history

lengths such that the sum of global and local history length is at most 50. For the

agreemechanism, we set bias bits in the branch instructions usingbranch biases

learned from thetrain inputs.

For the global perceptron predictor, we find, for each history length, the best

value of the threshold by using an intelligent search of the space of values, pruning

areas of the space that give poor performance. We re-use the same thresholds for

the global/local andagreeperceptron predictors.

Table 5.2 shows the results of the history length tuning. We find an inter-

esting relationship between history length and threshold:the best threshold� for a

given history lengthh is alwaysexactly� = b1:93h + 14. This is because adding

another weight to a perceptron increases its average outputby some constant, so

the threshold must be increased by a constant, yielding a linear relationship be-

tween history length and threshold. Through experimentation, we determine that

using 8 bits for the perceptron weights yields the best results.
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Estimating area costs. Our hardware budgets do not include the cost of the logic

required to do the computation. By examining die photos of hardware multipliers,

we estimate that at the longest history lengths, this cost isapproximately the same

as that of 1K of SRAM. Using the parameters tuned for the 4K hardware budget,

we estimate that the extra hardware will consume about the same logic as 256 bytes

of SRAM. Thus, the cost for the computation hardware is smallcompared to the

size of the table.

5.4.2 Impact of History Length on Accuracy

One of the strengths of the perceptron predictor is its ability to consider much longer

history lengths than traditional two-level schemes, whichhelps because highly cor-

related branches can occur at a large distance from each other [21]. Any global

branch prediction technique that uses a fixed amount of history information will

have an optimal history length for a given set of benchmarks.As we can see from

Table 5.2, the perceptron predictor works best with much longer histories than the

other two predictors. For example, with a 4K byte hardware budget,gshareworks

best with a history length of 14, the maximum possible lengthfor gshare. At the

same hardware budget, the global perceptron predictor works best with a history

length of 24.

5.4.3 Misprediction Rates

Figure 5.3 shows the harmonic mean of misprediction rates achieved with increas-

ing hardware budgets on the SPEC 2000 benchmarks. At a 4K bytehardware bud-

get, the global perceptron predictor has a misprediction rate of 1.94%, an improve-

ment of 53% overgshareat 4.13% and 31% over a 6K bytebi-modeat 2.82%.

When both global and local history information is used, the perceptron predictor
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hardware gshare global perceptron global/local perceptron
budget history number history number global/local number
in bytes length of entries length of entries history of entries

128 2 512 4 25 8/2 11
256 1 1K 7 32 10/2 19
512 11 2K 9 51 23/2 19
1K 12 4K 13 73 25/5 33
2K 13 8K 17 113 31/5 55
4K 14 16K 24 163 34/10 91
8K 15 32K 28 282 34/10 182
16K 16 64K 47 348 36/11 341

Table 5.2:Best History Lengths forgshareand Perceptron.

still has superior accuracy. A global/local hybrid predictor with the same config-

uration as the Alpha 21264 predictor using 3712 bytes has a misprediction rate of

2.67%. A global/local perceptron predictor with 3315 bytesof state has a mispre-

diction rate of 1.71%, representing a 36% decrease in misprediction rate over the

Alpha hybrid. Theagreemechanism improves accuracy, especially at small hard-

ware budgets. With a small budget of only 750 bytes, the global/local perceptron

predictor achieves a misprediction rate of 2.89%, which is less than the mispredic-

tion rate of agsharepredictor with 11 times the hardware budget, and less than the

misprediction rate of agshare/agreepredictor with a 2K byte budget. Figure 5.4

show the misprediction rates of two PHT-based methods and two perceptron pre-

dictors on the SPEC 2000 benchmarks for hardware budgets of 4K and 16K bytes.

Large Hardware Budgets

As Moore’s Law continues to provide more and more transistors in the same area, it

makes sense to explore much larger hardware budgets for branch predictors. Evers’
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thesis [22] explores the design space for multi-component hybrid predictors using

large hardware budgets, from 18 KB to 368 KB. To our knowledge, the multi-

component predictors presented in Evers’ thesis are the most accurate fully dynamic

branch predictors known in previous work. This predictor uses a McFarling-style

chooser to choose between two other McFarling-style hybridpredictors. The first

hybrid component joins agsharewith a short history to agsharewith a long history.

The other hybrid component consists of a PAs hybridized witha loop predictor,

which is capable of recognizing regular looping behavior even for loops with long

trip counts.

We simulate Evers’ multi-component predictors using the same configura-

tion parameters given in his thesis. At the same set of hardware budgets, we sim-

ulate a global/local version of the perceptron predictor. The tuning of this large

perceptron predictor is not as exhaustive as for the smallerhardware budgets, due

to the huge design space. We tune for the best global history length on the SPEC

train inputs, and then for the best fraction of global versus localhistory at a single

hardware budget, extrapolating this fraction to the entireset of hardware budgets.

As with our previous global/local perceptron experiments,we allocate 35% of the

hardware budgets to storing the table of local histories. The configuration of the

perceptron predictor is given in Table 5.3.

Figure 5.5 shows the harmonic mean misprediction rates of Evers’ multi-

component predictor and the global/local perceptron predictor on the SPEC 2000

integer benchmarks. The perceptron predictor outperformsthe multi-component

predictor at every hardware budget, with the mispredictionrates getting closer to

one another as the hardware budget is increased. Both predictors are capable of

reaching amazingly low misprediction rates at the 368 KB hardware budget, with

the perceptron at 0.85% and the multi-component predictor at 0.93%.
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Size Global Local Number of Number of
(KB) History History Perceptrons Local Histories
18 38 14 280 2,048
30 40 14 428 4,096
53 50 18 519 8,192
98 54 19 1093 8,192
188 64 23 1652 16,384
368 66 24 3060 32,768

Table 5.3:Configurations for Large Budget Perceptron Predictors.

We claim that our results are evidence that the perceptron predictor is the

most accurate fully dynamic branch predictor known. We mustpoint out that we

have not exhaustively tuned either the multi-component or the perceptron predic-

tors because of the huge computational challenge. Nevertheless, there is a clear

separation between the misprediction rates of the multi-component and perceptron

predictors, and between the perceptron and all other predictors we have examined

at lower hardware budgets; thus, we are confident that our claim can be verified by

independent researchers.

5.4.4 Delay Sensitive Perceptron Predictor

As we have seen, the perceptron predictor has a substantial delay associated with

it. Here, we present the results of using one technique to mitigate this delay. We

simulate an overriding perceptron predictor, and compare our results to the overrid-

ing hybrid branch predictor used by the Alpha 21264. Currently, the fastest Alpha

processor in 180 nm technology is clocked at a rate of 833 MHz.At this clock rate,

both the perceptron predictor and Alpha hybrid predictor deliver a prediction in two

clock cycles.
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Moderate Clock Rate Simulations

Using SimpleScalar/Alpha, we simulate a two-level overriding predictor at 833

MHz. The first level is a 256-entry Smith predictor [56], i.e., a simple one-level ta-

ble of two-bit saturating counters indexed by branch address. This predictor roughly

simulates the line predictor of the overriding Alpha predictor. Our Smith predictor

achieves a harmonic mean accuracy of 85.2%, which is the sameaccuracy quoted

for the Alpha line predictor [35]. For the second level predictor, we simulate both

the perceptron predictor and the Alpha hybrid predictor. The perceptron predictor

consists of 133 perceptrons, each with 24 weights. Althoughthe 25 weight percep-

tron predictor was the best choice at this hardware budget inour simulations, the 24

weight version has much the same accuracy but is 10% faster. We have observed

that the ideal ratio of per-branch history bits to total history bits is roughly 20%, so

we use 19 bits of global history and 4 bits of per-branch history from a table of 1024

histories. The total state required for this predictor is 3704 bytes, approximately the

same as the Alpha hybrid predictor, which uses 3712 bytes. Both the Alpha hy-

brid predictor and the perceptron predictor incur a single-cycle penalty when they

override the Smith predictor. We also simulate a 2048-entrynon-overridinggshare

predictor for reference. Thisgshareuses less state since it operates in a single cy-

cle; note that this is the amount of state allocated to the branch predictor in the HP-

PA/RISC 8500 [39], which uses a clock rate similar to that of the Alpha. We again

simulate the 12 SPEC int 2000 benchmarks, this time allowingeach benchmark to

execute 2 billion instructions. We simulate the 7-cycle misprediction penalty of the

Alpha 21264.

When a branch is encountered, there are four possibilities with the overriding

predictor:
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� The first and second level predictions agree and are correct.In this case, there

is no penalty.� The first and second level predictions disagree, and the second one is correct.

In this case, the second predictor overrides the first, with asmall penalty.� The first and second level predictions disagree, and the second one is incor-

rect. In this case, there is a penalty equal to the overridingpenalty from the

previous case as well as the penalty of a full misprediction.Fortunately, the

second predictor is more accurate that the first, so this caseis less frequent.� The first and second level predictor agree and are both incorrect. In this case,

there is no overriding, but the prediction is wrong, so a fullmisprediction

penalty is incurred.

Figure 5.6 shows the instructions per cycle (IPC) for each ofthe predictors.

The figure shows the IPCs yielded bygshare, an Alpha-like hybrid, and global/local

perceptron predictor given a 7-cycle misprediction penalty. The hybrid and percep-

tron predictors have a 2-cycle latency, and are used as overriding predictors with a

small Smith predictor. Even though there is a penalty when the overriding Alpha

and perceptron predictors override the Smith predictor, their increased accuracies

more than compensate for this effect, achieving higher IPCsthan a single-cycle

gshare. The perceptron predictor yields a harmonic mean IPC of 1.65, which is

higher than the overriding predictor at 1.59, which itself is higher thangshareat

1.53.

Higher Clock Rates

The current trend in microarchitecture is to deeply pipeline microprocessors, sac-

rificing some IPC for the ability to use much higher clock rates. For instance, the
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Intel Pentium 4 uses a 20-stage integer pipeline at a clock rate of 1.76 GHz, as of

this writing. In this situation, one might expect the perceptron predictor to yield

poor performance, since it requires so much time to make a prediction relative to

the short clock period. Nevertheless, we will show that the perceptron predictor can

improve performance even more than in the previous case.

At a 1.76 GHz clock rate, the perceptron predictor describedabove would

take four clock cycles: one to read the table of perceptrons and three to propagate

signals to compute the perceptron output. Pipelining the perceptron predictor will

allow us to get one prediction each cycle, so that branches that come close together

do not have to wait until the predictor is finished predictingthe previous branch.

The Wallace-tree for this perceptron has 7 levels. With a small cost in latch delay,

we can pipeline the Wallace-tree in four stages: one to read the perceptron from

the table, another for the first three levels of the tree, another for the second three

levels, and a fourth for the final level and the carry-lookahead adder at the root of

the tree. The new perceptron predictor operates as follows:

1. When a branch is encountered, it is immediately predictedwith a small Smith

predictor. Execution continues along the predicted path.

2. Simultaneously, the local history table and perceptron tables are accessed

using the branch address as an index.

3. The circuit that computes the perceptron output takes itsinput from the global

and local history registers and the perceptron weights.

4. Four cycles after the initial prediction, the perceptronprediction is available.

If it differs from the initial prediction, instructions executed since that predic-

tion are squashed and execution continues along the other path.
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5. When the branch executes, the corresponding perceptron is quickly trained

and stored back to the table of perceptrons.

Figure 5.7 shows the result of simulating predictors in a microarchitecture

with characteristics of the Pentium 4. The misprediction penalty is 20, to simulate

the long pipeline of the Pentium 4. The Alpha overriding hybrid predictor is con-

servatively scaled to take 3 clock cycles, while the overriding perceptron predictor

takes 4 clock cycles. The 2048-entrygsharepredictor is unmodified. Even though

the perceptron predictor takes longer to make a prediction,it still yields the highest

IPC in all benchmarks because of its superior accuracy. The perceptron predictor

yields an IPC of 1.48, which is 5.7% higher than that of the hybrid predictor at 1.40,

and 15.8% higher than the baseline IPC of 1.28 yielded bygshare.

5.4.5 Training Times

To compare the training speeds of the perceptron predictor with PHT methods, we

examine the first 100 times each branch in each of the SPEC 2000benchmarks is

executed (for those branches executing at least 100 times).Figure 5.8 shows the

average accuracy of each of the 100 predictions for each of the static branches. Thex axis is the number of times a branch has been executed. They-axis is the average,

over all branches in the program, of 1 if the branch was mispredicted, 0 otherwise.

The average is weighted by the relative frequencies of each branch. Over time, this

statistic tracks how quickly each predictor learns. The perceptron predictor achieves

greater accuracy earlier than the other two methods.

The perceptron method learns more quickly thegshareor bi-mode. For the

perceptron predictor, training time is independent of history length. For techniques

such asgsharethat index a table of counters, training time depends on the amount
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of history considered; a longer history may lead to a larger working set of two-

bit counters that must be initialized when the predictor is first learning the branch.

This effect has a negative impact on prediction rates, and ata certain point, longer

histories begin to hurt performance for these schemes [42].As we will see in the

next section, the perceptron prediction does not have this weakness, as it always

does better with a longer history length.

5.4.6 Why Does it Do Well?

We hypothesize that the main advantage of the perceptron predictor is its ability to

make use of longer history lengths. Schemes likegsharethat use the history register

as an index into a table require space exponential in the history length, while the

perceptron predictor requires space linear in the history length.

To provide experimental support for our hypothesis, we simulategshareand

the perceptron predictor at a 64K hardware budget, where theperceptron predictor

normally outperformsgshare. However, by only allowing the perceptron predictor

to use as many history bits asgshare(18 bits), we find thatgshareperforms better,

with a misprediction rate of 1.86% compared with 1.96% for the perceptron pre-

dictor. The inferior performance of this crippled predictor has two likely causes:

there is more destructive aliasing with perceptrons because they are larger, and thus

fewer, thangshare’s two-bit counters, and perceptrons are capable of learning only

linearly separable functions of their input, whilegsharecan potentially learn any

Boolean function.

Figure 5.9 shows the result of simulatinggshareand the perceptron predic-

tor with varying history lengths on the SPEC 2000 benchmarks. Here, we use a 4M

byte hardware budget to allowgshareto consider longer history lengths than usual.

As we allow each predictor to consider longer histories, each becomes more accu-
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rate untilgsharebecomes worse and then runs out of bits at a history length of 23

(sincegsharerequires resources exponential in the number of history bits), while

the perceptron predictor continues to improve. With this unrealistically huge hard-

ware budget,gshareperforms best with a history length of 23, where it achieves a

misprediction rate of 1.55%. The perceptron predictor is best at a history length of

66, where it achieves a misprediction rate of 1.09%.

5.4.7 When Does It Do Well?

The perceptron predictor does well when the predicted branch exhibitslinearly sep-

arable behavior. To define this term, lethn be the most recentn bits of global

branch history. For a static branchB, there exists a Boolean functionfB(hn) that

best predictsB’s behavior. It is this function,fB, that all branch predictors strive

to learn. IffB is not linearly separable thengsharemay predictB better than the

perceptron predictor, and we say that such branches arelinearly inseparable. We

computefB(h14) for each static branchB for each benchmark and test for linear

separability of the function.

Figure 5.10 shows the misprediction rates for each benchmark for a 4KB

budget, as well as the percentage of dynamically executed branches that is linearly

inseparable. For each benchmark, the bar on the left shows the misprediction rate of

gshare, while the bar on the right shows the misprediction rate of a global percep-

tron predictor. Each bar also shows, using shading, the portion of mispredictions

due to linearly inseparable branches and linearly separable branches. We observe

two interesting features of this chart. First, most mispredicted branches are lin-

early inseparable, thus linear inseparability correlateshighly with unpredictability

in general. Second, the perceptron predictor outperformsgsharein all cases ex-

cept for that of186.crafty, the benchmark with the lowest fraction of linearly
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separable branches.

Some branches require longer histories than others for accurate prediction,

and the perceptron predictor often has an advantage for these branches. Figure 5.11

shows the relationship between this advantage and the required history length, with

one curve for linearly separable branches and one for inseparable branches. They axis represents the advantage of our predictor, computed bysubtracting the mis-

prediction rate of the perceptron predictor from that ofgshare. We sorted all static

branches according to their “best” history length, which isrepresented on thex axis.

Each data point represents the average misprediction rate of static branches (with-

out regard to execution frequency) that have a given best history length. We use

the perceptron predictor in our methodology for finding these best lengths: Using

a perceptron trained for each branch, we find the most distantof the three weights

with the greatest magnitude. This methodology is motivatedby the work of Evers

et al., who show that most branches can be predicted by looking at three previous

branches [21]. As the best history length increases, the advantage of the percep-

tron predictor generally increases as well. We also see thatour predictor is more

accurate for linearly separable branches. For linearly inseparable branches, our

predictor performs generally better when the branches require long histories, while

gsharesometimes performs better when branches require short histories.

Linearly inseparable branches requiring longer histories, as well as all lin-

early separable branches, are always predicted better withthe perceptron predictor.

Linearly inseparable branches requiring fewer bits of history are predicted better

by gshare. Thus, the longer the history required, the betterthe performance of the

perceptron predictor, even on the linearly inseparable branches.

We found this history length by finding the most distant of thethree weights

with the greatest magnitude in a perceptron trained for eachbranch, an application
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of the perceptron predictor for analyzing branch behavior.

5.4.8 Additional Advantages of the Perceptron Predictor

This subsection describes two additional benefits of using perceptrons to perform

branch prediction.

Branch prediction with perceptrons has other advantages over previous meth-

ods. A perceptron output can give a confidence in the prediction. The weight vector

can be used to find correlations between branches, so this method can be used in

simulation to analyze the behavior of a program.

Assigning confidence to decisions.Our predictor can provide a confidence-level

in its predictions that can be useful in guiding hardware speculation. The output,y,

of the perceptron predictor is not a Boolean value, but a number that we interpret

astakenif y � 0. The value ofy provides important information about the branch

since the distance ofy from 0 is proportional to thecertaintythat the branch will be

taken [30]. This confidence can be used, for example, to allowa microarchitecture

to speculatively execute both branch paths when confidence is low, and to execute

only the predicted path when confidence is high. Some branch prediction schemes

explicitly compute a confidence in their predictions [29], but in our predictor this

information comes for free. We have observed experimentally that the probability

that a branch will be taken can be accurately estimated as a linear function of the

output of the perceptron predictor. Figure 5.12 shows an emprical measurement of

the sample probability that a branch is taken as a function ofthe perceptron output

for the SPEC int 2000 benchmarks.
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Analyzing branch behavior with perceptrons. Perceptrons can be used to ana-

lyze correlations among branches. The perceptron predictor assigns each bit in the

branch history a weight. When a particular bit is strongly correlated with a par-

ticular branch outcome, the magnitude of the weight is higher than when there is

less or no correlation. Thus, the perceptron predictor learns to recognize the bits

in the history of a particular branch that are important for prediction, and it learns

to ignore the unimportant bits. This property of the perceptron predictor can be

used with profiling to provide feedback for other branch prediction schemes. For

example, our methodology in Section 5.4.7 could be used witha profiler to provide

path length information to the variable length path predictor [58].

5.5 Summary

In this chapter we have introduced a new branch predictor that uses neural networks—

the perceptron in particular—as the basic prediction mechanism. Perceptrons are

attractive because they can use long history lengths without requiring exponential

resources. A potential weakness of perceptrons is their increased computational

complexity when compared with two-bit counters, but we haveshown how a per-

ceptron predictor can be implemented efficiently by using delay-hiding hierarchi-

cal organizations. Another weakness of perceptrons is their inability to learn lin-

early inseparable functions. Nevertheless, the perceptron predictor performs well,

achieving a lower misprediction rate, at all hardware budgets, than well-known

global predictors on the SPEC 2000 integer benchmarks. Branches exhibiting lin-

early inseparability are hard to predict in general, not just hard for perceptrons.

In the Introduction, the reader may have momentarily worried that the era of

proposals for increasingly complex branch predictors is over. The reader can rest
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assured that, with hierarchical organizations, researchers are free to explore more

expensive and exotic solutions to the problem of increasingbranch predictor accu-

racy. Nevertheless, we must ask ourselves whether this approach can be sustained

indefinitely, and whether there are simpler ideas that address branch predictor delay

and accuracy without increasing the complexity that the microarchitect has to deal

with. In the next two chapters, we explore alternative ideasthat address delay by

reducing complexity, rather than increasing it.
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Chapter 6

Cooperative Prediction with Branch
Path Re-Aliasing

We have seen how to mitigate the problem of branch predictor delay by using more

complex hardware. However, it seems intuitive that we wouldrather uselesshard-

ware, because branch predictor delay is due in large part to the propagation delay of

signals through complex circuitry and long wires. In this chapter and the next chap-

ter, we explore the idea of shifting some of the work of makinga prediction to the

compiler, so that the compiler and processor cooperate to make the prediction. By

reducing the complexity of the hardware, these cooperativepredictors have reduced

access delay.

Traditional predictors such asgshare[41], bi-mode[38], YAGS [18], and

hybrid predictors [20] reduce destructive aliasing in the PHT by introducing more

levels of logic onto the critical path for making a prediction; with aggressive clock

rates, these branch predictors will become less feasible.

In this chapter, we proposebranch path re-aliasing, a branch prediction

technique which enlists the compiler’s help in moving important functionality off

of the critical path to making a prediction, providing a quick prediction in a sin-

gle cycle while moving other prediction work to the less critical predictor update
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stage. In particular, our scheme gives the compiler the taskof decreasing destructive

aliasing and increasing constructive aliasing, so that thebranch predictor hardware

can be simplified. While other approaches have used the compiler to provide hints

which decrease aliasing, this scheme is unique in that the hint bits are kept off the

critical path for prediction. Branch path re-aliasing is limited in scope to branch

predictors that use GAg, i.e., a simple PHT indexed only by the global history, as

the prediction mechanism.

In our scheme, the compiler uses path profiling information to provide hints

to branch instructions so that paths with different outcomes will have histories that

map to different locations in the branch predictor’s tables. For our purposes, a path

through the program is a sequence of conditional branch executions up to a certain

length; path profiling is a technique that keeps a count of thenumber of times each

path through the program is executed. A small, simple predictor is used to make

a branch prediction, after which the branch history is updated so that destructive

aliasing is decreased. Our scheme places abranch inversion bitin each branch

instruction to indicate whether the branch outcome should be inverted before it is

recorded in the global history register. Even in CPUs with multi-cycle instruction

caches, our scheme can deliver a prediction in parallel withthe instruction cache

access, and only needs to read the hint bit to update the branch predictor.

Our simulations show that a 2048-entry GAg predictor enhanced with branch

path re-aliasing has a misprediction rate of 6.5%, 21% lowerthan the misprediction

rate of 8.2% for the same sized, but more complicated,gsharepredictor, and equiv-

alent to the misprediction rate of agsharepredictor with twice the size. We also

show that our predictor can improve accuracy for other PHT-based predictors.

In this chapter we introduce the concept of branch path re-aliasing. We

discuss the motivation behind this idea, discuss the problem of aliasing in branch
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predictors, describe our optimization and algorithm, and provide results showing

how our scheme improves accuracy.

6.1 Branch Path Re-Aliasing

In this section, we describe the problem of history aliasing, which is common to

many two-level branch predictors. We then describe a technique that increases

accuracy by decreasing aliasing.

6.1.1 Path and Outcome Histories

Branch path re-aliasing gives the compiler explicit control over how paths through

the program are mapped to PHT entries. Branch outcomes are highly correlated

both with path and pattern histories [43, 65, 58]. Pattern histories are easier to use

than path histories since they require recording only a single bit for each branch.

However, pattern histories are highly susceptible to aliasing, both between differ-

ent static branches and within the same branch. That is, several different paths

correlated with different branch behaviors may all induce the same pattern history,

leading to destructive aliasing. Our optimizationre-aliasespattern histories to bet-

ter reflect path histories, improving accuracy by decreasing destructive aliasing.

6.1.2 History Aliasing in a Global Predictor

Several types of aliasing have been identified in branch predictors [42]. Our focus

is onconflict aliasing. Consider a GAg predictor, which consists of a PHT indexed

by a global history register. Two different paths in the program may coincidentally

lead to the same global history, even though the code being executed is unrelated.

In this case, the same PHT entry will be used for both branches, but the prediction
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may not correlate highly with the outcome of either. Thus, the branch predictor will

have poor accuracy for these branches.

6.1.3 Our Solution: Branch Path Re-Aliasing

Our approach to solving the history aliasing problem is to insert a hint bit into each

instruction that tells the branch history update mechanismwhether or not to invert

the branch outcome before recording it in the history register. We choose the hint

bits, which we callinversion bits, such that paths leading to branches with opposite

outcomes will have different histories. Essentially, by changing the way paths alias

one another in the PHT, we reduce destructive aliasing.

We introduce our idea by modifying the simplest possible two-level branch

predictor: the GAg. A global history register is used to index a PHT of two-bit

saturating counters, from which the prediction is directlyread. Once the prediction

is read and made available to the fetch engine, the critical time to make a prediction

is over, so the predictor is no slower than a normal GAg. The branch prediction is

then used to speculatively update the global history register, which is backed up and

corrected after a misprediction. With branch path re-aliasing, the difference comes

in how the history register is updated. Each branch instruction encodes an inversion

bit. If this bit is set, then the branch outcome is inverted before it is recorded in

the global history register. In short, the value recorded inthe history register is the

exclusive-OR of the inversion bit and the branch outcome.

At first glance, it might seem that this technique could be implemented by

simply changing branch senses and reordering code; however, this transformation

would be at odds with techniques such as branch alignment [13] that seek to mini-

mize the number of taken branches to increase fetch bandwidth. Branch alignment

can increase performance, even though it may decrease prediction accuracy [47].
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Our technique can nicely complement branch alignment by decreasing the destruc-

tive aliasing introduced by alignment.

Path Profiles

Path profiling collects information on the the execution paths of a program [7].

Branch path re-aliasing uses path profiles to determine which branches should have

their inversion bits set. For a history length ofN , i.e., a GAg with anN -bit history,

each path profile stores the following information for a pathp:

1. The addresses of the lastN branches encountered.

2. The outcomes (takenor not taken) of the lastN branches encountered.

3. freq(p), the frequency with which this path was executed.

4. ntaken(p), the number of times this path led to a taken branch.

Algorithm

Once the path profiles have been collected, we use a two-phasealgorithm to set

inversion bits. In the first phase, the algorithm tries to mappaths to PHT entries by

setting the inversion bits of certain branches, causing constructive aliasing between

paths that agree on branch outcome and choosing different PHT entries for paths

with different outcomes. Each path is examined in decreasing order of execution

frequency. For each path, we choose a set of inversion bits that either map the path

to PHT to which similarly-biased paths are mapped, or to an unused PHT entry. As

inversion bits are set, they become fixed for paths that are examined later; thus, this

greedy local algorithm is augmented with a second phase thatconsiders the global

situation. In the second phase, a hill-climbing heuristic sets the inversion bits of
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each branch sense one at a time, keeping the set of inversion bits that maximizes

a fitness function based on the estimated amount of constructive and destructive

interference. The details the two phases are as follows:

1. The first phase of the algorithm maps paths to PHT entries byinverting or not

inverting branches along the path. The algorithm considerseach path profile

in descending order of frequency. For each profilep, the algorithm looks for

an entryi in the PHT to which similarly biased paths are mapped, or to which

no paths are mapped at all. If one is found, then pathp is mapped to PHT

entryi; otherwise, the inversion bits of the pathp are left the same.

2. The second phase considers each static branch, choosing the inversion hint bit

for that branch that maximizes a fitness function over all branches. LetPi be

the set of paths all mapped to PHT entryi, and letn be the history length, so

that there are2n counters in the PHT. Let a Booleantakeni be the aggregate

bias (i.e. true fortakenor false fornot taken) of all the paths mapped to PHT

entryi, i.e.,takeni is true if and only if:Xp2Pi ntaken(p) � 12Xp2Pi freq(p)
In other words,takeni is true if and only if all the paths mapped to PHT entryi lead to taken branches at least half the time. For a pathp, let a Boolean

biasp be true if and only ifntaken(p) � freq(p)=2, i.e.,biasp is the bias of an

individual path. Then the value of the fitness function is:X0�i�2hXp2Pi8<: freq(p) if takeni = biasp�freq(p) otherwise
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Each path is mapped to a particular PHT entry. Intuitively, the fitness function

is the sum, over all paths, of the frequencies of paths mappedto PHT entries

with the same bias, minus the frequencies of paths mapped to PHT entries

with different bias. The higher the fitness function, the more constructive and

less destructive interference there is.

6.1.4 Implementing Inversion Bits

An important consideration for branch path re-aliasing is the representation of the

inversion bits. Each branch instruction encodes an inversion bit, which is reason-

able since several existing ISAs already dedicate one or twobits in each branch

instruction to managing branch prediction. For example, the HP/PA-RISC archi-

tecture allows each branch to encode a bias bit [39], which isused either for static

or agreebranch prediction. The Pentium 4 microprocessor extends the IA-32 in-

struction set to include branch hints [28]. The IA-64 architecture encodes several

hint bits in branch instructions [25]. These extra bits in the ISA could be re-used to

represent inversion bits. Old binaries would still run withreduced performance, and

newer ones could be optimized to use the inversion bits for branch path re-aliasing.

6.2 Results and Analysis

In this section, we give the results of branch path re-aliasing on the SPEC 2000 in-

teger benchmarks, measuring the decrease in mispredictionrates on several branch

predictors. We show that our optimization also helps more complexagreeand hy-

brid predictors. Finally, we measure the decrease in aliasing responsible for the

improved accuracy.
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6.2.1 Predictor Simulation Methodology

We use thetrain inputs for collecting the path profiles, and we use theref inputs

to evaluate the accuracy of the predictors. We use traces to gather our path profiles.

This method is costly, but there are techniques in the literature that would make

this task much more efficient, for example, the efficient algorithm of Young [66],

which gathers bounded-length paths with both forward and backward edges, or the

forward-path profiling of Ball and Larus [7]. We consider path profiles with history

lengths of 8 to 15.

We use branch path re-aliasing to decrease the misprediction rates of three

dynamic branch predictors: GAg, anagreepredictor, and a hybrid predictor. We

compare our improved predictors with several other predictors. We first tune each

predictor for optimal history length using the traces collected with thetrain in-

puts.

6.2.2 Algorithm Implementation

We measure misprediction rates using a trace-driven simulation program. For our

simulations, we use a 733MHz Pentium III that reads compressed traces from an

NFS server. On this machine, the branch path re-aliasing algorithm takes from 5

to 30 minutes, depending on the history length, number of paths in the program,

and compression ratios of the traces. We did not pay particular attention to the

efficiency of the program, using C++ and STL for rapid development. If profiling

performance becomes a problem in a production version of branch path re-aliasing,

Young’s more complex path profiling algorithm could be used to provide greater

efficiency.
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6.2.3 Hownot to do Branch Path Re-Aliasing

Before we go on to our main results, we will explore two obvious but unwise ideas

that may come to mind when implementing branch path re-aliasing. We describe

them here, and explain why, although they may seem like good ideas at first glance,

they are not.
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Figure 6.1:Misprediction rates for alternate implementations of branch path re-aliasing,
along with GAs.

Random Inversion Bits

One idea is to set the inversion bits randomly. Branch histories come from a very

non-uniform distribution. Thegsharepredictor uses the branch address as a way to

more randomly distribute accesses among the PHT. Perhaps wecould use random

inversion bits to achieve the same effect. If this works, then maybe the inversion

bits would not be needed in the ISA at all, but could be derivedfrom, say, the bits

in the branch address. Figure 6.1 shows the results of simulating GAg with pseudo-

random inversion bits over a range of hardware budget, alongwith GAs and GAg
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with branch path re-aliasing. At almost every hardware budget, but especially at

the small ones with which we are most concerned, this technique yields the poorest

misprediction rates. Without using some intelligence in setting the inversion bits,

this technique fails.

Simulating Inversion Bits with Branch Senses

Another way to implement branch path re-aliasing without inversion bits in the ISA

is to use branch senses to simulate inversion bits. For instance, if we would nor-

mally set the inversion bit for a “branch if zero” branch, we would instead change

the branch to a “branch if not zero” branch and re-order the basic blocks in the code

to maintain the correct program semantics. Thus, it would seem that our optimiza-

tion could be used with an unmodified GAg predictor in existing hardware, such as

the GAg component of the Alpha 21264.

Figure 6.1 shows the misprediction rates resulting from simulating this idea.

We modified the branch path re-aliasing algorithm to take into account the fact that

the actual predictions were changing, not just the contentsof the history register,

so that the fitness function would provide meaningful inversion hints for changing

branch senses. Again, this technique performs more poorly than GAs. Our reg-

ular branch path re-aliasing technique only changes the distribution of the bits in

the global history register, to distribute accesses to the PHT such that aliasing is

avoided. Changing branch senses also changes the distribution of the values in the

PHT itself, introducing many more degrees of freedom to the problem and funda-

mentally increasing the complexity of finding an optimal solution.

There is a much more compelling reason not to do branch path re-aliasing

by changing branch senses. On many microarchitectures, taken branches incur

a penalty, since instruction fetch usually cannot be accomplished across a taken
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branch, and instruction cache misses are more likely when there are non-sequential

accesses. Changing branch senses to increase predictor accuracy is at odds with

code-reordering optimizations such as branch alignment [13] that try to minimize

the number of taken branches. Even though code-reordering sometimes results in

slightly reduced predictor accuracy [47], performance increases overall because

there are fewer taken branches. Indeed, our hardware version of branch path re-

aliasing might help regain some of the lost accuracy and complement code-reordering

transformations.

Our conclusion from this subsection is that the best approach to implement-

ing branch path re-aliasing is to use inversion bits and extra hardware in the micro-

processor, and extra intelligence in the compiler.

6.2.4 Simple Two-Level Predictors
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Figure 6.2:Branch misprediction rates on the SPEC 2000 integer benchmarks.

Figure 6.2 compares our basic scheme, GAg with branch path re-aliasing,

against three simple two-level predictors: GAg, GAs, andgshare. The graph shows
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misprediction rates for hardware budgets ranging from 256 to 8K bytes. At all hard-

ware budgets, our basic scheme achieves the lowest misprediction rate. The graph

does not show, of course, that our scheme allows faster clocking by removing work

from the critical path. For a branch predictor with 2K-entries, the same hardware

budget used in the AMD Athlon, branch path re-aliasing reduces the misprediction

of GAg by 32%, from 9.5% down to 6.5%. The misprediction ratesfor a 2K-entry

GAs andgshareare 7.5% and 8.2%, respectively; for 2K-entries, our basic predic-

tor sees misprediction rates that are lower than GAs andgshareby 13% and 21%,

respectively.

To see how these numbers might be used to design future predictors, suppose

the microarchitects of a CPU core that uses a 4K-entry GAs predictor decided it was

necessary to shrink the branch predictor to 2K entries to allow for more aggressive

clocking. Our simulations show that the misprediction ratewould increase by 12%,

from 6.7% to 7.5%. Instead, the microarchitects could replace the 4K-entry GAs

with a 2K-entry GAg and provide inversion bits. Branch path re-aliasing could

achieve a misprediction rate of 6.5%, decreasing the misprediction rate of the larger

predictor by 3%.

6.2.5 More Complex Predictors

We have argued that high-latency, complex predictors will become less feasible as

clock rates increase and pipelines get longer. Nevertheless, some CPU designs will

continue to keep shorter pipelines and less aggressive clock rates. Even with more

complex predictors, branch path re-aliasing offers higheraccuracy.
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Agree Predictors

Theagreepredictor achieves increased accuracy by turning the destructive aliasing

of a normal PHT predictor into constructive aliasing. Rather than predicting the

outcome of a branch, the PHT is used to predict whether the outcome will agree

with a bias bit. Still, there is a different kind of destructive aliasing to whichagree

predictors are susceptible. Instead of paths that lead to taken and not taken branches

colliding in the PHT, we may have paths that lead to agreementand disagreement

with the bias bit aliasing each other. We modify the branch path re-aliasing algo-

rithm to reduce aliasing in a GAg-basedagreepredictor that uses bias bits set in

each branch instruction. Instead of keeping track of the taken/not taken bias of a

particular path, the new algorithm keeps track of the agree/disagree bias of a path.

That is, for each PHT entry, the algorithm determines whether each path leading to

that entry usually agrees or disagrees with the corresponding bias bit.

Figure 6.3 shows harmonic means of misprediction rates for several hard-

ware budgets, as well as the misprediction rates on each SPECinteger benchmark

means for 2K-entry GAs,gshare, and GAg predictors with branch path re-aliasing,

each using theagreemechanism. These predictors use the same size table as the

agreepredictor of recent HP-PA/RISC cores such as the 8700 [39, 59]. Branch

path re-aliasing achieves the lowest harmonic mean misprediction rate of 4.4%,

compared with 4.8% for GAs withagreeand 4.5% forgsharewith agree.

Although reading the bias bit is still on the critical path for making a pre-

diction with branch path re-aliasing, reading address bitsand propagating values

through exclusive-OR gates is not.
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Figure 6.3:Branch misprediction rates on each SPEC 2000 integer benchmarks foragree
predictors.
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Hybrid Predictors

One of the components of the Alpha 21264 hybrid branch predictor is a 4K-entry

GAg predictor. The choice predictor, which predicts whether the global or per-

branch component will be more accurate, is also a 4K-entry table of 2-bit counters

indexed by the global branch history. We modified the branch path re-aliasing pro-

gram to measure the bias of a particular branch to be predicted better by a global

or per-branch predictor by tracking the misprediction rates of both prediction com-

ponents. We modified the fitness function to take into accountboth taken/not taken

and global/per-branch biases. This way, aliasing is reduced both in the global PHT

as well as in the choice table.

We simulate the unmodified Alpha 21264 hybrid predictor, as well as a ver-

sion of the Alpha predictor augmented with branch path re-aliasing. We allow the

global and chooser PHTs to range in size from 256 to 32K entries, scaling the per-

branch table of histories and PHT with 1/4 the entries as the global PHT, yielding a

sequence of Alpha-like predictors at increasing hardware budgets. Figure 6.4 shows

a plot of the harmonic means of misprediction rates as a function of hardware bud-

get for the hybrid predictors as well as twoagreepredictors, one with branch path

re-aliasing. Figure 6.4 also shows a bar graph for the 4K-entry global PHT versions

of the hybrid predictors, using the same configuration as theAlpha 21264 predictor.

The bargraph shows a 16K-entryagreepredictor using branch path re-aliasing. This

agreepredictor uses about the same hardware budget (4096 bytes) available to the

Alpha 21264 (3712 bytes). Using branch path re-aliasing with the hybrid predictor

reduces the harmonic mean of the misprediction rate by 10%, from 3.1% to 2.8%.

Using GAg with branch path re-aliasing and theagreemechanism, the mispredic-

tion rate is 3.0%, slightly better than the original hybrid predictor and with reduced
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complexity.

6.2.6 Aliasing Rates

The purpose of branch path re-aliasing is to reduce destructive aliasing in the PHT

for a GAg predictor. In our experiments, we model a “de-aliased” predictor, i.e.,

a predictor where different paths cannot alias the same PHT entries. We use this

predictor to measure three kinds of aliasing [42]:� Destructive aliasing occurs when PHT aliasing leads to a misprediction in

GAg where the de-aliased predictor has no misprediction.� Constructive aliasing occurs when PHT aliasing leads to a correct prediction

where the de-aliased predictor mispredicts.� Harmless aliasing occurs when aliasing in the PHT has no effect on whether

or not a prediction is correct.

Note that these cases are mutually exclusive and account forall aliasing in

the PHT. Figure 6.5 shows these different types of aliasing rates in a 2K-entry GAg

predictor for the SPEC 2000 integer benchmarks, before and after applying branch

path re-aliasing. The harmonic mean of the destructive aliasing rate is reduced by

21%, from 6.1% before re-aliasing to 4.8% after re-aliasing. Constructive aliasing

is also reduced slightly, from 0.41% to 0.31%. Total aliasing is reduced by 48%,

from 18.3% to 9.5%.

On181.mcf, re-aliasing reduces destructive aliasing by 30%, from 16.6%

down to 11.5%, explaining the 64% decrease in the misprediction rate, from 7.9%

for GAg down to 2.8% for GAg with branch path re-aliasing.
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Figure 6.5:Branch aliasing rates on the SPEC 2000 integer benchmarks.

6.3 Limitations of Branch Path Re-Aliasing

In its current form, branch path re-aliasing works only for GAg predictors and pre-

dictors that use GAg as a component. It may have limited applicability to GAs

predictors, but it cannot be used for per-branch predictors(e.g. PAg and PAs) or

other kinds of global predictors like the perceptron predictor. It is also unable to

improve the accuracy of certain predictors likegsharethat use a dynamic technique

to reduce destructive aliasing. Branch path re-aliasing islimited to GAg because it

reduces aliasing by explicitly controlling how different paths map to PHT entries.

Other predictors choose PHT entries (or perceptrons, as thecase may be) based on

some combination of branch address and global history. Branch path re-aliasing is

frustrated in these cases, since the algorithm has no knowledge of branch addresses.

In the case of the perceptron predictor, the majority of destructive aliasing that oc-

curs is between unrelated static branches. Since the perceptron predictor uses only

the branch address and not the global history to select perceptrons, there is no way
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that branch path re-aliasing could reduce this kind of destructive aliasing.

6.4 Summary

We have seen how, by moving complexity off the critical path to making a predic-

tion and into the compiler, we can reduce the size of a GAs predictor and replace

it with an enhanced GAg predictor with much the same accuracy. Branch path re-

aliasing works by enlisting the help of the compiler, through profiling, to control

aliasing explicitly. We have also seen that branch path re-aliasing can be applied to

other predictors that use GAg as a component, such asagreepredictors or hybrid

predictors. Nevertheless, branch path re-aliasing only buys us some time. As we

have seen with the example of the AMD K6 and Athlon, branch path re-aliasing

will allow us to move to the next generation of processors andretain much the same

accuracy. But we will still have the same fundamental problem for future genera-

tions: tables are slow. In the next chapter, we propose a moreradical solution that

will work in any CMOS technology generation.
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Chapter 7

Cooperative Prediction with Boolean
Formulas

Up until this point in the dissertation, we have not eliminated the fundamental

source of the problem: the slow access time to tables. Rather, we have shifted the

burden in various ways. In this chapter, we propose a longer-term solution to the

problem: eliminate the tables altogether, and replace themwith something much

faster. Due to its unique implementation, the delay of this predictor remains low

relative to the most aggressive clock rates and smallest future process technologies.

Existing architectures such as IA-64 allow hint bits in a branch instruction to

specify whether to use the dynamic branch predictor or a static prediction, thus fil-

tering the accesses to the dynamic predictor and reducing aliasing (i.e., contention

for branch prediction resources). If the static predictions are chosen well, we can

obtain better branch prediction accuracy, even with a smaller dynamic branch pre-

dictor.

We extend this idea to consider history-based predictors encoded in the

branch instruction. In our scheme, a branch instruction encodes a Boolean func-

tion, learned through profiling, whose input is the branch history and whose output

is a prediction [31]. The key to our solution is a concise encoding of Boolean
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functions—based onmonotone read-once Boolean formulas—that is well-suited

for branch prediction. Whereas an arbitrary Boolean function in N variables re-

quiresO(2N) bits to encode, monotone read-once Boolean formulas only requireN bits. Figure 7.1 shows such a formula as a logic diagram. Because of our unique

encoding and implementation, our Boolean formula predictor can deliver a branch

prediction in a single cycle even at aggressive clock rates for which accurate PHT-

based predictors are infeasible. The primary contributionof this chapter is a new

branch prediction scheme that encodes into branch instructions a predictor in the

form of a Boolean formula. Our method is particularly attractive in light of trends

in technology scaling and wire delays. Secondary contributions include the follow-

ing: (1) We describe the hardware implementation of our predictor and analyze it in

terms of delay and power; (2) we describe a profiling algorithm for training our pre-

dictor; (3) we describe hybrid versions of our predictor that combine our technique

with dynamic predictors; and (4) we evaluate the accuracy ofour method using the

SPEC 2000 integer benchmarks.

7.1 Branch Prediction with Boolean Formulas

In this section, we describe the main ideas behind predicting branches with Boolean

formulas.

7.1.1 Boolean Formulas as Branch Predictors

History-based branch prediction can be viewed as the problem of learning the

Boolean function of the branch history that gives the best prediction. Leth be a

BooleanN -vector containing the outcomes of the lastN branches executed. For

now, we can think of this branch history as being either global or per-branch. For a
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static branchB, there exists a Boolean functionfB(h) that best predicts whetherB
will be taken given the historyh. The goal of dynamic branch predictors is to learn

this function as quickly as possible to provide accurate prediction.

One approach to branch prediction is to learnfB(h) for each branch in a

profiling run, then somehow encode eachfB(h) in the branch instruction and have

the hardware use the dynamic history to compute the functionand provide a branch

prediction. Statically chosen bias bits, such as those available on HP-PA/RISC and

IA-64, encode constant Boolean functions, which require nohistory information.

If the behavior of branches is stable across different program inputs, then we

would expect branch prediction using these functions to perform very well, even

better than dynamic branch predictors, which have the disadvantages of destructive

aliasing. In practice, input-dependent behavior, such as loop trip counts that vary

from run to run, limits the accuracy of a Boolean formula predictor. But as we will

see, these functions still provide highly accurate predictions.

One problem with this approach is that of representing a Boolean function

within a branch instruction. For instance, with a moderate history length of 10,

there are2210 different Boolean functions. Branch instructions would need to have

over 1000 bits to allow all of these functions to be encoded. Therefore, we consider

an extremely compact, but sufficiently expressive, encoding of Boolean formulas.

7.1.2 Read-Once Monotone Boolean Formulas

We now describe a subset of Boolean formulas that can be compactly represented.

The basic idea is to restrict the Boolean formulas such that each variable appears in

the formula only once, and the only operations allowed are AND and OR.

Letx;y 2 f0; 1gN , i.e.,x andy areN -bit vectors of Boolean values. We say

thatx � y if, for all i, xi � yi. Consider a Boolean functionff0; 1gN 7! f0; 1g,
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i.e., a functionf mapping a vector ofN bits to a single bit. We say thatf is

monotoneif x � y impliesf(x) � f(y) [37]. A monotone Boolean formulais a

Boolean formula that uses only AND (^) and OR (_), without NOT, as connectives.

The functions induced by these formulas are monotone [37], hence the name.

x x x x x x x x
1 2 3 4 5 6 7 8

Figure 7.1:Tree representation of the formula((x1_x2)_ (x3^x4))^ ((x5 _x6)^ (x7_x8)).
In a read-once formulaeach variable appears exactly once in the formula.

Read-once formulas are also known as�-formulas or Boolean trees [3]. Read-once

monotone Boolean formulas have a concise description as a tree whose internal

nodes are ANDs and ORs and whose leaves are the Boolean variables. As an ex-

ample, Figure 7.1 shows the tree representation of the formula ((x1 _ x2) _ (x3 ^x4)) ^ ((x5 _ x6) ^ (x7 _ x8)) as a logic diagram.

7.1.3 Using Monotone Read-Once Formulas for Branch Predic-
tion

A read-once monotone Boolean formula ofN variables can be encoded as a bit vec-

tor of sizeN � 1, each bit representing a connective in the Boolean tree, with 0 for

AND and 1 for OR. Thus, each branch instruction encodes a read-once monotone
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Boolean formula usingN � 1 bits. We also store another bit that, if set to 1, causes

the value of the function to be inverted, so that we can also represent the comple-

ments of monotone read-once formulas. No two different bit patterns represent the

same Boolean function, so this encoding is quite efficient. For a history length ofN , the formula encoding in the branch instruction takesN bits. Monotone Boolean

formulas are incapable of representing Boolean constants,so we allow the formula

whose connectives are all ANDs to compute 0 (i.e.,false). By choosing to invert

the output, this formula can also produce 1 (i.e.,true). These two values are nec-

essary, since they allow us to represent “always predict taken” and “always predict

not taken,” which are the most common Boolean functions for branch prediction.

For branch prediction, we keep a branch history shift register into which the

Boolean outcomes (i.e., 1 fortakenand 0 fornot taken) of branches are shifted. We

keep a global history, using the same shift register for all branches. When a branch

instruction is fetched, the Boolean formula is sent, along with the contents of the

history register, to a circuit that decodes the formula and computes the prediction.

We use a profiling phase to decide which formulas to encode in each branch

instruction. The profiling algorithm uses statistics aboutthe behavior of each static

branch to choose the best monotone read-once formula for that branch.

The following formula is an example of a monotone read-once Boolean for-

mula used for branch prediction with a history length of 8:(x0 _ x1) ^ x2 ^ x3 ^ (x4 _ x5 _ x6 _ x7);
This formula corresponds to a branch prediction policy of “predict taken

if either of the last two branches were takenand the third and fourth most recent

branches were both taken,andany of the other branches in the history were taken.”
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7.1.4 Profiling Algorithm

We now describe our algorithm for determining which formulas best predict each

static branch. Using a trace of each branch address and outcome, the algorithm

simulates the dynamic contents of the history register. Foreach static branch, the

algorithm keeps a list of the different histories that lead up to that branch, along

with the number of times each history leads to the branch being taken or not taken.

After the algorithm has examined every dynamic branch, it checks the list for each

static branchB and exhaustively tests every monotone Boolean formula and its

complement to see which one would have yielded the fewest mispredictions given

all the histories that led up toB. This best formula is then encoded into the branch

instruction.

For branches that are executed fewer than 500 times in the profiled program,

we simply use the constant formula (0 or 1) that best predictsthat branch, rather than

considering all2N formulas. We are investigating ways to speed up the algorithm

with a more intelligent search. Section 7.2.5 gives timing results for the profiling

algorithm and argues that the cost is reasonable for historylengths up to 16.

We have found that we can find formulas with a value forN of up to 18 in

a reasonable amount of time, i.e., up to a few hours per benchmark. WithN � 10,

we can find the formulas in a few minutes, during which a large portion of the time

is devoted simply to reading the profiled traces from disk.

7.1.5 Hardware Implementation

A hardware implementation of a Boolean formula branch predictor is simple. Each

Boolean connective (i.e., AND or OR) in the formula is represented by a circuit

with three inputs: two data inputs, corresponding to the variables or outputs of other
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gates, and one control input that specifies whether the Boolean connective should

compute AND or OR. Coincidentally, this function is equivalent to the carry-out

computed by a full adder. Figure 7.2 shows a logic diagram forthis four-NAND

circuit. With a history length ofN , our predictor is built fromN � 1 connectives

and a single XOR gate at the output that acts as an inverter when its input is 1.

Figure 7.3 shows a circuit implementation of the predictor for N = 8. For clarity,

the extra logic to produce 0 when all the connectives are ANDsis not shown, since

this logic requires relatively few gates and is not on the critical timing path.

We simulate a straightforward static CMOS implementation of the Boolean

formula predictor with the HSPICE circuit simulator. First, we create a sub-circuit

composed of four NAND gates as shown in Figure 7.2. Then, we instantiate2 log2N
of these subcircuits and add an XOR, which is a sub-circuit consisting of two in-

verters and two NAND gates. The connections between the subcircuits are shown

in Figure 7.3. Finally, we add capacitance between the gatesto model local inter-

connect.

Note that although the concept of a read-once monotone Boolean formula is

somewhat similar to the actual implementation as a circuit,to avoid confusion, the

two should be thought of separately as function vs. implementation. In particular,

the circuit is optimized for static CMOS technology with NAND gates and is not a

read-once circuit.

7.1.6 Delay

The depth of the formula evaluation circuit withN inputs is2 log2N plus the final

XOR gate. For instance, forN = 16, the critical delay path passes through eight

NAND gates and one XOR gate. In contrast, thegsharepredictor looks up values

from a table by reading from an SRAM array. We use the methodology given in
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Chapter 3 for obtaining the access times for the pattern history tables.

We estimate the access time of the Boolean formula predictorby simulating

the combinational circuit and measuring the delay from the branch instruction and

history register inputs to the output of the XOR gate. The delay measurements

are the time from the midpoint of the input signal switching to the midpoint of the

output signal switching. We calculated the lookup time for agsharepredictor using

our modified CACTI tool. Table 7.1 shows the access times for a4K-entrygshare

predictor and two sizes of the Boolean formula predictor,N = 8 andN = 16, for a

range of fabrication technologies. We chose the 4K-entry predictor because, as we

will see in Section 7.2, theN = 8 version of the Boolean formula predictor only

slightly exceeds the accuracy of a 4K-entrygshare. Thus, our delay comparisons

show that we can achieve higher accuracy with lower latency.

As fabrication technology improves, transistors can be made smaller and

faster, resulting in higher clock frequencies and faster combinational circuits. As

Table 7.1 shows, access times for each structure improve as the minimum feature

size decreases.

The Boolean formula predictor is consistently faster than the 4K-entrygshare

predictor, allowing more time for communication and computation within a clock

cycle. At the projected clock rate of 7 Ghz for 50 nm technology, the clock pe-

riod would be 144 picoseconds. A traditional table-lookup predictor such asgshare

would require more than a single cycle—167 picoseconds in this case—for the pre-

diction. In the same technology, the Boolean formula predictor would provide a

prediction in 59 picoseconds, leaving over half of the cycleto prepare for and act

upon the prediction.

One concern with our predictor is that the contents of the branch opcode

are on the critical path to making a prediction; the Boolean formula must be read
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Minimum Access Time (picoseconds)
Feature 4K-entry Formula, Formula,

Size (nm) gshare N = 8 N = 16
180 551 211 260
130 402 168 208
100 321 112 138
70 228 85 103
50 167 50 59

Table 7.1:Access times for a 4K-entrygsharepredictor vs. two versions of the Boolean
formula predictor.

before it can be evaluated. However, this delay is common to any branch predictor

that uses bias bits or any other type of information from the branch instruction, such

as the agree predictor used on the HP-PA/RISC or the static/dynamic and bias bits

provided by IA-64. One solution is to provide pre-decode bits in the instruction

cache that provide the opcode information quickly.

7.1.7 Power

Power consumption has recently become a primary concern in microprocessor de-

sign. In this section, we contrast the power consumption of traditional branch pre-

dictors with that of the Boolean formula predictor.

The Boolean formula predictor is a combinational circuit that uses less dy-

namic power than an SRAM-based predictor. This small predictor has smaller gate

and interconnect capacitance than an SRAM structure, whichhas decoding logic, a

memory array, sensing logic, and output logic.

Table 7.2 shows the Boolean formula predictor’s dynamic power consump-

tion for N = 8 andN = 16, as measured with the HSPICE simulator. This table

also shows the power of a 4K-entrygsharepredictor, measure using the modified
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Minimum Power (milliwatts)
Feature 4K-entry Formula, Formula,

Size (nm) gshare N = 8 N = 16
180 51.4 0.61 1.28
130 31.0 0.28 0.58
100 27.4 0.11 0.24
70 12.9 0.06 0.12
50 8.40 0.06 0.13

Table 7.2:Dynamic power consumption for two versions of the Boolean formula predictor
and a 4K-entrygshare.

CACTI 2.0. TheN = 8 results show that the Boolean formula predictor consumes

between 0.4% to 2.9% of the power of agsharepredictor with comparable accuracy.

With lower transistor threshold voltages in emerging technologies, static

power—due to leakage current through transistors—is becoming a sizable percent-

age of the total power consumed [61]. With fewer transistorsin the circuit to leak

current, the Boolean predictor circuit will also have less static power than an SRAM

structure. Furthermore, the Boolean circuit implementation is amenable to a low

static power design technique that takes advantage of the stacked transistors within

gates to bias transistors into a low-leakage mode [61].

7.1.8 Impact of Encoding

Since each branch instruction encodes a Boolean formula, wemust find an efficient

way to encode the formula in the instruction without having anegative impact on

performance. Some instructions sets already provide extrabits for communicating

hints to the microarchitecture. For instance, the Alpha AXPISA provides 14 bits

in each indirect branch instruction for profiling information [55]. In their work on

variable length path branch prediction, Starket al. [58] use extra bits such as these
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to communicate to the microarchitecture information on hash functions for a branch

predictor.

We propose changing the ISA so that branch instructions encode the formu-

las. For example, each branch instruction on the Alpha is 32 bits long: six bits

indicate the op code of the instruction, five more bits indicate the register to test,

and 21 bits are for the branch offset. For a Boolean-formula based branch predictor

requiringN bits in a branch instruction, we propose to reallocateN of the offset

bits to the formula. Some long branches will need to be split into a branch followed

by a jump to the target, increasing the number of instructions executed.

Figure 7.4 shows the harmonic mean over the SPEC 2000 integerbench-

marks of the percentage of extra instructions executed on the Alpha when offset

bits are reallocated to Boolean formula predictors. We obtained these figures by

assuming that every branch with an offset larger than would fit given the restricted

number of offset bits would incur an additional jump instruction, and adding the

number of such dynamically executed branches to the total number of instructions

executed.

We measure the harmonic mean over the SPEC 2000 integer benchmarks of

the percentage of extra instructions executed on the Alpha when offset bits are re-

allocated to Boolean formula predictors. With formulas of up to 9 bits, the number

of extra instructions is negligible. With 12-bit formulas,only 0.2% more instruc-

tions are executed. With 14-bit formulas, 1.0% more instructions are executed. As

history length increases beyond 16 bits, this encoding technique becomes less fea-

sible. For longer histories, we have developed a more sophisticated technique that

exploits the fact that most of the functions are constant. With this technique, only

those branches for which the Boolean formula is more accurate than bias bits use

Boolean formulas. The rest use simple bias bits, keeping therest of the branch
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instruction opcode for storing the branch offset.
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Figure 7.4:Impact of Formula Encoding on Performance.

7.2 Results and Analysis

In this section, we give the results of simulating our branchpredictor on the SPEC

2000 integer benchmarks, and we compare our results againstboth static (i.e., bias

bits) and dynamic branch prediction. We also give results for a predictor that com-

bines Boolean formulas with dynamic prediction, and we compare this to similar

work that combines static and dynamic prediction.
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7.2.1 Methodology

We use the 12 SPEC 2000 integer benchmarks running under SimpleScalar/Alpha [10]

to collect traces. For each benchmark, we gather traces giving the branch address

and outcome for up to 300 million branches. We use thetrain inputs for the

profiling runs, and we use theref inputs to evaluate the accuracy of the various

predictors. To better capture the steady-state performance of the branch predictors,

our evaluation runs skip the first 50 million branches, as several of the benchmarks

have an initialization period (lasting fewer than 50 million branches), during which

branch prediction accuracy is unusually high. Each benchmark executes at least

300 million branches and over one billion instructions on the test inputs before

the simulation ends.

7.2.2 Predictors Simulated

We simulate monotone read-once Boolean formula predictorsfor 2 � N � 18.

We use only global history information, i.e., we do not use path or per-branch in-

formation. We also simulate thegshare[41], bi-mode[38] and agree [57] branch

predictors, three well-known global dynamic branch predictors from the literature.

The gshareand bi-modepredictors use only dynamic history information. The

agree predictor combines static and dynamic information bypredicting whether a

branch will agree with a bias bit.

History length has been observed to have a significant impacton predictor

accuracy [41], so for each predictor and each hardware budget, we try all possible

history lengths on thetrain inputs and keep the one with the lowest average

misprediction accuracy.

To give a lower-bound on misprediction rates for any Boolean-formula based
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predictor, we also measure the results of usingarbitrary Boolean formulas. That is,

we measure the results of using the best possible static Boolean function for a given

branch, over a training set, regardless of the cost of implementing the function. To

find the best arbitrary Boolean formula for a particular static branch, we measure

the number of taken versus not-taken branches for each history leading up to that

branch in the training set, then assign to each history the prediction yielding the

most correctly predicted dynamic branches. Out of all the possible histories leading

to a branch, only a small fraction will actually be observed;all other histories are

assigned the bias bit for that branch. The arbitrary predictor is represented by the

profiling algorithm as a set of rows in a truth table where the inputs are the histories

and the output is the prediction. Note that this arbitrary formula predictor is actually

implementable for history lengths of up to four, since the truth table for a Boolean

function in four variables can be encoded in only 16 bits.
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Figure 7.5:Accuracy of dynamic branch predictors vs. static prediction and the Boolean
formula predictor.
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7.2.3 Misprediction Rates

Figure 7.5 shows misprediction rates for the monotone read-once Boolean formula

predictor at history lengths of 4, 8 and 16, compared withgshare, agree andbi-

modepredictors at hardware budgets from 512 to 256K entries. Labels above the

512 and 1K-entry hardware budgets show the process technologies for which the

corresponding budget is reachable in one cycle at an aggressive clock rate. Also

shown is the misprediction rate for the global perceptron predictor from Chapter 5

in the same range of hardware budgets, to provide a comparison of the accuracies

of the perceptron and formula predictors. Note that the perceptron predictor cannot

work in a single cycle at any hardware budget without delay-hiding techniques, so

the labels above thex-axis apply only to the PHT-based predictors.

At today’s 180 nm and 130 nm technologies, for which branch predictors

with only about 1K to 2K table entries state are available at more aggressive clock

speeds, a 4-bit Boolean formula predictor with a misprediction rate of 6.6% roughly

matches the accuracy of thebi-modepredictor. With a history length of 16, the

Boolean formula predictor has a misprediction rate of 5.02%, an improvement of

24% over the 1.5K-entrybi-modepredictor, and roughly matching the mispredic-

tion rate of the perceptron predictor at the equivalent of a 1K-entry budget.

To put these figures another way, a 4-bit Boolean formula predictor achieves

roughly the same predictive power as a 4K-entrygsharepredictor. A 16-bit Boolean

formula predictor is about as accurate as an 8K-entry gsharepredictor, a 3K-entry

bi-modepredictor, or a 2K-entry agree predictor.

Figure 7.6 shows, for history lengths ranging from 2 to 18, misprediction

rates for the monotone read-once Boolean formula predictor, as well as for the pre-

dictor that uses arbitrary formulas. For reference, it alsoshows the misprediction
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rates with history lengths from 0 to 18 for pure static prediction with bias bits, as

well as for dynamic prediction with a 1K entrygshare, a 1K entry agree predictor,

and a 1.5K entrybi-modepredictor; these table sizes represent the predictors acces-

sible in a single cycle in 50 through 130 nm technology with aggressive clock rates.

As history length increases, the misprediction rate of the Boolean formula predictor

decreases and remains close to the performance of the arbitrary formula predictor.

As a lower bound on dynamic branch predictor misprediction rate, Figure 7.6 also

shows the misprediction rate of a perceptron predictor witharbitrarily many per-

ceptrons and an increasing history length, i.e., a predictor with no conflict aliasing.

Clearly, this ideal perceptron predictor is more accurate than even arbitrary Boolean

formulas, so the idea of encoding any static function in the branch instruction has

its own limitations.

Figure 7.7 shows misprediction rates on each benchmark withthe same

limited-budget two-level predictors as well as Boolean formula predictors with his-

tory lengths of 8 and 16. The Boolean formula predictor usually has a mispredic-

tion rate lower than that of the dynamic predictors. However, in a few cases, such

as256.bzip2, the formula predictor’s misprediction rate is high, most likely due

to input-dependent program behavior that cannot be learnedby profiling.

Figure 7.8 shows the misprediction rates of predictors using the agree mech-

anism combined with our formula predictor. An agree predictor predicts whether a

branch outcome will agree with a bias bit, turning destructive aliasing into construc-

tive aliasing. Our combined agree/formula predictors use aPHT to predict whether

the branch outcome will agree with the output of a Boolean formula, rather than a

bias bit. With a 1K-entry PHT, the agree predictor with bias bits yields a mispredic-

tion rate of 5.3%. The 8-bit version of our agree/formula predictor decreases this

rate to 4.4%, an improvement of 17%. The 16-bit version of ourpredictor has a

117



0 5 10 15
History Length

0

5

10

15
P

er
ce

nt
 M

is
pr

ed
ic

te
d

1024-entry Gshare
1536-entry Bimode
1024-entry Agree
Static Prediction (bias bits)
Monotone Formulas
Arbitrary Formulas
Arbitrary Perceptrons
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misprediction rate of 3.9%, an improvement of 25%.

For reference, we compare our predictor with the Alpha 21264hybrid branch

predictor, which is the most accurate existing predictor for which implementation

details are readily available [35]. This predictor uses a 4K-entry global history

predictor and a 1K-entry per-branch history predictor combined with a 4K-entry

chooser, consuming roughly 4KB of state. The Alpha 21264 predictor achieves a

misprediction rate of 2.93% on the traces we gathered. At thesame hardware bud-

get, the agree predictor, when enhanced with the 16-bit version of our Boolean for-

mula predictor, achieves a misprediction rate of 2.55%. Even at half the hardware

budget of the Alpha 21264 predictor, an 8K-entry version of our agree/formula hy-

brid achieves a misprediction rate of 2.86%, narrowly better than the Alpha hybrid.

Using our aggressive clock modeling, the largest hybrid agree/formula predictor

available in a single cycle will achieve a misprediction rate of 3.97%, which is 35%

higher than that of the Alpha predictor. However, an important point of our research

is that complex predictors such as the Alpha’s are infeasible at higher clock rates.

Even today’s Alpha must employ an overriding mechanism [35], in which branch

predictions that do not agree with the less sophisticated cache line predictor intro-

duce a single-cycle bubble into the pipeline, reducing the performance advantage

of the more accurate hybrid predictor.

7.2.4 Distribution of Formulas

An analysis of the distribution of Boolean formulas chosen by the profiling algo-

rithm shows that most of the Boolean formulas chosen are the two constant func-

tions, 0 and 1. This dependence on constant formulas decreases as history length

increases. For instance, with a history length of 4, 78% of static branches in the

SPEC 2000 integer benchmarks are best predicted with a constant formula, as op-
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Figure 7.8:Accuracies of Boolean formula predictors using the agree mechanism. Mis-
prediction rates are harmonic means over SPEC 2000.

posed to only 49% for a history length of 16. As history lengthincreases, the

predictive power of the Boolean formula predictor increases, and the constant func-

tions representing “predict taken always” and “predict nottaken always” give way

to more intelligent choices. Figure 7.9 shows, for history lengths from 2 to 18, the

percentage of dynamic and static branches for which constant formulas are chosen.

Table 7.3 shows the dynamic frequencies for each formula with a history

length of four, along with the misprediction rate for each formula using a 4-bit

Boolean formula predictor and for bias bits. For brevity, weomit similar tables for

the other history lengths.

7.2.5 Profiling Cost

The cost of determining the best Boolean formula for each branch is an important

component of the cost of our branch predictor. Here, we quantify this cost.

The majority of the time of the profiling algorithm is spent evaluating Boolean

formulas for the set of histories leading up to a branch. The time to evaluate a for-
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Formula % Dyn. % Mispredicted
Freq. Formula Bias1 40.84 9.4 9.40 37.14 10.0 10.0(x0 _ x1) ^ (x2 _ x3) 3.15 21.8 36.3:((x0 _ x1) ^ (x2 _ x3)) 2.36 24.6 36.6(x0 _ x1) _ (x2 ^ x3) 2.06 21.5 29.3:((x0 _ x1) _ (x2 ^ x3)) 1.73 14.4 24.5:((x0 ^ x1) ^ (x2 _ x3)) 1.64 20.1 26.8(x0 ^ x1) ^ (x2 _ x3) 1.60 15.8 22.0:((x0 ^ x1) _ (x2 _ x3)) 1.54 16.3 23.7(x0 ^ x1) _ (x2 _ x3) 1.49 14.1 18.6(x0 _ x1) ^ (x2 ^ x3) 1.30 26.4 34.9(x0 ^ x1) _ (x2 ^ x3) 1.23 20.3 38.7:((x0 ^ x1) _ (x2 ^ x3)) 1.16 35.6 42.1:((x0 _ x1) ^ (x2 ^ x3)) 1.09 26.2 36.1:((x0 ^ x1) ^ (x2 ^ x3)) 0.99 21.6 18.5(x0 ^ x1) ^ (x2 ^ x3) 0.66 5.3 10.3

Table 7.3:Distribution of Boolean formulas for a history length of 4.
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mula for a given input (i.e. history) is roughly constant. With a history length of up

to 12, we have found that generating a lookup table to hold thefunction values is

most efficient; for these history lengths, the cost of evaluating a formula is the cost

of a single memory access. Beyond a history length of 12, we use a C++ function

call to evaluate formulas. With efficient coding and formularepresentation, using

a history length of 16, a single formula evaluation takes an average of 270 ns on a

733MHz Pentium III.

Figure 7.10 shows the amount of time taken for profiling, as a function of

history length. The graph shows the arithmetic mean of the time, in seconds, that

our algorithm spent for each benchmark. These times were collected by running

our program on our network of 733MHz Pentium III computers.

Our current implementation takes time exponential in the history length.

However, for the small history lengths that we consider in this study, the time is

not unreasonable. For instance, with a history length of 16,the profiling algorithm

takes about 12 minutes on a 733MHz Pentium III. For a history length of 10, the

program takes about 2 minutes. For history lengths less thanabout 12, the time

for the program is dominated by activities unrelated to finding the best Boolean

function. For instance, much time is spent simply reading the large trace file from

the disk and performing other tasks that any typical feedback-directed optimization

would require. Our algorithm is also easy to parallelize. The time-consuming part

of the algorithm—during which the best Boolean formula is decided for each static

branch—is embarrassingly parallel, as the various static branches can be partitioned

among many processors. Thus, we feel that our profiling algorithm would be ap-

propriate in a framework in which other optimizations are also being explored by

simulation.
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Figure 7.10:Average, over all benchmarks, of the amount of time spent profiling as a
function of history length.

7.3 Summary

We have introduced and evaluated a new branch prediction scheme that borrows

from complexity theory the concept of a read-once monotone Boolean formula.

These Boolean formulas provide a compact encoding of a classof functions that is

expressive enough to perform branch prediction yet conciseenough to be encoded

in branch instructions. By off-loading most of the prediction work to the com-

piler, our Boolean formula predictor is small, fast and consumes little power. While

our scheme provides a competitive alternative to existing dynamic branch predic-

tors, the real benefit of our scheme lies in the future, as our scheme is significantly

less sensitive to the impending technology scaling issues caused by increased wire

delays. Our predictor can also form a valuable component of an agree or hybrid

predictor, decreasing misprediction rates by providing better estimates of branch

outcomes than bias bits.
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Chapter 8

Related Work

Our work builds on the contributions of many other researchers and engineers. To

place our work in the context of other research, we now reviewsome of the recent

related work.

8.1 Hint Bits in Branch Predictors

Our Boolean formula predictor and branch path re-aliasing scheme are two of many

prediction ideas that provide hints through the ISA to the branch instruction. One

highly successful technique isbranch classification[14], in which a branch instruc-

tion specifies which predictor is best for that branch. Many branches are predicted

well with a static prediction; these branches can be “filtered” out of the stream of

branches that are allowed to update the PHT, thus reducing aliasing. A version

of the agreepredictor predicts whether a branch outcome will agree witha bias

bit set in the branch instruction [57]. Augustet al. propose placing hint bits in

each branch instruction that tell a dynamic predictor what kind of state to examine

to make a prediction [5]. The variable length path branch predictor [58] encodes

profiling information in branch instructions; this information guides a dynamic pre-
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dictor, telling it what history length to use and what hash function of past branch

addresses to use to form an index into a table of counters.

Unfortunately, for most of these techniques to work, the branch instruction

has to have been at least partially decoded before the branchprediction can be made.

These techniques will not be feasible in aggressively clocked CPUs with multi-

cycle instruction cache latencies, since the predictor is in series with the instruction

cache. Our Boolean formula predictor suffers from the same problem. However,

our branch path re-aliasing predictor is different; it usesa hint bit in the branch

instruction, but the hint is not needed until the branch predictor is updated.

8.2 Combining Static and Dynamic Branch Predic-
tion

Branch prediction accuracy can be increased by combining static with dynamic

branch prediction. Some of the branches can be predicted with a static bias bit,

while others with less biased behavior can use the dynamic predictor. Since the

easily predictable branches are filtered out, aliasing in the dynamic predictor is al-

leviated and accuracy is improved. This technique, along with a methodology for

choosing the bias bits, was introduced by Changet al. as branch classification. Patil

and Emer study the technique, measuring its utility in reducing destructive aliasing

and refining the heuristics used to decide which branches should be predicted stati-

cally [46].

8.3 Branch Prediction and Machine Learning

Our perceptron predictor borrows from neural learning techniques, which are a sub-

set of the field of machine learning. Our Boolean formula predictor is also similar
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in some respects to other branch predictors based on decision trees. In this section,

we review other work related to branch prediction and machine learning.

8.3.1 Neural Networks

Neural networks have been used for doing branch prediction before, but in a quite

different context. Neural networks have been used to perform static branch predic-

tion [11]. The likely branch direction of a static branch is predicted at compile-time

by supplying program features, such as control-flow and opcode information, as in-

put to a trained neural network. This approach achieves an 80% correct prediction

rate, compared to 75% for static heuristics [6, 11]. Our workproposes putting a

neural structure inside the microprocessor itself, so thatit can learn on-line from

the branch history.

8.3.2 Genetic Algorithms

Machine learning also includes genetic algorithms. Emer and Gloy use genetic al-

gorithms to “evolve” branch predictors [19], but it is important to note the difference

between their work and ours. Their work uses evolution to design more accurate

predictors, but the end result is something similar to a highly tuned traditional pre-

dictor. We perform extra work in the microarchitecture, so the branch predictor can

learn and adapt on-line.

8.3.3 Decision Trees

Decision trees are predictors learned through training, much like neural networks.

The work of Calderet al. in static branch prediction with neural networks also ex-

plores the use of decision trees [11]. Lindsay explores the use of decision trees to

encode statically-learned Boolean functions [40]. The decision trees are learned by
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profiling and are encoded in programmable logic arrays (PLAs). By contrast, our

Boolean formula predictor encoding is represented only in the branch instruction,

requiring little hardware in the CPU itself. Although Lindsay’s thesis addresses

latency issues, PLAs representing the behavior of large sets of branch instructions

will have the same technology scaling issues in future technologies as large banks

of SRAM. Similarly, Fernet al. [24] study the use of decision trees, grown dynam-

ically, for branch prediction. The trees are kept in a large structure in the CPU and

would have the same problems with delay as other predictors.Thus, our technique

is distinctly well-suited to the issues of technology scaling.

8.4 Latency-Sensitive Branch Prediction

Although the problem of delay in branch predictors has not been studied in detail,

there are quite a few studies in which related issues have appeared.

Lookahead branch prediction, including predicting multiple branches per

cycle, has been suggested as a means for predicting branchesthat have not yet been

presented to the predictor. One of the first lookahead branchpredictors was pro-

posed by Yehet al. [64] as the Multiple Branch Two-Level Adaptive Branch Pre-

dictor. This predictor uses the result of the first branch prediction to speculatively

update the history register for a second branch prediction.No branch addresses are

required since only the global history register is used to access the pattern history

tables. Seznecet al. improve on this idea by enhancing the branch target buffer

(BTB) to enable the predictor to use the address of the current instruction block

to perform prediction for the next instruction block [54]. This scheme enables the

fetches to multiple blocks to be pipelined. Onder, Xu and Gupta propose a similar

scheme in which predictions for an entire branch sequence are made all at once, and
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instruction fetch can continue unimpeded through the last branch [44].

Driesen and Hölze propose a “cascaded” predictor that dynamically filters

easily predicted branches, relieving aliasing effects in the pattern history table (PHT) [17].

Our work borrows the idea of cascading, but uses it to alleviate delay. Similarly,

Evers describes the use of two PHTs with different history lengths and different

access times, where the slower one can override the other [22]. The Alpha 21264

branch predictor uses the idea of overriding: the branch predictor can override the

less accurate instruction cache line predictor, with a penalty of a single cycle, as

opposed to the seven-cycle branch misprediction penalty [35].

Some of our work builds on the fact that there is often more than one cycle

between branches, even on a wide-issue processor, and that useful branch prediction

work can be done in between branches. This fact was also noticed in work by Onder

et al. in their paper on predicting branch

sequences [44].

Of course, the real goal in these strategies is to improve instruction fetch

bandwidth and preferably take branch prediction off the critical path. Recent re-

search has focused on trace caches as a mechanism to capture along stream of se-

quential instructions that can be easily fetched at peak bandwidth [51, 45]. Branch

prediction guides the trace selection in the instruction fetch engine, at times pre-

dicting multiple branches per cycle. A more radical approach is the Fetch Target

Buffer (FTB) proposed by Reinman, et al. [48]. The FTB storesthe addresses of

predicted blocks of instructions and is designed as a two-level cache for fast access

and accurate block prediction. Like our study, Reinmanet al. consider technology

constraints in the design of the FTB. Frameworks like the FTBcan benefit by using

our delay-sensitive branch prediction stategies as their branch prediction compo-

nents.
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Chapter 9

Conclusions

In this chapter, we review the contributions of this dissertation and discuss the rela-

tionships between the various proposed techniques.

9.1 Contributions

Recall the thesis statement from the introduction:

Despite the effects of aggressive clock scaling, wire delay, and complex

organizations, future branch direction predictors can have improved ac-

curacy while still providing a prediction in a single cycle.

Until now, branch prediction design has focused on accuracywhile ignor-

ing delay. We have shown that as wire delays and clock rates increase, branch

predictor designs that optimize for accuracy can have a negative impact on overall

IPC (see Figures 4.7 and 4.6). Thus, future branch predictorefficacy depends on

bothaccuracyanddelay, and researchers should account for both when reporting

branch prediction results. According to our scalable models for branch predictor ac-

cess time, today’s predictors will not be accessible in a single cycle in sub-100nm

technologies with aggressive clocking. In deep sub-microntechnologies that are
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latency rather than capacity-dominated, a branch predictor’s area will become less

important than its latency in the critical path.

In this section, we show how the various techniques described provide com-

pelling evidence for our thesis.

9.1.1 Hierarchical Organizations

In this dissertation we have examined a number of alternative branch predictor ar-

chitectures and evaluated them in the context of future process technologies. These

hierarchical organizations are capable of extending traditional predictors such as

gshareinto future technologies, as well as enabling more complex predictors such

as the perceptron predictor. A cascading lookahead predictor that uses the time

in between branches to make predictions performs well. An overriding predictor

that allows a slow predictor to cancel the prediction of a faster, but less accurate

predictor performs the best.

We have introduced a new branch predictor that uses neural networks—the

perceptron in particular—as the basic prediction mechanism. Perceptrons are at-

tractive because they can use long history lengths without requiring exponential

resources. A potential weakness of perceptrons is their increased computational

complexity when compared with two-bit counters, but we haveshown how a per-

ceptron predictor can be implemented efficiently with respect to both area and delay

using hierarchical organizations. The perceptron predictor performs well at all hard-

ware budgets, achieving a lower misprediction rate than several well-known global

predictors on the SPEC 2000 integer benchmarks; indeed, since the perceptron pre-

dictor outperforms Evers’ multi-component predictor, we claim that the perceptron

predictor is the most accurate fully dynamic branch predictor known. Despite its

higher latency, the perceptron predictor yields higher IPCs than the other predictors
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because of our use of hierarchical organizations.

In our simulations, we have taken into account both clock rate and wire

delay in future technologies, and shown that hierarchical organizations, both for

traditional predictors and for the perceptron predictor, allow branch prediction in a

single cycle while making use of slower structures to improve prediction accuracy.

These techniques and experiments provide strong evidence for our thesis.

9.1.2 Cooperative Predictors

Cooperative branch predictors break the tradeoff between delay and accuracy by

off-loading a significant amount of the prediction work to compile-time. We have

evaluated two cooperative branch prediction schemes.

Branch path re-aliasing is a new branch prediction technique that improves

accuracy for GAg predictors. By using path profiles to map paths leading to dif-

ferent outcomes to different PHT locations and paths with similar outcomes to the

same PHT locations, re-aliasing decreases destructive aliasing. An advantage of

branch path re-aliasing is its simplicity and low delay. Thetime to access the pre-

dictor is limited only by the time to access the PHT; there is no other logic on the

critical path. Moreover, variations of our technique improves accuracy in complex

predictor organizations such asagreeand hybrid predictors.

The Boolean formula predictor eliminates tables and their associated delays

altogether, using a compact encoding of Boolean functions to perform branch pre-

diction. This predictor is feasible even with the most aggressive future clock rates

and smallest process technologies.

A disadvantage of both the Boolean formula predictor and branch path re-

aliasing is that they require profiling, whereas the perceptron and hierarchical pre-

dictors are not burdened by this constraint.
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Our cooperative branch prediction approach fits in with the general trend

towards moving more work out of the processor and into the compiler. By making

prediction simpler without reducing accuracy, we can enjoythe benefits both of

high IPC and high clock rates enabled by these single-cycle predictors. This work

addresses part of the thesis statement relating to improvedaccuracy at higher clock

rates, and provides an alternative to the hierarchical techniques.

9.2 Comparison of the Techniques

We have proposed several different techniques that addressthe problem of delay

in branch predictors. In this section, we compare the techniques with one another,

providing information useful to a microarchitect trying todecide which one to use.

To illustrate the comparison, Figure 9.1 shows the misprediction rates of

many of the predictors introduced in this dissertation, as well as the misprediction

rates ofgshare, agreeand hybrid predictors.
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Figure 9.1:Misprediction Rates of Our Predictors
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9.2.1 Advantages of Hierarchical Organizations

The main advantage of hierarchical organizations is that compiler and ISA support

is not needed; predictors with hierarchical organizationsare strictly a microarchitec-

tural technique, with no directly observable consequenceson the ISA or compiler.

Conversely, cooperative predictors require changes to theISA (although branch

path re-aliasing may re-use existing ISA bits), and profiling. Figure 9.1 shows that,

at hardware budgets over one kilobyte, the global/local perceptron predictor has the

lowest misprediction rate of any of the predictors examinedin this dissertation. We

recommend this predictor for situations where unmodified legacy programs must

be run as quickly as possible, with design complexity being only a secondary con-

cern. Unfortunately, the perceptron predictor introducescomplexity into the design

of the processor, particularly in the layout of the irregularly-shaped Wallace-tree

circuit. A less ambitious design could still use hierarchical organizations with a

more traditionalgshareor hybrid predictor, taking advantage of the accuracy of a

large structure as well as the speed of a small structure.

9.2.2 Advantages of Cooperative Predictors

Recent trends in computer architecture point to a greater willingness to modify the

ISA and rely on profiling or even dynamic compilation to achieve performance

improvements [28, 4]. Our cooperative predictors are in line with this trend. Both

of our cooperative predictors greatly simplify the hardware aspects of the branch

predictor at the expense of profiling. The Boolean formula predictor uses about 1%

of the area and power, and 33% of the delay of agsharepredictor with the same

predictive power. Branch path re-aliasing allows us to use asmaller, faster table

while maintaining the same accuracy previously achieves with a larger table.
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Figure 9.1 shows that the best predictor at small hardware budgets is a

Boolean formula predictor combined with a smallagreepredictor. This organiza-

tion enables quick prediction and a low misprediction rate,with low implementation

costs. At a cost of 1024 two-bit counters, this predictor achieves a misprediction

rate of 2.59%, which is slightly better than a much largergsharewith 16,384 coun-

ters at 2.76%.

9.2.3 Recommendations

We make the following recommendations for delay-sensitivebranch predictors, ac-

cording to the particular goals of a microarchitect and the progress in process tech-

nology:

Hierarchical Organizations. We recommend the hierarchical organizations as a

cheap way for a microarchitect to continue using traditional branch predictors

with large budgets in a situation where high clock rates prevent single-cycle

access. Hierarchical organizations are sensible in the near future, when binary

compatibility with previous generations of microprocessors prevents invasive

changes to the ISA.

Hierarchical Perceptron Predictor. We recommend a global/local hierarchical per-

ceptron predictor when the microarchitect is unconstrained by chip area and

power, and is simply concerned with the most accurate branchpredictor pos-

sible. The perceptron predictor will make sense in the next several years,

when increasingly deep pipelines for high-performance microprocessors will

cause branch prediction accuracy to become a bottleneck forperformance.

Branch Path Re-Aliasing. We recommend branch path re-aliasing in two cases.

First, for processors with small branch prediction tables and branch bias bits
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in the ISA, the bias bits can be reused to implement branch path re-aliasing

for a performance boost. Second, in future technologies when instruction

cache latencies cause techniques such as bias bits and the Boolean formula

predictor to become infeasible because they are on the critical path to making

a prediction, branch path re-aliasing will still be feasible and allow fast and

accurate predictions.

Boolean Formula Predictor. We recommend the Boolean formula predictor when

performance as well as power and chip area are a concern, but ISA changes

are not a problem. For instance, this predictor can be used inembedded or

DSP systems, such as hand-held devices, that require high performance with

minimum resources. For general purpose computing, the Boolean formula

predictor will make more sense in about the next 10 years, when chip mul-

tiprocessors may become the dominant computing substrate.Since the area

occupied by the branch predictor can be essentially eliminated by the Boolean

formula predictor, the area savings can be devoted to other resources such as

caches or more cores.

9.3 Final Thoughts

Branch predictor delay is a important barrier that future microarchitectures must

overcome to achieve higher performance. Microarchitects cannot simply ignore the

problem by settling for smaller, less accurate predictors or naively implementing

multi-cycle predictors. We have shown that branch predictor delay can be over-

come with a variety of techniques to enable processors of thefuture to maintain

and even improve IPCs in the face of technology constraints.This work provides

a point from which microarchitects of future processors canbegin designing faster
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and more accurate branch predictors. Although there are other technological is-

sues that will complicate future microarchitecture designs, we are confident that, if

future microarchitects will use the ideas presented in thisdissertation, the branch

predictor will not be a performance bottleneck. Rather, branch prediction research

can continue to provide improved accuracy and greater instruction fetch bandwidth

needed for the challenges facing high-performance computing.
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