
Appears in "Proceedings of the Sixth International Workshop on Languages and Compilers for Parallel Computing," pages 96-114, 1993.

ZPL: An Array Sublanguage

�

Calvin Lin

Lawrence Snyder

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195

October 10, 1993

Abstract

The notion of isolating the \common case" is a well known computer science principle.

This paper describes ZPL, a language that treats data parallelism as a common case of

MIMD parallelism. This separation of concerns has many bene�ts. It allows us to de�ne

a clean and concise language for describing data parallel computations, and this in turn

leads to e�cient parallel execution. Our particular language also provides mechanisms

for handling boundary conditions. We introduce the concepts, constructs and semantics

of our new language, and give a simple example that contrasts ZPL with other data

parallel languages.

1 Introduction

A variety of languages have been proposed that generally provide data parallel or array

semantics, including C* [15], Fortran 90 [1], NESL [4], and HPF [8]. One characteristic of

these languages is that data parallelism is the only model provided. This fact introduces

a certain pressure to support a wide range of general purpose facilities. Though this has

resulted in rich and interesting languages, it has not always served the goals of simplicity,

cleanliness or e�ciency. ZPL is a di�erent kind of language.

ZPL is an array sublanguage of the Orca family of parallel programming languages

[11, 12]. The Orca languages provide a general MIMD programming model [2, 6, 17],

allowing programmers to write e�cient, portable and scalable parallel programs. For many

tasks, such as initializing an array A to all 0's, a full MIMD programming model is overly

general. For other tasks, such as summing the elements of the array A, the best parallel

solution is generally well understood, but somewhat machine sensitive. So, to simplify

the programmer's job without limiting expressiveness, the Orca languages provide a set

�

This research was supported in part by ONR Grant N00014-89-J-1368, ARPA Grant N00014-92-J-1824

and NSF Grant CDA-9211095

1

of facilities to perform data parallel operations, such as A := 0; and standard parallel

abstractions, such as sum reduction (+nA). These convenience facilities, together with some

control-
ow operations, make up ZPL. Thus, ZPL is the \non-MIMD" component of the

Orca languages. (Further discussion of the relationship between full Orca and ZPL is given

in Section 4.)

ZPL can be thought of as a stand-alone parallel programming language. Though the

Orca languages are explicitly parallel, the ZPL subset is implicitly parallel. The fact that

ZPL is a sublanguage of a larger, more general language has been a critical advantage in

its design because it has relieved the pressure to solve everything using the data parallel

paradigm. That is, if the inclusion of some complex capability seemed to do violence to

ZPL's clean semantics, there was always the option of leaving it out since that capability

could be realized by the MIMD part of the language, albeit less conveniently.

Without the need to be fully general it has been possible to design a language that

is simple and expressive, with seemingly few complicating characteristics. The simplicity

will be evident in the description presented below. The expressiveness is justi�ed by the

fact that ZPL is su�cient to program the SIMPLE benchmark [11] and other standard

data parallel applications, including the Ising model, the Floyd-Steinberg dithering model,

Cypher et al.'s recursive connected component labeling algorithm [5], a median threshold

�ltering, and the game of Life. Examples of computations not sensibly programmed in ZPL

would be the FFT (due to the butter
y-based data motion), LU Decomposition (due to the

manipulation of the pivot), as well as more typically MIMD computations such as multipole

methods for N-body simulation. Perhaps the most important aspect of ZPL, however, is

that it provides a clean and uncomplicated context in which to study compilation techniques

for data parallel and array languages. In this paper, we present the language, outline the

semantics and explain the guiding principles behind this language.

The structure of the remainder of the paper is as follows. Section 2 uses the Jacobi

example to highlight some di�erences between ZPL and other data parallel languages. Sec-

tion 3 then presents ZPL's design goals and describes the major language features. We then

discuss the relation of ZPL to the more general Orca languages. Finally, we brie
y compare

ZPL to other data parallel languages before concluding.

2 A Brief Comparison

Before presenting the features of ZPL it is useful to consider how di�erent languages express

data parallel computation. The goal is to point out the distinctive features of the languages

in general terms rather than to give a tedious comparison of individual constructs.

As an illustrative example, consider the 4-point Jacobi computation on an array A[1..N,

1..N] in which each value in the array is to be replaced by the average of its four nearest

neighbors. The boundary values are taken to be 0 except at the southern edge, where their

value is 50.

In ZPL the initial values and main body of the Jacobi computation can be de�ned as

shown below, where [R] is a user declared index set called a region; and north, east, west

2

and south are programmer-de�ned vector constants called directions. For now we assume

that the values of the above directions are [-1,0], [0,1], [0,-1], and [1,0], respectively

1

.

region R = [1..N, 1..N];

[north of R] A := 0; /* Set boundary conditions */

[east of R] A := 0;

[west of R] A := 0;

[south of R] A := 50;

[R] A := 100;

The kernel of the computation would be speci�ed as follows:

[R] A := (A@north + A@east + A@west + A@south)/4;

The body of the above statement computes, for a given array element, the average of its

four neighbors. Each neighbor is speci�ed by the @ operator as an o�set from a given

element. For example, A@north refers to the element whose index is [-1,0] relative to the

given element. The scope of this statement is de�ned by the region, [R]. That is, the body

of the statement is applied (in parallel) to each element whose index is in [R].

If it is possible to distinguish the semantic approaches to data parallel computations

by the terms \single point-based" and \array-based," then ZPL is clearly an array-based

approach. The array is the basic unit of reference and the \at" operation replaces the

more general array indexing operator with a disciplined method of accessing neighboring

array values. Region descriptors are used to designate the scope over which data parallel

operations will be applied. These regions can be speci�ed where they are used and thus be

di�erent for every statement, but the assumption (borne out so far by our limited experience)

is that scienti�c codes will generally sweep over a modest set of regions. This implies that

there is not enormous diversity and that these regions have logical meaning worthy of names,

i.e., naming provides useful mnemonic information. Accordingly, ZPL anticipates a mode

of use that emphasizes setting up basic regions ahead of time as a means of avoiding tedious

and error prone speci�cation of a program's invariant information.

Jacobi in C*. C* employs a point-based approach. The Jacobi initialization and kernel

statement are given below.

shape [N][N] cell;

with (cell) {

/* Set boundary conditions */

where ((!pcoord(0)) || (!pcoord(1)) || (pcoord(1) == (N-1))) {

1

While the directions north, east, west and south can be de�ned by the programmer, they have the

default values that are those used in this example.

3

active = 0;

oldA = newA = 0.0;

} else where (pcoord(0) == (N-1)) {

active = 0;

oldA = newA = 50.0;

} else {

active = 1;

newA = 100.0;

}

/* The Jacobi kernel */

where (active) {

oldA = newA;

newA = ([.-1][.]oldA + [.+1][.]oldA + [.][.+1]oldA + [.][.-1]oldA)/4.0;

}

}

The above kernel is speci�ed using indices relative to each data element. For example,

[.-1][.]oldA is equivalent to A@[-1,0] in ZPL. Because the above code applies to every

point in the data space, there is the need to de�ne \active" and \inactive" points. The

boundary values never change and are therefore marked as \inactive." Notice that the

nested logic obfuscates the speci�cation of the boundary conditions, yet it is desirable for

e�ciency reasons. By contrast, the ZPL region descriptors allow di�erent code to be applied

to di�erent portions of the data space. For this reason, boundary condition de�nitions are

cleaner and more concise in the ZPL program. In addition, the point-based view of C* forces

the programmer to explicitly de�ne \new" and \old" copies of the data; this is not necessary

in ZPL. Finally, the access of neighbor values is similar to that in the ZPL program except

that ZPL allows neighbor values to be represented as named vectors.

Jacobi in HPF. There are several ways to implement Jacobi in HPF. We present two

variants below.

! Variant 1: use FORALL

REAL a(0:n+1,0:n+1)

!HPF$ DISTRIBUTE a(BLOCK,BLOCK)

! Initialize boundary conditions

FORALL (i=0, j=1:n) a(i,j) = 0.0

FORALL (i=n+1, j=1:n) a(i,j) = 50.0

FORALL (i=1:n, j=0) a(i,j) = 0.0

FORALL (i=1:n, j=n+1) a(i,j) = 0.0

FORALL (i=1:n, j=1:n) a(i,j) = 100.0

4

! The Jacobi kernel

FORALL (i=1:n, j=1:n) a(i,j) = (a(i-1,j)+a(i+1,j)+a(i,j-1)+a(i,j+1))/4

! Variant 2: use array assignment

REAL a(0:n+1,0:n+1)

!HPF$ DISTRIBUTE a(BLOCK,BLOCK)

...

! Set boundary conditions

a(0, 1:n) = 0.0

a(n+1, 1:n) = 50.0

a(1:n, 0) = 0.0

a(1:n, n+1) = 0.0

a(1:n, 1:n) = 100.0

! The Jacobi kernel

a(1:n, 1:n) = (a(0:n-1,1:n) + a(2:n+1,1:n) + a(1:n,0:n-1) + a(1:n,2:n+1))/4

The HPF programs are closer in spirit to ZPL than the C* program. The �rst variant

uses explicit iterators and thus takes the point-based approach, while the latter uses an

array-based approach. In both cases, the indices must be speci�ed in both the boundary

condition initialization and the kernel computation. This is an error prone situation for two

reasons. First, the heavy use of explicit indices provides many opportunities to make a mis-

take, while ZPL's use of named directions is self-documenting. Second, the HPF approach

duplicates the speci�cation of indices in the boundary condition code and in the kernel

code, which further increases the potential for error. The ZPL approach reduces repetition

by de�ning direction vectors once and using these for both the boundary conditions and

the kernel speci�cation.

Jacobi in Fortran 90.

REAL a(n,n)

...

a = (EOSHIFT(a,-1,DIM=1,BOUNDARY= 0.0) + &

EOSHIFT(a, 1,DIM=1,BOUNDARY=50.0) + &

EOSHIFT(a,-1,DIM=2,BOUNDARY= 0.0) + &

EOSHIFT(a, 1,DIM=2,BOUNDARY= 0.0)) / 4

The Fortran 90 example

2

is closest in style to the ZPL program. Rather than deal

with explicit indices, the EOSHIFT function is a higher level operation that shifts the

2

Since HPF is a superset of Fortran 90, this Fortran 90 example can also be considered an HPF program.

5

array reference in a particular direction. Besides being more verbose than the ZPL \at"

operator, EOSHIFT separates the dimension from the magnitude and direction of the shift,

while ZPL's direction vectors convey all of this information in a single entity. Thus, for

example, when using the EOSHIFT function it's easy to imagine confusing a \-1" with a

\1" or \DIM=1" with \DIM=2." Such errors are still possible in ZPL but the use of named

vectors reduces their likelihood since \east" and \west" are more syntactically distinct than

\1" and \-1." As a performance issue, notice that because each call to EOSHIFT can specify

a di�erent boundary value as a parameter, each invocation of EOSHIFT must include a test

to determine whether the data points reside on a process boundary.

Jacobi in NESL. NESL [4] is an applicative language that is based on vector operations

such as scan and reduce. NESL supports nested parallelism and distinguishes itself from

most other data parallel languages by its functional nature. Below is NESL code that

applies to both regular and irregular meshes. Each Jacobi iteration is a matrix-vector

product, where a sparse matrix is represented as a nested sequence. Most of the code is

used to set up the initial conditions.

function sparse_MxV(mat,vect) =

{sum({val * vect[i] : (i,val) in row}): row in mat} $

% Each Jabobi iteration is just a matrix vector product. %

% This will repeat it n times. %

function Jacobi_Iterate(Mat,vect,n) =

if (n == 0) then vect

else Jacobi_Iterate(Mat,sparse_MxV(Mat,vect),n-1) $

% The following two functions are mesh-specific. %

% Each is called once to initialize the mesh and vector %

function make_2d_n_by_n_mesh(n) =

let

% A sequence of indices of the internal cells. %

internal_ids = flatten({{i + n*j: j in [1:n-1]}: i in [1:n-1]});

% Creates a matrix row for each internal cell.

Each row points left, right, up and down with weight .25 %

internal = {(i,[((i+1), .25), ((i-1), .25),

((i+n), .25), ((i-n), .25)]):

i in internal_ids};

% Creates a default matrix row (used for boundaries).

Each points to itself with weight 1 %

6

default = {[(i,1.0)]: i in [0:n^2]}

% Insert internal cells into defaults %

in default <- internal $

% Assumes mesh is layed out in row major order %

function make_initial_vector(n) =

dist(0.0,n^2) <- { i, 50.0: i in [n^2-n:n^2]} $

% invoke it %

function test(n, steps) =

let matrix = make_2d_n_by_n_mesh(n);

vector = make_initial_vector(n);

in Jacobi_Iterate(matrix,vector,steps) $

The main contributor to the NESL code's length is the manipulation of 1D vectors to

implement 2D abstractions. For example, it is cumbersome to modify the interior of the

2D problem state separately from the borders. In fact, for convenience, the above code

initializes the interior points to the value 0.0 instead of 100.0.

As a test of ZPL's expressiveness, we have written the SIMPLE computational
uid

dynamics benchmark in our new language. We have no comparison against other data

parallel implementations, but we can compare our ZPL version against those written in

other paradigms. A parallel implementation written in a MIMD message passing style was

about 5000 lines of C code [10]. A sequential implementation from Cornell was about 2400

lines of Fortran code. Meanwhile, our ZPL version was less than 500 lines. While comparing

lines of code is admittedly a poor metric of clarity, the large disparity, along with our own

experience with the C version, point out the superiority of the ZPL formulation with respect

to readability.

We conclude this discussion of data parallel languages by brie
y considering compilation

issues. Optimizing compilers typically stumble because they must be conservative in the

face of uncertainty. This uncertainty can have many sources, such as pointer references or

functions in external modules with unknown side e�ects. Our language makes it di�cult

for the compiler to stumble because so much information is known at compile time. In ZPL

there are no arbitrary array indices, no pointers, and no goto's. Moreover, ZPL's high level

abstractions provide semantic information that the compiler can exploit. For example, the

use of regions provides a way to recognize subportions of arrays and to perform �ner grained

data dependency analysis on arrays than is typically feasible. Thus, we are con�dent that

ZPL can be very e�ciently compiled.

7

3 Language De�nition

By limiting the scope of ZPL to purely data parallel aspects we are following the creed of

giving special treatment to the \common case." Given this premise, our design goals are as

follows.

� Allow users to program at a high level, namely, by using arrays.

� Provide an extremely e�cient language. The use of high level abstractions can supply

information to optimizing compilers that lower level languages cannot. For example,

communication is only induced by operators such as scan and \at." It is not possible

to generate irregular communication.

� Provide a clean language with only a few central concepts. This, too, is intended to help

both the ZPL compiler writer and the applications programmer by reducing feature

interaction. There are no explicitly parallel constructs.

� Provide support for boundary conditions since they are the most tedious aspect of data

parallel computing.

� Provide freedom to the MIMD aspects of Orca. Although ZPL can be viewed as a

stand-alone language, ZPL must also �t in the framework of the Orca languages where

programmers will write their own MIMD phases. This integration is possible because

ZPL makes few assumptions regarding parallelism.

The ZPL design can be divided into a sequential component and a data parallel compo-

nent. In essence, any sequential language can form the basis for ZPL { we choose one that

is similar to Modula-2. The remainder of this section focuses on the data parallel aspects

of ZPL.

Array Operations. ZPL has two classes of variables { arrays and scalars { that can

serve as basic units of computation. All of the standard scalar operators that are typically

found in sequential procedural languages exist in ZPL and can be applied to either class

of variables. In the case of array operands, the operator is applied to each element of the

array to produce an array result. For this reason, array operators can only be applied to

conformable arrays { arrays with the same size, shape and base type. For example, the

binary addition operator (+), when applied to arrays, sums the corresponding elements of

two arrays.

When scalars and arrays are combined in an expression, scalars are promoted to con-

formable arrays. Similarly, functions can be promoted, which allows scalar code to be

re-used without making source code changes. For example, a sqrt() library routine can be

promoted by passing it an array argument, as shown below. The result of this function call

is an array of the same size and shape as A containing the square roots of each element of

A.

8

/* A and B are arrays. */

B := sqrt(A); /* Promote the scalar sqrt() function. */

Regions. Conformability of arrays is speci�ed at the statement level through the use of

regions. A Region is an index set that is prepended to statements and quali�es all arrays

in the statement that have the same rank as the prepended region. Regions can have an

arbitrary number of dimensions and are de�ned in a manner similar to the way arrays are

declared in most languages:

region R = [x1..x2, y1..y2];

The above declaration de�nes a two dimensional region whose points are the cross product

of (x1..x2) and (y1..y2). The values of all regions are �xed at load time. They typically will

depend on some runtime parameter that describes the problem size. Once de�ned, regions

can be applied to statements as shown below, where we assume that A, B and C are 2D

arrays.

[R] A := B + C;

The e�ect of the above statement is to compute A[i][j] = B[i][j] + C[i][j] for x1 �

i � x2 and y1 � j � y2: In other words, the region [R] de�nes an index set for all 2D arrays

to which the region is applied. This example applies a region to a single statement, but in

general, regions provide scope in a block structured manner. They can be applied to blocks

of statements, and regions can be nested within other regions. The following code fragment

illustrates this point.

[R1] A := B + C; /* use Region R1 for this statement */

[R2] begin

A := B + 5*C; /* use Region R2 for this statement */

[R1] B := A; /* use Region R1 for this statement */

foo(A); /* use Region R2 for this function call */

end

The above uses of regions assume that all array operands have been declared to include

at least the points in their respective regions. Arrays can be declared using regions as shown

below:

var A: real [R];

B: real [R];

C: real [R];

9

[R]NE2 = [−2,2]

SE2 = [2, 2]

east2 = [0, 2]

[SE2 of R]

[east2 of R]

[NE2 of R]

Figure 1: Illustration of \Of" Regions.

By applying regions to entire statements, ZPL programs are syntactically clean since

they are not muddled by complicated indices. Signi�cantly, region scopes are the only way

to reference arrays. In particular, explicit array indexing is not allowed, since this would

allow or even encourage programmers to use ZPL for applications that are not strictly data

parallel.

3

Directions. A direction is a vector that can be used to access neighboring array values

with the At operator (@) and to de�ne new regions from existing regions. Like regions,

directions have an associated rank, and their values are initialized once at load time and

do not change during the execution of a program. Examples of direction declarations are

shown below.

direction north = [-1,0];

east = [0, 1];

west = [0,-1];

south = [1, 0];

se = [1, 1];

The At operator (@) is used to access neighboring array elements. For example, A@east

refers to the array that has the same shape as A { as de�ned by the region scope that applies

to this expression { but is displaced from A by the vector east, which in this case is [0,1].

All regions can be de�ned using explicit upper and lower bounds for each dimension,

as shown above for region R. For example, the region consisting of the two columns to the

right of R could be de�ned in the following manner:

region R = [1..N, 1..N];

East2 = [1..N, N+1..N+2];

However, ZPL provides a less tedious solution that uses the Of operator and the east2

vector, shown below. (See also Figure 1.)

3

It is, however, possible to initialize arrays through I/O statements.

10

direction east2 = [0,2];

SE2 = [2,2];

region East2 = [east2 of R];

The Of operator takes two operands { a vector v and a region R { and describes a new

region that is adjacent to R. The size of this new region is de�ned by the direction and

magnitude of v and its location relative to R is de�ned by the direction of v. For example,

[east2 of R] refers to the region that is o�set from R by the vector [0,2], whose height

is the same as R's height (as speci�ed by the special value 0), and whose width is 2. As

another example, [SE2 of R] refers to the 2 � 2 square that is adjacent to the southeast

corner of region R.

Mathematically, if vector v = (v

1

; v

2

; :::v

n

) and

region R = (l

1

; u

1

)� (l

2

; u

2

)� :::� (l

n

; u

n

),

[v of R] de�nes an array of size v

0

1

� v

0

2

� :::� v

0

n

,

where v

0

i

=j v

i

j if v

i

6= 0;

or

v

0

i

= u

i

� l

i

+ 1 if v

i

= 0:

This array is located such that it is adjacent to R at (r

1

; r

2

; :::r

n

),

where r

i

= l

i

if v

i

< 0

or

r

i

= u

i

if v

i

> 0:

In other words, if v

i

< 0, the upper bound of the \Of" array is the lower bound of the

i

th

dimension. If v

i

> 0, the lower bound of the \Of" array is the upper bound of the i

th

dimension.

Reductions and Scans. Reductions and scans are common operations that are known to

have e�cient parallel implementations [3, 9]. ZPL supplies reductions and scans as operators

because this allows them to be optimized by the compiler. For example, if reductions are

not provided by the hardware, the messages needed to implement consecutive reductions

can be combined to reduce communication latency.

Reductions are operations applied to the elements of an array to produce a scalar result.

For example, the sum reduction of an array is the sum of the array's elements. The following

reductions are de�ned as operators in ZPL:

+n { Sum reduction

*n { Product reduction

maxn { Maximum reduction

minn { Minimum reduction

11

andn { And reduction

orn { Or reduction

Each of the above reduction operators has an analogous scan operator. The syntax for

scans uses nn instead of n. Scan operators take an array argument and return an array

containing the parallel pre�x of the given array: Each element of the returned array is

the reduction of all elements whose indices are less than its own. For multidimensional

arrays each element is assigned an index in row-major order. That is, the last (rightmost)

dimension's indices vary fastest.

Partial reductions and scans are also allowed. For example, row reductions can be

performed across each row of a 2D array, returning a vector result. Partial reductions

and scans are expressed by using an optional parameter that speci�es the dimensions across

which the reduction or scan should take place. Dimensions are speci�ed by placing numbers

in brackets, with [1] indicating the �rst dimension and [d] indicating the d

th

dimension.

The code fragment below, where v is a vector and s is a scalar, shows examples of partial

reductions.

[R] v := +\[1] A; -- reduce A along columns and assign to vector v

[R] s := +\[1][2] A; -- full reduction of A

[R] s := +\ A; -- full reduction of A

The Where Statement. The Where statement is the array analog of an If statement.

Its form is given below, where cond is a conditional expression involving array values, and

s1 and s2 are statements.

where (cond)

then s1;

else s2;

The statement s1 is executed for those index values that evaluate to true in the Where's

conditional expression. Statement s2 is executed for all other index values. Semantically,

s1 and s2 are allowed to execute concurrently. A Where statement can only be quali�ed by

a single region scope. That is, the statements in the body of the Where cannot be modi�ed

by additional region scopes. Given these constraints, Where statements are allowed to nest.

Re
ect and Wrap. ZPL provides speci�c support to two common types of boundary

conditions: the case where a set of values is re
ected across some boundary of an array,

and the case where a set of values is wrapped around from the other side of an array as in

a torus. These operations are supported by the Re
ect and Wrap operators, respectively.

Re
ect and Wrap are syntactic sugar for initializing two common types of boundary

conditions. They are particularly useful for boundary conditions that are wider than a

single row or column. The Re
ect operator assigns values by mirroring them across some

12

Reflect about
east boundary of R

[R] A

Wrap around
east boundary of R

[R] A [east of R] A[east of R] A

Figure 2: The Re
ect and Wrap Operators.

point of reference, while the Wrap operator is used to set boundary conditions that wrap

around as if the array were a torus.

The Re
ect operator takes a region, [v of R], and a variable (or list of variables), X,

and sets the value of X in the region [v of R] to the values of X that are re
ected across

the boundary between [R] and [v of R]. The region is a no-op if it does not contain an Of

operator. The Re
ect operator can be applied to multiple variables at once. For example,

the following code sets, for variables A, B, and C, the column to the east of R to have the

value of the eastern-most column of R. This is illustrated in Figure 2, which corresponds to

the program text below.

[east of R] reflect A, B, C; -- reflect across the eastern border

[R] reflect A; -- no-op, nothing to reflect across

Imagine that the boundary between [R] and [v of R] is connected to the opposite bound-

ary of [R] as in a torus. The Wrap operator then sets the values of X in the region [v of

R] such that this torus is emulated. The Wrap operator is illustrated in Figure 2. The

semantics of Wrap are de�ned mathematically as follows.

if vector v = (v

1

; v

2

; :::v

n

) and

region R = (l

1

; u

1

)� (l

2

; u

2

)� :::� (l

n

; u

n

),

[v of R] Wrap X; sets the values of X in the region [v of R] to the value of the

conformable array [v

0

of R], where v

0

i

= (u

i

� l

i

) + v

i

:

Execution Order. Semantically, each region scope is executed sequentially. Within each

region scope, statements are logically executed sequentially. Within each assignment state-

ment, the right hand side is �rst evaluated and then assigned to the left hand side. While

13

such assignments logically imply the use of temporary array variables, compiler analysis

can often remove the need for temporaries. Recursion is allowed.

Lists of Regions. As syntactic sugar, lists of regions are allowed. For example, a region

named border can be de�ned as shown below.

region R = [x1..x2, y1..y2];

border = [north of R][east of R][west of R][south of R];

[border]

b1; /* b1 represents a block of code. */

When this region is then used to qualify a block of statements, b1, the block of statements

is logically executed once for each of the regions in the list.

Syntax and Other Details. The current implementation of ZPL uses modi�ed Modula-

2 syntax. All Modula-2 constructs are preserved except there are no Case statements, no

goto's, and no pointers. Recursion is allowed. In addition, ZPL uses two-level scoping,

i.e. procedures are not allowed to be de�ned inside the scope of other procedures. This

detail stems from the fact that our implementation is based on the Parafrase-2 [13] source

to source translator for the C language. However, as in Modula-2, a block of statements

(bracketed by begin and end) is itself considered a statement.

4 Discussion

4.1 Support for Boundary Conditions

ZPL gives support for boundary conditions in the form of the Re
ect and Wrap statements

described above. In addition to these two special forms, ZPL provides general support for

boundary conditions through the use of regions.

Regions describe geometric areas of the data space. Because the computations on the

various regions can be speci�ed independently, the initialization of boundary conditions can

be separated from the rest of the code. This modularization simpli�es both the boundary

condition code and the \main" body of code. From the Jacobi example we see that other

languages also allow for the isolation of boundary condition code, but in these languages the

separation is contingent upon the programmer's good programming style. For example, in

HPF the individual indices of each array (or the individual indices of each forall statement)

must be inspected to determine what portions of the data space are being manipulated.

An advantage of applying regions to entire blocks of statements is that the separation

among di�erent portions of the data space is clearly manifested. For example, the typical

structure of a ZPL program is shown below, and it's immediately apparent which parts of

the computation apply to which portions of the data space.

14

[border]

begin

...

end

[R]

begin

...

end

4.2 Relationship to Orca C

As a �rst approximation, a programwritten using the full capabilities of the Orca C language

[12] will utilize one of four types of statements:

[R] A := sqrt(A); -- data parallel assignment

err := max\ Delta; -- "standard" parallel abstraction

if err < 10**-6 then. . . -- control construct

else . . .

PivotExchange(); -- phase invocation

The �rst three types, data parallel operations, \standard" parallel abstractions and con-

trol operations, form the ZPL sublanguage. The fourth statement type, phase invocation,

provides access to the full MIMD capabilities of Orca C. By limitation, these can also be

regarded as SPMD capabilities.

Collectively, the four statement types are said to de�ne programming at the \problem

level" of Orca C. This name emphasizes the fact that these statement types express the

high level solution of the programmer's problem. For historical reasons, the problem level

is also known as the Z level [17]. The problem level text describes the main logic of the

problem solution. If the solution is su�ciently simple, ZPL constructs alone may su�ce to

express the program. But for complex algorithms or certain performance-critical situations,

the full MIMD capabilities of the language may be needed.

A phase is a user-de�ned parallel computation composed of concurrently executing pro-

cesses. (Phases can also be library de�ned.) An example might be an FFT computation.

Phases have a characteristic communication structure induced by the data dependencies of

the problem, e.g. the butter
y for the FFT. The language constructs provided in Orca C for

de�ning phases are referred to, again for historical reasons, as the Y level of programming.

And the constructs provided for de�ning the processes, out of which phases are de�ned,

are known as the X level of programming. Further description of the phase abstractions

programming model can be found in the literature [18].

15

Though a full introduction of the Y and X programming facilities of Orca C, and a

careful introduction to the phase abstractions concepts would be beyond the scope of this

paper, a brief description of the phase de�nition approach is appropriate. Phases are de�ned

using an abstraction called ensembles. Three kinds of ensembles are required to de�ne a

phase. Data ensembles are partitioned data structures, code ensembles are partitioned sets

of process instances, and port ensembles are partitioned graphs, the edges of which de�ne

the channels for interprocessor communication. To create a phase, the user de�nes the

necessary ensembles so that they have the same partitioning. (See Figure 3.) This allows the

partitions of the three types of ensembles to be put into one-to-one correspondence. In each

partition there will be the following: a process instance, the portions of the partitioned data

structures the process is to operate on, and a vertex of the partitioned graph that de�nes

the neighbors with which the process communicates. Collectively, the ensembles de�ne a

parallel computation whose logical concurrency is given by the number of partitions.

Port Ensemble

a00 a01 a02 a03 a04 a05 a06 a07 a08

a10 a11 a12 a13 a14 a15 a16 a17 a18

a20 a21 a22

a30 a31 a32

a40 a41 a42

a50 a51 a52

a23 a24 a25

a33 a34 a35

a43 a44 a45

a53 a54 a55

a26 a27 a28

a36 a37 a38

a46 a47 a48

a56 a57 a58

Data Ensemble

Hydro() Hydro() Hydro()

Hydro() Hydro() Hydro()

Hydro() Hydro() Hydro()

Code Ensemble

Figure 3: Illustrations of Ensembles for the Hydro Phase of SIMPLE.

The ZPL language has been presented (and can be used) as if it were a stand-alone lan-

guage, but it is simply a language convenience: The phase abstractions programming model

dictates that Z level statements are either control statements, such as an if statement, or

16

they are phase invocations. A literal implementation of this requirement would force users

to program all of the concurrent activity of the computation explicitly, a potentially tedious

task given how simple certain aspects of parallel computation can be.

Accordingly, ZPL's data parallel constructs and \standard" parallel abstractions are

small compiler generated phases, or phaselets. That is, logically, each data parallel state-

ment or \standard" operation is converted by the compiler into a phase composed of gen-

erated processes that execute the operation on the portion of the array stored locally in

the processor. The data layout is not speci�ed in the ZPL portion of the language, but is

inherited from whatever data ensemble is declared as part of the user de�ned phases. If no

data layout has been speci�ed by the user, e.g. if ZPL is simply treated as a stand alone

language, then a default block layout is used for ZPL arrays.

Logically, there is a barrier synchronization following each statement in the Z level

language. Since in most cases the barrier is unnecessary, i.e. the computation is correct

without actually synchronizing, the compiler eliminates barriers when possible. Also, phase

invocation overhead can be eliminated by combining the phaselets into larger, more com-

pletely optimized phases. Indeed, when ZPL is used as a stand alone language, without

true phase invocations, then only one phase per processor is generated. This gives ZPL a

greater e�ciency than might be apparent if the literal interpretation of phase abstractions

{ every line is a control structure or a phase invocation { were strictly enforced.

5 Other Related Work

ZPL inherits the notion of regions from Spot [19], a language designed to support stencil-

based computations on distributed memory computers. The two languages are syntactically

similar, but Spot presents a point-based view which leads to a certain awkwardness. For

example, history values are introduced to maintain multiple values of variables across iter-

ations.

Numerous other data parallel languages exist, including C*, Fortran 90, HPF, and

NESL, which were brie
y discussed in Section 2. Here we point out a few others. Broadly

speaking, these languages are more general than ZPL since ZPL is an attempt to trade o�

expressiveness for improved clarity and e�ciency. On the other hand, these other languages

do not provide the same support for boundary conditions that ZPL does. C* and Data-

parallel C [7] have SIMD execution semantics and provide pointers. Dino [16] programs can

specify arbitrary point-to-point communication through tagged accesses to variables. This

more general communication adds power but complicates optimizations.

6 Conclusion

In this paper we have introduced ZPL, a data parallel programming language whose goals are

clarity and e�ciency. Because this sublanguage exists in the context of the more general

programming model, ZPL is freed from having to support complicating operations that

would be needed for pivots or irregular communication. By allowing region scopes to be

17

applied to entire statements (and blocks of statements), ZPL provides support for boundary

conditions by syntactically separating boundary condition code from common case code.

This same mechanism removes explicit indexing from array references, which improves

readability and allows the re-use of existing sequential code for data parallel applications.

The implementation of a ZPL compiler began in April, 1993 and is expected to be

completed in the summer of 1993. We are modifying the Parafrase-2 source to source

translator [13, 14] to compile ZPL code down to C for a variety of parallel computers. We

believe that this system will provide an ideal testbed to experiment with novel compiler

optimizations for parallel computers.

Acknowledgments. We thank Alex Klaiber, Chuck Koelbel, and Guy Blelloch for pro-

viding C*, HPF, and NESL implementations of Jacobi. We are grateful to Brad Cham-

berlain, George Forman, and Derrick Weathersby for writing ZPL programs for the Floyd-

Steinberg algorithm, the game of Life, and the Ising model, respectively, and to Bill Gris-

wold and Sungeun Choi for comments on an early draft. Finally, we are indebted to George

Forman for many fruitful conversations regarding the ZPL language implementation.

References

[1] Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith, and Jer-

rold L. Wagener. Fortran 90 Handbook. McGraw-Hill, New York, NY, 1992.

[2] Gail Alverson, William Griswold, David Notkin, and Lawrence Snyder. A
exible

communication abstraction for nonshared memory parallel computing. In Proceedings

of Supercomputing '90, November 1990.

[3] Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, Cambridge,

MA, 1990.

[4] Guy E. Blelloch. NESL: A nested data-parallel language. Technical Report CMU-CS-

92-103, School of Computer Science, Carnegie Mellon University, January 1992.

[5] R. E. Cypher, J. L. C. Sanz, and L. Snyder. Algorithms for image component labeling

on simd mesh connected computers. IEEE Transactions on Computers, 39(2):276{281,

1990.

[6] William Griswold, Gail Harrison, David Notkin, and Lawrence Snyder. Scalable ab-

stractions for parallel programming. In Proceedings of the Fifth Distributed Memory

Computing Conference, 1990. Charleston, South Carolina.

[7] Philip J. Hatcher, Michael J. Quinn, Ray J. Anderson, Anthony J. Lapadula,

Bradley K. Seevers, and Andrew F. Bennett. Architecture-independent scienti�c pro-

gramming in Dataparallel C: Three case studies. In Proceedings of Supercomputing '91,

pages 208{217, 1991.

18

[8] High Performance Fortran Forum. High Performance Fortran Speci�cation. January

1993.

[9] Richard E. Ladner and Michael J. Fischer. Parallel pre�x computation. Journal of the

Association for Computing Machinery, 27(4):831{838, October 1980.

[10] Jinling Lee. Extending the SIMPLE program in Poker. Technical Report 89{11{07,

Department of Computer Science and Engineering, University of Washington, 1989.

[11] Calvin Lin and Lawrence Snyder. A portable implementation of SIMPLE. International

Journal of Parallel Programming, 20(5):363{401, 1991.

[12] Calvin Lin and Lawrence Snyder. Data ensembles in Orca C. In 5th Workshop on

Languages and Compilers for Parallel Computing, New Haven, CT, August 1992.

[13] Constantine Polychronopolous, Milind Girkar, Mohammad Reza Haghighat, Chia Ling

Lee, Bruce Leung, and Dale Schouten. Parafrase-2: An environment for parallelizing,

partitioning, synchronizing, and scheduling programs on multiprocessors. In Proceed-

ings of the International Conference on Parallel Processing, volume 2, pages 39{48,

August 1989.

[14] C. D. Polychronopoulos, M. B. Girkar, M. R. Haghighat, C. L. Lee, B. P. Leung, and

D. A. Schouten. The structure of parafrase-2: an advanced parallelizing compiler for c

and fortran. In Workshop on Languages and Compilers for Parallel Computing, pages

423{453.

[15] J.R. Rose and Guy L. Steele Jr. C*: An extended C language for data parallel pro-

gramming. Technical Report PL 87-5, Thinking Machines Corporation, 1987.

[16] M. Rosing, R. Schnabel, and R. Weaver. The Dino parallel programming language.

Technical Report CU-CS-457-90, Dept. of Computer Science, University of Colorado,

April 1990.

[17] Lawrence Snyder. The XYZ abstraction levels of Poker-like languages. In David Gel-

ernter, Alexandru Nicolau, and David Padua, editors, Languages and Compilers for

Parallel Computing, pages 470{489. MIT Press, 1990.

[18] Lawrence Snyder. Foundations of practical parallel programming languages. In Pro-

ceedings of the Second International Conference of the Austrian Center for Parallel

Computation. Springer-Verlag, 1993.

[19] David Grimes Socha. Supporting Fine-Grain Computation on Distributed Memory

Parallel Computers. PhD thesis, University of Washington, Department of Computer

Science and Engineering, 1991.

19

A Fragments of the SIMPLE Code

There is not enough space to show the entire SIMPLE code, so this appendix contains

fragments of the SIMPLE program.

direction ne = [-1,1]; /* declare directions */

. . .

region R = [minX..maxX, minY..maxY]; /* declare regions */

var Rho, P, Q : real [R]; /* declare arrays */

Delta_tau : real [R];

. . .

/* define functions */

function Jacobian();

var Tmp_J1, Tmp_J2 : real[R];

begin

Tmp_J1 := (X.r * (X.z@south - X.z@west)

+ X.r@west * (X.z - X.z@south)

+ X.r@south * (X.z@west - X.z)) / 2.0;

Tmp_J2 := (X.r@west * (X.z@south - X.z@sw)

+ X.r@sw * (X.z@west - X.z@south)

+ X.r@south * (X.z@sw - X.z@west)) / 2.0;

J := Tmp_J1 + Tmp_J2;

Old_S := New_S;

New_S := ((X.r + X.r@west + X.r@south) * Tmp_J1 +

(X.r@west + X.r@sw + X.r@south) * Tmp_J2) / 3;

end

function main() /* Main body */

[R]

begin

/* Hydro Phase */

[west of R] P := west_bound_p;

[north of R]

[NE of R]

[east of R] reflect Rho, P, Q, J;

Jacobian();

. . .

En_error := Int_en + Kin_en - Work + Heat;

En_error := +\ En_error; /* implicit temporary variable */

end;

20

