Copyright
by
Benjamin Charles Hardekopf
2009

The Dissertation Committee for Benjamin Charles Hardekopf
certifies that this is the approved version of the followinggdrtation:

Pointer Analysis: Building a Foundation for Effective Program
Analysis

Committee:

Calvin Lin, Supervisor

Kathryn McKinley

Keshav Pingali

William Cook

Michael Hind

Pointer Analysis: Building a Foundation for Effective Program
Analysis

by

Benjamin Charles Hardekopf, B.S.; M.S.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
May 2009

Dedicated to my mother, Celia Mullane Hardekopf.

Acknowledgments

| owe a great deal to a great many people who have helped shapéft
and my career. My greatest thanks goes to my parents, whadpwme with a
strong foundation growing up and instilled in me an apptemiafor knowledge
and learning that have stood me in good stead for my entee lifwouldn’t be
where | am or who | am without them.

| would also like to thank my advisor, Calvin Lin, for givingetthe support
and encouragement I've desperately needed while workivgrtis my degree. It
took a long haul, with many detours along the way, but he neagrered. My other
committee members, Kathryn McKinley, William Cook, KesHhingali, and Mike
Hind, have also contributed a great deal to my developmeatsagentist by giving
me the benefit of their time and advice. All of them, by theiviad and examples,
have greatly influenced my approach to computer sciencangsand have shown
me what to strive for in my own career.

Finally, | would like to thank my fellow students, both withand without
my research group. Their companionship and support dungggtmany years have
helped me make it through the long slog to the very end.

Pointer Analysis: Building a Foundation for Effective Program
Analysis

Publication No

Benjamin Charles Hardekopf, Ph.D.
The University of Texas at Austin, 2009

Supervisor: Calvin Lin

Pointer analysis is a fundamental enabling technology fogram analy-
sis. By improving the scalability of precise pointer an&ywse can make a positive
impact across a wide range of program analyses used for niti@sedt purposes,
including program verification and model checking, optiatian and paralleliza-
tion, program understanding, hardware synthesis, and.more

In this thesis we present a suite of new algorithms aimed atawing
pointer analysis scalability. These new algorithms mak#usion-based analy-
sis (the most precise flow- and context-insensitive poiatelysis) over & faster
while using 7 less memory than the previous state-of-the-art; they atsdle
flow-sensitive pointer analysis to handle programs witHiamk of lines of code,
two orders of magnitude greater than the previous statbeshirt.

We present a formal framework for describing the space afitpoianaly-
sis approximations. The space of possible approximati®reemplex and multi-
dimensional, and until now has not been well-defined in a &rmanner. We
believe that the framework is useful as a method to meanliggfompare the preci-
sion of the multitude of existing pointer analyses, as wehiaing in the systematic
exploration of the entire space of approximations.

Vi

Table of Contents

Acknowledgments %
Abstract Vi
Chapter 1. Introduction 1
1.1 Pointer Analysis Background 2
1.1.1 Dimensionsof Precision 2
1.2 ThesisContributions 3
1.3 Outlineof Thesis, 4
Chapter 2. Inclusion-based Analysis 5
2.1 Background 5
2.2 RelatedWork 7
2.3 Online Cycle Detection 11
2.3.1 LazyCycleDetection 12
2.3.2 Hybrid Cycle Detection 13
2.3.2.1 Offline Component 14
2.3.2.2 OnlineComponent 16
2.3.3 Evaluation 18
2.3.3.1 Time and Memory Consumption 20
2.3.3.2 UnderstandingtheResults 26
2.3.3.3 Representing Points-toSets 28
2.4 Offline Optimizations 31
2.4.1 Pointer Equivalence 31
2.4.1.1 Hash-based Value Numbering (HVN) 33
2412 ExtendingHVN 35
2.4.2 Location Equivalence 38
243 Evaluation 39

vii

2.4.3.1 Costof Optimizations 40
2.4.3.2 Benefit of Optimizations 41
2.4.3.3 Bitmapsvs.BDDs.o 45
2.5 ChapterSummary 46
Chapter 3. Flow-Sensitive Analysis 48
3.1 Background 48
3.1.1 Flow-Sensitive Pointer Analysis 8 4
3.1.2 The Importance of Flow-Sensitive Pointer Analysis..... . 50
3.1.3 Challenges Facing Flow-Sensitive Pointer Analysis 51
3.2 RelatedWork 52
3.21 SSA . . 54
3211 LLVM. e 55
3.3 Semi-Sparse Analysis Lo 57
3.3.1 The Dataflow Graph 58
3.3.2 TheAnalysis, 61
3.3.2.1 Optimizations. 65
3.3.3 SymbolicAnalysis 70
3.34 Evaluation 71
3.3.4.1 PerformanceResults 73
3.3.4.2 Performance Discussion 76
3.34.3 SsSOPrecision 79
3.4 Staged Analysis 80
3.4.1 StagingtheAnalysis 82
3.4.1.1 Auxiliary Pointer Analysis 82
3.4.1.2 Sparse Flow-Sensitive Pointer Analysis 83
3.4.1.3 AccessEquivalence. 86
3.4.1.4 Interprocedural Analysis 88
3.4.2 The Final Algorithm 89
3.4.2.1 Further Optimization 93
3.43 Evaluation 93
3.4.3.1 PerformanceResults 94
3.4.3.2 Performance Discussion 96
3.5 ChapterSummary 97

Chapter 4. Formal Framework 102
4.1 Framework Strategy 103
4.2 Background 104

4.2.1 Dataflow and Pointer Analysis 104
4.2.2 Interproceduralanalysis 106
4.2.3 Other Approximations 106
43 RelatedWork 107
4.4 Intraprocedural Reference Model 108
441 OVEIVIEW v o v e e e e e e e 109
442 Syntax 109
4.4.3 SemanticDomain 110
444 SemantiCs 114
4.5 Intraprocedural Pointer Analysis 116
451 FS-MOPVSFS-MFP 117
4.5.2 Flow-Sensitivity vs Flow-Insensitivity 121
45.3 Variable Equivalence 122
4.6 Interprocedural Reference Model 124
4.6.1 OVEIVIEW o i e e e e e e 124
4.6.2 Syntax e 125
4.6.3 SemanticDomain, 126
46.4 SemantiCs 129
4.7 Interprocedural Pointer Analysis 129
4.7.1 Context-Sensitivity oo 131
4.7.1.1 Call-string Equivalence 131
4.7.1.2 Functional Equivalence 132
4.7.1.3 Limitations 133
472 HeapModel, 133
4.8 Soundness and Termination 135
4.8.1 Soundness 135
4.8.2 Termination 136
4.9 ChapterSummary 136
Chapter 5. Conclusion 137

Bibliography 139

Vita 148

Chapter 1

Introduction

One of the most important problems facing computer scieoday is the
sheer size and complexity of modern software. Software ¢®iméng one of the
foundations of society, and yet at the same time softwared®tming more diffi-
cult to understand, more difficult to guarantee correct, muade difficult to opti-
mize. Program analysis is a key tool to manage this compteitihas been used
for such diverse purposes as model checking [4, 42], sgcamglysis [13, 30, 74],
error-checking [34], hardware synthesis [86], softwafaat®ring [41], and paral-
lelization [16, 72], among many others.

While program analysis can do a great deal to help deal witlvace com-
plexity, there is a fly in the ointment: software containdirection, and this in-
direction makes program analysis both more difficult and keffective. The two
main forms of indirection aréndirect data-flow(e.g., pointer dereferences in C
and object accesses in Java) amdirect control-flow(e.g., function pointers in C,
virtual method dispatch in object-oriented languages saschava, and closures in
higher-order languages such as Lisp). While some langudgescontain explicit
pointers or pointer dereferences, at a low level (such asrgiter’'s intermediate
representation), all of these kinds of indirection are ienpénted using pointers.
The goal of pointer analysis is to resolve this indirectigncomputingpoints-to
sets for each program entity (variable, object reference,, @€ points-to set is the
set of memory locations that can be indirectly referencedhvat entity.

Because indirection is so ubiquitous and central to prograng languages,
pointer analysis is a fundamental enabling technology fogam analysis: in or-
der to analyze a program’s behavior and properties, theeatibn present in the
program must be resolved as precisely as possible (i.epdimts-to sets should
be as small as possible). The more precisely the indiredioasolved, the more
effective program analysis can be. By improving the precisind scalability of

pointer analysis, we can directly contribute to the effemtess of a wide variety of
program analyses such as the ones listed above.

1.1 Pointer Analysis Background

Pointer analysis, like most static analyses, is an undbt@daoblem [49].
However, even after making common approximations whichenma&ny static anal-
yses tractable (e.g., restricting dynamic memory and iggdoranch conditions),
pointer analysis remains NP-hard [12]. Therefore, pratfointer analysis re-
quires further approximations.

The space of possible approximations for pointer analgsmplex and
multi-dimensional; some of the dimensions of precisiort ttzan be approximated
include: flow-sensitivity, context-sensitivity, field+sstivity, the heap model, rep-
resentation of pointer information, branch conditiong] anray indexing, among
others. Pointer analysis is a very mature field, having beeted for decades with
many papers published on the subject (for examples, seésHind/ey on pointer
analysis research [43]). Researchers have studied mdeyeaif combinations of
approximations using many techniques, such as dataflowsia§4, 50], set con-
straints [29, 37], type systems [25, 78], and CFL reachigjifi7, 84].

1.1.1 Dimensions of Precision

As pointed out above, there are many different dimensiomsexision that
can be modeled when approximating pointer analysis. Wefaglls here on two
of the most important dimensions, flow- and context-serisiti

Flow-Sensitivity. Flow-sensitivity determines whether the analysis modeés t
fact that a variable’s value can change over time. A flow-$ieesanalysis respects
a program’s control-flow and computes a separate solutioedoh program point,
as opposed to a flow-insensitive analysis which ignoresrabfibw and computes
for each variable a single solution that conservativelglbalver the entire program.

Context-Sensitivity. Context-sensitivity determines whether the analysis rnsode
the fact that each separate invocation of a procedure iperatent from all other
invocations. A context-sensitive analysis analyzes aqutore independently for
each calling context, as opposed to a context-insensitigysis which merges all
of the calling contexts together and analyzes them together

Current State-of-the-Art. Flow- and context-sensitivity are independent of each
other; an analysis can be either flow-sensitive or flow-isg&me and at the same
time either context-sensitive or context-insensitiveow-l and context-insensitive
analyses are the most scalable type of pointer analysidusino-based analysis
(the most precise analysis in this class) can analyze onrttex of a million lines

of code [41]. Adding either flow- or context-sensitivity eegly degrades scalabil-
ity. A context-sensitive analysis can only analyze on theeoof a few hundred
thousand lines of code [64], while a flow-sensitive analgais only analyze on the
order of a few tens of thousands of lines of code [44].

1.2 Thesis Contributions

This thesis makes the following contributions:

e A setof new algorithms for inclusion-based pointer analytie most precise
flow- and context-insensitive pointer analysis) that méleegnalysis over 4
faster while using ¥ less memory than the previous state-of-the-art.

e Two new algorithms for flow-sensitive, context-insengtpointer analysis
that make the analysis almost 20@aster while using almost 50less mem-
ory, increasing the scalability of the analysis by two osdef magnitude
(from a tens of thousands of lines of code to millions of linésode).

¢ Aformal framework, based on operational semantics, fociileisg the space
of pointer analysis approximations, which makes this spaledefined and
amenable to systematic exploration.

Several of these new algorithms have already had a praatigelct out-
side the research community—they are used by a number opgracluding the

GCC compiler infrastructure, the LLVM compiler infrasttuce, and Semantic De-
signs (a company that builds software engineering tool&dyae and transform
programs with tens of millions of lines of code).

1.3 Outline of Thesis

Chapter 2 describes inclusion-based analysis, the mosspref the flow-
and context-insensitive analyses. The chapter gives Ipagkg on the analysis
and describes some related work, then details and evaloategw algorithms for
improving the scalability of inclusion-based analysis.

Chapter 3 describes flow-sensitive, context-insensitiadyais. The chap-
ter gives background on the analysis, including why flows#erity is important
and what makes it so expensive, and it describes some relstddon making
flow-sensitive analysis scalable. Then the chapter detaits evaluates our new
algorithms for scalable flow-sensitive analysis.

Chapter 4 pulls back and looks at the bigger picture of poiatalysis,
addressing the ill-defined and largely unexplored spaceiot@r analysis approxi-
mations. The chapter describes a formal framework baseg@mbonal semantics
that precisely describes the precision of the majority o$texg pointer analysis
algorithms, something not previously possible.

Finally, Chapter 5 concludes the thesis by recapping outritonions and
speculating on future work.

Chapter 2

Inclusion-based Analysis

Inclusion-based analysis is the most precise of the flow€antext-insensitive
pointer analyses. This chapter describes a set of new digwifor inclusion-based
pointer analysis that significantly increase its scalghiboth in terms of analysis
time and memory consumption. Section 2.1 provides backgron the basic con-
cept of inclusion-based analysis; Section 2.2 describlasece work for scalable
inclusion-based algorithms; then Sections 2.3 and 2.4ritbesour new algorithms
and evaluate their performance with respect to the curtaté-ef-the-art.

While several algorithms for inclusion-based analysisehia@en proposed
prior to this work, the competing algorithms have never beempared head-to-
head to determine their relative performance. Besides ¢ealgorithms we de-
scribe, our empirical comparison of all the related worknstaer contribution of
this thesis. When utilized together, our new algorithms @reaverage over %4
faster and use overx/less memory than the best of the previous state of the art
algorithms. The work described in this chapter has beenqusly published by
Hardekopf and Lin [37] and Hardekopf and Lin [38].

2.1 Background

Inclusion-based analysis relies on two fundamental appratons to make
pointer analysis tractable. The first approximation elia@s control-flow from a
program, leaving only an unordered set of assignment settesn These assign-
ment statements include parameter assignments that soappitoximate the ef-
fects of function calls (which were removed as part of thetwid+flow). For ex-
ample, a function cak = foo(y) to a functionfoowith parametep and returning
valuer would be replaced by the set of assignmgnts y andx =r. The result
of removing all control-flow is an approximate program whazn execute any as-

Constraint Type | Program Code | Constraint | Meaning
Init | a=&Db a> {b} loc(b) € ptg(a)
Direct | a=b ao>b ptga) 2 ptgb)
Indirect | a=xb a>x*b Vv e ptgb) : ptsa) 2 ptyv)
Indirech | xa=Db xa2b W e pts(a) : pts(v) 2 pts(b)

Table 2.1: Constraint Types

signment after any other assigment and which can executgmassnts an arbitrary
number of times.

The second approximation replaces each assignment witichArsion con-
straint. Whereas an assignment y means thak takes on the value of, the new,
corresponding constraintD y means thak’s value includesy’s value. This ap-
proximation together with the first approximation guarastéhat the final analysis
solution at any point in the program is identical to the Solutit any other point in
the program, and therefore we can safely compute a singléi@olfor the entire
program rather than a separate solution for each program. poi

Since the values we're interested in for pointer analysspmints-to sets,
the resulting set of constraints form a system of equatioaiscionstrain the possible
points-to sets of each program variable. The goal of inolusiased analysis is to
compute the smallest points-to set for each variable suathathof the constraints
are satisfied. For simplicity we will assume that all of theg®ted constraints are
of the types shown in Table 2.1. For a variab|@ts(v) represents’s points-to set
andloc(v) represents the memory location denotedsby

Computing the points-to sets is done with the help of a dateire called
theconstraint graph A constraint grapi& has one node for each program variable.
For each direct constraiat2 b, G has a directed edde— a. Each node also has
a points-to set associated with it, initialized using thiegonstraints: for each init
constrainta O {b}, nodea’s points-to set contain®c(b). The indirect constraints
are not explicitly represented in the graph; instead theyraintained in a separate
list.

The edges of the constraint graph represent the constizgtigeen vari-
ables. If an edge goes from variabldo variabley, theny's points-to set must

includex’s points-to set. The analysis can satisfy the constraggeasented in the
graph by propagating the variables’ points-to sets aloagetlyes of the graph: for
each edge — vy, ptsly) < pts(x) (where< represents set update). However, not
all the constraints are represented in the graph: inditstcaints can't be repre-
sented because (as shown in Table 2.1) we need to know tlebhleai points-to
sets in order to know what edges to add; since the whole pbtheanalysis is to
compute the variables’ points-to sets, this presents adargn

The analysis solves this quandary by dynamically addingetigthe graph
during the analysis itself. As the analysis updates vag&lgoints-to sets, it adds
new edges to the graph to represent the indirect constréniatscan be resolved
using the new points-to information. If varialtés points-to set is updated, then
for each constraind O b and eacHoc(v) € ptsb), we add a new edge — a.
Similarly, for each constraintb © a we add a new edga— V.

Figure 1 shows a basic worklist algorithm that maintainsetkaicit transi-
tive closure ofG by continually propagating points-to sets alddg edges, adding
new edges when appropriate. The worklist is initializedwatl nodes inG that
have a non-empty points-to set. The operator represents set update. For each
noden taken off the worklist, we proceed in two steps:

1. For eacHoc(v) € ptg(n): for each constraird O «n add an edge — a, and
for each constraintn O b add an edgé — v. Any node that has had a new
outgoing edge added is inserted into the worklist.

2. For each outgoing edge— v, propagatepts(n) to nodev, i.e., pts(v) :=
pts(v) U pts(n). Any node whose points-to set has been modified is inserted
into the worklist.

The algorithm is presented as it is for clarity of expositigarious optimizations
are possible to improve its performance.

2.2 Related Work

Inclusion-based pointer analysis was first described byefgeh in his Ph.D.
thesis [1], in which he formulates the problem in terms ofetypbeory. The algo-
rithm presented in the thesis doesn’t use a constraint giaptead it solves the

Algorithm 1 Basic inclusion-based analysis.
Require: G= (N,E), Worklist=N
while Worklist# 0 do
n «SeLECT(Worklist)
for all v e ptg(n) do
for all constraintsa O «ndo
if v— a¢ E then
E—{v—a}
Worklist«— {v}
for all constraintscn O b do
if b— v¢ E then
E—{b—v}
Worklist«— {b}
forall n—zcEdo
pts(z) — pts(n)
if pts(z) changedhen
Worklist«— {z}

inclusion constraints in a fairly naive manner by repeaté@dfrating through a con-
straint vector. There have been several significant updaties that time.

Faehndrich et al. [29] were the first to represent the coimssraising a
graph and formulate the problem as computing the dynamisitiige closure of
that graph. This work introduces the notionayfcle detectionan important opti-
mization for inclusion-based analysis that will be disagsgurther in Section 2.3.
The authors propose a method for partial online cycle deteend demonstrate
that cycle detection is critical for scalability of inclesi-based analysis. In their
method, a depth-first search of the graph is performed upery@dge insertion,
but the search is artificially restricted for the sake of perfance, making cycle
detection incomplete.

Heintze and Tardieu introduce a new algorithm for computiregdynamic
transitive closure [41]. As new edges are added to the ainsigraph from the
indirect constraints, the new points-to information is aotomatically propagated
across the edges. Instead, the constraint graph retapreitgansitive form. During
the analysis, indirect constraints are resolved via rdaitityaqueries on the graph.
Cycle detection is performed as a side-effect of these gsiefihe main drawback

to this technique is unavoidable redundant work—it is ingilale to know whether
a reachability query will encounter a newly-added inclasealge (inserted earlier
due to some other indirect constraint) until after it congde which means that
potentially redundant queries must still be carried outhendff-chance that a new
edge will be encountered. Heintze and Tardieu report exaetesults, analyzing a
C program with 1.3M LOC in less than a second, but these eaudt for a field-
based implementation. A field-based analysis treats eddiofi@ struct as its own
variable—assignments tof, y.f, and (xz).f are all treated as assignments to a
variablef, which tends to decrease both the size of the input to theigraamalysis
and the number of dereferenced variables (an importantatati of performance).
Field-based analysis is unsound for C programs, and whdk an analysis is ap-
propriate for the work described by Heintze and Tardieu ¢tlent is a dependency
analysis that is itself field-based), it is inappropriaterfany others. For the results
in this dissertation, we use a field-insensitive versionheirt algorithm, which is
dramatically slower than the field-based version

Pearce et al. have proposed two different approaches tasinc-based
analysis, both of which differ from Heintze and Tardieu iattthey maintain the
explicit transitive closure of the constraint graph (itegy propagate points-to in-
formation as in the basic algorithm given by Figure 1). Peatcal. first proposed
an analysis [67] that uses a more efficient and completeidigofor online cycle
detection than Faehndrich et al. [29]. In order to avoid eyldtection at every edge
insertion, the algorithm dynamically maintains a topotagiordering of the con-
straint graph. Only a newly-inserted edge that violatesctiveent ordering could
possibly create a cycle, so only in this case are cycle deteahd topological re-
ordering performed. This algorithm proves to still have rmach overhead (mainly
due to continually updating the topological order), so Peat al. later proposed a
new and more efficient algorithm [66]. Rather than deteclssyat the point when a
new edge is inserted, the entire constraint graph is peadligiswept to detect and
collapse any cycles that have formed since the last sweeap s€bond algorithm is
the one we compare against in our evaluation.

1To ensure that the performance difference is in fact due td-fisensitivity, we also bench-
marked a field-based version of our HT implementation. Weenkesi comparable performance to
that reported by Heintze and Tardieu [41].

Berndl et al. [7] describe an inclusion-based pointer asisalfor Java that
uses BDDs [10] to represent both the constraint graph ang@dhgs-to solution.
BDDs have been extensively used in model checking as a wagpi@sent and
manipulate large graphs in a very compact and efficient waynd et al. were one
of the first to use BDDs for pointer analysis. The analysig thescribe is specific to
the Java language; it also doesn’t handle indirect funatals because it depends
on a prior analysis to construct the complete call-graphirdygement a version of
the algorithm for comparison in this thesis that is targdtedC programs and that
does handle indirect function calls.

Rountev et al. [70] introduce Offline Variable Substituti@Vs), a linear-
time offline analysis (i.e., carried out before the incluslmased analysis), whose
aim is to find and collapse pointer-equivalent variables,(zariables with identical
points-to sets). OVS is complementary to cycle detectiahiarrthogonal to the
actual inclusion-based algorithm used; it can be combingd any of the algo-
rithms we've discussed. Our offline algorithms, describe8ection 2.4, subsume
and improve upon OVS.

Because inclusion-based analysis has in the past beerdeosdito be non-
scalable, other algorithms, including Steensgaard’s-lve@ar time analysis [78]
and Das’ One-Level Flow analysis [25], have been proposethprove perfor-
mance by making further approximations and sacrificingtaatthl precision. While
Steensgaard’s analysis has much greater imprecisionribhrsion-based analysis,
Das reports that for C programs the One-Level Flow analyassgrecision very
close to that of inclusion-based analysis. This precissdraised on the assumption
that multi-level pointers are less frequent and less ingmthan single-level point-
ers, which Das’ experiments indicate is usually (thoughaitys) true for C; this
assumption may not hold true for other languages, such asalay C++. In ad-
dition, for the sake of performance Das conservatively asifion-equivalent vari-
ables, much like Steensgaard’s analysis; this unificatiakes it difficult to trace
dependency chains among variables. Dependency chainesrgraseful for under-
standing the results of program analyses such as prograficagon and program
understanding, and also for use in tools such as Broadwdy [8dlusion-based
pointer analysis is a better choice than either Steensgaamdlysis or One-Level
Flow, if it can be made to run in reasonable time even on large progratmsnil-
lions of lines of code; this is the challenge that we addneskis thesis.

10

In the other direction of increasing precision, there hagerbseveral at-
tempts to scale a context-sensitive version of inclusiaseld pointer analysis. One
of the most scalable of these attempts is the algorithm byl®ytet al. [81], which
uses BDDs to scale a context-sensitive inclusion-baseatgroanalysis for Java
to roughly 600K LOC (measuring bytecode rather than sourms). However,
Whaley et al.’s algorithm is only context-sensitive for #epel variables, meaning
that all variables in the heap are treated context-ingeabit Its efficiency de-
pends heavily on certain characteristics of the Java lageaattempts to use the
same technique for analyzing programs in C have shown gresduced perfor-
mance [2].

Nystrom et al. [64] present a context-sensitive algoritresdal on the in-
sight that inlining all function calls makes a context-insiive analysis equivalent
to a context-sensitive analysis of the original programc@ifrse, inlining all func-
tion calls can increase the program size exponentiallyirbelligent heuristics can
help prevent exponential growth. An important buildingdKaf this approach is
context-insensitive inclusion-based analysis—it is ushkile inlining the functions
and also for analyzing the resulting program. Nystrom etrelnage to scale the
context-sensitive analysis to a C program with 200K LOC. Tkw techniques
described in this dissertation should scale their algorigiven further.

2.3 Online Cycle Detection

Faehndrich et al. [29] observed that, given a cycle in thestamt graph,
every variable in the cycle must necessarily have idengioaits-to sets. This ob-
servation follows because as soon as the points-to set &vammble changes, that
change gets propagated to every other variable in the dgeleause these variables
are identical, they can all be collapsed together into asingde in the constraint
graph without losing precision.

The important question is how to detect these cycles. Madesyin the
constraint graph aren’t present in the initial graph; theyyappear during the
analysis as it adds new edges. This observation motiatise cycle detection,
I.e., cycle detection conducted periodically during therse of the inclusion-based
analysis. Online cycle detection has an inherent tensibwd®sn aggressiveness
and overhead. In one extreme, the analysis could check ibaegcle was created

11

each time a new edge is added to the graph; this strategy hamartdous amount
of overhead that negates any benefit of the cycle detectiomization. In the other

extreme, the analysis could wait until the end of the analtsicheck for cycles;

however, this strategy loses any opportunity for optingzine analysis itself. We
need a strategy that finds a sweet spot between these twmestre

The particular method used for detecting cycles will in &apart determine
the efficiency of the inclusion-based analysis. We now pretseo new approaches
for online cycle detection that balance this tension inedéht ways.

2.3.1 Lazy Cycle Detection

The central insight behind cycle detection is that cycleth@ constraint
graph can be collapsed because nodes in the same cycle aemtged to have
identical points-to sets. We turn this fact around to creaeuristic for cycle de-
tection: nodes with identical points-to sets might be pér aycle. The insight
is to balance aggression versus overhead by only looking &ycle when there is
evidence that a cycle might exist. Before propagating getiotinformation across
an edge of the constraint graph, we check to see if the somte@stination al-
ready have equal points-to sets; if so then we use a deptisdimsch to check for a
possible cycle.

This technique is lazy because rather than trying to dej@t¢s when they
are created, i.e., when the final edge is inserted that caegptee cycle, it waits
until the effect of the cycle—identical points-to sets—tw@@s evident. The advan-
tage of this technique is that we only attempt to detect cyaleen we are likely to
find them. A potential disadvantage is that cycles may bectkdenell after they
are formed, since we must wait for the points-to informatiompropagate all the
way around the cycle before we can detect it.

The efficiency of this technique depends upon the assumiptadtwo nodes
usually have identical points-to sets only because theynaifee same cycle; oth-
erwise it would waste time trying to detect non-existentlegc One additional
refinement is necessary to bolster this assumption: we tegger cycle detection
on the same edge twice. We thus avoid making repeated cytdetibm attempts
involving nodes with identical points-to sets that are mad icycle. This additional

12

restriction implies that Lazy Cycle Detection is incompletit is not guaranteed to
find all cycles in the constraint graph.

The Lazy Cycle Detection algorithm is shown in Figure 2. Befae prop-
agate a points-to set from one node to another, we check tid see conditions
are met: (1) the points-to sets are identical; and (2) we tiiatrgggered a search
on this edge previously. If these conditions are met, thetrigger cycle detection
rooted at the destination node. If there exists a cycle, Vlagse together all the
nodes involved; we also remember this edge so that if no aals we won't
repeat the attempt later.

Algorithm 2 Lazy cycle detection.
Require: G= (N,E), Worklist=N,R=10
while Worklist# 0 do
n «SeLECT(Worklist)
for all ve ptg(n) do
for all constraintsa 2 xndo
if v— a¢ E then
E—{v—a}
Worklist«— {v}
for all constraints<n 2 b do
if b— v ¢ E then
E—{b—v}
Worklist«— {b}
forall n—ze E do
if pts(z) == pts(n) An— z¢ Rthen
DETECTAND-COLLAPSECYCLES(2)
R— {n—z}
pts(z) — pts(n)
if pts(z) changedhen
Worklist«— {z}

2.3.2 Hybrid Cycle Detection

Cycle detection can be done offline, in a static analysisr poidhe actual
pointer analysis, such as with Offline Variable Substitutiescribed by Rountev

13

et al. [70]. However, as mentioned earlier many cycles dexist in the initial
constraint graph and only appear as new edges are added theipointer anal-
ysis itself, thus the need for online cycle detection teghas such as Lazy Cycle
Detection. The drawback to online cycle detection is thegdpuires traversing the
constraint graph multiple times searching for cycles; ¢hepeated traversals can
become extremely expensive. Hybrid Cycle Detection (HGDd-called because
it combines both offline and online analyses to detect cyd¢hlereby getting the
best of both worlds—detecting cycles created online dutivegpointer analysis,
without requiring any traversal of the constraint graph.

2.3.2.1 Offline Component

The HCD offline analysis is a linear-time static analysiselpnior to the
actual pointer analysis. We build an offline version of thestmint graph, with
one node for each program variable plus an additioefahode for each variable
dereferenced in the constraints (e:n). There is a directed edge for each direct
and indirect constrainta O b yields edgeb — a, a O «b yields edgexb — a, and
xa 2 b yields edgeb — xa. Init constraints are ignored. Figure 2.1 illustrates this
process.

Once the graph is built we detect strongly-connected comipisn(SCCs)
using Tarjan’s linear-time algorithm [79]. Any SCCs coniag only non-ref nodes
can be collapsed immediately. SCCs containing ref nodesare problematic: a
ref node in the offline constraint graph is a stand-in for déalde’s unknown points-
to set, e.g., the ref noden stands for whatever's points-to set will be when the
pointer analysis is complete. An SCC containing a ref nods @s*n actually
means thanh's points-to set is part of the SCC; but since we don't yet knavat
that points-to set will be, we can’t collapse that SCC. THenaf analysis knows
which variables’ points-to sets will be part of an SCC, wtile online analysis
(i.e., the pointer analysis) knows the variables’ actuahyssto sets. The purpose
of Hybrid Cycle Detection is to bridge this gap. Figure 2.2wh how the online
analysis is affected when an SCC contains a ref node in theeffbnstraint graph.

We finish the offline analysis by looking for SCCs in the offlcm@nstraint
graph that consist of more than one node and that also coatdemast one ref
node. Because there are no constraints of the fgor@ xq, no ref node can have

14

a=&c,

d=c;

b= xa; <:>/r\<:>
xa=Db;
(a) Program

a2 {c} (o0

doc

bD xa
xa2b
(b) Constraints

(c) Offline Constraint Graph

Figure 2.1: HCD Offline Analysis Example: (a) Program cod@;donstraints gen-
erated from the program code; (c) the offline constraint lgi@gresponding to the
constraints. Note thata andb are in a cycle together; from this we can infer that in
the online constraint grapb,will be in a cycle with all the variables ia's points-to

set.

15

a—{c}
(a) Points-to Info

OO G
o o

(b) Before edges added (c) After edges added

Figure 2.2: HCD Online Analysis Example: (a) The initial ptsi-to information
from the constraints in Figure 2.1; (b) the online constrgmaph before any edges
are added; (c) the online constraint graph after the edgeadated due to the indi-
rect constraints in Figure 2.1. Note tltadndb are now in a cycle together.

a reflexive edge and any non-trivial SCC containing a ref madst also contain a
non-ref node. For each SCC of interest we select one noredIn and for each
ref nodexain the same SCC, we store the tupdeb) in a listL. This tuple signifies
to the online analysis thats points-to set belongs in an SCC wihand therefore
everything ina’s points-to set can safely be collapsed with

2.3.2.2 Online Component

The online analysis is shown in Figure 3. The algorithm isilsinto the
basic algorithm shown in Figure 1, except when processig nave first check.
for atuple of the forn{n, a). If one is found then we preemptively collapse together
nodea and all members afi's points-to set, knowing that they belong to the same
cycle. For simplicity’s sake the pseudo-code ignores sooveas optimizations.

Hybrid Cycle Detection is not guaranteed to find all cyclegha online
constraint graph, only those that can be inferred from ttignefversion of the
graph. Those cycles that it does find, however, are discdaride earliest possible
opportunity and without requiring any traversal of the deenst graph. In addition,

16

Algorithm 3 Hybrid cycle detection.

Require: G= (N,E), Worklist=N
while Worklist£ 0 do
n «SeLECT(Worklist)
forall (n,a) € L do
for all ve ptg(n) do
COLLAPSE(V,a)
W — {a}
for all v e ptg(n) do
for all constraints 2 xndo
if v— a¢ E then
E—{v—a}
Worklist«— {v}
for all constraintskn O b do
if b— v ¢ E then
E—{b—v}
Worklist«— {b}
forall n—ze Edo
pts(z) — pts(n)
if pts(z) changedhen
Worklist«— {z}

17

Name LOC | Constraints Init | Direct | Indirect
Emacs-21.4a 169K 21,460\ 4,088| 11,095 6,277
Ghostscript-8.15K 169,312 67,310|| 12,154| 25,880 29,276
Gimp-2.2.8 554K 96,483|| 17,083| 43,878| 35,522
Insight-6.5 603K 85,375|| 13,198| 35,382| 36,795
Wine-0.9.21| 1,338K 171,237 39,166| 62,499| 69,572
Linux-2.4.26| 2,172K 203,733|| 25,678| 77,936| 100,119

Table 2.2: Benchmarks: For each benchmark we show the numhbees of code

(computed as the number of non-blank, non-comment lindsarsource files), the
number of constraints generated using CIL after being apéchwith OVS, and a
break-down of the types of constraints.

while HCD can be used on its own as shown in Figure 3, it can béseasily
combined with other cycle detection mechanisms, such as, t€Bnhance their
performance.

2.3.3 Evaluation

To compare the various inclusion-based pointer analysesinyplement
field-insensitive versions of five main algorithms: Heirdrel Tardieu (HT), Berndl
et al. (BLQ), Pearce et al. (PKH), Lazy Cycle Detection (LCB)d Hybrid Cy-
cle Detection (HCD). We also implement four additional aitfons by integrating
HCD with the other four main algorithms: HT+HCD, PKH+HCD, B&+HCD,
and LCD+HCD. The algorithms are written in C++ and handleaspects of the
C language except for varargs. They use as many common C@m3oas possi-
ble to provide a fair comparison, and they have all been kigptimized. Some
highlights of the implementations include:

¢ Indirect function calls are handled as described by Pedrak[66]. Func-
tion parameters are numbered contiguously starting imatelgi after their
corresponding function variable, and when resolving iectircalls they are
accessed as offsets to that function variable.

e Cycles are detected using Nuutila et al.’s [63] variant afalids algorithm,

18

and they are collapsed using a union-find data structurelvath union-by-
rank and path compression heuristics.

e BLQ uses the incrementalization optimization describe@bégndl et al. [7].
We use the BuDDy BDD library [54] to implement BDDs.

e LCD and HCD are both worklist algorithms—we use the workdisategy
LRF2 suggested by Pearce et al. [67], to prioritize the workk¥e also di-
vide the worklist into two sectionsurrentandnext as described by Nielson
et al. [61]; items are selected frocarrentand pushed ontoext and the two
are swapped wheturrentbecomes empty. For our benchmarks, the divided
worklist yields significantly better performance than agégnworklist (the ex-
act reason is unclear, other than the fact that the evatuatiter of the nodes
can significantly impact performance).

e Aside from BLQ, all the algorithms use sparse bitmaps to @ny@nt both the
constraint graph and the points-to sets. The sparse bitglementation is
taken from the GCC 4.1.1 compiler.

e We also experiment with the use of BDDs to represent the pamsets. Un-
like BLQ, which stores the entire points-to solution in agéenBDD, we give
each variable its own BDD to store its individual points-&b. ~or example,
if a— {b,c} andd — {c,e}, BLQ would have a single BDD representing
the set of tupleg(a,b), (a,c),(d,c),(d,e)}. Instead, we giva a BDD rep-
resenting the seftb, c} and we gived a BDD representing the sét, e}. The
use of BDDs instead of sparse bitmaps is a simple modificétiatrequires
minimal changes to the code.

The benchmarks for our experiments are described in TabldElacs is a
text editor; Ghostscript is a postscript viewer; Gimp is @age manipulation pro-
gram; Insight is a GUI overlaid on top of the gdb debugger; &\&a Windows em-
ulator; and Linux is the Linux operating system kernel. Thestraint generator is
separate from the constraint solvers: we generate comstfaom the benchmarks
using the CIL C front-end [60], ignoring any assignment®iaing types too small

2| east Recently Fired—the node processed furthest back in time is given priority.

19

to hold a pointer. External library calls are summarizechgsiand-crafted func-
tion stubs. We pre-process the resulting constraint fil@sgus variant of Offline

Variable Substitution [70], which reduces the number ofstmints by 60—77%.
This pre-processing step takes less than a second for EmddShaostscript, and
between 1 and 3 seconds for Gimp, Insight, Wine, and Linwe rEsults reported
are for these reduced constraint files; they include evergtirom reading in the

constraint file from disk, creating the initial constrainagh, and solving that graph.

We run the experiments on a dual-core 1.83 GHz processor2v@iB of
memory, using the Ubuntu 6.10 Linux distribution. Though grocessor is dual-
core, the executables themselves are single-threadedxédutables are compiled
using gcc-4.1.1 and the '— O3’ optimization flag. We repeahesxperiment three
times and report the smallest time; all the experiments kavg low variance in
performance.

2.3.3.1 Time and Memory Consumption

Table 2.3 shows the performance of the various algorithning times for
HCD’s offline analysis are shown separately and not includdtie times for the
various algorithms using HCD—they are small enough to bergssly negligible.
Table 2.4 shows the memory consumption of the algorithmgurei 2.3 graph-
ically compares (using a log-scale) the performance of amhbined algorithm
LCD+HCD—the fastest of all the algorithms—against the entrstate-of-the-art
algorithms. All these numbers were gathered using the sgatnap implementa-
tions of the algorithms (except for BLQ).

BLQ’s memory allocation is fairly constant across all thetfemarks. We
allocate an initial pool of memory for the BDDs, which dontesthe memory
usage and is independent of benchmark size. While we capakarthe initial pool
size for the smaller benchmarks without decreasing pedog®, there is no easy
way to calculate the minimum pool size for a specific benctmnso for all the
benchmarks we use the smallest pool size that doesn’t intipaiperformance of
our largest benchmark.

Itis interesting to note the vast difference in analysistletween Wine and
Linux for all algorithms other than BLQ. While Wine has 32.5er constraints
than Linux, it takes 1.7—7:3 longer to be analyzed, depending on the algorithm

20

Emacs Ghostscript Gimp Insight Wine Linux
HCD-Offline 0.05 0.17 0.26 0.23 0.51 0.62
HT 1.66 12.03 59.00 42.49 1,38851 393,30
PKH 2.05 20.05 92.30 117.88 1,946.16 1,181|59
BLQ 4.74 121.60 167.56 265.94 5,117.64 5,144.29
LCD 3.07 15.23 3950 39.02 1,157.10 327,65
HCD 0.46 4955 59.70 73.92 OOM 659.74
HT+HCD 0.46 729 1194 1482 643.89 102.77
PKH+HCD 0.46 1052 17.12 2191 838.08 11445
BLQ+HCD 5.81 115.00 173.46 257.05 4,211.71 4,581.91
LCD+HCD 0.56 7.99 1250 15.97 492.40 86.Y4

Table 2.3: Performance (in seconds), using bitmaps fortpdamsets. The HCD-
Offline analysis is reported separately and not includetfiéntimes for those algo-
rithms using HCD. The HCD algorithm runs out of memory (OONh)the Wine

benchmark.
Emacs Ghostscript Gimp Insight Wine Linux
HT 17.7 849 279.0 2315 1,867.2 901.
PKH 17.6 83.9 2695 1947 1,448.3 84Q.
BLQ | 215.6 216.1 216.2 216.1 216.2 216.
LCD 14.3 74.6 269.0 1844 1,465.1 830Q.
HCD 18.1 138.7 416.1 290.5 OOM 1,301.5
HT+HCD 12.4 80.8 2539 186.5 1,391.4 847
PKH+HCD 13.9 79.1 264.6 186.0 1,430.2 807.
BLQ+HCD | 215.8 216.2 216.2 216.2 216.2 216.
LCD+HCD 13.9 73.5 2639 183.6 1,406.4 807

©o N oo

P NN

Table 2.4: Memory consumption (in megabytes), using bisrfappoints-to sets..

21

[J LCD+HCD
OHT

E PKH
1000+ B BLQ

100 |

Time (sec)

10

& & @
& oc;@d o
OQ

SN
\06

Figure 2.3: Performance (in seconds) of our new combineatithgm (LCD+HCD)
versus three state-of-the art inclusion-based algoritiNoge that the Y-axis is log-
scale.

22

used. This discrepancy points out the danger in using tleeadithe initial input to
predict performance when other factors can have at leastiah rmpact. Wine is
a case in point: while its initial constraint graph is smiatlean that of Linux, its
final constraint graph at the end of the analysis is an orfleragnitude larger than
that of Linux, due mostly to Wine’s larger average pointséb size. BLQ doesn't
display this same behavior, because of its radically difieanalysis mechanism
that uses BDDs and because it lacks cycle detection.

Comparing HT, PKH, BLQ, LCD, and HCD. Figure 2.4 compares the perfor-
mance of the main algorithms by normalizing the times for RKH, BLQ, and
HCD by that of LCD. Focusing on the current state-of-theadgorithms, HT is
clearly the fastest: 1.9 faster than PKH and 6:6faster than BLQ. LCD is on av-
erage 1.0% faster than HT and uses Xkdess memory. HCD runs out of memory
for Wine, but excluding that benchmark it is on average<lsBower than HT and
1.9x faster than PKH, and uses k4nore memory than HT.

Effects of HCD. Figure 2.5 normalizes the performance of the main algosthm
by that of their HCD-enhanced counterparts. On averageigb®f HCD increases
HT performance by 3.2, PKH performance by &, BLQ performance by 1.1,
and LCD performance by 3:2 HCD also leads to a small decrease in memory
consumption for all the algorithms except BLQ—it decreasesory consumption
by 1.2x for HT, by 1.1x for PKH, and by 1.0% for LCD. Most of the memory
used by these algorithms comes from the representationiofsgio sets. HCD
improves performance by finding and collapsing cycles muchez than normal,
but it doesn’t actually find many more cycles than were alyedetected without
using HCD, so it doesn’t significantly reduce the number offssto sets that need
to be maintained. HCD doesn’t improve BLQ’s performance hycimbecause
even though no extra effort is required to find cycles, therstill some overhead
involved in collapsing those cycles. Also, the performant®LQ depends on
the sizes of the BDD representations of the constraint amatgpto graphs, and
because of the properties of BDDs, removing edges from thetrint graph can
potentially increase the size of the constraint graph BDD.

The combination of our two new algorithms, LCD+HCD, yieltie fastest
algorithm among all those studied: It i2X faster than HT, &} x faster than PKH,

23

15

o HT

o PKH
= BLQ
= HCD

10+

Normalized Time

Figure 2.4: Performance comparison of individual benctksiawvhere performance
is normalized against LCD. HCD runs out of memory for Winettsere is no HCD

bar for that benchmark.

24

10+ o HT
o PKH
= BLQ
8 mLCD
)
S
|_
g 6
N - -
= | _
g _
) _
Z 4 | M
k]
0
S K Q N Z & &
(g Q . . Q& N
Q}Q (}o}’ O\(Q \&\Q $\ \>Q 4@\%
NS v

Figure 2.5: Performance comparison of the individual bematks, where the
performance of each main algorithm is normalized agaiisstaspective HCD-
enhanced counterpart.

25

Emacs Ghostscript Gimp Insight Wine Linux
HT 3.44 18,55 46.98 65.00 1,551.89 419,38
PKH 4.23 1955 8153 96,50 1,172.15 801,13
LCD 4.96 19.34 47.29 6457 1,213.43 380,26
HCD 3.96 2465 49.11 65.01 731.20 267.69
HT+HCD 2.58 15.65 33.69 4233 737.37 209.90
PKH+HCD 3.06 1470 33.71 43.20 744.35 17243
LCD+HCD 3.09 13.69 33.04 43.17 625.82 183.97

Table 2.5: Performance (in seconds), using BDDs for pdimtsets.

Emacs Ghostscript Gimp Insight Wine Linux
HT 33.1 49.3 100.7 100.0 811.2 2743
PKH 33.2 33.6 504 66.8 226.4 1821
LCD 33.2 33.2 40.1 339 2511 735
HCD 33.1 37.1 36.8 37.0 239.6 65/8
HT+HCD 33.1 378 51.2 53.9 410.6 1007
PKH+HCD 33.1 33.2 36.0 33.2 103.9 45{2
LCD+HCD 33.1 33.2 332 33.2 1736 42|6

Table 2.6: Memory consumption (in megabytes), using BDDg@nts-to sets.

and 206x faster than BLQ.

2.3.3.2 Understanding the Results

There are a number of factors that determine the relativioqmeance of
these algorithms, but three of the most important are: @htmber of nodes col-
lapsed due to strongly-connected components; (2) the nuofbeodes searched
during the depth-first traversals of the constraint grapl;(&) the number of prop-
agations of points-to information across the edges of tinstcaint graph.

The number of nodes collapsed is important because it redoct the
number of nodes and the number of edges in the constrainhgttag more nodes
that are collapsed, the smaller the input and the more eftithe algorithm.

26

The depth-first searches are pure overhead due to cycleidateas long
as roughly as many cycles are being detected, then the f@desnhat are searched
the better.

The number of points-to information propagations is an irtgget metric
because propagation is one of the most expensive operatidhs analysis. It is
strongly influenced by both the number of cycles collapseibgrhow quickly they
are collapsed. If a cycle is not detected quickly, then maiatinformation could be
redundantly circulated around the cycle a number of times.

We now examine these three quantities to help explain tHenpeance re-
sults seen in the previous section. Due to its radicallyed#fit analysis mechanism,
we don't include BLQ in this examinatich.

Nodes Collapsed. PKH is the only algorithm guaranteed to detect all strongly-
connected components in the constraint graph; however,idiTL&D both do a
very good job of finding and collapsing cycles—for each bematk they detect
and collapse over 99% of the nodes collapsed by PKH. HCD k¥ itoesn’t do

as well, collapsing only 46—74% of the nodes collapsed by PRiis deficiency is
primarily responsible for HCD’s greater memory consumpptio

Nodes Searched. HCD is, of course, the most efficient algorithm in terms of
searching the constraint graph, since it doesn’t search. ati& is the next most
efficient algorithm, because it only searches the subsdteofjitaph necessary for
resolving indirect constraints. PKH searchesx2#& many nodes as HT, as it pe-
riodically searches the entire graph for cycles. LCD is #ast efficient, searching
8x as many nodes as HT.

Propagations. LCD has the fewest propagations, showing that its greatertef
at searching for cycles pays off by finding those cycles eathan HT or PKH.

31t is difficult to find statistics to directly explain BLQ’s plrmance relative to HT, PKH, LCD,
and HCD. It doesn’t use cycle detection, so it adds ordersagiitude more edges to the constraint
graph—nbut propagation of points-to information is donewdtaneously across all the edges using
BDD operations, and the performance of the algorithm is daeerto how well the BDDs compress
the constraint and points-to graphs than anything else.

27

HT has 1.8 as many propagations, and PKH has>2&s many. Since they both
find as many cycles as LCD (as shown by the number of nodespsellf), this
difference is due to the relative amount of time it takes facheof the algorithms
to find cycles. HCD has the most propagations5d& many as LCD. HCD finds
cycles as soon as they are formed, so it finds them much fastel{CD does, but
as shown above, it finds substantially fewer cycles than ther@lgorithms.

Effects of HCD. The main benefit of combining HCD with the other algorithms
is that it helps these algorithms find cycles much sooner they would on their
own. While it does little to increase the number of nodesapsed or decrease the
number of nodes searched, it greatly decreases the numpepzfgations, because
cycles are collapsed before the points-to information hakamnce to propagate
around the cycles. The addition of HCD decreases the nunilpFppagations by
10x for HT and by 7.4 for both PKH and LCD.

Discussion. Despite its lazy nature, LCD searches more nodes than e¢ifher
PKH, and it propagates less points-to information thaneeitts well. It appears
that being more aggressive pays off, which naturally leadi¢ question: could
we do better by being even more aggressive? However, pastierpe has shown
that we must carefully balance the work we do—too much aggrascan lead to
overhead that overwhelms any benefits it may provide. Thiistp@shown in both
Faehndrich et al.'s algorithm [29] and Pearce et al.'s aagalgorithm [67]. Both
of these algorithms are very aggressive in seeking out syaled both are an order
of magnitude slower than any of the algorithms evaluatetlisygaper.

2.3.3.3 Representing Points-to Sets

Table 2.4 shows that the memory consumption of all the algms that use
sparse bitmaps is extremely high. Profiling reveals thatrtagrity of this memory
usage comes from the bitmap representation of points-80 &#Q, on the other
hand, uses relatively little memory even for the largestchemarks, due to its use
of BDDs. It is thus natural to wonder how the other algorithwasild compare—in
terms of both analysis time and memory consumption—if theyewto instead use
BDDs to represent points-to sets.

28

Normalized Time

K S Q Q Q Q Q
™ @ W o © x\>\o x\,\o
SSNEPRCINSY
Figure 2.6: Performances of the BDD-based implementatonsialized by their
bitmap-based counterparts, averaged over all the ben&smar

Tables 2.5 and 2.6 show the performance and memory consumydtihe
modified algorithms. Figure 2.6 graphically shows the penfance cost of the
modified algorithms by normalizing them by their bitmap-désounterparts, and
Figure 2.7 shows the memory savings by normalizing the lptivesed algorithms
by their BDD-based counterparts. As with BLQ, we allocateirdtial pool of
memory for the BDDs that is independent of the benchmark sikéch is why
memory consumption actually increases for the smallesthreark, Emacs, and
never goes lower than 33.1MB for any benchmark.

On average, the use of BDDs increases running time sbywaile it de-
creases memory usage by 5.5Most of the extra time comes from a single func-
tion, bdd_allsat which is used to extract all the elements of a set containea i
given BDD. This function is used when iterating through aalale’s points-to set
while adding new edges according to the indirect conssaidbwever, both PKH

29

D
]

N
|

Normalized Memory Usage

N
]

\2’5 Q‘@ \/00 \2\00 X‘QQ X‘oo XQ‘OO
SSNEPRCINSY
Figure 2.7: Memory consumption of the bitmap-based implaatéons normalized
by their BDD-based counterparts, averaged over all thetbaadks.

30

and HCD are actually faster with BDDs on all benchmarks ektieEmacs (Fig-
ure 2.6 shows that they are slower on average, but this iydmeause of Emacs).
These are the two algorithms that propagate the most ptaintdermation across
constraint edges. BDDs make this operation much fastertbiaig sparse bitmaps,
and this advantage makes up for the extra time taken by biddt.al

When BDDs are used, HCD is less effective in improving penfance than
it was when using bitmaps because HCD decreases the numperpafgations re-
quired, but using BDDs already makes propagation a fairgaphoperation. How-
ever, with BDDs, HCD'’s effect on memory consumption is muabrennoticeable,
since the constraint graph represents a much larger propaiftthe memory usage.

A possible optimization for the BDD-based points-to setsilgde to cache
the results of thédd_allsatfunction, using a map from BDDs to a list of the BDD
elements. While such a map seems to counter the memory+omtisum advantage
of using BDDs, the fact that many of the BDDs encode idenfpzahts-to sets
would probably mitigate this problem.

2.4 Offline Optimizations

Offline optimizations are performed on the set of inclusiongtraints prior
to the actual inclusion-based analysis in order to redueéngbut size of the prob-
lem. Rountev et al.'s Offline Variable Substitution (OVS)as example of this
technique. Prior work (including OVS) targgt®inter equivalencei.e., detect-
ing and collapsing variables that are guaranteed to havdiodé points-to sets.
Section 2.4.1 describes several techniques that alsa f@ogeer equivalence and
improve on the state-of-the-art. Section 2.4.2 descrilmespimization that tar-
getslocation equivalencea new type of equivalence that has never been defined or
exploited for pointer analysis prior to this work.

2.4.1 Pointer Equivalence

Let 7/ be the set of all program variables aidbe the set of natural num-
bers; forve 7 : pts(v) C V is V's final points-to set, ange(v) € A is thepointer
equivalence labebf v. Variablesx andy are pointer equivalent ifpts(x) = pts(y).
Our goal is to assign pointer equivalence labels suchgéa = pe(y) implies that

31

x andy are pointer equivalent. Pointer equivalent variables ed@lyg be collapsed

together in the constraint graph to reduce both the numbaodés and edges in
the graph. The benefits are two-fold: (1) there are fewertpdmsets to maintain;

and (2) there are fewer propagations of points-to inforamasilong the edges of the
constraint graph.

The offline optimization begins by using the set of inclusc@mstraints to
create aroffline constraint grap/f with VAR nodes to represent each variatster
nodes to represent each dereferenced variable Aardnodes to represent each
address-taken variable. REF nodexa stands for the unknown points-to set of
variablea, while ADR node &a stands for the address of varialbleEdges represent
the inclusion relationshipst O {b} yields edge & — a; a > byieldsb — a; a D xb
yieldsxb — a; andxa D byieldsb — xa.

Before describing the optimizations, we first explain thacapts ofdirect
andindirect nodes [70]. Direct nodes have all of their points-to relasiexplicitly
represented in the constraint graph: for direct nedend the set of nodes =
{y:y—x}, ptsgx) = U pt9y). Indirect nodes are those that may have points-to

yes

relations that are not represented in the constraint gralbIREF nodes are indirect
because the unknown variables that they represent may heireotvn points-to

relations. VAR nodes are indirect if they (1) have had their address takéighw

means that they can be referenced indirectly vRe& node; (2) are the formal
parameter of an function targeted by an indirect call; oraf@)assigned the return
value of an indirect function call. All otherAR nodes are direct.

All indirect nodes are conservatively treated as possileces of points-
to information, and therefore each is given a distinct pimtquivalence label at
the beginning of the algorithmaDR nodes are definite sources of points-to infor-
mation, and they are also given distinct labels. For corarese, we will use the
term ’indirect node’ to refer to bothDR nodes and true indirect nodes because our
optimizations treat them equivalently.

Figure 2.8 shows a set of constraints and the corresponéfimgaonstraint
graph. In Figure 2.8 all theer andADR nodes are marked indirect, as welhasR
nodesa andd, because they have their address taken. Becaased can now be

4The offline constraint graph is akin to tsabset graphiescribed by Rountev et al. [70].

32

bo{a} |a>h|hDxb
bO>{d} | cOb| iDxe
co{a} | d2i| kD xj
eD{a} |eDf
eD>{d} | f2oe
g2 f
(a) Set of constraints.

ap=as .
DA EH

b
>
(el [J—(e[9) (ea[)—{e] =] (]
(b) Offline constraint graph.

Figure 2.8: Example offline constraint graph. Indirect reodee grey and have
already been given their pointer equivalence labels. Dinedes are black and
have not been given pointer equivalence labels.

accessed indirectly through pointer dereference, we cdonuer assume that they
only acquire points-to information via nodesndi, respectively.

2.4.1.1 Hash-based Value Numbering (HVN)

The goal of HVN is to give each direct node a pointer equivedelabel
such that two nodes share the same label only if they aregya@quivalent. HVN
can also identify non-pointers—variables that are guaehto never point to any-
thing. Non-pointers can arise in languages with weak tygstems, such as C:
the constraint generator can'’t rely on the variables’ typelarations to determine
whether a variable is a pointer or not, so it conservativeguanes that everything
is a pointer. HVN can eliminate many of these superfluousbées; they are iden-
tified by assigning a pointer equivalence label of 0. The g proceeds as
follows:

1. Find and collapse strongly-connected components (Sio@is¢ offline con-
straint graph. If any node in the SCC is indirect, the enti@CSs indirect.

33

In Figure 2.8eandf are collapsed into a single (direct) node.

2. Proceeding in topological order, for each direct notl £ be the set of pos-
itive incoming pointer equivalence labels, i.6.= {pely) : y — XA pe(y) #
0}. There are three cases:

(@) L is empty. Thenxis a non-pointer ange(x) = 0.
Explanation: in order forx to potentially be a pointer, there must exist

a path tox either from anaDR node or some indirect node. If there is
no such path, thexmust be a non-pointer.

(b) L is a singleton, wittp € L. Thenpegx) = p.
Explanation: if every points-to set coming in tois identical, therx's

points-to set, being the union of all the incoming pointséts, must be
identical to the incoming sets.

(c) L contains multiple labels. The algorithm looks ggn a hashtable to
see if it has encountered the set before. If so, it asqig(re the same
label; otherwise it creates a new label, stores it in the taddd, and
assigns it tgpe(x).

Explanation: x's points-to set is the union of all the incoming points-to
sets;x must be equivalent to any node whose points-to set resolts fr
unioning the same incoming points-to sets.

Following these steps for Figure 2.8, the final assignmepbaiter equiv-
alence labels for the direct nodes is shown in Figure 2.9.eQvie have assigned
pointer equivalence labels, we merge nodes with identadals and eliminate all
edges incident to nodes labeled O.

Complexity. The complexity of HVN is linear in the size of the graph. Using
Tarjan’s algorithm for detecting SCCs [79], step 1 is lined&he algorithm then
visits each direct node exactly once and examines its inogmages. This step is
also linear.

34

()
[ERN
-~

=

) D) (e el
(D GDNC Ul

Figure 2.9: The assignment of pointer equivalence labéts EifVIN.

N
;I:
ji

o

)
()

)
o

i
(¢}

Comparison to OVS. HVN is similar to Rountev et al.’s [70] OVS optimization.
The main difference lies in our insight that labeling the @emsed offline con-
straint graph is essentially equivalent to performing gatwmbering on a block
of straight-line code, and therefore we can adapt the cda&ssnpiler optimization
of hash-based value numbering for this purpose. The adyaiits in step & in
this case OVS would give the direct node a new label withoetkimg to see if
any other direct nodes have a similar set of incoming la@tentially missing
a pointer equivalence. In the example, OVS would not disctivatb ande are
equivalent and would give them different labels.

2.4.1.2 Extending HVN

HVN does not find all pointer equivalences that can be dedept®r to
pointer analysis because it does not interpretuthien and dereferenceperators.
Recall that the union operator is implicit in the offline ctagt graph: for direct
nodex with incoming edges from nodegsand z, pts(x) = ptsy) U pts(z). By
interpreting these operators, we can increase the numbaoiofer equivalences
detected, at the cost of additional time and space.

HR algorithm. By interpreting the dereference operator, we can relaera
nodev to its correspondin@eF nodexv. There are two relations of interest:

1. Vxy € V' pe(X) = pely) = pe(*X) = pe(+y).
2. Vxe vV pg(x) = 0= pexx) = 0.

35

()
()
-~

2

j:
o

(i [2 (]9 (= el
D CDINC =D tID

Figure 2.10: The assignment of pointer equivalence lalftds R and HU.

)
()

XA

)
o

i
(¢}

The first relation states that if variablesindy are pointer-equivalent, then
so arexx andxy. If x andy are pointer-equivalent, then by definitier andsxy will
be identical. Whereas HVN would give them unique pointeneance labels, we
can now assign them the same label. By doing so, we may findi@aiali pointer
equivalences that had previously been hidden by the difféabels.

The second relation states that if variaklis a non-pointer, therx is also
a non-pointer. It may seem odd to have a constraint thatelemreées a non-pointer,
but this can happen when code that initializes pointer \&ladinked but never
called, for example with library code. Exposing this redaghip can help identify
additional non-pointers and pointer equivalences.

Figure 2.10 provides an example. HVN assigrande identical labels; the
first relation above tells us we can assignandxe identical labels, which exposes
the fact that andh are equivalent to each other, which HVN missed. Also, végiab
J is not mentioned in the constraints, and thereforevikre node j isn’t shown in
the graph, and it is assigned a pointer equivalence label 3h@ second relation
above tells us that becaupe(j) = 0, pe(xj) should also be 0; therefore botj
andk are non-pointers and can be eliminated.

The simplest method for interpreting the dereference apers to itera-
tively apply HVN to its own output until it converges to a fixpdint. Each iteration
collapses equivalent variables and eliminates non-paintelfilling the two rela-
tions we describe. This method adds an additional fact@/(aj to the complexity
of the algorithm, since in the worst case it eliminates alsingriable in each iter-
ation until there is only one variable left. The complexifyHR is thereforeO(n?),
but in practice we observe that this method generally etdliniear behavior.

36

HU algorithm. By interpreting the union operator, we can more preciselgkr
the relations among points-to sets. Figure 2.10 gives ampbeain VAR nodec.
Two different pointer equivalence labels reacbne from &a and one fronb. HVN
therefore giveg a new pointer equivalence label. Howewvptgb) D pts&a), so
when they are unioned together the result is singilyb). By keeping track of this
fact, we can assigathe same pointer equivalence labebas

Let f, be a fresh number unique tg the algorithm will use these fresh
values to represent unknown points-to information. Thewilgm operates on the
condensed offline constraint graph as follows:

1. Initialize points-to sets for each nodev € 7 : ptg(&v) = {v}; ptg(xv) =
{f.}; if vis direct thenpts(v) = 0, elsepts(v) = { f,}.

2. Intopological order: for each nodaelet.s = {y:y— x} U{x}. Thenptsx) =
U pts(y).

yeS
3. Assign labels s.t'x,y € V : ptg(x) = ptsy) < pe(x) = pe(y).

Since this algorithm is effectively computing the trangticlosure of the
constraint graph, it has a complexity ©{n®). While this is the same complexity
as the pointer analysis itself, HU is significantly fastecdgse, unlike the pointer
analysis, we do not add additional edges to the offline caimgtgraph, making the
offline graph much smaller than the graph used by the pointayais.

Putting It Together: HRU. The HRU algorithm combines the HR and HU al-
gorithms to interpret both the dereference and union operaHHRU modifies HR
to iteratively apply the HU algorithm to its own output urticonverges to a fixed
point. Since the HU algorithm i©(n®) and HR adds a factor @d(n), HRU has

a complexity ofO(n%). As with HR this worst-case complexity is not observed
in practice; however it is advisable to first apply HVN to thégmal constraints,
then apply HRU to the resulting set of constraints. HVN digantly decreases
the size of the offline constraint graph, which decreases theat time and memory
consumption of HRU.

37

2.4.2 Location Equivalence

Let v be the set of all program variables afdbe the set of natural num-
bers; forve 7 : pts(v) C ¥ is V's points-to set, ande(v) € A’ is thelocation
equivalence labebf v. Variablesx andy are location equivalent iffzc 17 : x €
pts(z) < y € pts(z). Our goal is to assign location equivalence labels such that
le(x) = le(y) implies thatx andy are location equivalent. Location equivalent vari-
ables can safely be collapsed together in all points-tq petsiding two benefits:

(1) the points-to sets consume less memory; and (2) sincedims-to sets are
smaller, points-to information is propagated more effitieacross the edges of the
constraint graph.

Without any pointer information it is impossible to compuati location
equivalences, as can be seen by the definition of locatiowaguce given above.
However, since points-to sets are never split during thatpoianalysis, any vari-
ables that are location equivalent at the beginning of tladyars are guaranteed to
be location equivalent at the end. We can therefore safetypate a subset of the
equivalences prior to the pointer analysis. We use the sditimeeaconstraint graph
as we use to find pointer equivalence, but we will be labeding nodes instead of
direct nodes. The algorithm assigns eacdr node a label based on its outgoing
edges such that twabR nodes have the same label iff they have the same set of
outgoing edges. In other wordshRr nodes & and &b are assigned the same label
iff, in the constraintsyze 7 :zD {a} & z2 {b}. In Figure 2.8, theoDR nodes
&aand & would be assigned the same location equivalence label.

While location and pointer equivalences can be computegpaddently, it
IS more precise to compute location equivaleatter we have computed pointer
equivalence. We modify the criterion to require thar nodes & and &b are
assigned the same labelif§,zc V, (y O {a} AzD {b}) = pe(y) = pg(z). In other
words, we don’t require that the tweDR nodes have the same set of outgoing
edges, but rather that the nodes incident toAb& nodes have the same set of
pointer equivalence labels.

Once the algorithm assigns location equivalence labetagiges allADR
nodes that have identical labels. These mewged nodes are each given a fresh
name. Points-to set elements will come from this new setesdhfrnames rather
than from the original names of the mergemR nodes, thereby saving space, since
a single fresh name corresponds to multipter nodes. However, we must make

38

a simple change to the subsequent pointer analysis to acodatmthis new nam-
ing scheme. When adding new edges from indirect constrai@ointer analysis
must translate from the fresh names in the points-to setsetoriginal names cor-
responding to th&ArR nodes in the constraint graph. To facilitate this transrati
the analysis creates a one-to-many mapping between therfeeses and the orig-
inal ADR nodes that it merged together. In Figure 2.8, sinb& nodes & and
&d are given the same location equivalence label, they will beged together and
assigned a fresh name such ds &ny points-to sets that formerly would have con-
taineda andd will instead containt; when adding additional edges from an indirect
constraint that referencésthe pointer analysis will translateback toa andd to
correctly place the edges in the online constraint graph.

Complexity. LE is linear in the size of the constraint graph. The algonidtans
through the constraints, and for each constraint {b} it insertspe(a) into ADR
node &b’s set of pointer equivalence labels. This step is lineah@ number of
constraints (i.e., graph edges). It then visits eaoi® node, and it uses a hash
table to map from that node’s set of pointer equivalencel$aoea single location
equivalence label. This step is also linear.

2.4.3 Evaluation

Using a suite of six open-source C programs, which rangeze som
169K to 2.17M LOC, we compare the analysis times and memongumption
of OVS, HVN, HRU, and HRU+LE (HRU coupled with LE). We then ukeee dif-
ferent state-of-the-art inclusion-based pointer anahysearce et al. [66] (PKH),
Heintze and Tardieu [41] (HT), and Hardekopf and Lin [37] (Htto compare the
optimizations’ effects on the pointer analyses’ analyisi®tand memory consump-
tion. These pointer analyses are all field-insensitive arglemented in a common
framework, re-using as much code as possible to provide adaiparison.

The offline optimizations and the pointer analyses are &mrith C++ and
handle all aspects of the C language except for varargs. Weparse bitmaps
taken from GCC 4.1.1 to represent the constraint graph amdsstw sets. The
constraint generator is separate from the constraint sglwe generate constraints
from the benchmarks using the CIL C front-end [60], ignoramy assignments

39

Name | Description LOC | Constraints
Emacs-21.44a text editor 169K 83,213
Ghostscript-8.15 postscript viewer 242K 169,312
Gimp-2.2.8| image manipulation 554K 411,783
Insight-6.5| graphical debugger 603K 243,404
Wine-0.9.21| windows emulator | 1,338K 713,065
Linux-2.4.26| linux kernel 2,172K 574,788

Table 2.7: Benchmarks: For each benchmark we show the numhbees of code

(computed as the number of non-blank, non-comment linekdrsource files), a
description of the benchmark, and the number of constrgengrated by the CIL
front-end.

involving types too small to hold a pointer. External liyaralls are summarized
using hand-crafted function stubs.

The benchmarks for our experiments are described in TabléAZ run the
experiments on an Intel Core Duo 1.83 GHz processor with 2 f3Bamory, using
the Ubuntu 6.10 Linux distribution. Though the processodusal-core, the exe-
cutables themselves are single-threaded. All executapeesompiled with GCC
4.1.1 and the '-O3’ optimization flag. We repeat each expeninthree times and
report the smallest time; all the experiments have very lasance in performance.
Times include everything from reading the constraint filenirdisk to computing
the final solution.

2.4.3.1 Cost of Optimizations

Tables 2.8 and 2.9 show the analysis time and memory consumjpeé-
spectively, of the offline optimizations on the six benchksalOVS and HVN have
roughly the same times, with HVN using 12 fnore memory than OVS. On aver-
age, HRU and HRU+LE are 3x1slower and 3.4 slower than OVS, respectively.
Both HRU and HRU+LE have the same memory consumption as H\A\stAted
earlier, these algorithms are run on the output of HVN in otdamprove analy-
sis time and conserve memory; their times are the sum of theiring time and
the HVN running time, while their memory consumption is thaximum of their
memory usage and the HVN memory usage. In all cases, the HNameusage

40

Emacs Ghostscript Gimp Insight Wine Linux
ovs 0.29 0.60 1.74 096 357 234
HVN 0.29 0.61 1.66 095 339 236
HRU 0.49 229 431 428 946 7.70
HRU+LE 0.53 254 475 464 10.41 847

Table 2.8: Offline analysis times (sec).

Emacs Ghostscript Gimp Insight Wine Linux
ovsSs 13.1 28.1 611 39.1 1104 9642
HVN 14.8 325 715 447 134.8 114(8
HRU 14.8 325 715 447 134.8 114(8
HRU+LE 14.8 32.5 71.5 447 134.8 114i8

Table 2.9: Offline analysis memory (MB).

is greater.

Figure 2.11 shows the effect of each optimization on the rematb con-
straints for each benchmark. On average OVS reduces theanahtonstraints by
63.4%, HVN by 69.4%, HRU by 77.4%, and HRU+LE by 79.9%. HRU+lor
most aggressive optimization, takes 8.4bnger than OVS, while it only reduces
the number of constraints by an additional 16.5%. Howewefusion-based anal-
ysis isO(n%) time andO(n?) space, so even a relatively small reduction in the input
size can have a significant effect, as we’ll see in the nexiaec

2.4.3.2 Benefit of Optimizations

Tables 2.10-2.15 give the analysis times and memory consomfpr three
pointer analyses—PKH, HT, and HL—as run on the results oh edftine opti-
mization; OOM indicates the analysis ran out of memory. Ta&gds summarized
in Figure 2.12, which gives the average performance and memgrovement
for the three pointer analyses for each offline algorithmamsmared to OVS. The
offline analysis times are added to the pointer analysisgitnanake the overall
analysis time comparison.

41

50

i ovs
10 HVN
1l HRU
1l HRU+LE

% Constraints

20

10

S . X
9] L K N SF
& &S \@\q &

Figure 2.11: Percent of the original number of constraimdés is generated by each
optimization.

Emacs Ghostscript Gimp Insight Wine Linux
ovs 1.99 19.15 99.22 12153 1,980.04 1,202|78
HVN 1.60 17.08 87.03 111.81 1,793.17 1,126(90
HRU 0.74 13.31 38.54 57.94 1,072.18 598,01

HRU+LE 0.74 950 21.03 33.72 73149 410.23

Table 2.10: Online analysis times for the PKH algorithm Jsec

Emacs Ghostscript Gimp Insight Wine Linux

ovs 1.63 13.58 64.45 46.32 OOM 410.52

HVN 1.84 12.84 59.68 4270 OOM 393.00
HRU 0.70 995 37.27 37.03 1,087.84 464.51
HRU+LE 0.54 8.82 1871 23.35 656.65 332.36

Table 2.11: Online analysis times for the HT algorithm (sec)

42

Emacs Ghostscript Gimp Insight Wine Linux
ovs 1.07 9.15 1755 20.45 534.81 103.37
HVN 0.68 8.14 13.69 17.23 525.31 91.V6
HRU 0.32 7.25 10.04 12.70 457.49 75.21
HRU+LE 0.51 6.67 8.39 13.71 34556 79.99

Table 2.12: Online analysis times for the HL algorithm (sec)

Emacs Ghostscript Gimp Insight Wine Linux
ovs 23.1 102.7 418.1 2514 1,779.7 1,016.5
HVN 17.7 83.9 2695 1948 1,4485 84Q.
HRU 12.8 68.0 1716 1654 1,193.7 590Q.
HRU+LE 6.9 23.8 56.1 58.6 2959 212

Table 2.13: Online analysis memory for the PKH algorithm (MB

Emacs Ghostscript Gimp Insight Wine Linux
ovs 22.5 97.2 359.7 266.9 OOM 1,006.8
HVN 17.7 85.0 279.0 2315 OOM 901.3
HRU 10.8 70.3 205.3 156.7 1,533.0 700Q.
HRU+LE 6.4 349 86.0 69.4 8209 372

Table 2.14: Online analysis memory for the HT algorithm (MB)

Emacs Ghostscript Gimp Insight Wine Linux
ovs 21.0 93.9 4154 239.7 1,746.3 987.8
HVN 13.9 73.5 2639 183.7 1,463.5 807.9
HRU 9.2 63.3 170.7 1219 1,185.3 566.6
HRU+LE 4.5 22.2 334 276 333.1 162(6

Table 2.15: Online analysis memory for the HL algorithm (MB)

43

2

3_
] 1 PKH _ [PKH
1 Our 64 [COHT
1 B HL
2 [HL
g] = -
- [
g 27 _ £
S g,
o o -1
E s
® E
g >
£ 2
o1l —_— 3]
= S 24
o
0 0 I
™

(@) (b)

Figure 2.12:(a) Average performance improvement over O3, Average mem-
ory improvement over OVS. For each graph, and for each offiptenizationX €

{HVN, HRU, HRU+LE}, we computemy. Larger is better.

Xtime/memory

Analysis Time. For all three pointer analyses, HVN only moderately impsove
analysis time over OVS, by 1.03-1.28HRU has a greater effect despite its much
higher offline analysis times; it improves analysis time h38t+1.88<. HRU+LE
has the greatest effect; it improves analysis time by 1.288>2 An important
factor in the analysis time of these algorithms is the nunadfd¢imes they prop-
agate points-to information across constraint edges. PKtHa least efficient of
the algorithms in this respect, propagating much more métion than the other
two; hence it benefits more from the offline optimizations. pthpagates the least
amount of information and therefore benefits the least.

Memory. For all three pointer analyses HVN only moderately impronesm-
ory consumption over OVS, by 1.2—-1.85All the algorithms benefit significantly
from HRU, using 1.65-1.90 less memory than for OVS. HRU’s greater reduc-
tion in constraints makes for a smaller constraint graph famer points-to sets.
HRU+LE has an even greater effect: HT uses3l@ss memory, PKH uses&less
memory, and HL uses almosk7ess memory. HRU+LE doesn't further reduce the
constraint graph or the number of points-to sets, but onag@seit cuts the average

44

points-to set size in half.

Room for Improvement. Despite aggressive offline optimization in the form of
HRU plus the efforts of online cycle detection, there aréas8ignificant number of
pointer equivalences that we do not detect in the final camgtgraph. The number
of actual pointer equivalence classes is much smaller timamber of detected
equivalence classes, by almost 4n average. In other words, we could conceiv-
ably shrink the online constraint graph by almost # we could do a better job
of finding pointer equivalences. This is an interesting &oeduture work. On the
other hand, we do detect a significant fraction of the actedtion equivalences—
we detect 90% of the actual location equivalences in the &ivgelst benchmarks,
though for the smallest (Emacs) we only detect 41%. Thugtisanot much room
to improve on the LE optimization.

2.4.3.3 Bitmaps vs. BDDs.

The data structure used to represent points-to sets fordimeep analysis
can have a great effect on the analysis time and memory cqismof the anal-
ysis. Section 2.3.3 compares the use of sparse bitmapssvBBIDs to represent
points-to sets and find that on average the BDD implememtagi@x slower but
uses 5.5 less memory than the bitmap implementation. To make a sirdm-
parison testing the effects of our optimizations, we impeafrtwo versions of each
pointer analysis: one using sparse bitmaps to representsgiai sets, the other us-
ing BDDs for the same purpose. Unlike BDD-based pointeryaeal [7, 81] which
store the entire points-to solution in a single BDD, we gigetevariable its own
BDD to store its individual points-to set. For exampley > {w,x} andy — {x, z},
the BDD-based analyses would have a single BDD that repiesiea set of tu-
ples{(v,w), (V,X),(¥,X),(y,2)}. Instead, we giver a BDD that represents the set
{w,x} and we givey a BDD that represents the sgt, z}. The two BDD represen-
tations take equivalent memory, but our representatiorsisiple modification that
requires minimal changes to the existing code.

The results of our comparison are shown in Figure 2.13. Wetfiatfor
HVN and HRU, the bitmap implementations on average are 154faster than
the BDD implementations but use 3.5—4.more memory. However, for HRU+LE

45

] 2.0
27] PKH [PkH

1 CHT COHr
s] [H 151 @]
ISE c
[} [}
s] 5
o >
E -]

1 — 1.
S E
SR fa
E g
£] 2
&] 0.5 |—‘_'

0 0.0
& & N & & &
X R < &
& A

(a) (b)

Figure 2.13:(a) Average performance improvement over BD®@$Average mem-
ory improvement over BDDs. L&DD be the BDD implementation ar®i T be the

:) . BDDy :
bitmap implementation; for each graph we compg?gtf"“j/ﬂy. Larger is better.
Ime/memory

the bitmap implementations are on averagexlf&ster and use 17 lessmemory
than the BDD implementations, because the LE optimizatignifsicantly shrinks
the points-to sets of the variables.

2.5 Chapter Summary

In this chapter, we demonstrate how to greatly increase caklsility of
inclusion-based pointer analysis, the most precise tyflewf and context-insensitive
pointer analysis. Our strategy is to exploit bgibinter equivalencépointers with
identical points-to sets) arldcation equivalencévariables pointed-to by identical
sets of pointers).

A major technique for exploiting pointer equivalenceysle detectioni.e.,
detecting and collapsing cycles in the constraint graplis ¢hapter describes two
new techniques for cycle detection that outperform the iptesystate-of-the-art:
Lazy Cycle DetectioandHybrid Cycle Detection A second technique to exploit
pointer equivalence isffline variable substitutionThis chapter describes three new
offline techniques for detecting pointer equivalent vaaalthat detect more equiva-

46

lences than the previous state-of-the-B¥N, HR, andHU (and their combination,
HRU).

While pointer equivalence has been previously exploitadojatimizing
inclusion-based analysis, location equivalence is a braavdtechnique introduced
here for the first time. This chapter describes an offlinerigpre for conservatively
detecting location equivalent variables prior to the is@n-based analysis. This
technique detects a majority of the equivalent variablesiast benchmarks and
greatly reduces the memory consumption of the analysis.

a7

Chapter 3

Flow-Sensitive Analysis

Flow-sensitive pointer analysis has proven particulaifficdlt in terms
of scalability; previous state-of-the-art flow-sensitalgorithms can analyze pro-
grams with only a few tens of thousands of lines of code. Thapter describes
two new algorithms for flow-sensitive pointer analysis timatrease scalability by
two orders of magnitude, enabling the analysis of milliohBrees of code in less
than 15 minutes. Section 3.1 provides background on flowises pointer anal-
ysis, including why flow-sensitivity is important and sonmsight into why flow-
sensitive analysis is so expensive. Section 3.2 discustsed work for scalable
flow-sensitive analysis, then Sections 3.3 and 3.4 desorb@&ew algorithms and
evaluate their performance with respect to the currenesiithe-art. Portions of
the work described in this chapter has been previously gt by Hardekopf and
Lin [39].

3.1 Background

This section briefly describes flow-sensitive pointer asialgnd enumerates
the major challenges in making the analysis practical faydgrograms. Further
details on the basic flow-sensitive pointer analysis atgoriare described by Hind
et al. [44].

3.1.1 Flow-Sensitive Pointer Analysis

Flow-sensitive pointer analysis respects a program’srobfibw and com-
putes a separate solution for each program point, in cdrttaes flow-insensitive
analysis, which ignores statement ordering and computeasgéessolution that is
conservatively correct for all program points.

48

Traditional flow-sensitive pointer analysis uses an iteeatlataflow anal-
ysis framework, which employs a lattice of dataflow factsa meet operator on
the lattice, and a family of monotone transfer functidns L — £ that map lat-
tice elements to other lattice elements. For pointer arsatiie lattice elements are
points-to graphs, the meet operator is set union, and eaonbkfér function com-
putes the effects of a program statement to transform art pgiats-to graph into
an output points-to graph. Analysis is carried out ondbetrol-flow graph(CFG),
a directed grapls = (N, E) with a finite set of nodes (gerogram point$, N, cor-
responding to program statements and a set of egedN x N corresponding to
the control flow between statements. To ensure decidabiiitie analysis branch
conditions are uninterpreted and branches are treatednagdaterministic.

Each nod& of the CFG maintains two points-to graphsy, representing
the incoming pointer information, ar@uTy, representing the outgoing pointer in-
formation. Each node is associated with a transfer fundtiahtransformsny to
OUT, characterized by the setENk andKILL k, which represent the pointer infor-
mation generated by the node and killed by the node, respéctiThe contents of
these two sets depend on the particular program statemstiated with nodé,
and the contents can vary over the course of the analysisagaieter information
is accumulated (though the transfer function is still gngégad to be monotonic).
The analysis iteratively computes the following two funas for all nodesk until
convergence:

INe = | J ouTy (3.1)
xepred(k)
OUTKk = GENgU (INgk—KILL) (3.2)

TheKILL set determines whether the analysis perfornstrang or weak
update to the left-hand side of an assignment. When thédeftt side definitely
refers to a single memory locationa strong update occurs in which tkeL set
is used to remove all points-to relatiomns~ x prior to updatings with a new set of
points-to relations. If the left-hand side cannot be deteech to point to a single
memory location, then a weak update occurs: The analysisotde surevhich
of the possible memory locations should actually be updayeitie assignment, so

49

to be conservative it must setLL to the empty set to preserve all of the existing
points-to relations.

3.1.2 The Importance of Flow-Sensitive Pointer Analysis

Some previous work has created a perception that the ext@smn of
flow-sensitive pointer analysis is not beneficial [45, 58]t bs researchers attack
new program analysis problems, we believe that this pemeghould be ques-
tioned for the following reasons:

¢ Different client program analyses require different antewf precision from
the pointer analysis [43]. The list of client analyses thatehbeen shown to
benefit from flow-sensitive pointer analysis includes saveoftware engi-
neering applications of growing importance, includinguwség analysis [13,
30], deep error checking [34], hardware synthesis [86], tuedanalysis of
multi-threaded programs [72], among others [5, 16, 31].

e The precision of pointer analysis is typically measure@ms of metrics that
are averaged over the entire program. In cases such astgemalysis and
parallelization, these metrics can be misleading—a smadiuant of impreci-
sion in isolated parts of the program can significantly impiae effectiveness
of the client analysis, as demonstrated by Guyer et al. [Bdis, two differ-
ent pointer analyses can have very similar average paigsttsizes but very
different impact on the client analysis.

e In avicious cycle, the lack of an efficient flow-sensitiveqter analysis has
inhibited the use of flow-sensitive pointer analyses. Theeligpment and
widespread use of a scalable flow-sensitive pointer arglysuld likely un-
cover additional client analyses that benefit from the aguedision.

e Several techniques [14, 30, 34, 35, 82] can improve the gigacof flow-sensitive
pointer analysis, but most of these techniques greatleas® the cost of the
pointer analysis, making an already non-scalable anady&s more imprac-
tical. A significantly more efficient flow-sensitive point@nalysis algorithm
would improve the practicality of such techniques, makirayfkensitive
pointer analysis even more useful.

50

Thus, we conclude that there are many reasons to seek a nadablsdn-
terprocedural flow-sensitive pointer analysis.

3.1.3 Challenges Facing Flow-Sensitive Pointer Analysis

There are three major performance challenges facing flowisee pointer
analysis:

1. Conservative propagation. Without pointer information it is in general not
possible to determine where variables are defined or useérefdre, the
analysis must propagate the pointer information generatedch nodé& to
all nodes in the CFG reachable froknin case those nodes use the infor-
mation. Typically, however, only a small percentage of s&chable nodes
actually require the information, so most of the nodes kectiie information
needlessly. The effect is to greatly delay the convergeheguations (3.1)
and (3.2).

2. Expensive transfer functions.Equations (3.1) and (3.2) require a number of
set operations with complexity linear in the sizes of the satolved. These
sets tend to be large, with potentially hundreds to thousaricelements.
This problem is exacerbated by the analysis’ conservatimeggation which
requires the nodes to needlessly re-evaluate their tnafiusfetions when they
receive new pointer information even when that informaigirelevant to
the node.

3. High memory requirements. Each node in the CFG must maintain two
separate points-to graphsi for the incoming information anduT for the
outgoing information. For large programs that have hurslcgdhousands of
nodes, these points-to graphs consume a significant ambomgroory. This
problem is also exacerbated by the analysis’ conservatoggation which
requires thaN andouT graphs to hold pointer information irrelevant to the
node in question.

All of the work in improving the scalability of flow-sensitvpointer anal-

ysis can be seen as addressing one or more of these challérgegext section
reviews past efforts at meeting these challenges beforzidegy our own solution.

51

3.2 Related Work

The current state-of-the-art for traditional flow-sen&tpointer analysis us-
ing iterative dataflow analysis is described by Hind andifMdl, 45], and their anal-
ysis is the baseline that we use for evaluating our new tecles. Their analysis
employs three major optimizations:

1. Sparse evaluation graph (SEG) [18, 27, 68]These graphs are derived from
the CFG by eliding nodes that do not manipulate pointer midron—and
hence are irrelevant to pointer analysis—while maintayrilre control-flow
relations among the remaining nodes. There are a numbechufitpies for
constructing SEGs, which vary in the complexity of the aitpon and the
size of the resulting graph. The use of SEGs addressesnpedi€l) and (3)
by significantly reducing the input to the analysis.

2. Priority-based worklist. Nodes awaiting processing are placed on a worklist
prioritized by the topological order of the CFG, such thade®higher in the
CFG are processed before nodes lower in the CFG. This ogtiloizaims
to amass at each node as much new incoming pointer informasipossible
before processing the node, thereby addressing chall@hgg (educing the
number of times the node must be processed.

3. Filtered forward-binding. When passing pointer information to the target
of a function call, it is unnecessary to pass everything. ®hky pointer
information that the callee can access is that which is adaesrom a global
or from one of the function parameters. Challenges (1) ahddB8 thus be
addressed by filtering out the remaining information to ddks information
is propagated unnecessarily, which leads to smaller ptorgsaphs.

Their evaluation shows that these optimizations speedeipilysis by an
average of over 2b. The largest benchmarks analyzed are up to 30,000 lines of
code (LOC).

To improve scalability, several non-traditional appraasho flow-sensitive
pointer analysis have been proposed. These approachemsgheation from a
number of non-pointer-related program analyses which hddeessed similar chal-
lenges using aparse analysigncluding the use of static single assignment (SSA)

52

form. Pointer analysis cannot directly make use of SSA bszgointer informa-
tion is required to compute SSA form. Cytron et al. [22] pre@@ scheme for
incrementally computing pointer information while conweg to SSA form; by in-
corporating the minimum amount of pointer information resagy, this scheme re-
duces the size of the resulting SSA form. However, this teglerdoes not speed up
the computation of the pointer information itself. We novscigbe two approaches
that use SSA for the actual computation of pointer infororati

Hasti and Horwitz [40] propose a scheme composed of two passow-
insensitive pointer analysis that gathers pointer infdromeand a conversion pass
that uses the pointer information to transform the prograta BSA form. The
result of the second pass is iteratively fed back into the fiass until convergence
is reached. Hasti and Horwitz leave open the question of wenahe resulting
pointer information is equivalent to a flow-sensitive ais&y we believe that the
resulting information is less precise than a full flow-s&usipointer analysis. No
experimental evaluation of this technique has been pudalish

Chase et al. [14] propose a technique that dynamically fioams the pro-
gram to SSA form during the course of the flow-sensitive mianalysis. There
is no experimental evaluation of this proposed techniqaedver, a similar idea is
described and experimentally evaluated by Tok et al. [80f Technique can ana-
lyze programs that are twice as large as those that useveed#taflow, enabling
the analysis of 70,000 LOC in approximately half-an-hounfastunately, the cost
of dynamically computing SSA form limits the scalability thie analysis.

We cannot use a common infrastructure to compare Tok ettathlnique
with ours, because their technique targets programs tlgah i@ non-SSA form,
whereas we use the LLVM infrastructure [52], which autowelty transforms a
program into partial SSA form as described in Section 3&/hile the comparison
is imperfect due to infrastructure differences, our fasteslysis is 1,286 faster
and uses 11.5 less memory osendmai | , the only benchmark common to both
studies.

A different approach that primarily targets challengesd@yl (3) is sym-
bolic analysis using Binary Decision Diagrams (BDDs), whias been used with
great success in model checking [4]. A number of papers Hawsrsthat symbolic
analysis can greatly improve the performance of flow-ingeespointer analy-
sis [7, 81, 85, 87]. In addition, Zhu [86] uses BDDs to compuflw- and context-

53

sensitive pointer analysis for C programs. The analysisillg 8ymbolic (every-
thing from the CFG to the pointer information is represenisthg BDDs) but not
fully flow-sensitive—the analysis cannot perform indirsttong updates, so the
KILL sets are more conservative (i.e., smaller) than a fully #ewsitive analy-
sis. Symbolic analysis is discussed in more detail in Sei8.3. Zhu does not
show results for a flow-sensitive, context-insensitivdysig, so we cannot directly
compare his techniques with ours.

There have been several other approaches to optimizingsémsiive pointer
analysis that improve scalability by pruning the input gite the analysis. Rather
than improve the scalability of the pointer analysis its#iese techniques reduce
the size of its input. Client-driven pointer analysis azalythe needs of a particu-
lar client and applies flow-sensitive pointer analysis dalgortions of the program
that require that level of precision [34]. Fink et al. useraikr technique specifi-
cally for typestate analysis by successively applying npoegise pointer analyses
to a program, pruning away portions of the program as eagfe sthprecision has
been successfully verified [30]. Kahlon bootstraps the fs@nsitive pointer analy-
sis by using a flow-insensitive pointer analysis to pantitize program into sections
that can be analyzed independently [47]. These approaemelseccombined with
our new flow-sensitive pointer analysis to achieve eventgresalability.

3.2.1 SSA

Static single assignme(®SA) form is a common intermediate representa-
tion that requires all variables to be defined exactly ondhertext of the program.
Variables defined multiple times in the original represgateare split into separate
instances, one for each definition. When separate instafities same variable are
live at a join point in the control-flow graph, they are congdrusing ap function,
which takes the old instances as arguments and assignsthietoea new instance.
SSA form is ideal for performing sparse analyses becausakemdef-use infor-
mation explicit in the program representation and allowsidi@w information to
flow directly from variable definitions to their correspondiuses [69].

There are many known algorithms for converting a program@8A form [3,
8, 23, 24]. However, the problem becomes more difficult whercensider indirect
definitions and uses through pointers. These definitionsuaed can only be dis-
covered using pointer analysis. Because of the conseevatiture of the pointer

54

analysis results, each indirect definition and use is dgtagdossibledefinition or
use. Following Chow et al. [19], we ugeandp functions to represent these pos-
sible definitions and uses. Assume, without loss of gengrdhat each indirect
definition corresponds to TOREinstruction and each indirect use corresponds to
aLOAD instruction. EaclsTOREIN the original program representation (i.e., prior
to the transformation into SSA form) is annotated with a fiorev = x(v) for each
variablev that may be defined by th&erorg similarly, eachLoAD in the original
representation is annotated with a functjgm) for each variable that may be ac-
cessed by theoAD. When converting to SSA form, eaghfunction is treated as
both a definition and use of the given variable, and gafimction is treated as a
use of the given variable. Thefunction represents the fact that a variable may
not be defined at the associatedorE and therefore copies the old value of the
variable into the new instance. The way to interpretr@arRe with an associatey
function for variablev is that thesTOREmMay definev (in which case its value is the
right-hand side of the TORE) or it may not (in which case its value is unchanged).

To avoid these problems, modern compilers such as GCC [@6A] aviM [52]
use a variant of SSA, which we calartial SSA form. The key idea is to divide
variables into two classes. One class contains variab&satie never referenced
by pointers {op-level variable} so their definitions and uses can be trivially deter-
mined by inspection without pointer information, and theadables can be con-
verted to SSA using any algorithm for constructing SSA fofline other class con-
tains those variables thaain be referenced by pointeraddress-taken variablgs
and these variables are not placed in SSA form because obthesanentioned
complications.

3.211 LLVM

Our semi-sparse analysis is implemented in the LLVM infrature, so the
rest of this section describes LLVM’s internal represdaotafIR) and its particular
instantiation of partial SSA form. While the details andnérology are specific to
LLVM, the ideas can be translated to other forms of partiahSS

LLVM’s IR recognizes two classes of variables: (bp-levelvariables are
those that cannot be referenced indirectly via a pointer, ithose whose address
Is never exposed via the address-of operator or returned dgnamic memory

55

int a, b, *c, *d;

int* w= &a W1 = ALLOC,4
int* x = &b X1 = ALLOCy
int** y = &C; Y1 = ALLOC¢
int** z = y; 2A=Y1
c= O STOREOQO VY,
y o= oW STOREW1 V1
7 = X STOREX1 1
y = &d: Y2 = ALLOCy
z = vy, 22=Y2
fy o= ow STOREW] Y2
7 = X STOREX1 22

Figure 3.1: Example partial SSA code. On the left is the aagiC code, on the
right is the transformed code in partial SSA form.

allocation; (2)address-takemariables are those that have had their address exposed
and therefore can be indirectly referenced via a pointep-l&gel variables are
kept in a (conceptually) infinite set of virtual registersigfhare maintained in SSA
form. Address-taken variables are kept in memory, and theyat in SSA form.
Address-taken variables are accessed @i®D andsTOREinstructions, which take
top-level pointer variables as arguments. These adda&ssrivariables are never
referenced syntactically in the IR; they instead are onfigremced indirectly using
theseLOAD andsTOREiInstructions. LLVM instructions use a 3-address format, so
there is at most one level of pointer dereference for eacdruictson.

Figure 3.1 provides an example of a C code fragment and itegponding
partial SSA form. Variables, x, y, andz are top-level variables and have been
converted to SSA form; variables b, ¢, andd are address-taken variables, so
they are stored in memory and accessed solely @D andSTORE instructions.
Because the address-taken variables are not in SSA forgnc#meeach be defined
multiple times, as with variablesandd in the example.

Because address-taken variables cannot be directly naoh¥d) main-
tains the invariant that each address-taken variable Hassttone virtual register
that refers only to that variable. To illustrate this pokigure 3.2 shows how a tem-
porary variablet , is introduced in the LLVM IR to take the place of the variabje

56

int **a, *b, c;

a = &b a=ALLOCp

b = &c: t = ALLOC

c=0 STOREta
STOREOt

Figure 3.2: Example partial SSA code. On the left is the oagiC code, on the
right is the transformed code in partial SSA form.

which in the original C code is referenced by a pointer.

LLVM also treats global variables specially. Def-use clsdor global vari-
ables can span multiple functions; however, in the presefdedirect function
calls it is not possible to construct precise def-use chaaness function bound-
aries without pointer information. To address this issu8/M adds an extra level
of indirection to each global variabl&: gl ob becomegonst T* gl ob, whereT
is the type of the global declared in the original programe Ebnst pointers are
initialized to point to an address-taken variable thatespnts the original global
variable. This modification means that pointer informationglobal variables is
propagated along the SEG rather than relying on cross+iumdef-use chains.

Note: The rest of this chapter will assume the use of the LLVM IR, athmeans
that any named variable is a top-level variable and not aneasdetaken variable.

3.3 Semi-Sparse Analysis

For flow-sensitive pointer analysis, partial SSA form hasftilowing im-
portant implications that have not been previously idexdifir explored.

1. The analysis can use a single global points-to graph to tha pointer in-
formation for all top-level variables. Since the variabégs in SSA form,
they will necessarily have the same pointer informatiornr @lie entire pro-
gram. The presence of this global points-to graph meansriblysis can
avoid storing and propagating the pointer information &g-tevel variables
among CFG nodes.

57

2. Def-use information for top-level variables is immedigtavailable, as in a
sparse analysis. When pointer information for a top-leeglable changes,
the affected program statements can be directly determimeith can dra-
matically speed up the convergence of the analysis and egtiemumber of
transfer functions that must be evaluated.

3. Local points-to graphs, i.e., separateandouT graphs for each CFG node,
are still needed foroAD andSTORE statements, but these graphs only hold
pointer information for address-taken variables. The @sioh of top-level
variables can significantly reduce the sizes of these |lamakg-to graphs.

Semi-sparse analysis takes advantage of partial SSA fogne&tly increase
the efficiency of the flow-sensitive pointer analysis. Inartb do so, we introduce
a construct called thBataflow Graph We first describe the characteristics of the
dataflow graph and how it is constructed, and we then desthidesemi-sparse
analysis itself, followed by the new optimizations enalddgdpartial SSA.

3.3.1 The Dataflow Graph

The dataflow graph (DFG) is a combination of a sparse evalaaph
(SEG) and def-use chains. This combination is required byntiture of partial
SSA form, which provides def-use information for the topelevariables but not
for the address-taken variables.

Without access to def-use information, an iterative datatinalysis prop-
agates information along the control-flow graph. As desdilm Section 3.2, the
SEG is simply an optimized version of the control-flow grapattelides nodes that
neither define nor use pointer information. Since addraksr variables do not
have def-use information available, program statemeitsdéfine or use address-
taken variables must be connected via a path in the SEG sweahable definitions
will correctly reach their corresponding uses. Since @yl variables have def-use
information immediately available, program statemenés tiefine or use top-level
variables can be connected via these def-use chains.

To construct the DFG there are 6 types of relevant prograteratnts,
shown in Table 3.1. For each statement, the table lists vehéttiefines and/or uses

58

Inst Type Example | Def-Use Info
ALLOC | X =ALLOCj | DERop
COPY | X=Vy z DERop, USEop
LOAD | X =%y DERop, USEop, USEadr
STORE | *X =Y USEop, DEFadr, USEadr
CALL | x=foo(y) | DERop, USEop, DEFadr, USEadr
RET | return X USEop, USEadr

Table 3.1: Types of instructions relevant to pointer analydnstructions such
asx = &y are converted intaLLOC instructions, much like C’s allocaDef-Use
Info describes whether the instruction can define or use topvaviables OERqp
andUskop, respectively) and whether it can define or use address+tekables
(DEFagr andUSEqyqy, respectively). Recall that all named variables are, bystroo-
tion, top-level.

top-level variables{Erop anduskop, respectively) and whether the statement de-
fines and/or uses address-taken varialdes{y; andUSE,qy;, respectively) STORE
instructions are labeledse,qy, because weak updates require the updated variable’s
previous points-to seCALL instructions are labelenEF,4, because they can mod-

ify address-taken variables via the callee functioaLL andRET instructions are
labeledusE,gr because they need to pass the address-taken pointer itfmmma
to/from the callee functioncopy instructions can have multiple variables on the
right-hand side, which allows them to accommodate $8#énctions.

The DFG is constructed in two stages. In the first stage, alatdralgo-
rithm for creating an SEG (such as Ramalingam’s linear-taigorithm [68]) is
used. Only program statements labebeF, 4, Or USE;g, are considered relevant;
all others are elided. Then a linear pass through the p&8a&l representation is
used to connect program statements that define top-leviables with those that
use those variables. Figure 3.3 shows the DFG corresponalitige partial SSA
code in Figure 3.1.

Theoreml (Correctness of the DFGYhere exists a path in the DFG from all vari-
able definitions to their corresponding uses.

Proof. We proceed by cases based on the type of variable:

59

Figure 3.3: Example DFG corresponding to the code in Figute Bashed edges
are def-use chains; solid edges are for the SEG.

60

Top-level: Def-use information for top-level variables is exposed bg partial
SSA form; the DFG directly connects top-level variable d&bns to their
uses, so the theorem is trivially true.

Address-taken: All uses of a variable’s definition must be reachable from the
statement that created the definition in the original cdsftoav graph. The
SEG preserves control-flow information for all statemelné either define or
use address-taken variables. Therefore any use of an aetdiesn variable’s
definition must be reachable from the statement that crehgedefinition in
the SEG.

3.3.2 The Analysis

The pointer analysis itself is similar to that described liydHand Pioli [44,
45]. The analysis uses the following data structures:

e Each functiorF has its own program statement worki&imtWorklist. The
worklist is initialized to contain all statements in the &ion that define a
variable (i.e., are labeleDEF,q; Or DERop).

e Each program statemekithat uses or defines address-taken variables (i.e., is
labeledusE,gr Or DEFaqr) has two points-to graphseyk andouTy, which hold
the incoming and outgoing pointer information for addregeen variables.
Let Z(v) be the points-to set of address-taken variahle INy.

¢ A global points-to grapl?G,p holds the pointer information for all top-level
variables. Let?qp(v) be the points-to set of top-level varialsén PGp.

e A worklist FunctionWorklistholds functions waiting to be processed. The
worklist is initialized to contain all functions in the priam.

The main body of the analysis is listed in Algorithm 4. Theaydbop se-
lects a function from the function worklist, and the inneopateratively selects a

61

program statement from that function’s statement worklmst processes it, contin-
uing until the statement worklist is empty. Then the analgsilects a new function
from the function worklist, continuing until the functiononklist is also empty.
Each type of program statement is processed as shown inithliger 8—13. These
algorithms use the helper functions listed in Algorithm3 5Fhe«— operator rep-
resents set updatéj;i and >E8 represent a def-use edge or SEG edge in the DFG,
respectively.

Algorithm 4 Main body of the semi-sparse analysis algorithm.
Require: DFG = (N,E)
while FunctionWorklistis not emptydo
F =seLecT(FunctionWorklis}
while StmtWorklist is not emptydo
k =SELECT(StmtWorklist)
switch typeof(k):
caseALLOC: processAllocE, k)
caseCcoPY: processCop, k)
caseLOAD: processLoadf, k)
casesTORE processStoré{(k)
caseCALL: processCalk, k)
caseRET: processReK, k)

Algorithm 5 propagateTopLevdi k)
if PGop changedhen

StmtWorklist < { n| k 2% ne E}

Algorithm 6 propagateAddrTakeR(k)

forall {ne N| kﬁneE} do
INp <= OUTk
if IN, changedhen
StmtWorklist < {n}

62

Algorithm 7 filter(k)
return the subset ofiv, reachable from either a call argument or global variable

Algorithm 8 processAllocE, k) : [x = ALLOC|]
PGop < {Xx — ALLOC;}
propagateTopLeveH k)

Algorithm 9 processCopW,k): [x =y z]

for all v € right-hand sidelo

PGop — {X = Bop(V) }
propagateTopLeveH k)

Algorithm 10 processLoadf k) : [x = *y]
PGop < {X — A(Fop(y))}
OUTk < INk
propagateTopLeveH k)
propagateAddrTakeR(k)

Algorithm 11 processStoré(k) : [*x = y]
if Bop(x) represents a single memory locatitwen
Il strong update
OUTk = (INk\ Bop(X)) U{Pop(X) — Bop(y)}
else// weak update
OUTk <= INgU {Bop(X) — Brop(y) }
propagateAddrTakeR(k)

63

Algorithm 12 processCalK,k) : [x = foo(y)]

if f 0o is a function pointethen
targets:= Bop(f 00)
else
targets:= {f 0o}
filt := filter(k)
for all C € targetsdo
for all call arguments and corresponding paramet@rdo
PGuop < {p — Rop(a)}
propagateTopLevel p)
Let n be the SEG start node for functi@h
INp < filt
if IN, changedhen
StmtWorklist < {n}
if StmtWorklist changedhen
FunctionWorklist— {C}
OUTK < INk \ filt
propagateAddrTakeR(k)

Algorithm 13 processReK,Kk) : [return x]

callsites:= the set ofcALL statements targetirig
for all n € callsitesdo
Let F, be the function containing
OUT «— OUTk
propagateAddrTakeRg, n)
if nis of the formr = F(...) then
PGop — {r — Rop(X)}
propagateTopLevdi,, n)
if StmtWorklist, changedhen
FunctionWorklist— {F,}

64

3.3.2.1 Optimizations

Partial SSA form allows us to introduce two additional optation oppor-
tunities:top-level pointer equivalenandlocal points-to graph equivalence

Top-level Pointer Equivalence Top-level pointer equivalence reduces the num-
ber of top-level variables in the DFG, which reduces the amofl pointer infor-
mation that must be maintained by the global top-level gsintgraph. In addition,

it eliminates nodes from the DFG, which reduces the numbéraoffer functions
that must be processed, speeding up convergence. The deaiisito identify sets
of variables that have identical points-to sets and to epéach set by a single set
representative.

Pointer equivalentariables are those that have identical points-to setseMor
formally, let— be the points-to relation ane be the pointer equivalence relation;
thenVx,y,z € Variables: x <y iff x — z <y — z. Program variables can be
partitioned into disjoint sets based on the pointer eqaiveg relation; an arbitrary
member of each set is then selected as the set represenBtiveplacing all vari-
ables in a program with their respective set representatind then eliding trivial
assignments (e.gx, = x), we can reduce the number of variables and the size of
the program that are given as input to the pointer analysisis ildea has been
previously explored for flow-insensitive pointer analy{§8, 70].

Partial SSA form provides an opportunity to apply this optiation to flow-
sensitive pointer analysis as well. To do so, we must be abidentify pointer-
equivalent variables prior to the pointer analysis itsélieorem 2 shows how we
can identify top-level pointer-equivalent variables unciertain circumstances.

Theoren? (Top-level pointer equivalencel copy statement of the forrjx = y] =
X Y.

Proof. Top-level variables are in SSA form, which means that theyeaich defined
exactly once. Therefore, the value of each top-level végidbes not change once
it is defined.

Sincex andy are top-level variables, their values never change. dbwey
statement assignsthe value ofy, sox > y. O

65

Theorem 2 says that variables involved ic@ry statement with a single
variable on the right-hand side are pointer equivalentheg tan be replaced with
a single representative variable. TberPy statement (called single-usecoprY) is
then redundant and can be discarded from the DFG. When siateare discarded,
any edges to those statements must be updated to point teithessors of the
discarded statement. If nodés discarded fronDFG = (N, E) then the result is a
newDFG = (N',E’) where:

e N'=N\{n}

e E'=E\{k—n}U{k—p|{k—nn— p} CE}

In Figure 3.3)y; <1z1 andy, < zo. We can replace all occurrenceszf
with y,, replace all occurrences p$ with y,, and eliminate the nodes f@; =]
and[zz =y,|. The def-use edge froffly; = ALLOC| to [z1 = y3] is removed, and
a new def-use edge is added frgyn = ALLOC¢] to [STOREX1 Y1]. Similarly, the
def-use edge frorny, = ALLOC] to [z2 = Y] is removed, and a new def-use edge
is added fromly, = ALLOC4] to [STOREX1 Y»|. Figure 3.4 shows the optimized
version of Figure 3.3.

Theorem3 (Correctness of the Transformatiodhe top-level pointer equivalence
transformation preserves SSA form for top-level variables

Proof. There are two characteristics of SSA form that the transébion must pre-
serve:

Every variable is defined exactly onceLetV be a set of pointer-equivalent
variables found by the transformation and $dte the set of statements that define
these variablesS contains exactly one statement that is not a singleagser. S
must contain at least one such statement because oth&fas®as a cycle in the
def-use graph such that a variable is used before it is defimeidh would violate
SSA form. S cannot contain more than one such statement because oglg-sin
usecoPys are considered when finding equivalent variables. Afterefpuivalent
variables are replaced by their set representative, aheftingle-use€oPys in S
are deleted, leaving exactly one statement that definegfinegentative variable.

66

Figure 3.4: Figure 3.3 optimized using top-level pointenigglence.

67

Every definition dominates all of its uses.Every single-us€oPy in Sis
dominated by a statement8—if a statement =y € S thenx,y € V and by defi-
nition Smust also contain the statement definjngrhere is exactly one statement
in Sthat is not a single-useory; therefore that statement must dominate all other
statements ir5. When the single-useoPys are deleted, all of the edges point-
ing to those statements are updated as described abovesfetieethe remaining
statement irS must dominate all statements in the program that used ablaiiia
V. O

Local Points-to Graph Equivalence Local points-to graph equivalence allows
nodes in the DFG that are guaranteed to have identical pmrgsaphs to share a
single graph rather than maintain separate copies. Thignghzan significantly re-
duce the memory consumption of the pointer analysis, asasekduce the number
of times pointer information must be propagated among nodes

To identify nodes with identical points-to graphs, we define notion of
non-preservingnodes. The points-to graphs that are local to nodes in the REG
INx andouTg) only contain pointer information for address-taken Vialea. By the
nature of partial SSA form, onlgTOREInstructions andALL instructions (which
reflect the changes caused¥goREinstructions in the callee function) can modify
the address-taken pointer information; we call these nadespreserving Other
instructions may use this information (e.gQAD andRET instructions), but they
propagate the pointer information through the DFG unchdnge call these nodes
preserving We say that non-preserving nogaeachesodeq (p ~ q) if there is
a path in the DFG fronp to g, using only SEG edges, that does not contain a non-
preserving node. There may be a number of nodes in the DF@nhatl reachable
from the same set of non-preserving nodes; Theorem 4 saythtbs®e nodes are
guaranteed to have identical points-to graphs.

Theorem4 (Local points-to graph equivalence)et N,p, € N be the set of non-
preserving DFG node&/p € Nnpandqg,r e N: (p~r < p~+ Q) = qandr have
identical points-to graphs.

Proof. Assumedq,r € N.(Vp € Npp: p~ g« p~-r), and thatg andr do not

have identical points-to graphs. Then one of the nodes Ifas$is) must have
received pointer information that the other did not. Howelg construction of the

68

partial SSA form, non-preserving nodes are the only plaeasdan generate new
pointer information for address-taken variables (the dahd of variable present
in the local points-to graphs). Therefof@ € Nnp.(p~» gA—(p ~ r)). But this
violates our initial assumption that boghandq are reachable from the same set of
non-preserving nodes. Therefopeandg must have identical points-to graphd.]

A simple algorithm (see Algorithm 14) can detect nodes thatshare their
points-to graphs. For eaddTtorREandcALL node in the DFG, the algorithm labels
all nodes that are reachable via a sequence of SEG edgesutwijbimg through
anothersTORE or CALL node with a label unique to the originating node. Since
nodes may be reached by more than emeREor CALL node, each node will end
up with a set of labels. This process tak®@?) time, wheren is the number of
nodes in the SEG portion of the DFG. These labels represempirtipagation of the
unknown pointer information computed by the originatinglecAll nodes with an
identical set of labels are guaranteed to have identicall Ipcints-to graphs and
can therefore share a single graph among them.

Algorithm 14 Detecting nodes with equivalent points-to graphs.
Require: DFG = (N,E)
Require: ¥vn e N :id, is a unique identifier
Require: Worklist= N
while Worklistis not emptydo

n =seLECT(Worklist)

forall {ke N |k S neE}do

if typeof(k) € {STORE CALL } then
label, < {idk}

else
label, < labek

if label, changedhen

for all {peN|nE peE}do

Worklist— {p}

By potentially sacrificing a small amount of precision, we gaeatly in-
crease the effectiveness of this optimizatiabALL nodes turn out to be a large
percentage of the total number of nodes in the DFG. By asguthat callees do

69

not modify address-taken pointer information accessiplébir callers, thereby al-
lowing Algorithm 14 to treatALL nodes exactly the same as all other mIGRE
nodes, we can significantly increase the amount of sharitvgdes nodes. This as-
sumption is sound—the optimization only causes nodes teegtants-to graphs,
so if a callee does modify address-taken pointer informmatioe pointer informa-
tion is propagated to additional nodes that it otherwiseld@wtihave reached. The
effect of this assumption on precision and performancepsoe®d in Section 3.3.4.

3.3.3 Symbolic Analysis

This section briefly discusses the pros and cons of usingriDacision
Diagrams (BDDs) for flow-sensitive pointer analysis. BDDs data structures
for compactly representing sets and relations [10]. BDD&lseveral advantages
over other data structures for this purpose: (1) the sizeBDB is only loosely
correlated with the number of elements in the set that the B&idesents, mean-
ing that large sets can be stored in very little space, anth@fomplexity of set
operations involving BDDs depends only on the sizes of thé®Bhvolved, not
on the number of elements in the seBymbolic analysitakes advantage of these
characteristics to perform analyses that would be prahéht expensive—nboth in
time and memory—using more conventional data structuresrelare a number of
examples of symbolic pointer analyses in the literatur@]785—-87]. These anal-
yses are fully symbolic: all relevant information is stosesleither a set or relation
using BDDs, and the analysis is completely expressed instafoperations on
those BDDs. When applied specifically to flow-sensitive paimnalysis [86], the
relevant information is the control-flow graph and the p®ittt relations; these are
stored in BDDs and the transfer functions for the CFG nodegspressed as BDD
operations. Thus, the analysis essentially computes amsfar functions for all
nodes in the CFG simultaneously, making the analysis véigiait.

The strength of symbolic analysis lies in its ability to ddycperform op-
erations on entire sets. Its weakness is that it is not wetéd for operating on
individual members of a set independently from each othieis Weakness directly
impacts flow-sensitive pointer analysis. TheL sets for indirect assignments,
such astx =y, cannot be efficiently computed on-the-fly because theitertin
depend not only on the pointer information computed duriveanalysis itself but
also on the individual characteristics of the points-toedements at the node in

70

question, e.g., whether a particular element represernigjke snemory location or
multiple memory locations (as would be true for a variablesarizing the heap).
Therefore a fully symbolic flow-sensitive pointer analysigst either process each
indirect assignment separately, at prohibitive cost, arseovatively set alkiLL
sets for indirect assignments to the empty set, sacrificiagigion.

We propose an alternative to a fully symbolic analysis, Wwhgcto encode
only a subset of the problem using BDDs. For pointer analyjssmost useful
subset to encode is the set of points-to relations, whickgpansible for the vast
majority of both memory consumption and set operationseéretialysis. By isolat-
ing the pointer information representation into its ownrsewcode module, we can
easily substitute a BDD-based implementation while legitie rest of the analysis
completely unchanged, including the on-the-fly computatbkiLL sets. In our
experimental evaluation we study the effects of using BDDsepresent pointer
information for both the baseline analysis (based on Hindl Rioli [45]) and our
new semi-sparse analysis.

3.3.4 Evaluation

To evaluate our new techniques, we implement three flowisenpointer
analysis algorithms: a baseline analysis based on Hind etid45] (IFs); semi-
sparse flow-sensitive analysisg); and the semi-sparse analysis augmented with
our two new optimizations, top-level pointer equivalennd &cal points-to graph
equivalencegso). All the algorithms are field-sensitive (i.e., they treatk field of
a struct as a separate variable). For each algorithm, weateaiwo versions, one
that implements pointer information using sparse bitmapsasecond that uses
BDDs. We imlement the algorithms in the LLVM compiler inftascture [52]. The
BDDs use the BuDDy BDD library [54]. The algorithms are waiitin C++ and
handle all aspects of the C language except for varargs.

The bitmap versions aFs, ss, andssofilter pointer information at call-
sites as described by Hind and Pioli (see Section 3.2 ana8&:8.2). The BDD
versions of these algorithms do not use filtering. The godiltefing is to reduce
the amount of pointer information propagated between isaiad callees in order
to speed up convergence and reduce the sizes of the pomtapios. As mentioned
earlier, with BDDs we don’t need to worry about the sizes &f ploints-to graphs,

71

Name| LOC | Statements| Functions | Call Sites

parser| 11.4K 33.6K 99 774
ex-050325| 34.4K 37.0K 325 2,519
twolf | 20.5K 45.0K 107 331

vortex | 67.2K 69.2K 271 4,420
sendmail-8.11.6 88.0K 69.3K 273 3,203
gap| 71.4K 132.2K 725 6,002

perlbomk| 85.5K 184.6K 726 8,597
vim-7.1| 323.5K 316.4K 1,935 15,962
nethack-3.4.3 252.6K 356.3K 1,385 23,001
gcc| 226.5K 376.2K 1,159 19,964
gdb-6.7.1| 474.1K 484.3K 3,801 37,119
ghostscript-8.153 429.0K 494.0K 4,815 18,050

Table 3.2: Benchmarks: lines of codedC) is obtained by runningwc on the
source.Statementsreports the number of statements in the LLVM IR. The bench-
marks are ordered by number of statements.

and in fact for the BDD versions, the overhead involved irefitig the pointer
information overwhelms any potential benefit.

The benchmarks for our experiments are described in TaBleS3x of the
benchmarks are taken from SPECINT 2b0e largest six applications from that
suite: parser, twolf, vortex, gap, perlbmk, and gcc) andfgim various open-
source applications. For the non-SPEC benchmarks: ex i @riecessor; send-
mail is an email server; vim is a text processor; nethackexaltased game; gdn is
a C language debugger; and ghostscript is a postscript ki€waction calls to ex-
ternal code are summarized using hand-crafted functidsssilhe experiments are
run on a 1.83 GHz processor with 2 GB of memory, using the Ubidr24 Linux
distribution.

Iwww.spec.org/cpu2000/ as of 5/2009/

72

3.3.4.1 Performance Results

Tables 3.3 and 3.4 give the analysis time and memory consoimgt the
various algorithms. These numbers include the time to khidéddata structures,
apply the optimizations, and compute the pointer analysis.

For the bitmap versions of these algorithms, memory is tnéihg factor.
IFS only scales to 20.5K LOC before running out of memasg,scales to 67.2K
LOC, andssoscales to 252.6K LOC. For the two benchmarks thatmanages to
completessis 75x faster and uses 26less memory, whilssois 183x faster and
uses 4% less memory. For the four benchmarks teatcompletesssois 2.5x
faster and uses 6:8less memory.

For the BDD versions of these algorithms, memory is not aneigad all
three algorithms scale to 323.5K LOC. However, the two Isrgpenchmarksy@b
andghost scri pt) do not complete within our arbitrary time limit of eight hgu
For the ten benchmarks that they do completas 44.8x faster thanFs and uses
1.4x less memory, whilessois 114x faster and uses 1xdless memory. Compar-
ing the fastest algorithm in our studygousing BDDs) with our baseline algorithm
(IFs using bitmaps) using the two benchmarks tifst manages to complete, we
have sped up flow-sensitive analysis ¥9While using 4.6« less memory.

Figures 3.5 and 3.6 describe various analysis statistiexptain the rela-
tive performance of these algorithms. Figure 3.5 gives #iregntage of points-to
graphs thassandssohave compared tars (i.e., the number of points-to graphs
maintained at each node summed over all the nodes). Figbiigiv&s the percent-
age of instructions that are processedsisyandssocompared tors (i.e., the total
number of nodes popped off of the statement worklists in Atgm 4).

ForIFs the pointer-related instructions have been grouped indatocks
to reduce the number of points-to graphs that need to be ama@tt. This grouping
is not possible fossandssobecause they have def-use chains between individual
instructions. However, averaged over all the benchma&still has 24.6% fewer
points-to graphs tharrs because only nodes in the SEG portion of the dataflow
graph require points-to graphs. Also recall that the peiotgraphs forssandsso
only have to hold pointer information for address-takenalaes, so they are much
smaller than the points-to graphs fms. sso reduces the number of points-to
graphs by another 66.6% oves using local points-to graph equivalence.

73

IFS SS SSO

Name . . .
time| mem|| time| mem time | mem
197.parsert 80.25| 888 1.28 53 0.52 15
ex-050325 — | OOM || 15.74| 198 7.33 39
300.twolf | 72.28| 415| 0.82 32 0.34 12
255.vortex — | OOM || 33.37| 1,275 11.70 81
sendmail-8.11.6 — | OOM — | OOM 86.38| 258
254.gap — | OOM — | OOM 191.72| 518
253.perlbmk — | OOM — | OOM — | OOM
vim-7.1 — | OOM — | OOM — | OOM
nethack-3.4.3 — | OOM — | OOM || 4,762.07| 1,648
176.gcc — | OOM — | OOM — | OOM
gdb-6.7.1 — | OOM — | OOM — | OOM
ghostscript-8.13 — | OOM — | OOM — | OOM

Table 3.3: Performance: time (in seconds) and memory copsom (in
megabytes) of the various analyses using bitmaps. OOM nibansenchmark
ran out of memory.

74

IFS SS SSO
time \ mem time \ mem time \ mem

197.parser 7.24| 142 0.64| 142 0.48| 142
ex-050325 7.95| 142 0.66| 143 0.46| 142
300.twolf 6.41| 143 0.46| 144 0.32] 143
255.vortex 14.39| 150 0.97| 151 0.78| 150
sendmail-8.11.6 38.51| 150 2.16| 154 1.40| 152
254.gap 68.66| 167 250| 168 2.34| 166
253.perlomk| 1,477.05] 280 50.22| 182| 21.25| 177
vim-7.1| 4,759.37| 535| 573.28 300 | 112.16| 263
nethack-3.4.3 3,435.48| 423| 13.68| 225 5.37| 220
176.gcc| 2,445.27| 595| 39.71| 234 9.37| 226
gdb-6.7.1 ooT — ooT — ooT —
ghostscript-8.15 ooT — oOoT — ooT —

Name

Table 3.4: Performance: time (in seconds) and memory copsom (in
megabytes) of the various analyses using BDDs. OOT mearentilgsis ran out
of time (exceeded an eight hour time limit).

75

100

o _
£
D - _
<
m 80 -
8 — _
> _
= _
k= = — o ss
c 0 B SSO
(%))
<
o
o
(5 40-
=]
Jui
k=
£ 20-
©
A RS
. [[1 |
- > N
P S DR &Y BT E ALY
SR S O
NI & & & RN
e S & ©
‘oQ’{\ Q &\0

Figure 3.5: Number of points-to graphs maintainedbgandssocompared toFs.
Lower is better (fewer points-to graphs).

The use of top-level def-use chains for semi-sparse arsghgsis off: aver-
aged over all the benchmarkss processes 62.9% fewer instructions thie® SsO
further reduces the number of instructions processed ¢4 8verss.

3.3.4.2 Performance Discussion

Semi-sparse analysis delivers on its promise. Based onuimber of in-
structions processed and the reported efficiency, semsspeanalysis significantly
speeds up convergence. When using bitmaps, the globaéwabpoints-to graph
significantly reduces memory consumption as well, espgarien coupled with
the top-level pointer equivalence and local points-to graguivalence optimiza-
tions. However, there are some results which may be a bitisurg; we highlight

76

Pass920.1d SuooNIISU| auljdseg Jo %

Figure 3.6: Number of instructions processed ds/and SSo compared taFs.
77

Lower is better (fewer instructions processed).

these results and explain them in this section.

First, note the memory requirements for the BDD analysesoaspared
to the sparse bitmap analyses. We see for the smaller berichihat the BDDs
actually require more memory than the bitmaps, even thohglptemise behind
BDDs is that they are more memory efficient. This discrepartses because of
the implementation of the BuDDy library—an initial pool ofemory is allocated
before the analysis begins, then expanded as necessarigeGarger benchmarks,
we see that the memory requirements for the BDD analysesuisé more slowly
than that for the bitmaps, bearing out our initial premise.

Second, the bitmap version sgocompletes for nethack-3.4.3, but runs out
of memory for two benchmarks with fewer statements (25%p@t and vim-7.1).
This showcases the difficulty of predicting analysis perfance based solely on the
input size—the actual performance of the analysis alsort#pen factors that are
impossible to predict before the analysis is complete, sisdie points-to set sizes
of the variables and how widely the pointer information ispdirsed via indirect
calls.

Third, the time required for thesandssoBDD analyses to analyze 253.perlbmk,
vim-7.1, gdb-6.7.1, and ghostscript-8.15 seem disprapuately long consider-
ing the analysis times for the other benchmarks. There isrom®r and one
major reason for this anomaly. The minor reason is specifi25®.perlomk—
the field-sensitive solution has an average points-to get®ier twice that of the
field-insensitive solution. This result seems counteuitivie, since field-sensitivity
should add precision and hence reduce points-to set siageVéo, to account for
the individual fields of the structs, field-sensitive anayacreases the number of
address-taken variables, in some cases (such as 253.ggraking the points-to
set sizes larger than for a field-insensitive analysis, ¢lengh the analysis re-
sults are, in fact, more precise. With the exception of 2&30mk, all the other
benchmarks do have smaller points-to set sizes for the $ehditive analysis.

For the remaining three benchmarks with disproportiogdtelye analysis
times (vim-7.1, gdb-6.7.1, and ghostscript-8.15), theamegason for the anomaly
is the BDDs themselves. To confirm this finding, we measuretieeage process-
ing time per node for each of the benchmarks and find that tivese benchmarks
have a much higher time per node than the others. The mairotpsbcessing a
node is the manipulation of pointer information, which geiout a weakness of

78

BDDs—their performance is directly related to how well theympact the infor-
mation that they are storing, and it is impossible to deteeaipriori how well the
BDDs will do so. The performance of the pointer analysis cary\dramatically
depending on this one factor. There are BDD optimizatioas We have not yet
explored, and these may improve performance; these inchalee-arrangement
of the BDD variable ordering, the use dbn't carevalues in the BDD, and other
formulations of BDDs such as Zero-Suppressed BDDs (ZBDD&rious other
BDD-based pointer analyses have benefitted from one or nfdteese optimiza-
tions [53, 81]

While for now the BDD versions have superior performancerehis still
much that can be done to improve the bitmap versions. Mersdhgicritical factor,
and most of the memory consumption comes from the local pamgraphs. Even
after applying the local points-to graph equivalence oation, a significant num-
ber of the remaining local points-to graphs contain idexticformation—further
efforts to identify and collapse these local graphs aheadra could have a dra-
matic impact on memory consumption. For example, there eweral possible
schemes for dynamically identifying and sharing identlm&thaps across multiple
points-to graphs. In addition, by combining semi-sparsdyasis with dynamically
computed static single assignment form [14, 80] we couldtfyeeduce the sizes of
the local points-to graphs. We can decrease the cost ofauadLthe transfer func-
tions using techniques such as the incremental evaluativarsfer functions [32].
We believe that there is still significant room for improverhi& the bitmap version
of the ssoalgorithm, which we plan to explore in future work.

3.3.4.3 ssoPrecision

The version olssoused in these experiments makes use of the assumption
discussed at the end of Section 3.3.2.1, i.e., that calleetins do not modify
address-taken pointer information accessible by thelersal This assumption in-
creases the effectiveness of the optimizations (see H@ureand 3.8 for a compatr-
ison), but potentially sacrifices some precision. To test haich precision is lost
we compute the thru-deref metric feso both with and without this assumption.
The thru-deref metric examines eachAD and STORE in the program and aver-
ages the points-to set sizes of the dereferenced variatégeghted by the number

79

5 [] Time
B Memory

P
5]
1=
9]
=
O 4
£
l_
°©
@
N
©
£
o 2+
P

o0o-

© % »
E S @ TR A A G
%@Q@O.fb 4\\06\'\{_’ o &
€L T ¢ S F &
¢ S 3 S e
& ® &
&)

Figure 3.7: Analysis time and memory usage (normalized tol@seline) for
the bitmap version o§so withoutthe assumption ogALL S versussso with the
assumption—i.e $SQyithout/ SSQuith-

of times each variable is dereferenced—the larger the yaheeless precise the
pointer analysis.

We find that our benchmarks do not suffer a significant precisbss by
making this assumption; on average the thru-deref metcieased by 0.1%, with
a maximum increase of 0.2%.

3.4 Staged Analysis

While semi-sparse analysis represents an order of magnimoprovement
over the previous state-of-the-art, we can do even betemi-Sparse analysis still

80

5
] [|:|Time
4
>] IMemory
S
IS
o]
2 3
3
£]
~]
=]
Q1
N2+
T 1
g]
o]
Z 1
1+
0-
S P S TR N WP E A Y
TS FE Y F S LS @
NN L & & R & S
e+ & N S
& ® &
S §

Figure 3.8: Analysis time and memory usage (normalized tol@seline) for
the BDD version ofsso without the assumption oCALLS versussso with the
assumption—i.e SSQuithout/ SSQuith-

81

analyzes address-taken variables in a non-sparse manyngsirg sparse analysis
for all the variables, both top-level and address-takencavesignificantly increase

the scalability of the flow-sensitive analysis. This sattiescribes a technique that
meets this goal callestaged flow-sensitive pointer analysis

3.4.1 Staging the Analysis

The reason semi-sparse analysis treats address-takelgarin a non-
sparse manner is that, without pointer information, thdysma cannot determine
where address-taken variables are defined or used. Thetiabssaa of our new
algorithm is to enable sparse flow-sensitive pointer amali all variables in
the program by staging the pointer analysis. We first empiopaxiliary, flow-
insensitive pointer analysis to compute conservativeudefinformation for the
address-taken variables of a program; we then use thatmiatoyn to increase the
sparseness of the primary, flow-sensitive pointer analyfseseby greatly increas-
ing its efficiency.

3.4.1.1 Auxiliary Pointer Analysis

Any flow-insensitive pointer analysis can be used for thaleuwy analysis.
There are many to choose from, ranging from the simplesteadelaken analysis
(which reports that any pointer can point to any variable s¢haddress has been
taken), to Steensgaard’s analysis [78], to Das’ One-Lelwl/[25], to inclusion-
based (i.e., Andersen-style) analysis, which is the mestipe of all these analyses.
In choosing an auxiliary pointer analysis, there are twoartgnt considerations:
(1) how scalable the auxiliary analysis is, and (2) how eifecits results are for
optimizing the primary, flow-sensitive analysis. The moreqgise the auxiliary
analysis, the more sparse the primary analysis will be; licg teason, together
with our results on making inclusion-based (flow- and coniegensitve) analysis
extremely scalable (see Chapter 2), we believe that irmdisased analysis is the
best choice. Henceforth, we will designate the chosen ianxipointer analysis as
AUX.

82

AUX points-to sets
*q =X o=y p— {a}
‘ i g — {b,c,d,e,f}
vV — {e,f}
u=*v S = *z r — {a,b,d}
z—{a,b,c,d}

t = *z

Figure 3.9: Example CFG, along with a subset of the pointsets computed by
AUX.

3.4.1.2 Sparse Flow-Sensitive Pointer Analysis

The primary data structure that we use for the sparse flowHsanpointer
analysis is a def-use graph{G). TheDbuG contains a node for each statement in
the program, and its edges represent def-use chains—ifabi@rs defined in node
x and used in nodg there is a directed edge fraxtoy. The def-use edges for top-
level variables are trivial to determine from inspectiortlod program; the def-use
edges for address-taken variables requiv& to compute. This section describes
how we compute these def-use edges, as well as how we madinégomecision of
the flow-sensitive analysis while using flow-insensitivé-dge information.

The first step is to use the resultsafx to convert the address-taken vari-
ables into SSA form. We annotate theADs andsTOREs usingx andp functions
as described in Section 3.2.1, then convert the programAd&%® using any stan-
dard SSA algorithm [3, 8, 23, 24]. Figure 3.9 shows a smalhgda program along
with a subset of the pointer information discoveredaayx . Figure 3.10 shows the
same example program, annotated withndp functions and translated into SSA.

Note that the def-use information revealed byxrendu functions and SSA
form is conservative with respect to the more precise flomsgie information that
will be computed by the primary analysis. In particularrthare three possibilities
that must be addressed fos@aORE*x = y that is annotated witliy, = X(vn):

83

*p:W

a1 = X(ao)
by — X(B0)s & x(c0) ey
L= XIon: L X0 a2 = X(a1); bz = X(bo)
b= X(ld:)’)(‘?lfcg X(€o) d = X(co)
u=r*y S =*z
(er); M(fe) H(a2); M(b2); u(co); H(d2)
ag = @(ar,a2)
bs = @(b1,b2)
C2 = @(Co,C1)
ds = @(dh,d2)
t =*z
M(ag); M(bg); K(C2); K(ds)

Figure 3.10: The SSA information for Figure 3.9.

1. x may not point tov in the flow-sensitive results. In this case, the analysis
should interpret the TOREbased solely on the function; in other wordsyn,
should be a copy of,, and not incorporatg at all.

2. X may point only tov in the flow-sensitive results. In this case, the analysis
can strongly update the points-to information¥pm other wordsyy, should
be a copy ofy and not incorporate, at all.

3. X may point tov as well as other variables in the flow-sensitive resultshi t
case, the analysis must weakly update the points-to inficoméor v; in other
words,vy, should incorporate the points-to information from bgtrandy.

By using the SSA form to fill in the def-use grapluG, we can accommo-
date all of these possibilities. For ea¢horREannotated with a functiovy, = X (vn),
we create a def-use edge to every statement thatysesthe argument ofyg , or
¢ function. We label each def-use edge for an address-take&blawith that vari-
able, so the analysis can determine along which edge to gatga given variable’s

84

*r:y *q =

g =X
[a] /[’t)/ [dI_[b] [d] \[a] EV[C] [d] \Bﬂ
u="=*v

S = *z t =*z

Figure 3.11: The def-use graph for Figures 3.9 and 3.10; edgh is labeled with
the variables used by the destination.

points-to information. Figure 3.11 shows the example mogfrom Figure 3.9
converted into a def-use graph based on the SSA informatoon Figure 3.10.

The flow-sensitive analysis propagates ®r@REpoints-to information for
all variables that may be defined by ttetoRE When thesTORE is evaluated,
each variable defined by therore has its points-to information modified in the
STORES local points-to graph, using a strong or weak update asoppiate. The
points-to information for all potentially-defined variaislis then propagated along
the appropriate def-use edges from #®ORE, regardless of whether th&rore
actually defined the variable or not.

Theorem5 (The Analysis is Correct)Every definition of a variable reaches its
corresponding uses, and the analysis computes precisesdositive pointer infor-
mation.

Proof. We prove the theorem in two parts:

Every def reaches its corresponding usesPoints-to information flows
along the def-use chains UG computed byaux. SinceAux computes an over-
approximation of the information computed by the flow-sewsianalysis, the def-
use chains imUG are a superset of the def-use chains that would be computed by
the flow-sensitive analysis. Therefore all defs must rebelr torresponding uses.

The sparse analysis is preciselhe threesTORE possibilities listed above
must be correctly handled by the sparse analysis. The keghingquired to prove

85

that the analysis correctly handles each possibility istthe@points-to information
at eaclbuG node increases monotonically—once a pointer containsiabtar in

its points-to set at node, that pointer will always contaim at noden. This fact
constrains the transitions that ea&foRE can make among the three possibilities.

Suppose we have TORE*Xx = y. First, we note that the TORE is not
processed ik is NULL—either we will revisit this node when is updated, or the
program will never execute past this point (because it valdereferencing a null
pointer). Therefore if we're visiting theTORE, thenx must point to something. The
monotonicity property constrains the transitions thatahalysis may take among
the three possibilities for thiSTORE the analysis may transition from (1) or (2) to
(3), and from (1) to (2), but it can never transition from (8)(1) and never from
(3) to either (1) or (2).

More concretely, suppose thatdoes not point tor when theSTORE is
visited. Then the analysis will propagate the old value plast this node. Later
in the analysisx may be updated to point tq if so, theSTORE mustbe a weak
update (possibility 3) becaugealready points to some variable other theat this
point in the program and it cannot change that fact. So thi/sisawill updatev
with both the old value ofr andthe value ofy, which is a superset of the value
it propagated at the last visit (the old valuewf Similar reasoning shows that if
the STORE s originally a strong update (possibility 2) and later bmes a weak
update, the analysis still operates correctly. O

3.4.1.3 Access Equivalence

A difficulty that immediately arises when using the techmiqlescribed
above is the sheer number of def-use edges that may be mqui@hsTORE
can define thousands of variables, based on the derefergndafile’s points-to
set size, and each variable can be defined dozens or hundrédges—in large
benchmarks, hundreds of millions of def-use edges may laeaztefar too many
to enable a scalable analysis. To combat this problem, weduate the notion of
access equivalencevhich will enable us to represent the same information in a
much more compact fashion.

Two address-taken variabl@sandy are access equivalent if whenever one
is accessed by BOAD or STOREINnstruction, so is the other; in other words, for all

86

variablesvy such thaw is dereferenced in BOAD or STORE, X € pointsto(v) <y €
pointsto(v). This notion of equivalence is similar, but not identicakhe notion

of location equivalencelescribed in Section 2.4.2. The difference is that location
equivalence examinedl pointers in a program to determine whether two variables
are equivalent, whereas access equivalence only looksraepmodereferenced in
aLOAD or STORE, two variables may be access equivalent without being iocat
equivalent (but not vice-versa).

The advantage of access equivalence is that all accesg&mtivariables
will have identical def-use chains computed by the SSA dilgar. By definition,
anysTOREthat defines one variable must also define all access-equoivwariables,
and similarly anyLoAD that uses one variable must also use all access-equivalent
variables.

To determine access equivalence usiog , we must determine which vari-
ables are accessed by the same seteiDs andsTORES. LetAE be a map from
address-taken variables to sets of instructions. For easb or STOREinstruction
| and for each variableaccessed bl, AE(v) includesl. Once all instructions have
been processed, any two variabkesndy are access-equivalentAE(x) = AE(y).
This process take3(l - V) time, wherd is the number of OAD/STOREINstructions
andV is the number of address-taken variables.

For Figure 3.9, the access equivalences g, {b,d},{c},{e f}. Fig-
ure 3.12 shows the same def-use graph as Figure 3.11 ext¢b@dgies for access-
equivalent variables collapsed into a single edge.

It is important to note that the access equivalences are g@dpisingAUX ,
and therefore are conservative with respect to the acteakaequivalences using
the flow-sensitive pointer analysis. For this reason, whidges are labeled us-
ing access equivalences, the points-to graphs at each sedbeaiactual variables.
The def-use edges are now labeled with the access equiegbaniition each edge
represents, instead of being labeled with individual \@es; when propagating a
variable’s points-to information across the def-use edtiess information is only
propagated across edges labeled with the specific partitairvariable belongs to.

87

*r o= y *q = X
[al/ bdN_[al\ bl ﬁod]] \[ef]
S = *7 t = *z u="=*v

Figure 3.12: The def-use graph of Figure 3.11 after applgitgess equivalence.

3.4.1.4 Interprocedural Analysis

There are two possible approaches for extending the asatiesicribed
above to an interprocedural analysis. The first option isdmmute sparseness
separately for each function, treating a function call agfendion of all variables
defined by the callee and as a use of all variables used by llee.céhe downside
of this approach is variable def-use chains can span a nuofilfenctions; treat-
ing each function call between the definition and the use adlaction point can
adversely affect the sparseness of the analysis.

The second option, which we use, is to compute the sparséoretse en-
tire program at once, directly connecting variable defoms and uses even across
function boundaries. An important consideration for thippach is how to handle
indirect calls via function pointers. Some of the def-usaieh that span multi-
ple functions may be dependent on the resolution of indrelts. The technique
outlined earlier does not compensate for this problem—sitiages that the def-use
chains are only dependent on the points-to sets of the psinted by an instruc-
tion, without taking into account any additional dependeson the points-to sets
of unrelated function pointers. In other words, this tecluei may lose precision if
the call-graph computed byux over-approximates the call-graph computed by a
flow-sensitive pointer analysis.

88

There are two possible solutions to this problem. The eagesimply
to assume theux computes a precise call-graph, i.e., the same call-graph th
flow-sensitive pointer analysis would compute. Alfx is fairly precise (e.g., an
inclusion-based analysis), this is a good assumption termdlilanova et al. [56]
show that precise call-graphs can be constructed usinglomhjinsensitive pointer
analysis. We use an inclusion-based analysiafot, and hence this is the solution
we use for our work.

If this assumption is not desirable, then the technique rhestdjusted to
account for the extra dependencies. Each def-use chaircitbsges a function
boundary and depends on the resolution of an indirect calhisotated with the
(function pointer target function pair that it depends on. Pointer information
is not propagated across this def-use edge unless the apeojarget has been
computed to be part of the function pointer’s points-to set.

3.4.2 The Final Algorithm

Putting everything together, we arrive at the final alganitior sparse flow-
sensitive pointer analysis. We begin with a series of pregssing steps prior to the
analysis itself:

1. RunAux to compute conservative def-use information for the progoaing
analyzed.

2. Use the results ofux to compute the interprocedural control-flow graph of
the program, including resolving indirect calls to theitgdial targets. All
function calls are then translated into a setofPy instructions to represent
parameter assignments, and similarly function returnalsetranslated into
COPY instructions.

3. Compute exact SSA information for all top-level variable

4. Partition the address-taken variables into access @lguise classes as de-
scribed in Section 3.4.1.3.

5. For each patrtitio®, use the results ofux to:

89

e Label eactsTOREthat may modify a variable iR with a functionP =
X(P).
e Label each.oAD that may access a variablefwith a functionp(P).

6. Compute SSA form for the partitions, using any of many latde methods
(e.g., [3, 8,23, 24]).

7. Construct the def-use graph by creating a node for eacttgraielated in-
struction and eactpfunction created by step 6, then:

e ForeachaLLOcC, coPy, andLOAD nodeN, add an unlabeled edge from
N to every other node that uses the variable definetlbyNote that
because of step 3, nodes of these types each define a unigaigle/ar
thecoPy nodes include the functions computed by step 3.)

e For eachsTORENOdeN that has g function defining a partition vari-
ableR,, add an edge from\ to every node that usé%, (either in a@, X
or ufunction), labeled by the partition.

e For eachp nodeN that defines a partition variabl,, create an unla-
beled edge to every node that uggs

Once the preprocessing is complete, the sparse analgdicas begin. The
analysis uses the following data structures:

e a node worklisWorklistthat is initialized to contain ahLLOC nodes.

¢ a global points-to grapRG that holds the points-to sets for all top-level vari-
ables. LetRqp(V) be the points-to set for top-level varialle

e a points-to graphny for everyLOAD and@ nodek to hold the pointer infor-
mation for all address-taken variables that may be accdssttht node. Let
B (v) be the points-to set for address-taken variatdentained innNy.

e two points-to graphs for everyToREnodek to hold the pointer information
for all address-taken variables that may be defined by thad¢:na for the
incoming pointer information anduTy for the outgoing pointer information.
Let Z(v) be the points-to set of address-taken variatiteINy.

90

e a mappart(v) that for each address-taken variableturns the variable par-
tition to which thatv belongs.

The main body of the algorithm is listed in Algorithm 15. Tiup itera-
tively selects a node from the worklist and processes itctvimay add new nodes
to the worklist. It continues until the worklist is empty,wahich point the analysis
is complete. Each different type of node is processed asllist Algorithms 16—
20. The« operator represents set update represents an unlabeled edge in the
def-use graph, ané represents an edge labeled with

Algorithm 15 Main body of the semi flow-sensitive pointer analysis altjon.
Require: DEF/USE= (N,E)
while Worklistis not emptydo
k =seLEcT(Worklist)
switch typeof(k):
caseALLOC: processAllocK)
casecoPY: processCop¥)
caseLOAD: processLoad)
CaseSTORE processStoré]
caseq. processPhk)

Algorithm 16 processAllocf) : [x = ALLOC;
PG« {x — ALLOC;}
if PG changedhen
Worklist« {n|k—ne€ E}
Algorithm 17 processCop¥): [x =y z

for all v € right-hand sidelo
PG — {x — Biop(V)}

if PG changedhen
Worklist« { n|k—ne€ E}

91

Algorithm 18 processLoad) : [x = *y]

PG« {x — B(Bop(y))}
if PG changedhen
Worklist« { n|k—ne€ E}

Algorithm 19 processStoréf : [*x =]

if Bop(x) represents a single memory locatitwen
/I strong update
OUTk = (INk\ Bop(X)) U{Bop(X) — Rop(Y)}
else// weak update
OUTk = INKU {Bop(X) — Bop(Y)}
forall {neN,peP| kgneE} do
for all {ve ouTy | part(v) = p} do
INR(V) <= OUTk(V)
if IN, changedhen
Worklist« {n}

Algorithm 20 processPhk)

forall {neN|k—neE}do
INp <= INg
if IN, changedhen
Worklist« {n}

92

3.4.2.1 Further Optimization

In addition to the techniques described in this section, arealso use the
same two optimizations described in the previous sectiosemni-sparse analysis,
namelyTop-Level Pointer Equivalen@ndLocal Points-to Graph EquivalencéVe
employ both optimizations in the following experimentahkation.

3.4.3 Evaluation

To evaluate our new technique, we compare it against ouieearbrk on
flow-sensitive pointer analysis, callsgd(see Section 3.3), which is the most scal-
able algorithm availablessoanalyzes benchmarks with up to approximately 344K
lines of code (LOC), an order of magnitude greater than atbly the previous
state-of-the-art, and it is almost 20@aster than the previous state-of-the-art. We
usesso as the baseline for comparison with our new technique, whielrefer
to assFs SFsuses inclusion-based (i.e., Andersen-style) analysiadior. SSo,
SFS andAux are all field-sensitive—each field of a struct is treated aspaate
variable.

We implement botlssoandsFsin the LLVM compiler infrastructure [52]
and use BDDs to store points-to relations. We emphasizatititer technique is a
symbolic analysis (such as the various symbolic pointelyaea [7, 81, 85-87])—
instead, we only use BDDs to compactly represent pointgets) sve could swap in
other data structures for this purpose without changingeabeof the analysis. We
make use of the BuDDy BDD library [54]. The analyses are emitin C++ and
handle all aspects of the C language except for varargs.

Table 3.5 describes the benchmarks for our experimentsof$he bench-
marks are taken from SPECINT 2000 (the largest six apptinatfrom that suite)
and the rest from various open-source applications. Thesehmarks include all
the benchmarks from the evaluation of semi-sparse angl$sigtion 3.3.4), plus
the benchmarks svn (a source control system), gimp (an inmegepulation pro-
gram), and tshark (a wireless network analyzer). We do ndtide the Linux
or Wine benchmarks used for the evaluation of inclusioretamnalysis because
of difficulties compiling those programs with the LLVM insaucture (note that
the inclusion-based analysis evaluation in Sections 28d32.4.3 used a different
infrastructure than LLVM). Function calls to external coale summarized using

93

Name| LOC | Statements| TL Vars | AT Vars
197.parser 11K 18K 7.6K 1.9K
300.twolf 20K 37K 12.4K 4.8K

ex 34K 37K 8.8K 2.3K
255.vortex 67K 47K 15.3K 5.9K
254.9ap 71K 99K 39.8K 8.2K
sendmail 74K 54K 20.2K 28.5K
253.perlbmk 82K 118K 48.8K 4.1K
nethack| 167K 298K 79.0K 15.1K
python| 185K 162K 70.7K 21.9K
176.gcc| 222K 258K | 108.0K 12.9K
vim 268K 249K 74.8K | 168.0K

pine| 342K 426K | 206.0K| 404.0K

svn| 344K 158K 83.5K 23.8K
ghostscript, 354K 388K | 164.0K| 350.0K
gimp| 877K 929K | 408.0K| 146.0K
tshark| 1,946K 1,045K| 914.0K| 641.0K

Table 3.5: BenchmarkstOC reports the number of lines of codStatements
reports the number of statements in the LLVM IR, Vars reports the number
of top-level variables, andT Vars reports the number of address-taken variables.
The benchmarks are divided into small (less than 100K LO@J;sized (between
100K—400K LOC), and large (800K LOC and greater).

hand-crafted function stubs. The experiments are run o6& GHz 32-bit pro-

cessor with 4GB of addressable memory, except for our lalmsehmark, tshark,
which uses more than 4GB of memory—that benchmark is run a6@GHz 64-

bit processor with 100GB of memory. Note that the experimlemachines are
different from that used for Section 3.3.4 and therefore atedgfferent results than
that section fossa

3.4.3.1 Performance Results

Table 3.6 gives the analysis time and memory consumptioheof/érious
algorithms. These numbers include the time to build the gtatectures, apply the

94

SSO SFS
Time | Mem || Prelim | Prep | Solve|| Time | Mem

parser] 0.41| 138 0.29 0.07 0.008 0.37| 275
twolf 0.23| 140 0.34 0.07 0.004 0.41| 281
ex 0.35| 141 0.29 0.10 0.008 0.40| 277
vortex 0.60| 144 0.45 0.14 0.028 0.62| 285
gap 1.28| 155 0.94 0.33 0.016 1.29| 307
sendmail| 1.21| 147 0.70 0.27 0.032 1.00| 301
perlomk 2.30| 158 1.05 0.50 0.020 1.57| 312
nethack| 3.16| 197 1.72 0.82 0.096 2.64| 349
python| 120.16| 346 4.04 2.02 0.564 6.62| 404
gcc 3.74| 189 2.00 1.42 0.040 3.46| 370

vim | 61.85| 238 2.93 2.44 0.160 5.53| 436
pine | 347.53| 640| 13.42| 21.25| 47.330 82.00| 876
svn| 185.10| 233 5.40 5.07 0.216 10.69| 418

Name

ghostscript OOT — 42.98| 86.13| 1787.184| 1916.29| 2359
gimp| OOT — || 90.59| 105.87| 1025.824| 1222.28| 3273
tshark| OOT — || 232.54| 219.83| 376.096| 828.47| 6378

Table 3.6: Performance: time (in seconds) and memory (iraimggs) of the anal-
yses. OOT means the analysis ran out of time (exceeded a Xihmulimit). SFs
is broken down into the main stages of the analysis: the ianxipointer analysis,
the preparation stage that computes sparseness, andubétawe to solve.

optimizations, and compute the pointer analysis. The tifoesFsare addition-
ally broken down into the three main stages of the analysis: auxiliary flow-
insensitive pointer analysis, the preparation stage thaptites sparseness, and the
solver stage.

The premise osFs—that approximating a sparse analysis by using an aux-
iliary pointer analysis to conservatively compute def-ugermation—is clearly
borne out. For the smaller benchmarks, those less than 1@X& the advantage
is less clear; sometimessois faster, sometimesrsis faster. For the benchmarks
with less than 100K LOCsFsis on average 1.03 faster tharsso. For the mid-
sized benchmarks, those with between 100K LOC and 400K Lp€has a more
distinct advantage; it is on average %.%aster than tharsso for the six bench-

95

marks that both algorithms complete. In additisrs successfully analyzes three
benchmarks, each in less th%rtnour, thatssocannot analyze within an hour.

The one area whersso has a clear advantage is memory consumption.
SFs has not been tuned with respect to memory consumption, angeli@ve its
memory footprint can be significantly reduced. As a sidenkeep in mind that
tshark is evaluated using a 64-bit machine, as opposed 82t machine used
for the other benchmarks, so its memory consumption canditeetly compared
with the others because the 64-bit machine inflates the mefaotprint compared
to a 32-bit machine.

3.4.3.2 Performance Discussion

There are several observations aboutdhsresults that may seem surpris-
ing. First, the solve times f@Fsare sometimes smaller than thex times. Keep
in mind that theaux column includes the time needed feox to generate con-
straints, optimize those constraints, solve them, thenodeespost-processing on
the results to prepare them for tees solver. On the other hand, the solve times
only include the time taken f@Fsto actually compute an answer given the def-use
graph.

We also see that the analysis times can vary quite widely; &webench-
marks that are close in size. Some smaller benchmarks tgkéicantly longer
than larger benchmarks. The analysis time for a benchmar&ndis on a number
of factors besides the raw input size: the points-to sesdia®lved; the charac-
teristics of the def-use graph, which determines how wigelyter information is
propagated; how the worklist algorithm interacts with thalgsis; and so forth. It
is extremely difficult to predict analysis times without kving such information,
which can only be gathered by actually performing the ansilys

Finally, the prep time foisFs which includes the time to compute SSA
information using theux results and the time to optimize the analysis using Top-
level Pointer Equivalence and Local Points-to Graph Edeivae, takes a signifi-
cant portion of the total time fogFs While the prep stage is compute-intensive,
there are several optimizations for this stage that we hatget implemented. We
believe that the times for this stage can be significantluced.

96

To better understand the results, we focus on three key &spEsFs that
contribute to its success, the analysis’ sparsity, theeffeaccess equivalence, and
the effects of local points-to graph equivalence.

The first aspect is the effect of using a sparse analysis éoadhress-taken
variables. We measure this effect by counting, for eachemddraken variabhe the
number of edges thafts points-to information can propagate across. The sparser
the analysis, the fewer edges a variable’s informationpvdpagate across, and the
more quickly the analysis will complete. Figure 3.13 congsdor each benchmark
the average number of edges a variable’s information wdppgate across for a
non-sparse analysis verssisss sparse analysis. As expected, the sparse analysis
propagates information across far fewer edges for evergtimark.

The second aspect is the effect of exploiting access egmgal We use
access equivalence to partition address-taken variablsswe only need def-use
edges per partition, rather than per variable. Figure 3dMpares the number of
partitions versus the number of address-taken variabhelsalso the number of def-
use edges used for partitions versus the number of edgesdliéd be required if
they were per-variable. Most of the benchmarks, and all eldhger benchmarks,
show a significant reduction in the number of edges requiFedthe larger bench-
marks, this reduction in absolute terms was from hundreasillibns of edges to
millions of edges.

The final aspect that we consider is the effect of the locahtgetio graph
equivalence optimization for bottbsoandsrs Figure 3.15 shows the percentage
of the number of nodes that remain after merging nodes tlatdhcal points-to
graphs. We see that the optimization is quite effective.

3.5 Chapter Summary

In this chapter, we demonstrate how to greatly increase dakalsility of
flow-sensitive, context-insensitive pointer analysisr €wategy is to exploispar-
sityin the analysis, allowing the analysis to converge fastdrusme less memory.

Our first technique, semi-sparse analysis, partitionsatsées betweetop-
level(variables that cannot be indirectly referenced via a po)randaddress-taken
(variables that can be indirectly referenced via a point€he top-level variables

97

<,:20—

n

n

o}

2

» 154

g 1

) 1

©

Lu j

2 4

S 104

o 1

Q

@

)

o |

S 5+
0— N & o X
St ROE NS E Q@R
G S P& REELE N S S@
Fs ¢ %c@@é@@x RTINS

Q< o

Figure 3.13: This graph reveals the sparsity of the def-uaplgby giving the
percentage of edges across which pointer information veilbbopagated in the
def-use graph in relation to a non-sparse analysis usinGEt Smaller is better:
the smaller the percentage, the fewer edges a variableisgpanformation will be
propagated across.

98

100+

80 m Variables
l o Edges
60 -
40
20
04
3 Q.

% Variables/Edges After Access Equivalence

N+ QO RN IR
< & S FEC T E SR
F RO 2(\&{;}\‘0@;\(\Q§ O e O

F R O

Figure 3.14: This graph shows the effectiveness of the acegsivalence opti-
mization in two ways: Vars is the remaining number of varabhfter replacing
each variable with a representative from its access eancalclass; Edges is the
number of remaining def-use edges after merging edges fiabkas from the same
access equivalence class. Both are given as a percentdgerafrnber of variables
and def-use edges without using access equivalence. Snsdbetter: the smaller
the percentage, the fewer variables and edges remain imdpl.g

99

100

80

60—

40

20

% Remaining Loads after Sharing

Figure 3.15: This graph shows the effectiveness of sharigtgto graphs using
local points-to graph equivalence by giving the number@AD instructions that

remain after merging nodes that share points-to graphspascantage of the total
number ofLoADs. Smaller is better: the smaller the percentage of renimiaes,

the more sharing is being done.

100

are put into SSA form, while the address-taken variables@aneected via an SEG.
The semi-sparse analysis combines a sparse analysis aptlevel variables with
an iterative dataflow analysis on the address-taken vasabl

Our second technique, staged analysis, improves on sarsespnalysis by
transforming the address-taken variables into a conseeV@6A form. This trans-
formation allows the address-taken variables to be andlygmg a sparse analysis,
rather than the iterative dataflow analysis used by semssnalysis. In order to
make this technique practical, we identify and expamtess equivalenamong
the address-taken variables, i.e., variables that areagtesed to have identical
def-use chains in SSA form.

101

Chapter 4

Formal Framework

The previous two chapters of this thesis have focused on twttgin the
flow-sensitivitydimension of precision. In the bigger picture, there areyr@her
possible dimensions of precision for pointer analysis taat be approximated in
different ways (e.g., context-sensitivity, the heap mogeinter arithmetic, etc).
Previous work has explored many different points in thigéarspace of possible
approximations, as evidenced in Hind’s survey paper [43].

Different points in this space of approximations yield éiffint trade-offs
between the precision of the pointer analysis and the stigfatf the analysis.
This tradeoff between precision and performance is of utamggortance to those
who rely on pointer analysis. Unfortunately, the curreatesbf pointer analysis re-
search makes it difficult for researchers to clearly commateithe trade-off associ-
ated with a given point in the space of approximations. Roiabalysis researchers
tend to focus on algorithmic design, employ a multitude gbathmic strategies
(e.g., dataflow analysis [44, 50], set constraints [29,8/pe systems [25, 78], CFL
reachability [77,84]), use different terminology to retersimilar concepts, and
often use informal language to describe the precision afitpoianalysis approxi-
mations. These factors make it difficult for researcheretmélly and empirically
compare pointer analyses [43].

Researchers lack a unifying, formal specification of paiatealysis. Such
a specification would make it possible to describe and coengleg precision of
many different pointer analysis approximations, regasilef their implementation
details. It would provide a common vocabulary for those wieofgrm pointer
analysis research and those who benefit from it.

A formal specification of pointer analysis also serves aasgary compo-
nent of a more ambitious research goal: the automatic or-aatomatic synthesis

102

of provably correct and efficient pointer analysis alganth Algorithm synthe-
sis already exists for other domains such as databases]aBhing and schedul-
ing [65], general fixed-point computations [11], and gehdedaflow analysis [6].
Each technique turns a declarative description of desagsdlts into an algorithm
that computes those results; and each technique depents eristence of a for-
mal specification.

This chapter describes a formal framework to precisely rilesa large
space of possible pointer analysis approximations. Thiséwork is capable of
describing the precision of the vast majority of existingnper analyses, regard-
less of how those analyses are implemented algorithmicaihile the framework
does not immediately lead to an efficient implementation &dranally specified
approximation, we believe that it represents an importeag ®owards the goal of
declarative pointer analysis. The work described in thegtér has been previously
published by Hardekopf et al. [36].

4.1 Framework Strategy

The material in this chapter is dense and full of formalisrie. help the
reader navigate the chapter, we describe in this sectiobdki strategy of our
framework in an informal manner. The framework consists e§2ential parts: (1)
abase semanticend (2) threessemantic transformationg he base semantics rep-
resents the most precise possible pointer analysis, aodniplexity is exponential
in the program size (it executes each path in the progranpamtently, and there
are an exponential number of program paths).

The three semantic transformations are: I{iduced Variable Equivalence
(IVE), (2) Induced Trace EquivalendgTe), and (3)Induced Control Flow(ICF).
The transformations can be applied to the base semanti@gimug combinations
in order to model various approximations, reducing theigre of the base seman-
tics. IVE forces the base semantics to treat a given set of variabtxpuaglent, i.e.,
all variables in the group must have the same pointer infatonalTE forces the
base semantics to treat a given set of program paths as kEmujviee., the results
of the analysis don’t depend on which path in that group isnakcF forces the
base semantics to add additional control flow that was nateprtein the original
program, i.e., it creates new program paths that did notiguely exist.

103

We emphasize that the result of these transformations emattual, usable
algorithm for computing these approximations. Instead,s#t of transformations
used describe a given level of precision: the algorithmgresi can state that the
precision of a given algorithm is identical to the precisidithe base semantics with
a certain combination of semantic transformations apgleeid. This description
makes the approximations used by the given algorithm expincl precise.

4.2 Background

This section introduces terminology and uses the framewobr#tataflow
analysis to describe the most common approximations madeoiater analysis.
To keep the analysis decidable, all the approximationsmassufinite heap model
(i.e., that there is a finite bound on the amount of dynamic orgrallocated) and
uninterpreted branch conditions (i.e., all branches ntardenistic). We begin
with a discussion of intraprocedural analysis before ektemthe discussion to the
interprocedural case.

4.2.1 Dataflow and Pointer Analysis

Dataflow analysis employs a lattice of dataflow factsa meet operator on
the lattice[], and a family of monotone transfer functiofis: L — £ that map
lattice elements to other lattice elements. For pointelyaig the lattice elements
are elements of the powerset of possible pointer informatibe meet operator
is set union, and the transfer functions compute the effgfcggogram statements
on pointer information. Analysis is carried out on ttentrol-flow graph(CFG),

a directed graplc = (N,E,s) with a finite set of nodes (oprogram point$ N,
corresponding to program statements, a set of efgedN x N corresponding to
the control flow between statements, and a designated stdetsnsuch that all
nodes are reachable frosn A pathttin the CFG is a sequence of nodes such that
there exists an edge from each node to the next node in theseguEach node

is associated with a transfer functidgthat computes the effects of the associated
program statement. Thgath semantickor a path is the composition of the transfer
functions for all the nodes contained in the pdti, ny, ..., Nk = fko...o fao fy.

A flow-sensitivaanalysis respects the restrictions on control flow embodied

104

by the CFG and computes a separate solution for each progyar he precise
flow-sensitive solution is known aseet-over-all-pathéMOP):

vne N:MOP(n) = |_|{[[n]] | Ttis a path fromsto n}

Each program path is analyzed independently. The finalisaldéior each
program point is the meet (i.e., union) of all the pointepmfation relevant to that
program point. Flow-sensitive meet-over-all-paths pairgnalysis (FS-MOP) is
PSPACE-complete [59].

Because the precise solution is intractable, practical-lemsitive analysis
instead computes thmaximal-fixed-poinfMFP) solution:

vne N:MFP(n) =[[{ fm(MFP(m)) | (mn) € E}

The analysis computes the maximal lattice element (i.estprecise pointer
information) for which the set of transfer functions comes to a fixed-point.
Rather than computing solutions for a potentially unbowhalember of paths, the
MFP approach merges all the solutions that reach a givenaodg any path. For
pointer analysis, the transfer functions are not distiayso the MFP solutionis an
over-approximation of the MOP solution [48]. Flow-sengtmaximal-fixed-point
pointer analysis (FS-MFP) '@(nG), wheren is the number of program statements.

In contrast, dlow-insensitiveanalysis does not respect control flow. It as-
sumes that any program statement can follow any other progtatement and can
be executed an arbitrary number of times. Equivalentlyssiuaes that the CFG
is complete, including self-loops. A flow-insensitive ayga$ computes a single
solution that holds for the entire program. Just as for the-8ensitive case, the
precise flow-insensitive solution is defined as the meet-allgpaths solution of
the modified CFG. Flow-insensitive meet-over-all-paths sy analysis (FI-MOP)
is NP-hard [46].

As with flow-sensitivity, there is a maximal-fixed-point flawsensitive so-
lution that is an over-approximation of the FI-MOP solutioflow-insensitive
maximal-fixed-point pointer analysis (FI-MFP) @&(v3), wherev is the number
of program variables.

105

4.2.2 Interprocedural analysis

There are several ways to extend intraprocedural dataflalysis to the in-
terprocedural case. dontext-sensitivanalysis respects the semantics of procedure
calls and returns by analyzing each distinct context of &guiare independently.
Without recursion, context-sensitive analysis is eq@mato inlining all procedure
calls, and its complexity is exponential in the number ofscial the program. There
are two general approaches to context-sensitivity thaheehe meaning of “dis-
tinct context” in different waysfunctionalandcall-string [76].

The functional approach memoizes procedures. Whenevescegure is
re-analyzed using incoming pointer information that hasnbgreviously seen, the
analysis re-uses the results from the previous computafibis approach distin-
guishes contexts dynamically during the analysis basedenncoming pointer
information.

The call-string approach statically distinguishes cotsteased on the string
of procedure calls made to reach the procedure, i.e., thsteak. The number of
possible call-strings is infinite in the presence of reansiThe traditional response
is to k-limit the call-string by using only the laktelements of the string to distin-
guish context, for some constadat

A context-insensitivanalysis does not respect the semantics of procedure
calls and returns. It instead treats all calls and returrgoés statements. Informa-
tion from multiple callers is merged before analyzing a pabare, and information
passed to a procedure by one caller is passed back to all pfabedure’s callers.
This merging of information means that the context-ing@ressolution is an over-
approximation of the context-sensitive solution.

4.2.3 Other Approximations

The representation of the pointer information itself cawehan impact
on the precision of the analysis. The two standard reprasens arealias rela-
tions[51] andpoints-to relationg28] (the alternativeeompact alias representation
is closely related to the points-to relation [17]). The psito relation expresses
the fact that a pointer may hold the address of a particulanong location (e.g.,
if x can hold the address gfandy can hold the address afthenx — y,y — 2).

106

The alias representation explicitly lists all pairs of geimexpressions that may re-
solve to the same memory location (e{gx, V), (xY, 2), (xX,2)). In effect, the alias
representation is the transitive closure of the pointslation.

For FS-MOP and flow-insensitive analysis, these representaare equiv-
alent, but for FS-MFP their precision is incomparable — eaely be more precise
than the other in different circumstances [55]. Howeverwhbsingstrong updates
(explained further in Section 4.4.4) the alias relationticc8y more precise than
the points-to relation for FS-MFP [55]. Our work uses thaslielation coupled
with strong updates to provide maximum precision; in Sectid.2 we discuss the
exact difference between the representations and how tourdeansformations to
yield precision equivalent to using points-to relations.

Two other dimensions of precision dield sensitivityand theheap model
Field-sensitivity specifies how individual fields of a strace distinguished. The
heap model specifies how the (conceptually) infinite-sizgphie abstracted into a
finite number of abstract memory locations. For simplicity ramework does
not directly address field-sensitivity, but Section 4.5ckefty describes how our
framework could handle it. The heap model is addressed itidbet.7.2.

4.3 Related Work

Bruns and Chandra have previously developed a theoretiodehto de-
scribe points-to analysis approximations, using it to espthe relationships among
some of the common intraprocedural approximations [9]. yTimroduce four
coarse-grained semantic transformations that compogeetofg solutions equiv-
alent to FS-MOP, FS-MFP, FI-MOP, and FI-MFP. They introdaceadditional
transformation that suggests a more efficient FI-MFP allgori Our work is in-
spired by their effort, but we seek to create a framework ihabth simpler and
at the same time more expressive than the one they describemMoy three se-
mantic transformations that specify the same approximatas Bruns and Chandra
plus many more, including heap models and interproced@icximations. Our
transformations are designed to tune the precision of aroappation, rather than
the efficiency of any one algorithm. Our model uses aliasatar than points-to
relations in order to create a more general framework.

107

Milanova and Ryder describe a practical framework for FIfMpointer
analysis that uses annotated inclusion constraints [57{aBying the annotations,
their framework can specify a wide range of inclusion-bdt®a-insensitive anal-
yses, from context-insensitive to both the call-string &mtttional approaches to
context-sensitivity.

Grove et al. describe a lattice-theoretic model of consextsitive call-graphs
which they use to specify different families of call-grapimetruction algorithms,
leading to a parameterized framework for interproceduoalt&xt-sensitive anal-
ysis [33]. Their framework does not directly address pairaealysis or flow-
sensitivity.

Deutsch [26] and Sagiv et al. [71] present parametric fraomksvthat de-
scribe broad spectra a¢thape analysigpproximations. The boundary between
shape analysis and pointer analysis is nebulous. For thgoges of this disserta-
tion, we will define pointer analysis as an approximationtatk-allocated pointers
and shape analysis as an approximation of heap-allocateldoféen cyclic) data.
This paper’s focus is pointer analysis approximations.exeless, our model can
describe a subset of the shape analysis approximationslkdy Deutsch and
Sagiv et al. Section 4.7.2 discusses these issues in maik det

4.4 Intraprocedural Reference Model

The intraprocedural reference model provides the baserd@sdor our
framework. The reference model computes the FS-MOP saltdioa program that
contains a single procedure. We give an informal overviethefreference model
followed by a formal definition of the model’'s syntax and seiies. Section 4.6
discusses how to extend this model to apply to programs trdaam multiple pro-
cedures.

Our framework is a form ofbstract interpretatior{21], where a pointer
analysis approximation abstracts away information froenldase reference model.
In this view, our base reference model acts as the concretarges and computes
the precise FS-MOP solution of alias relations that occua program. Abstract
interpretation traditionally involves separate conceetd abstract domains, but our
framework uses a single domain that can express degreeseton. It is in
effect an abstract domain that contains the concrete doasaispecial case. We

108

define a single semantics that works for both concrete anagbgomputations
and vary the degree of abstraction as desired.

441 Overview

A program in the reference model consists of a control-floapgrfor a sin-
gle procedure with branches and assignment statementdrahehes do not have
conditions. Instead, we follow common practice in replgcbranch conditions
with nondeterministic gotos in order to guarantee decidgbi

We define drace-basedgsemantics [73]. The semantics is nondeterministic
and generates a prograncsmputation treeThis tree represents all the program’s
possible execution paths. Each path in the treetra@e that corresponds to one
possible execution of the program. Each node in the traceiteninformation
about the program’s store (i.e., the computed pointer in&tion) at a given state-
ment.

The store is modeled as a set of alias relations. If the stoméamns the
relation (+'x,y) then the expressio#ix (i.e., the variablex dereferenced times)
and the variablg are aliases. The reference model semantics ensures tisibthe
remains closed under reachability. The semantics alsoesthat the store remains
finite, even in the presence of cycles among the alias rektio

The non-deterministic semantics may generate computaten of infinite
size; but because the store is finite, an infinite computateemust be regular —
every trace contains a repeating node. This repetitionreaghat the computation
can safely terminate once all its traces reach a repeatesl nod

We now provide formal definitions for the syntax and semanticthe in-
traprocedural reference model. Section 4.5 defines thaesfirmations that may
be combined to describe a particular pointer analysis aqpiation.

4.4.2 Syntax

The syntax of expressions and statements is given in FiglreApointer
expression can take the address of a variablg @& dereference a variablek) an
arbitrary number of times, whes@x=x. The only statements are assignment and
skip. The statements in a program are labeled by a finite ggtogfram points

109

ne N xe& Variable p e ProgPoint

ec PtrExpr = &x | x'%
scStmt == «x:=e | skip
Pr e Program : ProgPoint— Stmtx ProgPoint

Figure 4.1: An unstructured pointer language without pdoices.

A programis a control-flow graph, which is defined as a mappirgp)
from program points to a paj{statemengoto se}. At program poinp with Pr(p) =
(s,P) the program executes statemsmind then branches nondeterministically to
one of the program points in the goto gt The distinguished program poipp
refers to the program’s unique entry point. A program als®danique exit point
that maps to the paisskip, 0).

Figure 4.2 gives an example program (a) and its correspgradintrol-flow
graph (b). This program represents a structured programandonditional (state-
ments 0—4) and a loop (statements 6—8). The program’s eainy ig 0 and its exit
pointis 10. For brevity, some of our examples will use a basick form (c) of the
program.

4.4.3 Semantic Domain

The semantic domain consists of computation trees whete b in the
tree is a trace of one possible program execution. Each moithe itrace describes
the alias relations at a particular program point. We nowigieformal definitions
for these domains. We also provide order relations, whiehuseful for proving
soundness and termination. Section 4.4.4 defines how tlyggmmosemantics ma-
nipulate these domains.

Stores. A store is a set of relations:

o € Store: N x Variablex Variable

If the store contains the relatiqﬁ;ix, y), then the expressiodx and the variablg
are aliasesStorés order relatiorC is the subset relatiort{), and its join operator

110

P statement P

po =0 | skip {1,3}
1 x:=&p |{2}
2 y:=&q | {5}
3 x:=&r | {4}
4 y:=&s | {5}
5 z:=Xx {6,9}
6 Xi=y {7}
7 yi=z {8}
8 z:=&q | {6,9}
9 KX 1=y {10}
10 | skip 0

(c) Basic-block control-flow
graph.

Figure 4.2: The definition, corresponding control-flow draand basic-block graph
for a program with one conditional and one loop. The basiclhhbraph is a more
compact representation that helps condense the presentdtsome examples in
this chapter. Each basic block is labeled with the programtpdthe first statement
in the block.

111

i % i=0
oM = {{y|(*ix,y)eo} i >0

(a) Lookup.

[x.l>y]0 = {(x"w,2) et*(d') [In< k}
where
o = oU{('%y)}U{(+"x2) | (+y,2) € 0}
t(o) = {(""w2) | {(+"Wx),(x"x,2)} C 0’}

(b) Insert. Adding an alias relation triggers the additiédraoy appropriate transitive relations. The
constank bounds the size of the store. The expressfaromputes the transitive closuretof

0\[x»l>y] = o\ {(x"Wz2) |w~z¢ o'}
where

o = o\{(xxy)}
X0~ Xn-1 €0 = (U{ 1%, % 41) >£0

(c) Delete. Removing an alias relation triggers the remofahy appropriate transitive relations.
Figure 4.3: Store operations. Each operation is implidittgd to operate on sets
of variables.

LI is set union ().1 We sometimes want to refer to all the pointer variables in a
store, which we denote by the functidom(i.e.,domairj:

dom(0) = {x | (x'x,y) € o}

1The reference model follows the convention used in absimgarpretation, where the least ele-
ment is the most precise and the merge operation is join. dtidde4.2, we followed the convention

used in dataflow analysis where the greatest element is tsepnecise and the merge operation is
meet.

112

Figure 4.3 defines three operations on stol@skup insert anddelete The
lookup operatioro' [x] yields the sefy | (x'x,y) € a}, wherea®[x] = {x}.

The insert operatiofix — y]o adds the relatiori+'x,y) to the store. The
store must remain closed under reachability, so the ingetadion also adds all
transitive relations that result from adding the specifeddtron. If the newly added
relation induces a cycle in the alias relations, then the si@re will be infinite.
This property would cause the concrete execution to diver¢eetherefore restrict
the store so that all the alias relationk@reference exponentsie less than some
constantk (i.e., V(x'x,y) € 0 : i < k). The constank must be greater than the
maximum number of dereferences that syntactically apmeamy of the program’s
statements, to ensure that the store remains closed foealjterations the program
might perform.

The delete operatioo \ [x AN y] removes the specified relation from the
store. This operation also removes any transitive relatiovalidated by removal.

The semantics make use of the lookup, insert, and deletatqpes. We
also extend these operations to operate on sets of variables

Configurations. A configurationpairs a program point with a store:
T € Configuration: ProgPointx Store

A configuration represents a single node in a program trackvitdual components
of a configuration are referred to using field-access natatip;, o;).p = p; and
(pi,0i).0 = 0j. Configurations are ordered point-wise:

(p,0)C(p',0") & (p=p")A(0EQ)

Traces. Atrace is an ordered sequence of configurations that repeadistory
of program execution:
T
T € Trace: Configuration

The empty trace is denoted by The concatenation operatidnt appends a con-
figuration to a trace. We writ€ <p T’ if T is a prefix of T’. Traces are ordered as
follows:

T T T T e TET

113

Note that two traces are comparable only if they contain #Hraessequence of
program points.

The set of all possible traces induced by a given program etetime pro-
gram’s computation tree. We delay a formal definition of catagons until we
have formally defined the program semantics.

4.4.4 Semantics

The semantics is a nondeterministic big-step operatioaaastics [73].
The transition relatioBASE on configurations is defined in Figure 4.4. The pro-
gramPr is globally defined.

A skip statement (Rulskip) creates a new configuration for each program
pointp’ in the goto setP of the current program poimt. The unmodified store is
copied to each new program point.

An assignment statement (RussIGN) updates the store to map the vari-
able represented by the left-hand side of the assignmen¢teaiue represented by
the right-hand side. The value represented by the righttsate is computed using
the function[e] o, defined just below RulessIGN.

Rule ASSIGN contains added complexity, because the base semantigs appl
to both concrete and abstract executions. In a concreteigarcthel-value of an
assignment corresponds to only one variable. Every canassignment overwrites
the old value (indicated in RulessiGN askill) with the new value. This operation
is calledstrong update

In an abstract execution, thevalue may correspond to multiple variables.
In this case, the semantics must conservatively merge theral new values. This
operation is calledveak update Because weak update performs a merge, it loses
precision. The abstract semantics can avoid this loss aigpoa when the state-
ment’sl-value corresponds to only one variable.

Computation Trees. We model a computation tree as the set of traces generated

by executing a program’s statements. Each computationgeieprates a new tree
where each new trace is extended by one applicati@ask:

114

Pr(p) = (skip, P) p eP

BASE

(p,0) — (p,0)

(sKiIP)

Pr(p) = (x"x=e,#) p'e?
Kill = { X] HO”“[XH o] =1
: otherwise
o' = [0"[X| 5 [e]o](a\ ill)

BASE

(p,0) — (p',0)

(ASSIGN)

[&x]o = {x}
[)o = o™X

Figure 4.4: Intraprocedural reference model semantics.

—{Tv | Tirerat 225y

rSrur

(©)

Given a set of traceB, executing a statement extends each trade with a new
configurationt’. The new set of traceE’ is unioned with the previous sétto
create a new computation tree. Thus the tree contains anhistall the traces
generated by each step of a program’s execution. Each tescénite length, but
a tree may contain an infinite number of traces. The comple&eis computed by
taking the transitive closure & rooted at the initial trace s€{po,0)}. Figure 4.5
contains a partial computation tree for the program in Fegli2. Note how the
non-deterministic semantics generate different pathsagram point 10.

Transformations. A transformatiort of a computatiorC forms a new transition
relationt(C). Transformatiort is defined by a functiorf; that modifies a set of
traces to compute the tree for the next step of the computafidnese modified
traces introduce abstractions based on the current orqu&womputation steps.
Our framework transforms the semantics by modifying th@ketices generated at
each computation step. Such transformations are used lfsathework to specify
over-approximations of the concrete semantics.

115

*
L]
o

*
*

]
Q

Figure 4.5: A partial computation tree for the program inufgg4.2c. Each dot-
ted horizontal line represents one computation step andl made represents one
configuration. The stores are organized as a two-columa;tédrieach row, the ex-
pressions in the first column are aliased with the expressiothe second column.

Given a transformation functiofy, a new transition relation for computa-
tions is defined as follows:
r-=.r

()

— (t)
F — ft (I")

The new transition relation usédsto transform the concrete tr€éinto an abstract
tree.

Section 4.5 describes three transformation functionsgba¢rate safe over-
approximations of their inputs. These transformationshmoomposed to describe
a broad spectrum of pointer analysis approximations.

4.5 Intraprocedural Pointer Analysis

The purpose of pointer analysis is to answer queries abasilgle aliasing
between pointer expressions. In the intraprocedural easepnsider pointer anal-
yses that determine—at a specific program point—whethesttre contains a spe-

116

cific alias relation. Determining whether the semanticsegates a store that con-
tains a given alias relation corresponds to a query overdimgatation tree [20, 73].
More formally, given a queryp = (p, (+'x,y)) the analysis determines if the com-
putation tree contains a trace whose final store containalidkerelation:

M= (p,(x'xy) < 3T:p,0)el | yed[x

The result of a query on the computation tree generated bjpake semantics is
equivalent to an FS-MOP analysis for that query.

Because a precise solution is intractable, analyses mpsbximate the
FS-MOP solution. Section 4.2 described several over-aqpetions of FS-MOP.
These approximations are usually described algorithtyicah this section, we
analyze the approximations to identify a small set of piweisemantic transfor-
mations that can be combined to specify the existing apprations. In addition,
we generalize existing approaches by converting binarigdesoices into contin-
uous spectra of options, where possible. The transformatoe designed so that
any approximation defined using the primitives is sound bystiction.

45.1 FS-MOP vs FS-MFP

In this section we explain how the FS-MOP and FS-MFP apprakions
are in fact endpoints of a continuum of approximations atrducelnduced Trace
Equivalenceas a technique for specifying arbitrary points along thistcaum.

FS-MOP computes a separate result for each path throughRGe There
are potentially an infinite number of paths, and even whemtimaber of paths
is finite it is still exponential in the number of branches e {CFG. An FS-MFP
pointer analysis mitigates this problem by merging redubis separate paths when
they reach a common program point. In essence, the FS-MHRysagroups paths
into a polynomial number of equivalence classes.

We abstract and generalize this approximation mechanigraitransfor-
mation on the computation tree called Induced Trace Eqeinva (TE). This trans-
formation partitions individual computation paths (iteaces) into arbitrary equiv-
alence classes based on a given equivalence relation tmstrare is a general
semantic transformation that accumulates pointer inftionay unioning stores
from equivalent traces. In the transformed semantics, aa@viguration is the

117

Ttel
M ={T' el |T =T}
o= N{t.o|T:Tel'}
T:(1.p,0") € fire(I)

(ITE)

Ttyterl
p € {t.p}UTF[(T1.p)]

T:11:(p’,1.0) € fice(IN) (1cF)

Ttel
o= |l IVEXTI)
xedom(t.0)

T:(t.p,0') € five(l)

(IVE)

IVE(X (p,0)) = {(*'X,y)|X € PEAY € LE;}, where

PE = {X|xZX}
LEi = {Y|yedPEAySsY)

Figure 4.6: Intraprocedural trace transformations.

118

union of the final store of all equivalent traces in the unged semantics. The
equivalence relation must respect the ordering on traces:

LT, TWCT TLCT,

=T

The Induced Trace Equivalence transformation is formadirebd by RulaTE in
Figure 4.6. For each trace generated by the underlying g@same replaces the
last store in the trace with the union of all final stores frajnigalent traces.

There are several existing algorithms for FS-MFP [44, 88] tliffer greatly
in their implementation. However, the precision of thesulks are equivalent and
the followingITE equivalence relation captures their equivalence:

.
T1:(p,01) = T2:(p,02)

The effect of this transformation on the reference modeh@s\s in Figure 4.7a.

ITE is a powerful abstraction that can specify an arbitrary piirthe con-
tinuum that lies between FS-MOP and FS-MFP simply by changie equiva-
lence relation to modulate those computation paths that@rsidered equivalent.
A practical example of one point in this spacealg&s instancesas described by
Hind et al. [44]. Many other approximations can be create@dmameterizingTe
with different equivalence relations. For example, loopa be unrolled or even
partitioned arbitrarily (e.g., partitioned into even ardtlaterations). In addition to
looking at program points, the equivalence relation cao at® stores to determine
equivalence.

ITE is general enough to capture other abstractions, sucheasoization
Memoization is a classic widening operator that forces tmeutation to accumu-
late pointer information at a program point that appeardipialtimes in a single
path (i.e., program points within a loop). In Figure 4.7b,entprogram point 6 is
encountered for the second time, it accumulates the inftom&om the previous
visit to program point 6.ITE can specify memoization by using the equivalence
relation:

T1i=zpT2VT2=pT
T1=T/:(p,01) T, = T;:(p,02)

=T,

119

NEATT y v
/ \ (: *x, %y, *z m
S ACAOEES [xre[] /
[*y [as] [*v [as]
v
. q *x, %y, *z m
*x, %z p,r *x, %z p,r g
10 *&,*a,**r a,s 10 *y,*p, *r as 10 **):,*:y,:*z;**p P
X, %%z *ky Kk 4 B B B
= 2 **x?**gl*:zrg*q q
(a) FS-MFP usingTE. (b) Memoization usingTE.
1
10
*x P, r
1
- *y qa,s
10
*z q
*x P,r,q,s
1 * *- *
C[*y.*p,*r
rol_*x b
*z P/T,q
*x,*y,*z
% ,*r,* ,*S
- *Ex,**y?**z P,r,q,s
10 *kp kkp kkq kg

(c) FI-MFP usingTE andICF.

Figure 4.7: Transformed program trees that compute apmitions usingTE (for
FS-MFP and memoization) antde composed withcF (for FI-MFP). The graphs
use the same conventions as Figure 4.5.

120

ITE can also be used to specify a points-to-based pointer aspahagher
than an alias-based pointer analysis. Recall from Sectidrihét an alias-based
FS-MFP pointer analysis with strong-update semanticsitlgtmore precise than
its points-to-based equivalent. The reason for this difiee is that an alias-based
analysis may, in some instances, maintain distinct regrtdistinct paths; whereas
a points-to-based analysis implicitly merges results fdigtinct paths. For exam-
ple, consider a join point that is reached along one pathneghlts(xx,y) and along
another path with resultsty,z). The points-to based analysis does not explicitly
maintain information about transitive aliases, so it mussveer queries by taking
the transitive closure of the points-to relation — sincehatjbin point there exists
a points-to relation fronx to y and another frony to z, a points-to-based analysis
must (imprecisely) conclude thafx aliasesz. By contrast, the alias-based analy-
sis can be more precise, because it explicitly maintairggmnétion about transitive
aliases — while the alias relatiorisx,y) and (xy,z) both exist at the join point,
the relation(+°x,z) does not, and the analysis correctly concludesthatioes not
aliasz.

Since the aliased-based analysis is more precise than theso-based
one, we can approximate points-to with a transformation. Waglify ITE to take
as a parameter a join operation, which is used to join the $itwaes of equivalent
paths. Alias analysis uses set union as the join operatantdm analysis uses a
join operator that joins two stores, removes any relatidiibeform (x"x,y) where
n> 1, then computes the transitive closure of the result.

4.5.2 Flow-Sensitivity vs Flow-Insensitivity

A flow-sensitive analysis respects a program’s control fleembodied by
the CFG. In contrast, a flow-insensitive analysis ignoresognam’s control flow
and assumes that any statement can be executed after amystatteenent. This
approximation can be expressed by adding additional edgbs ICFG to make it a
complete graph, including reflexive edges. We abstract anérglize this approx-
imation mechanism into a transformation on the computatiea calledinduced
Control Flow (IcF). This transformation allows us to add additional conftol
beyond that specified by the control-flow graph.

RuleICcF in Figure 4.6 formalizes this behavior by defining transfation
function f,c¢. The transformation relies on aoF mapJ : ProgPoint— ProgPoint

121

which defines the degree of control-flow abstraction.Pifp) = (stmt ?) and
F(p) = P, then execution proceeds non-deterministically frpo any program
pointinPU?’.

ICF can specify an FI-MOP analysis using the following map:
Vp € ProgPoint: F[p] = ProgPoint

SinceJ maps each program point to every existing program pointiigsi®n the
transformed computation tree are equivalent to FI-MOP. iBangingd we can use
ICF to vary the precision of the pointer analysis along a spattratween FS-MOP
and FI-MOP.

The two transformationsre andICF can be used in combination to spec-
ify even more levels of precision, for example FI-MFP. Thare many existing
algorithms for FI-MFP [29, 37] that have very different ilmpientations. How-
ever, their results are equivalent and those results capdmfied by using there
equivalence relation MFP and ther mapJ as given above. Figure 4.7c gives an
example. Note that at each computation step of the FI-MFRsisaevery program
point has the same store.

By selectively adding edges to the original CFG usiog and varying the
ITE equivalence relation, we can tune the analysis at a very faxeudparity of pre-
cision anywhere between FS-MOP and FI-MFP. In addition, xigredingITE to
have a separate equivalence relapen variablewe could control the precision on
a per-variable basis. This change would enable the frantetespecify analyses
such as Guyer et al.’s client-driven pointer analysis [34jjch uses per-variable
flow-sensitivity.

4.5.3 Variable Equivalence

This section shows how a set of existing pointer analyseghwise differ-
ent abstractions of pointer information, can be unified byngle transformation,
which we callinduced Variable Equivalencén particular, several analyses — in-
cluding Steensgaard’s near linear-time analysis [78]pBband Horwitz’s family
of analyses [75], and Das’ One-Level Flow analysis [25] —uass an FI-MFP
analysis as a starting point but differ in how they abstraotfer information.

122

We distinguish two kinds of pointer information abstran8opointer equiv-
alenceandlocation equivalence Variablesx andy are pointer equivalent if they
point to the same values. Variabbkeandy are location equivalent if they are pointed
to by the same variables.

Steensgaard’s analysis maintains an invariant on poiatations requiring
that no pointer equivalence class can point to more than asaibn equivalence
class. The Shapiro-Horwitz family of analyses can be spetHls a simple exten-
sion to Steensgaard’s analysis: randomly askitabels to the program variables
and only apply Steensgaard’s invariant to memory locatieitls the same label,
thereby enforcing the property that no pointer equivalarlass can point to more
thank location equivalence classes (whi&his equal to the number of variables,
this analysis is equivalent to FI-MFP). Das’ One-Level Flanalysis treats top-
level pointers (those that have nothing pointing to themmjlsirly to FI-MFP but all
other pointers similarly to Steensgaard.

We generalize these restrictions on pointer- and locaguivalence classes
as a transformation called Induced Variable Equivalence)(This transformation
forces variables to be pointer and/or location equivalecbeding to the equiva-
lence relationPEE0 andLEEcy given to the analysis. Given a store, variablesdy are
pointer equivalent with respect to(denotedx PEEG y) if ot[x] = al[y]. Variablesx
andy are location equivalent (denoteé, y) if vz € dom(o) : x € 67 < y € o1[Z.

We formally define the transformation with Rublee in Figure 4.6, which
updates the store of a generated configuration to obey giwemnep and location
equivalence relations. For convenience we define the egnica relationLgEcy as

X LéEo y < X PEE(, YA X =5 y. The combined relation must respect the ordering on

stores:

oCo

X =g X
For simplicity, our framework has assumed a field-insevesifiointer semantics.
Our framework can vary field-sensitivity usinge by dividing struct fields into
different partitions and making all fields in the same pantitooth pointer and lo-
cation equivalent. A practical example of this capabilgythenormalize lookup
andresolvefunctions defined by Yong et al. [83].

123

By enforcing the following invariant on theve equivalence relations we
correctly specify Steensgaard’s analysis:
pedomo) {qgr} Co'lp]

LPE
q=corl

The invariant states that if a pointer points to two difféneremory locations, those
memory locations are both pointer- and location-equivalen

We can specify the One-Level Flow analysis using the folimytivo invari-
ants:

Pr(p1) = (p:=&0q,P1)w € ol[x]
Pr(p2) = (p:=&r, 7y, z} C ot[w]

LPE LPE
=g Yy=o62

Currently, no approximations exploit the ability to separtne notions of
pointer equivalence and location equivalence. An intergsdrea for future work
Is to create new approximations by treating these two nstiodependently.

4.6 Interprocedural Reference Model

We extend the reference model introduced in Section 4.4tade multiple
procedures with local variables. For clarity the languagkept simple but could
be extended to include more features as needed.

4.6.1 Overview

The extended language of this section permits multiplegatoces and pro-
vides call and return statements. In a language with proesdwariable names
are not equivalent to variable locations, because eacle@uoe invocation must be
distinct. Each invocation of a procedure generates newitta(i.e.,addresses
for the procedure’s formal parameters and local variabksiariable’s value is
determined by first retrieving the variable’s address ferdtrrent invocation, then
looking up the value of that address in the store. Thus tlegpndbcedural semantics
require an extra level of indirection in the memory model.

124

ne N xe& Variable p e ProgPoint
pe € ProcEntry C ProgPoint

ec PtrExpr = &x | *'%X
seStmt = *X:=e | skip |
*"% 1= call pe(e) | return e
Pr e Program : ProgPoint— Stmtx ProgPoint

Figure 4.8: An unstructured pointer language with procesur

Because each procedure invocation maps its variables tess#s, the in-
terprocedural semantics also requigack The stack maintains variable addresses
for nested procedure calls. A procedure call creates neweases for each of the
procedure’s variables and pushes this information on ek stA procedure return
pops this information off the stack.

The remainder of this section gives the formal definitionstfe syntax,
program domain, and semantics of the interproceduraleeéer model. These def-
initions are similar to those of Section 4.4, but have bedrreded to incorporate
the level of indirection required to accommodate addresses

4.6.2 Syntax

Figure 4.8 extends the reference model language to incltateg@ure calls
and returns. A subset of the program points are distingdisiseprocedure entry
points; each procedure has a unique entry point, and thesadly one procedure
entry point that is also the entire program’s entry pointcliEprocedure also has a
unique exit point, mapped to eithé&kip,0) or (return e, 0).

A procedure body is the set of program points reachable fragmoeedure
entry point without transferring control throughcall or return. Each procedure
has a formal parameter and a set of local variables assdeigtieit. We define the
following mappings:

body: ProgPoint— ProgPoint Given a program poirp, yields all program points

125

in the body of the procedure that contaps

param: ProcEntry— Variable maps a procedure entry point to the procedure’s
formal parameter.

locals: ProcEntry— Variable maps a procedure entry point to the variables that
syntactically appear in the procedure body.

The semantics sometimes must refer to all variables thabeepure di-
rectly references. For convenience, we define this setsspe) = {param(pe)} U
localg(pe). We assume this set is distinct for each procedure.

4.6.3 Semantic Domain

The semantic domain is similar to that of the intraproceldmadel, except
the memory model includes addresses.

Addresses. An address provides a location for a variable. Each formdllacal
variable of a procedure is mapped to a new address for eathctliprocedure
invocation. The domaiAddresdss potentially infinite and totally ordered.

Address Maps. An address maprovides addresses for variables:
m € AddressMap Variable— Address

Each invocation of a procedure generates an address mapefeatiables directly
referenced by that procedure. An address mamplicitly defines an inverse map
m~1 which provides variable names for addresses. We define tfatidém rng(m)
to mean all the addresses in map

Stores. Stores now describe relationships among addresses:

o € Store: N x Address< Address

Stores and address maps work together to provide a vasabd#ie. Given an
address mam and a store, the addresses that aliglx are given byo'[m[x]]. We
lift store lookup and update to operate on sets of addresses.

126

Pr(p) = (skip,?) p'e?

P-BASE

(P-SKIP)
(p,0,A) — {p/,0.A)

Pr(p) = (x"x:=e, P) ple?
il {[o“[a[xn = o™ alx]] : |o"fax]| =1
: otherwise

o = [o"[a[x]] = [€]oa] (o \ Kill)

. — (P-ASSIGN)
<p,O,G.A> - <p707a'A>

[&x]oa = {a]X}
[+)oa = o™*[alx]

Pr(p) = (+:=call pe(e), P)
a=(p, U [x»i fresh)

xevars(pe)
o’ = [o'[param(pe)] = [€]oalo

. (P-CALL)
(p,0,a:A) PBASE (pe,0’,0":0:A)

Pr(p) = (return e,0)
Pr(a.p) = (x™:=call pe(e;),?) ple?

o’ = [0"[a[¥]] > [e]oa]o

P-BASE (P-RET)

(p,0,a:0":A) —" (p/,0’,0":A)

Figure 4.9: Interprocedural reference model semantics.

127

The following order relation on store, address-map pailssgrove sound-
ness:

(01,my) C (02,Mp) &
vx € dom(my) : (x'my[x],a2) € 01 =
I(¥'mg[X],85) € o2 | m, Hap] = my; ag]

Frames. Each procedure invocation is associated witfieane A frame is a
program-point, address-map pair:

o € Frame : ProgPointx AddressMap

A frame provides context for a procedure invocation. Thegpm-point
element corresponds to the statement that invoked thentuprecedure. The
address-map element provides addresses for each variadd#ydreferenced by
the current procedure. A frame’s elements are referenctdfieid access nota-
tion. For convenience we write[x] to meana.m(x] anda~1[x] to meana.m1[x].

Stacks. A stack is an ordered sequence of frames:
A € Stack Frame

A procedure call pushes a new frame on the stack; returnamg & procedure pops
that procedure’s frame from the stack.

Configurations. The configuration structure and order relation are exteifrdea
the intraprocedural model to include a stack:

T € Configuration: ProgPointx Storex Stack

<p707 <pm, m>A> E <p/70/7 <p;n,l'T'(>A/> A
(p=p") A ((o,m) C (a’,m)) A (Pm= pm)

128

4.6.4 Semantics

Figure 4.9 defines the configuration transition relate®Ask for skip, as-
signmentgcall, andreturn. RulesP-skiP andP-ASSIGN propagate the stack with-
out modifying it. The expression:A in the conclusion of rul®-AsSSIGN refers to
a stack whose top elementdsand whose remaining elements &eVariable as-
signment has the same strong/weak update semantics agionSed.4, extended
to incorporate an address map. The expression evaluatictidn ||| operates over
both a store and an address map.

RulepP-CALL applies tacall statements. The semantics creates a new frame
for the procedure invocation by generating fresh addrefssebe invoked proce-
dure’s formal and local variables. The argument values atmd to the formal
parameter values. The new frame is pushed on the stack, atlds transferred
to the invoked procedure’s entry point.

Rule P-RET applies toreturn statements. The callee’s return expression is
evaluated in its frame, and the results are stored in ther&saframe. The callee
frame is popped off the stack, and control is transferretiégrogram points in the
calling statement’s goto set.

4.7 Interprocedural Pointer Analysis

Interprocedural pointer analysis is a variation of the paianalysis of Sec-
tion 4.5 modified to operate on configurations that contagress maps. Interpro-
cedural FS-MOP pointer analysis may not terminate, duedorséve calls, heap
allocation, or loops that contain callsites. The analygisigher must ensure that
an approximation guarantees termination. Section 4.&@udses the necessary
termination conditions and suggests how to ensure them.

Figure 4.10 gives the formal definitions of the interprocadlitransforma-
tion functions. With two exceptions, the interprocedurahsformations are iden-
tical to the intraprocedural ones, modulo address map tipesa We provide an
informal overview of the these differences, then show hogs¢hsmall modifica-
tions permit a wider range of pointer analysis approxinregio

Induced Trace Equivalence. InterproceduralTE extends intraprocedurate to

129

Tterl T=(p,0,{Pa, Ma):A)
M={T'el|T'=T1}
o= N{t.o|TTel'}
fn=M{d'.m| T el"AT.A=0a"A})
T:(1.p, fm(0’), (Pa, fmomga):A) € fire(lN)

(P-ITE)

Ttyterl

p' € {T.p}UF[(T1.p)]
F[11.p] € body(t1.p)

T:11:(p, 1.0, T.A) € fice(T)

(P-ICF)

Tterl 1= (p,0,0:A)
o= | IVE(XXT)
xedom(a.m)

T:(1.p,0, T.A) € fue(lN)

(P-1VE)

IVE(X(p,0,a:A)) = {(xa,a)|acPEAd €LE;}, where
PE = {a[X]|XZcq X}
LE; = {aly]|aycd'[PElAa Ya] Zoq Y}

fm(0) = {(+'fm(as), fm(82)) | (+'ar,a2) € 0}

Mm) = J U {Em[x],mo[x]) x € dom(my)

mem xedom(m) m[x],m[x]) otherwise

wherevYm;, € m* : min(rng(mp)) < min(rng(m))

Figure 4.10: Interprocedural trace transformations.

130

merge address maps as well as stores. The variables ottlisbncrete invocations
are distinct. Interprocedurate can blur this distinction, in order to tune context
sensitivity. Section 4.7.1 describes several such appraons.

Rulep-I1TE in Figure 4.10 defines a functiol, which merges address maps
in a way that permitsTE to ensure termination conditions. The function forces
variables for equivalent contexts to have equivalent astgr®in the store. We omit
the technical details for brevity; they can be found in [36].

Induced Control Flow. InterproceduralCF is constrained so that it adds addi-
tional control flow onlywithin the body of a procedure, nevieetweerprocedures.
However, control flow can still pass between arbitrary steiets in the program
simply by following the correct sequence of calls and resuretween the two state-
ments.

Induced Variable Equivalence. Interproceduralve extends intraprocedurale

to operate on address maps. The equivalence relatior'?lsE0 andLEE0 are on vari-
ables, but stores now contain addresses. FundtB&E translates between these
two domains to ensure that the store properly obeys the alguive relations.

4.7.1 Context-Sensitivity

Surprisingly, these simple extensions to the intraprocadeersion of the
three transformations are sufficient to specify the prenigif a host of interpro-
cedural approximations. We show how the transformationsspecify both call-
string and functional context-sensitivity, along with anmoer of variations of the
same.

4.7.1.1 Call-string Equivalence

The currentall-stack(i.e., the sequence of procedure calls without match-
ing returns that led to the current program point) is corgdiim the current configu-
ration. Traditional call-string context-sensitivity igexified by using the call-stack
to distinguish contexts, similarly to Emami et al. [28]. WanausaTE to union the
stores of all paths to a procedure’s entry point that contintical call-stacks:

131

A=o0aq:---0p A =aj:--ap ai.p=aj.p

T:(pe,0,A) I T':(pe,o’,A')

In the presence of recursion there are an infinite number s$ipte call-
stacks. The usual response is to only considektm®st recent calls on the stack,
yielding the traditionak-limited context-sensitivity. However, our framework ex-
poses other opportunities: k-limited context-sensiiistfairly arbitrary — we can
be more precise, while still maintaining a finite call-stalok limiting the number
of repeated elements the call-stack. For example, instead of k-limiting th#-ca
stack, we could k-limit the unrolling of recursive proceésir Setting to 0 yields
the common practice of collapsing recursive cycles in tHegraph and treating
them context-insensitively.

Our framework can control the level of context-sensitivatya very fine
granularity. Guyer et al.’s client-driven pointer anaty/g34] allowsper-procedure
context-sensitivity; our framework can capture this appration by specifying
the dual (i.e., per-procedure context-insensitivity).nTfake a procedure with entry
point pe context-insensitive, we use the equivalence relation:

T
Ti:(pe,01,A1) = To:(pe, 02,A2)

Our framework can go further and specify context-sensytiat aper-call
level, meaning that the contexts for a given procedure atédipaed using the call-
stack, with contexts in the same partition being treatedecdrinsensitively with
respect to each other. Many oth&E equivalence relations based on the call-stack
are possible.

4.7.1.2 Functional Equivalence

Our framework can also determimee equivalence based on the contents
of the store at procedure entry, specifying something aintd functional context-
sensitivity. It can require that memory stores for equinbé®ntexts be functionally
identical, similar to Wilson and Lamjsartial transfer function$82]:

.
Ti:(pe,0,A1) = Toi(pe, 0,A2)

Our framework can also be used to desciiigect-sensitivity57], which
is a technique for object-oriented programs that uses abpnt contexts for all

132

method calls on the same receiver object. In object-ortklateguages, a pointer to
the receiver object, callatlis, is passed as an implicit parameter to all methods; by
using the receiver object in the store to determine tracesalgunce, our framework
can specify object-sensitivity:

oilaythis]] = a3[az]this]]

=
T1:(pe,01,01:A1) = To:(pe, 02,02:A2)

4.7.1.3 Limitations

There is a class of sound context-sensitive approximakioomywn asottom-
up context-sensitivitjp4], that our framework cannot represent. Its defining €har
acteristic is that (1) like a context-sensitive analysi$épimation passed to a pro-
cedure from one call-site cannot be returned by that praeetdua different call-
site; (2) unlike a full context-sensitive analysis, all taxis for a given procedure
are merged when analyzing that procedure. Thus, bottonpofpext sensitivity
represents a mid-way point between full context-sengjtiand complete context-
insensitivity.

Bottom-up context-sensitivity is achieved by processingr@agram from
the bottom up (hence the name), i.e., it starts at the leavdsecacall-graph and
creates summaries of each function, repeatedly propagatiormation upwards
through the call-graph. Our reference model only allowsviod propagation of
information, so it is unable to replicate the effects of bottup context-sensitivity.

4.7.2 Heap Model

Until now we have not addressed the issue of dynamic memohng if-
terprocedural reference model can accommodate it by dgfanprocedurenalloc
with entry pointpe,, such thatlocalgpe,) = {Xx} and body(pe,,) = {return x}.
Each call tomallocreturns a fresh address, which models the potentially tefini
heap space.

The infinite number of addresses that can be returnedddiocimplies that
the pointer analysis may never converge, therefore we rebd tible to approxi-
mate the heap using a finite number of abstract memory lowatibhe interproce-
dural transformations can be used to specify a variety ob labatractions.

133

The purpose of abstracting the heap is to represent the sag a finite
number of addresses. Each concratloccall is distinct and yields a new address,
S0 abstracting the heap requires partitioning these askelsdaato a finite number
of equivalence classes. Since each equivalence class mapasltiple concrete
addresses, the semantics should always use weak updadey fa@riable that holds
the result of analloccall.

To accommodate this requirement we modify the definitiomadloc to:
locals(pe,) = {X,y} andbody(pe,,) = {X:= &X,X:= &Y, return x}. We then use
ITE to ensure that the return value mfalloc must point to multiple memory loca-
tions (i.e., bothx andy), and therefore these return values will always be subgect t
weak updates.

{p1,p2} C body(pey,)
T
T1:(p1,01,A1) = T2:(p2,02,A2)

(ITE-MALLOC)

We can now specify several common heap models. In a coneasitsre heap
model,malloc should return a fresh address for eawhlloc call-site in each dis-
tinct context; however, multiple traversals of the samaloc call-site in the same
context should return the same address. A context-semsitiglysis as outlined in
Section 4.7.1 automatically yields a context-sensitivegh@odel.

A less precise heap model treats each static allocatiofi giteeachmalloc
call-site) as a single abstract memory location, regasddéshe call’s surrounding
context. This model can be specified using a modified form efctbntext insen-
sitivity transformation from Section 4.7.1.1, which egstraces that end in the
samemalloccall-site.

The least precise heap model represents the entire heaprageaabstract
memory location by forcingnallocto return the same address for every call. This
model can be specified using a modified form of the contexnisisigity transfor-
mation from Section 4.7.1.1, which equates traces that etidbey,,, the entry point
of malloc

The heap model can also be parameterized by a constark-limited heap
model treats each static allocation sitekalistinct abstract memory locations. The
first k— 1 calls are modeled with distinct addresses that map tondistioncrete
addresses and can be strongly updated; all subsequentalisodeled with a

134

single address that may map to multiple concrete addressbemast be weakly
updated. This model can be specified using a modified formsivALLOC that
equates traces that end imalloccall-site only if the trace contairks— 1 instances
of that same call-site.

The frameworks of Sagiv et al. [71] and Deutsch [26] charaztemore
expressive heap approximations than our heap model, bee¢hes frameworks
operate on a richer abstract domain. The two frameworksridesmcomparable
precision classes [71]. We believe that with some additieffiart, our model could
be enriched so that it were more compatible with either Sagal.’s or Deutsch’s.
This effort would increase the range of heap approximatibaswe could specify.

4.8 Soundness and Termination

All transformations describe sound analyses. However,ratysis only
terminates under certain conditions. In this section, wiireua soundness proof
and describe the properties required to prove termination.

4.8.1 Soundness

ThelTE, ICF, andIVE transformations each generate sound over-approximations
of the FS-MOP solution: all queries returning true in theebasalysis are true in
the transformed analysis, but the inverse does not nedgdsald. In this section
we sketch a proof that every analysis described by a combimat transformations
computes a sound approximation of the concrete computation

Theorem6 (Soundness)Lett =tyo---ot; oC be the composition ofi transfor-
mations of a computation, whetec {ITE, ICF, IVE}. For all programs with ini-
tial configurationstg = (po, 0) and all queriesp= (p, (x'x,y)): C*({t0}) E 0=

t({to}) F o

Proof Sketch.First note that for each transformation functién I C f;(I') and
that P-BASE is monotone. For the soundness condition to hold, the existef a
satisfying traceT in C must imply the existence of an overapproximatione t*
such thafl C T’. This property can be proved by an induction over the lenfith o
computation. O

135

4.8.2 Termination

A concrete computation of the reference model does not text@ion pro-
grams that contain cyclic control-flow graphs, becausestnege an infinite number
of traces. However, if the domain of configurations is finitert the computation
trees are regular. In this case, we can empleummarizatiortechnique which
terminates the computation when every trace contains ategp@ode [73].

The domain of configurations is finite for the intraprocedimat infinite
for the interprocedural model, because address maps asysahwmique. AnTE
transformation—such dslimiting the stack—can be employed to ensure termina-
tion by ensuring that all computation trees in the approx@samantics are regular.

4.9 Chapter Summary

In this chapter, we create a formal framework for descriliimg space of
possible pointer analysis approximations. This framewstkseful because it aids
systematic exploration of this space and allows reseasthgrecisely characterize
the precision of the various algorithms they devise.

The heart of the framework is the ideaiotluced equivalenceWe define
a base semantics that describes the most precise, NP-haRlgdidter analysis.
We then define three semantic transformations that (1) psdlaariables together,
(2) collapse program paths together, and (3) add additiooadrol-flow. These
transformations combine to create a nepproximatesemantics that reduces the
precision of the MOP analysis. However, in return the tramsfations guarantee
invariants about the approximate analysis that resea aagr take advantage of to
create efficient pointer analysis algorithms (the paréiculvariants guaranteed de-
pend on how the transformations are used; for example, aifle@nsitive analysis
guarantees that every program point has an identical saludind therefore only a
single solution needs to be computed).

We demonstrate that, by defining various combinations ¢felieansforma-
tions, we can succinctly specify the precision of almosexisting pointer analysis
algorithms.

136

Chapter 5

Conclusion

Pointer analysis is a fundamental enabling technology fogram analy-
sis. The goal of pointer analysis is to resolve the indimettiboth in data-flow
and control-flow, that is present in almost all programmiaigguages. The more
precisely that pointer analysis can resolve this indicgtihe more effective the
subsequent program analysis can be. Therefore, by imgydiim scalability of
precise pointer analysis, we will make a positive impacbasia wide range of pro-
gram analyses used for many different purposes, includingrpm verification,
model checking, optimization, parallelization, programdarstanding, hardware
synthesis, and more.

In this thesis, we have presented a suite of new algorithmediat im-
proving pointer analysis scalability. We have focused gpadly on two types of
pointer analysis: inclusion-based flow- and context-isgem pointer analysis and
flow-sensitive, context-insensitive pointer analysis.e3é new algorithms make
inclusion-based analysis ovek4aster while using ¥ less memory than the pre-
vious state-of-the-art (Chapter 2); they also enable flemsgive pointer analysis
to handle programs with millions of lines of code, two ordefsnagnitude greater
than the previous state of the art (Chapter 3).

If we examine the entire set of algorithms described in thesis, a common
theme emerges: all of the algorithms are based on idergifyal exploiting various
types ofequivalence The four types of equivalence exploited a@nter equiva-
lence (cycle detection in Section 2.3, HVN, HR, HU, and HR@éttion 2.4.1, top-
level pointer equivalence in Section 3.3.2lbgationequivalence in Section 2.4.2,
program-pointequivalence (sparseness in Sections 3.3, 3.4),aandssequiva-
lence in Section 3.4.1.3. We believe that these notionswif/algnce apply to more
than inclusion-based and flow-sensitive pointer analytbesy; can be exploited for
other types of pointer analysis as well, such as contexdibes pointer analysis.

137

Extending the application of these equivalences to newstgb@ointer analysis is
an interesting direction for future work.

Another contribution of this thesis is a formal framework éi@scribing the
space of pointer analysis approximations. The space oflgesgpproximations is
complex and multi-dimensional, and until now has not beelraedined in a for-
mal manner. We believe that the framework is useful for ite gake as a method to
meaningfully compare the precision of the multitude of B pointer analyses,
as well as aiding in the systematic exploration of the ergpace of approxima-
tions. In addition, such a formal framework is a necessasy fitep towards an
even more ambitious goaldeclarativepointer analysis. A given pointer analy-
sis approximation could be specified using our formal fraorwand an efficient,
provably correct pointer analysis algorithm could be (sgsmitomatically synthe-
sized to compute the given approximation. While such a syssecurrently out
of reach, it would greatly aid a systematic search of the esjgh@pproximations
in order to find “sweet spots” in the trade-off between priecisand performance,
as well as being a great boon to non-pointer analysis expérsstill need to de-
rive correct and efficient pointer analysis algorithms te e their own program
analyses.

In summary, this thesis has presented a method to chamctbe space
of pointer analysis approximations and a set of new algamsthhat significantly
extend scalability for two distinct points in this space.efthrmal framework and
the principled approach used to create these new algoriiffiersclear avenues for
future work, as outlined above.

138

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Bibliography

Lars Ole AndersenProgram Analysis and Specialization for the C Program-
ming Language PhD thesis, DIKU, University of Copenhagen, May 1994.

Dzintars Avots, Michael Dalton, V. Benjamin Livshitsp@ Monica S. Lam.
Improving software security with a ¢ pointer analysis. 2[fth International
Conference on Software Engineering (ICSEges 332-341, 2005.

John Aycock and R. Nigel Horspool. Simple generation t@itis single-
assignment form. I8th International Conference on Compiler Construction
(CC), pages 110-124, 2000.

Thomas Ball, Rupak Majumdar, Todd D. Millstein, and &nr K. Rajamani.
Automatic predicate abstraction of C programs. Phoagramming Language
Design and Implementation (PLDIpages 203-213, 2001.

Rajeev Barua, Walter Lee, Saman Amarasinghe, and Angatawal. Com-
piler support for scalable and efficient memory systedt&EE Trans. Com-
put, 50(11):1234-1247, 2001.

William C. Benton and Charles N. Fischer. Interactivealable, declarative
program analysis: from prototype to implementation. 9th International
Conference on Principles and Practice of Declarative Peogming (PPDP)
pages 13-24, 2007.

Marc Berndl, Ondrej Lhotak, Feng Qian, Laurie Hendrerd &lavindra Uma-
nee. Points-to analysis using BDDs. Pnogramming Language Design and
Implementation (PLDI)pages 103-114, 2003.

Gianfranco Bilardi and Keshav Pingali. Algorithms fasraputing the static
single assignment formlournal of the ACM50(3):375—-425, 2003.

Glenn Bruns and Satish Chandra. Searching for poingstéadysis.SIGSOFT
Software Engineering Notg27(6):61-70, 2002.

139

[10] Randal E. Bryant. Graph-based algorithms for Boolaarcfion manipula-
tion. IEEETC C-35(8):677-691, Aug 1986.

[11] J. Cai and R. Paige. Program derivation by fixed point gotation. Science
of Computer Programmind. 1(3):197-261, 1989.

[12] Venkatesan T. Chakaravarthy. New results on the coafyility and com-
plexity of points—to analysis. I&ymposium on Principles of Programming
Languages (POPL pages 115-125, 2003.

[13] Walter Chang, Brandon Streiff, and Calvin Lin. Efficteand extensible se-
curity enforcement using dynamic data flow analysisCémputer and Com-
munications Security (CC)ages 39-50, 2008.

[14] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. ysmabf point-
ers and structures. IRrogramming Language Design and Implementation
(PLDI), pages 296-310, 1990.

[15] Surajit Chaudhuri. An overview of query optimizatiamrielational systems.
In Symposium on Principles of Database Systems (PQi28gs 3443, 1998.

[16] Peng-Sheng Chen, Ming-Yu Hung, Yuan-Shin Hwang, Roydbing Ju, and
Jenqg Kuen Lee. Compiler support for speculative multitneguarchitecture
with probabilistic points-to analysisSSIGPLAN Notices38(10):25-36, 2003.

[17] Jong-Deok Choi, Michael Burke, and Paul Carini. Efficiflow-sensitive
interprocedural computation of pointer-induced aliases side effects. In
Principles of Programming Languages (POPpages 232—-245, 1993.

[18] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Aaticroonstruction
of sparse data flow evaluation graphs. Symposium on Principles of Pro-
gramming Languages (POPLpages 5566, 1991.

[19] Fred Chow, Sun Chan, Shin-Ming Liu, Raymond Lo, and M&tteich. Ef-
fective representation of aliases and indirect memoryaipers in SSA form.
In Computational Complexifyl 996.

[20] P. Cousot and R. Cousot. Abstract interpretation fraori&s. Journal of
Logic and Computatio2(4):511-547, August 1992.

140

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Patrick Cousot and Radhia Cousot. Abstract interpiaa a unified lattice
model for static analysis of programs by construction orrapimation of
fixpoints. InSymposium on Principles of Programming Languages (POPL)
pages 238-252, 1977.

R. Cytron and R. Gershbein. Efficient accomodation of+abas information
in SSA form. InProgramming Language Design and Implementation (PLDI)
pages 36—45, June 1993.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.M&g and F. Ken-
neth Zadeck. Efficiently computing static single assignitierm and the
control dependence graphACM Transactions on Programming Languages
and Systemd.3(4):451-490, 1991.

Ron K. Cytron and Jeanne Ferrante. Efficiently commu@nodes on-the-
fly. ACM Transactions on Programming Languages and Systen(3):487—
506, 1995.

Manuvir Das. Unification-based pointer analysis witihedtional assign-
ments.ACM SIGPLAN Notices35:535-46, 2000.

Alain Deutsch. Interprocedural may-alias analysisgointers: Beyond k-
limiting. ACM SIGPLAN Notice29(6):230-241, 1994.

Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa.dReing the cost of
data flow analysis by congruence partitioning.domputational Complexity
pages 357-373, 1994.

Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. &agensitive
interprocedural points-to analysis in the presence oftfangoointers. In
Programming Language Design and Implementation (Plpéges 242—-256,
1994.

Manuel Faehndrich, Jeffrey S. Foster, Zhendong Su,Adegander Aiken.
Partial online cycle elimination in inclusion constraimaghs. ACM SIG-
PLAN Notices33(5):85-96, 1998.

141

[30] Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, Bmimanuel Geay.
Effective typestate verification in the presence of aligsifin International
Symposium on Software Testing and Analysagies 133—-144, 2006.

[31] Rakesh Ghiya. Putting pointer analysis to work. Pinnciples of Program-
ming Languages (POPLpages 121-133, 1998.

[32] D. Goyal. Animproved intra-procedural may-alias ytséd algorithm. Tech-
nical report, New York University, 1999.

[33] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chensib Call graph
construction in object-oriented languages. AGM SIGPLAN International
Conference on Object-Oriented Programming, Systems, uayes and Ap-
plications (OOPSLA)pages 108-124, 1997.

[34] Samuel Z. Guyer and Calvin Lin. Error checking with alieriven pointer
analysis.Science of Computer Programmirg8(1-2):83-114, 2005.

[35] Brian Hackett and Radu Rugina. Region-based shapgssalith tracked
locations. InSymposium on Principles of Programming Languages (POPL)
pages 310-323, 2005.

[36] B. Hardekopf, B. Wiedermann, W. Cook, and C. Lin. A uirify framework
for describing the space of pointer analysis approximatidrechnical Report
TR-08-32, The University of Texas at Austin, 2008.

[37] Ben Hardekopf and Calvin Lin. The Ant and the Grasshoppast and accu-
rate pointer analysis for millions of lines of code. Fnogramming Language
Design and Implementation (PLDIpages 290-299, 2007.

[38] Ben Hardekopf and Calvin Lin. Exploiting pointer anct&tion equivalence
to optimize pointer analysis. linternational Static Analysis Symposium
(SAS) pages 265-280, 2007.

[39] Ben Hardekopf and Calvin Lin. Semi-sparse flow-sewsipointer analysis.
In Principles of Programming Languages (PORRPO09.

142

[40] Rebecca Hasti and Susan Horwitz. Using static singteggasent form to
improve flow-insensitive pointer analysis. Rtogramming Language Design
and Implementation (PLDJpages 97-105, 1998.

[41] Nevin Heintze and Olivier Tardieu. Ultra-fast aliagianalysis using CLA: A
million lines of C code in a second. Frogramming Language Design and
Implementation (PLDIl)pages 23—-34, 2001.

[42] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, @ndegoire Sutre.
Lazy abstraction. IrSymposium on Principles of Programming Languages
pages 58-70, 2002.

[43] Michael Hind. Pointer analysis: haven't we solved thisblem yet? In
Workshop on Program Analysis for Software Tools and Enging¢PASTE)
pages 54-61, 2001.

[44] Michael Hind, Michael Burke, Paul Carini, and Jong-Ré&choi. Interproce-
dural pointer alias analysisACM Transactions on Programming Languages
and System<21(4):848-894, 1999.

[45] Michael Hind and Anthony Pioli. Assessing the effectdlow-sensitivity
on pointer alias analyses. Btatic Analysis Symposium (SAfages 57-81,
1998.

[46] Susan Horwitz. Precise flow-insensitive may-aliadysia is NP-hard ACM
Transactions on Programming Languages and Syst&8{(4):1-6, 1997.

[47] Vineet Kahlon. Bootstrapping: a technique for scagatbbw and context-
sensitive pointer alias analysis. Btogramming language design and imple-
mentation pages 249-259, 2008.

[48] J. B. Kam and J. D. Ullman. Monotone data flow analysiaieaorks. Acta
Informaticag 7:309-317, 1977.

[49] W. Landi. Undecidability of static analysiSACM Letters on Programming
Languages and Systenig4):323-337, 1992.

143

[50] William Landi and Barbara G. Ryder. A safe approximakgoathm for
interprocedural pointer aliasing. FProgramming Language Design and Im-
plementation (PLDl)pages 235-248, 1992.

[51] J.R.Larus and P. N. Hilfinger. Detecting conflicts bedwstructure accesses.
In Programming Language Design and Implementation (PlLpages 24-31,
1988.

[52] Chris Lattner. LLVM: An infrastructure for multi-stagoptimization. Mas-
ter's thesis, Computer Science Dept., University of lligat Urbana-Champaign,
Dec 2002.

[53] O. Lhotak, S. Curial, and J.N. Amaral. Using ZBDDs in ipisito analysis.
In Workshops on Languages and Compilers for Parallel Compuiib€PC)
2007.

[54] J. Lind-Nielson. BuDDy, a binary decision package.

[55] Thomas J. Marlowe, William G. Landi, Barbara G. Rydemgd-Deok Choi,
Michael G. Burke, and Paul Carini. Pointer-induced aligsia clarification.
SIGPLAN Notices28(9):67-70, 1993.

[56] Ana Milanova, Atanas Rountev, and Barbara G. Ryder.ciBeeand efficient
call graph construction for ¢ programs with function poiste Automated
Software Engineering special issue on Source Code AnaysidManipula-
tion, 11(1):7-26, 2004.

[57] Ana Milanova and Barbara G. Ryder. Annotated inclugionstraints for pre-
cise flow analysis. IMCSM ’'05: Proceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM,q@&@ges 187-196, 2005.

[58] M. Mock, D. Atkinson, C. Chambers, and S. Eggers. Imprgyrogram
slicing with dynamic points-to data. FFoundations of Software Engineering
pages 71-80, 2002.

[59] Robert Muth and Saumya Debray. On the complexity of fkmmsitive dataflow
analysis. Technical Report 99-12, Department of Computarge, Univer-
sity of Arizona, 2000.

144

[60] George C. Necula, Scott McPeak, Shree Prakash RaldilMastley Weimer.
CIL: Intermediate language and tools for analysis and foansation of C
programs. InComputational Complexifypages 213-228, 2002.

[61] F. Nielson, H. R. Nielson, and C. L. HankiRrinciples of Program Analysis
Springer-Verlag, 1999.

[62] Diego Novillo. Design and implementation of Tree SSA02.

[63] Esko Nuutila and Eljas Soisalon-Soininen. On finding #trong compo-
nents in a directed graph. Technical Report TKO-B94, H&ldimiversity of
Technology, Laboratory of Information Processing Scied€85.

[64] Erik M. Nystrom, Hong-Seok Kim, and Wen mei W. Hwu. Batteup and
top-down context-sensitive summary-based pointer arsalyts International
Symposium on Static Analyspmges 165-180, 2004.

[65] Dusko Pavlovic and Douglas R. Smith. Software develeptiby refinement.
In Bernhard K. Aichernig and Tom Maibaum, editofsymal Methods at the
Crossroads volume 2757 ofLecture Notes in Computer Scienc&pringer
Verlag, 2003.

[66] David Pearce, Paul Kelly, and Chris Hankin. Efficientdisensitive pointer
analysis for C. InACM Workshop on Program Analysis for Software Tools
and Engineering (PASTEpages 37-42, 2004.

[67] David J. Pearce, Paul H. J. Kelly, and Chris Hankin. @alicycle detection
and difference propagation for pointer analysis. 3 International IEEE
Workshop on Source Code Analysis and Manipulation (SCARQes 3-12,
2003.

[68] G. Ramalingam. On sparse evaluation representatibnsoretical Computer
Science277(1-2):119-147, 2002.

[69] John H. Reif and Harry R. Lewis. Symbolic evaluation adhe global value
graph. InPrinciples of programming languages (PORIpages 104-118,
1977.

145

[70] Atanas Rountev and Satish Chandra. Off-line variablesstution for scaling
points-to analysiSACM SIGPLAN Notices35(5):47-56, 2000.

[71] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shapeymmalia 3-valued
logic. ACM Transactions on Programming Languages and Syst2#(3):217—
298, 2002.

[72] Alexandru Salcianu and Martin Rinard. Pointer and pecanalysis for mul-
tithreaded programs. 18ymposium on Principles and Practices of Parallel
Programming (PPoPR)pages 12-23, 2001.

[73] David A. Schmidt. Trace-based abstract interpretatiboperational seman-
tics. Lisp Symbolic Computind.0(3):237-271, 1998.

[74] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, andd#agner. Detect-
ing format string vulnerabilities with type qualifiers. Rroceedings of the
10th USENIX Security Symposiypages 201-220, 2001.

[75] Marc Shapiro and Susan Horwitz. Fast and accurate fimgrisitive points-to
analysis. InSymposium on Principles of Programming Languages (POPL)
pages 1-14, 1997.

[76] M. Sharir and A. Pnueli.Program Flow Analysis: Theory and Applications
Prentice-Hall, 1981.

[77] Manu Sridharan and Rastislav Bodik. Refinement-basedext-sensitive
points-to analysis for Javé&SIGPLAN Notices41(6):387-400, 2006.

[78] Bjarne Steensgaard. Points-to analysis in almosalitiene. InSymposium
on Principles of Programming Languages (POPhages 32-41, 1996.

[79] Robert Tarjan. Depth-first search and linear graphraigms. SIAM Journal
of Computing1(2):146-160, June 1972.

[80] Teck Bok Tok, Samuel Z. Guyer, and Calvin Lin. Efficierdvil-sensitive
interprocedural data-flow analysis in the presence of posnt In15th Inter-
national Conference on Compiler Construction (C@ages 17-31, 2006.

146

[81] John Whaley and Monica S. Lam. Cloning-based conters#ive pointer
alias analysis. IProgramming Language Design and Implementation (PLDI)
pages 131-144, 2004.

[82] Robert P. Wilson and Monica S. Lam. Efficient contextisigve pointer anal-
ysis for C programs. liProgramming Language Design and Implementation
(PLDI), pages 1-12, 1995.

[83] Suan Hsi Yong, Susan Horwitz, and Thomas W. Reps. Poantalysis for
programs with structures and casting.Arogramming Language Design and
Implementation (PLDl)pages 91-103, 1999.

[84] Xin Zheng and Radu Rugina. Demand-driven alias analigi C. InSym-
posium on Principles of Programming Languages (PQRigges 197-208,
2008.

[85] Jianwen Zhu. Symbolic pointer analysis. Imernational Conference on
Computer-Aided Design (ICCADpages 150-157, 2002.

[86] Jianwen Zhu. Towards scalable flow and context semsgninter analysis.
In Conference on Design Automation (DA@ages 831-836, 2005.

[87] Jianwen Zhu and Silvian Calman. Symbolic pointer asalyevisited. In
Programming Language Design and Implementation (Plpdéges 145-157,
2004.

147

Vita

Ben Hardekopf received a BSE in Electrical Engineering &i®nd major
in Computer Science from Duke University in 1997. While seg\as an active duty
officer in the United States Air Force, he received a MasteSamputer Science
from SUNY at Utica/Rome in 2000. In 2001 he entered the PhtBgiam at The

University of Texas at Austin.

Permanent address: 11005 Floral Park #2135
Austin, Texas 78759

This dissertation was typeset witiiieX T by the author.

TIATEX is a document preparation system developed by Leslie Langsoa special version of
Donald Knuth’s EX Program.

148

