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Abstract. Casual message-logging protocols have several atl Introduction
tractive properties: they introduce no blocking, send no addi-
tional messages over those sent by the application, and nevdtessage logging [9] is a common technique used to build sys-
create orphans. Causal message logging, however, does ri@ms that can tolerate process crash failures. These protocols
quire the casual effects of the deliveries of messages to beequire that each process periodically record its local state and
tracked. The information concerning causality tracking is pig-10g the messages received since recording that state. When a
gybacked on application messages, and the amount of sudiocess crashes, a new process is created in its place: the new
information can become large. process is given the appropriate recorded local state, and then
In this paper we study the cost of tracking causality in itis sentthe logged messages in the order they were originally
causal message-logging protocols. One can track causality &6ceived. Thus, message-logging protocols implement an ab-
accurately as possible, but to do so requires piggybacking &traction of a resilient process in which the crash of a process
considerable amount of additional information. One can re4s translated into an intermittent unavailability of that process.
duce the amount of piggybacked information on each mes- All message-logging protocols require that the state of a
sage by reducing the accuracy of causality tracking. But thenrecovered process be consistent with the states of the other
causal message logging may piggyback the reduced amouirocesses. This consistency requirement is usually expressed
of information on more messages. in terms oforphan processesvhich are surviving processes
We specify six different methods of tracking causality, Whose state isinconsistent with the recovered state of a crashed
each representing a natural choice based on the specificatighiocess. Thus, message logging protocols guarantee—either
of causal message logging. We describe how these six metfihrough careful logging or through a somewhat complex re-
ods can be implemented and compare them in terms of howovery protocol—that after recovery no process is an orphan.
large of a piggyback load they impose. This load depends on Message logging protocols can pessimistiqfor exam-
the application that is using causal message logging. We chaple, [5,11,17, 24])optimistic(for example, [12,22,23,26]), or
acterize some applications for which a given method has théausal[3,4,10]. Like pessimistic protocols, causal protocols
smallest piggyback load, and study using simulation the sizéever create orphans, and, like optimistic protocols, they do
of the piggyback load for two different models of applications. not log synchronously to stable storage. They are able to do
this by piggybacking information onto the ambient message
Key words: Message logging — Causal logging — Causality traffic.
tracking Causal message-logging protocols track the causal effects
of message deliveries. Lgbe the number of concurrent crash
failures that are to be tolerated. We have given [4] a generic
causal message-logging protocol that tracks causality to de-
termine when information needed for recovery has been de-
livered and recorded by at leagt+ 1 independently-failing
processes.
In this paper we study the cost of tracking causality in
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col may learn more slowly when the recovery information has At any point in time, thestateof a process is a mapping
been replicated at leagt+ 1 times. of program variables and implicit variables (such as program
Understanding which method piggybacks the least infor-counters) to their current values. We assume that the state of
mation in a given situation is important for several reasonsthe process does not include the state of the underlying com-
First, itis in itself an interesting question, because the tradeoffmunication system, such as the queue of messages that have
is complex and there is a temptation either to be as accuratieeen received but not yet delivered to the process. Given the
as possible or to use as little information as possible to traclstatess, ands, of two processep andq, p # g respectively,
causality. As this paper shows, there are times when neithewe say thatk, ands, (or, more simplyp andg) aremutually
is the best choice in terms of message size. Second, there azensistenif all of the messages from thatp has delivered
environments, such as embedded systems or mobile systendyring its execution up te, were sent by, during its execu-
in which bandwidth is limited. In such systems, limiting the tion up tos,, and vice versa. A collection of states, one from
size of messages is important. Third, a significant cost in anyach process, is@nsistent global stati all pairs of states
protocol is in assembling, processing, and disassembling are mutually consistent [6]; otherwise itirconsistent
message. Piggybacking less information in messages is one We assume that processespigrewise deterministj@4]
way to improve the performance of a causal message-loggina that the only nondeterminism in a process arises from the
protocol. nondeterministic order in which messages that have been re-
We consider six different methods of tracking causality. ceived are delivered. It is therefore natural to think of the ex-
They represent natural choices based on the specification @cution of a process as being partitioned into intervals, with
causal message logging. All of the published causal messag#he beginning of each interval being defined by the initial state
logging protocols track causality using one of these methodsof the process or the delivery of a message. Such an interval
We describe how these six methods can be implemented. W called astate interval Thus, given the first state of a state
compare them in terms of how large a piggyback load theyinterval and the message whose delivery defines the beginning
impose. This load is application dependent: we characterizef the interval, the rest of the states in the interval are uniquely
some applications for which a given method has the smallestletermined by the process.
piggyback load, and study using simulation the size of the For any message: delivered by procesg, the receive
piggyback load for two different models of applications. sequence numberf m, denotedmn.rsn, represents the order
We do not consider the effect on the piggyback load whenin whichm was deliveredm.rsn = ¢ if m is the/!” message
processes periodically checkpoint their states. Frequent checklelivered byp [23]. The state interval that initiates with the
pointing can reduce the piggyback load because one doesrdelivery ofm is denoteg[¢] wherel, theindexof p[¢], is equal
need to track causality for events prior to a checkpoint. Butto m.rsn. The state interval[0] is defined to be the interval of
frequent checkpointing imposes another kind of overheadstates op from its initial state to the state immediately before
The results here should be illustrative for executions in whichthe delivery of the first message.
checkpointing is relatively infrequent. We further assume that:
We do not present the protocol that is run when a crashed - . .
process recovers. All six protocols in this paper can use the® Processes fail independently according to the fail-stop

same recovery protocol. A discussion on recovery as well as  Model [19]; .
the actual recovery protocol can be found in [18]. e The fixed set of processes that belong to the system is

The paper proceeds as follows. In Sect.2 we present the known by all of th_ese processes, . . .
system model and in Sect.3 we specify causal message log® Channels are point-to-point, FIFO, and fail by intermit-
ging. Section 4 develops the six causal message-logging pro- t€ntly losing messages.
tocols and identifies two classes of applications for which the
simplest protocol is also the most efficient in terms of piggy-
back overhead. In Sect.5 we measure and compare the piggy- Specification of causal message logging
back overheads using a synthetic application. Section 6 con-
cludes the paper. With the assumption that processes are piecewise determin-

istic, the only non-deterministic choices made during an exe-
cution concern the order in which messages are delivered to
2 System model processes. To recover a process’s state, the nondeterministic
choices the process makes during recovery should be the same
We assume a systeiin processes that can communicate only as it made before failing. Hence, we need to represent the order
by exchanging messages. The system is asynchronous: thesémessage deliveries.
exists no bound on the relative speeds of processes, no bound For each message: delivered during a given run, let
on message transmission delays, and no global time sourcem.source andm.ssn denote, respectively, the identity of the

The execution of the system is represented lynawhich ~ sender process and a unique identifier assigned iy the

is an irreflexive partial ordering of the send events, receivesender. The latter may, for example, be a sequence number. Let
events and local events ordered by potential causality [13]deliver,, 4.s:(m) denote the event that corresponds to the de-
Delivery events are local events that represent the delivery olivery of message.: by processn.dest. The tuple{m.source,
a received message to the application or applications runningu.ssn, m.dest, m.rsn) unequivocally determines and the
in that process. For any messagdrom proces$ to process  order in whichm was delivered byn.dest We refer to this
q, q deliversm only if it has receivedn, andg deliversm no tuple as theleterminanof the eventeliver,, 4..:(m) and we
more than once. denote it as #.
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Let Dependm) denote the set of processes whose statet Family Based Logging

reflects the delivery of message Formally,

def

m)
V ((j = m.des) A j has deliveredn)
V (3m/: (deliver,, gesi(m) — deliver;(m')))

|

where — denotes théappens-beforeelationship [13]. Let

Family Based Logging (FBL) is a logging technique that im-
plements Property*4 Conceptually, each processnaintains

in its volatile storage a set of determinam$, called the
determinant logf p and defined as follows:

DLpdéf{#m : p € Dependm)}.

That is,DL, contains the determinant of all of the delivery

Log(m) denote the set of processes that maintain a copy oévents that causally preceds current state. We denote with

#m in their address space: in particular, procesdest is a
member ofLog(m) once it deliversn. In [4], we showed that
the following property ensures that sufficient information is
available to avoid the creation of orphans:
VYm : O(Dependm) C Log(m)) 1)

whereD is the temporal “always” operator.
We say that #: is stable(denotedstabldm)) when #n

UnstableDL, the subset oDL,, thatp does not know to be
stable. Whenevep sends a message’ to some process,
processp piggybacks ontan’ all the determinantstm in
UnstableDL, for which ¢ ¢ Log(m). Hence, a fundamental
issue of implementing FBL is how a processletermines
Log(m) for any determinant# thatp has received. In general,

p may not know the exact values bbg(m) and|Log(m)],

and so it must estimate these values. We depstestimated

cannot be lost because of crashes. Property 1 need hold on¥@lues forLog(m) and|Log(m)| asLog(m),, and|Log(m)|,

for messages with a determinant that is not stable. In [4]

respectively.

we showed that the following property ensures that no set

of crashed processes can lead to the creation of orphans:

(2)

If determinants are written into stable memory, then
stable(m) holds when the write of# to stable memory com-

Vm : O(-stablgm) = (Dependm) C Log(m)))

pletes. If determinants are kept in volatile memory, and we

assume that no more thghprocesses can fail concurrently,

thenstable(m) holds as long ag + 1 processes have a copy

of #m in their volatile memory. In the latter case, Property 2
can be written:

vm : B((|Log(m)| < f) = (Dependm) < Log(m))) (3)
Property 3 allowd.og(m) to grow arbitrarily larger than
Dependm) and allows for protocols that disseminate a large

number of unnecessary copies af#As the number of de-

4.1 Estimatind-og(m) and |Log(m)]

To satisfy Property 4p must never overestimateog(m) or
|[Log(m)|. However, ifp underestimatelg.og(m)|, it may then
needlessly piggyback determinants that are already stable,
making the messages on average significantly larger. By ex-
changing more information, processes can improve the accu-
racy of their estimates and avoid piggybacking useless data;
piggybacking this extra information can in turn make the mes-
sages significantly larger.

The most basic piece of information abdubg(m)| is
gained when a procegslelivers amessage. Oncey delivers
m, g knows thaty € Log(m). Further pieces of information
about|Log(m)| are piggybacked on messages. Three natural
pieces of information are:

#m Wheng receives #: from p, procesg can safely infer that
Log(m) contains at least procegs processn.dest(the

livery events performed during a run increases, these extra Original destination of message) and process itself.
copies may end up wasting a significant portion of the addres#-09()|,, Upon receipt of[Log(m)|,, ¢ can safely infer
spaces of the processes in the system. In order to address this that|Log(m)| is no smaller thanLog(m)|,. Wheng re-

problem, we consider protocols that implement the following
strengthening of Property 3:

VYm : O(JLog(m)| < f =
Dependm) C Log(m) A <(Dependm) = Log(m)) (4)

where< is the temporal “eventually” operator. This property

couples logging with causal dependency on deliver events: as

long as|Log(m)| < f:

e All processes that delivered an application message sent

causally after the delivery of, have stored a copy of's
determinant.
e All processes that have stored a copymk determi-

ceives #n for the first time g can further safely infer that

|Log(m)| must be at least equal thog(m)|, + 1, since

q itself could not be counted ifLog(m)|,,. Note that this

scheme allows to infer a value fofLog(m)| safely with-

out knowing the identity of the processediog(m).
Log(m) » Upon receipt of.og(m) ,» Procesg can safely infer
thatLog(m), must be at least equal to the union of the cur-
rentset.og(m), andLog(m),,, and can update.og(m)|,
accordingly. Using this scheme, when procesends its
estimate oL.og(m) to procesg, it is providingg with the
union of all the estimates relative tmg(m) computed by
the processes along the causal path that connects process
m.destto procesy.

nant will eventually deliver an application message sent * Itis conceptually simple, though somewhat cumbersome, to gen-

causally after the delivery ofu.

We call the protocols that implement Propertycdusal
message-logging protocols

eralize our discussion of FBL so that it implements a more general
version of Property 4, i.e. one that uses the more general predicate
—stablgm) instead of Log(m)| < f. We use the latter in this paper

to simplify our exposition.
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Fig. 1. Log(m),, and |Log(m)|,, for
IIpet, H|Log| andHLog

One can define a protocol for each of these differentHong| Procesp piggybacks the same data ad1iy, ., . And,
information-exchange schemes. Let if |Log(m)|,, has increased since the last timepiggy-
backed #n to g, thenp piggybackgLog(m)|, onm’.
H;Og Processp piggybacks the same data asiify,q,. In
addition, if Log(m),, has increased since the last time

piggybacked #: to ¢, thenp piggybackd og(m),, onm'.

UnstabIeDlp(q)déf{#m € UnstableDl, : ¢ ¢ Log(m),, }.

That is, UnstableDL,(q) is the the set of determinants in
UnstableDL, thatp does not know; already has. Lep send
a message:’ to q. The three protocols piggyback as follows:

IIp.; Proces® piggybacksUnstableDL,(q) onm'.

Il|1,4) Foreach determinant#in UnstableDL,(q), process
p piggybacks both # and|Log(m)|p onm/'.

I, Foreach determinant#in UnstableDL,(g), process
p piggybacks both # andLog(m),, onm’.

4.2 Comparison of the protocols

The six protocols piggyback different amounts of information
and estimatd.og(m) and |Log(m)]| differently. We examine
these differences below.

Furthermore, for each of these three protocols, when
receives an acknowledgement frgrfor messagen’, p adds
g to Log(m) for each determinangm piggybacked onn’'.
The causal message-logging protocol Manetho [10] is esThe execution shown in Fig. 1 illustrates the differences be-
sentially ITpe; with f = n. That is, Manetho assumes that tweenIlp.;, IT| oq andily,, with respect to how accurately
total failures are possible, which means that a determinanthey estimatd_og(m) and |Log(m)|. For each deliver event

4.2.1 Accuracy ot.og(m),, and|Log(m)|,

never becomes stalbte

Hence, a process piggybacksn on a messager’ to ¢
whenp has a copy oftm andp does not know thaj has a
copy of#m. [8]

executed by procegs and for each of the three protocols, we
showLog(m),, and|Log(m)|,,..

Through the receipt of message;, the three protocols
yield the same estimates bbg(m) and|Log(m)|. Onceps

In the three protocols defined above, a process piggyreceivesm,, however, the three protocols compute different
backs information tg; only about determinants that are in estimates fotog(m) and|Log(m)|:

UnstablﬁDlpb(q). To disst;almizate more quickly that a Qeteer- IﬁDet Upon receipt of the copy ofr# piggybacked on mes-
minant has become stable, however, a process can piggyback g e, procesg; concludes that, in addition to itself,
additional information. The following three protocols, which

are analogous tél p.¢, Il oq andIIy,4, piggyback such in-
formation. Suppose sends a message’ to ¢q. The three
protocols piggyback as follows:

af., Processp piggybacks 'ghe same Qata as]ifbet. In
addition,p informs ¢ of which determinants iDL, have

become stable.

2 This is because we equaséablegm) with |Log(m)| < f. In

Log(m) mustinclude at least process = m,4.sourceand
processgp, = m.dest Procesgs thus setsl_og(m)p3
{p1,p2,p3}, and|Log(m)],, = 3.

Il oq As in the previous case, proce;zs‘;ssetsLog(m)p3 to
{p1,p2,p3}. However, since this is the first time thaf
receives #h, ps was not inLog(m) whenp; sentmy.
Since|Log(m)| = 3, ps can infer thatLog(m)| must be
at least 4.

p1

Manetho, as in any message logging protocol, a determinant caflzog Process received.og(m),, inadditionto#n.Itthen

always be made stable by writing it to any other suitable implemen-

tation of stable storage,g.a disk.

concludes thdtog(m) mustinclude atleagt , p2, ps, and
p4 and thaiLog(m)| > 4.
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IZANN

Although Iz, provides a more accurate assessment ofradar echoes, collected by aircraft or spacecraft, are used to
Log(m), both I1) o and 1z, allow procesgs to conclude  construct terrain contours. The steps necessary for producing
that|Log(m)| > 4. The benefits of the extra information ex- high-quality images from SAR data consist of the following
changed by protocdll,,, become evident when process  sequence of computations: two-dimensional discrete Fourier
receives messages, at which point//;,, has the most ac- transform, binary convolution, two-dimensional inverse dis-
curate determination dLog(m)|. crete Fourier transform, and intensity level normalization for

ProtocolsII})_,, H‘Jlf_og‘ andI7; ~are similar tollp.;, visualization. For our purposes, however, the important prop-

Log . . .
T oy andIL,,. but can provide better estimateslafo(m erty to note is thgt data flows in a pgrtu_:ular manner.
[Logl Log b 9(m) To characterize a set of applications for whi¢hy.,

and|Log(m)|. An example illustrating the difference between 5 o
performs as well asl;, , we represent an application’s pat-

104 andHZrog is givenin Fig. 2. Assumg¢ = 3. Determinant L S Log: ) .

#m becomes Stable whe receivesns. With ProtocollT 1., tern of communication withehannel graphor a given appli-

whenp; subsequently sends, to ps, #m is not piggybacked, cation, its associated channel graph is a directed graph. Nodes

and therefore message, does not carnLog(m) . With are used to represent processes as well as sources of applica-
Lo . Ps tion messages received from the environment and destinations

Protocoll1},, insteadps; piggybacksLog(m),, evenif#n ¢ anjication messages sent to the environment, and edges are

is already stable. Hence, using Rrotoﬂ}iog amessage; used to represent the direction that application messages are
sent byps to p; will contain a piggybacked value ofr#, sent

while using Protocol7;", it will not. Similar scenarios can
be constructed with the other two pairs of protocols.
Consider again the execution shown in Fig. 1. As long a
|[Log(m)| is small, the protocols have the same estimates o
Log(m). This suggests that for small valuesfafone should
use I1p.; because it piggybacks the least possible amount o )
of information per message. We examine this hypothesis in ~ The channel graph of Fig. 3 is shortcut-free. The following
Sect.4.2.2. There are applications, however, with wiiigh, ~ theorem characterizes one set of applications for whigh,
performs aswell a& ., even for large values gf. For exam- performs as well aﬂfog whenf = n.
ple, Fig. 3 shows an application for whidlp.; does as well )
asIl;, whenf = n. The application is a parallel solution Theorem 1. Let f = n. Given a shortcut-free channel graph,

to the Synthetic Aperture Radar problem (SAR) [15] in which for any runp, Protocol ITp.piggybacks on each message the

same determinants as ProtooﬁTzrog.

SDefinition 1. A channel graph ishortcut-freef it is acyclic
nd for all pairs of nodes and j, all paths from: to j have
he same length.
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r number of unnecessary piggybacks. This trade-off is com-

plex, since it depends both on the application’s pattern of
communication and on the network’s responsiveness in de-
livering acknowledgements: we explore it in detail in Sect. 5.

Even a simple qualitative analysis, however, shows that, while

q
¢ for IIpes, 110, @and 1., the amount of piggybacked in-
J formation is proportional to the numbé? of determinants
'/ UnstableDL,(q), for 11}, IIT ., andII}, this informa-
p

|Log)’ Log
tion may in the worst case be proportional to the numiger
of determinants iDL, (q).
Fig. 4. The channel graph obtained assuming tﬁigg estimates In the worst case, both andXV can only be bound by the
Log(m)._better thanT e, total number of delivery events that causally precede the send-
pi

ing of m. Thus, the extra information sent ¥, oy, HlT-Ogl’

M., andll}, doesnotworsen the theoretical asymptotically
Proof. When f = n the antecedent of Property 4 is trivially worst case behavior of FBL protocols. In practice, however,
true, and so with any FBL protocol a processill piggyback  whenD is large, adding an extra piggyback proportionalto
a determinantm when sending a message to ¢ if and  asi7; . andII;,, do, can resultin significant extra overhead.
only if p € Dependm) andq ¢ Log(m),,. Whether ornop  Furthermore, even wheb is small, N is most likely large,

is in Dependm) does not depend on the specifics of a partic-making ngt, H\Jlr_og\ and Hjog appear even less practical.

ular FBL protocol, butis determined solely by the application yence, it could be advantageous to represent the extra infor-
messages. Hence, we can prove th(_a theorem by showing thg{ation using a data structure whose size is independeit of
qé Log(m)p underllp.; if and only if ¢ & Log(m)p under o N.

;. " Protocolll} o4 can be easily modified to achieve this goal
Assumeq ¢ Log(m), under]]’;og_ Since]];og piggy- Dy sorting the determinants:# piggybacked om: according
backs a superset of the information piggybackedihy,,,  to|Log(m’)|. One can then, for example, also piggybackan
» underﬂzrog will estimateLog(m) at least as accurately as €element arr?yc wherez[i] is the number of determinants that
Ipe:: Log(m), under ITp,, is a subset of.og(m), under have|Log(m')|. The arrayr can also be run encoded should it
[TF. . Henceq ¢ Log(m). underIT be sparse.”The resulting version/of o plggybacks no more
Log* A gim), Det- than f additional words tha/ ., an amount which is inde-
Assumeg ¢ Log(m), underllp... Forq € Log(m), 0 pendent ofD. A drawback of this approach, however, is that
hold underIl}, , there must exist a causal path from node determinants sorted in this manner are not suitable for some
g to nodep carrying this information. This path cannot be of the compression techniques described in [2,3], which can
made solely of application messages, or the channel grapliramatically reduce the size of the piggyback. Furthermore,
would contain a cycle and therefore would not be shortcut-while this this approach can also be applied]tﬁi_ogl, it can
free. Hence, the dependency must have been carried by At pe applied td7,, orHLt,g.

acknowledgement from proceqstqra third process. Fur- In the next section we introduce a data structure, called a
thermore;r # p sincellpe; andHLOg do not differ in how dependency matrithatallows us toimplemedt’ , 1T+
they use acknowledgements to estimiabg(m) and by as- L ) bet’ 7 |Log’
Sumption undet! p,; q ¢ Log(m)p Furthermore, Sincq andHLo with an incremental cost ovér p.; thatis Indepen-
sent an acknowledgement tp an application message was dent of D or N.
sent byr to q. We conclude that in order fgrto be a member
of Log(m)p underHZog the channel graph must contain (i)
an edge fronr to g, (ii) a path fromr to p, and (iii) an edge
fromptog. _We know from Property 4 that as long aog(m)| < f, each
Figure 4 shows such a channel graph. To show that thig).jcess ensures thBependm) C Log(m). Hence, a pro-
graph cannot be shortcut-free, we observe that there are tW,ss can usBependm) to estirrTateLog(m). We can take
paths of different length that connecandg: the first consists advantage of techniques for tracking dependencies to com-
only of the edge fromr to ¢ while the second goes through pute Dependm). The most widely-used technique is based
We conclude that for all shortcut-free channel graphs, if 5 vector clockg16].
I p.; estimates that ¢ Log(m),,, then so does /. O Avector clock is am-element vector that counts the num-
ber of relevant events in the causal past of a process for some
definition of relevant. Let/, be the vector clock associated
with proces®. The valuel, [p] counts the number of relevant
events thap has executed, and, [¢], ¢ # p counts the num-
ber of relevant events thaknows that; has executed. Hence,
given two relevant events, of procesg ande, of processy,

4.3 Dependency tracking

4.2.2 Piggyback overhead

Protocols likell p.; that exchange less information may dra-
matically underestimateog(m) and|Log(m)|, possibly lead-
ing to excessive piggybacking of# On the other hand, by
piggybacking less information, the piggyback load per mes£» = €q = Vi (ep)[p] < Vg(eq)[p] (5)
sage may be smaller. Hence, there is a trade-off between thehereV,,(e,) andV,(e,) are the vector clocks of proceps
amount of information carried in each message versus thandgq when they execute, ande, respectively.
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Vector clocks are easy to implement. When a progess such messagdBependm’)| > f; (3) for all such messages
executes a relevant event, it incrememigp]. And, when  p knows thatg € Log(m/'). If the first reason holds for all
it executesreceivg,(m), thenvr : 1 < r < n,r # p : zero elements, theRBC(m) is a dependency vector, and if
V,,(receive (m))[r] is set to the maximum op’s previous either the first or second reason hold for all zero elements,
value for V,[r] and V,(senq,(m) top)[r]. This second rule thenPBC(m) is a weak dependency vector.
requires the sending procesgt piggyback the current value Dependency tracking proceeds as follows. Each process
of its vector clock onmn. p € N maintains am x n dependency matrix DMgtdefined
Strom and Yemini [23] were the first to use vector clocks as follows?:
with message logging when they introduced the notion of a
dependency vectok dependency vectdpV,, is a vector clock
where the relevant events are delivery events. Specifically,

e DV,(e)[p]istheindex of the state interval that contains the _ ih
evente. This is the same as the receive sequence numbdP! ¢ € (N —{p}) and wherédMat, [i, +] denotes the’" row

of the last message delivered pyhrough the execution ©f matrixDMat,.
of e. A procesgp’s estimate of the weak dependency vector of

e DV, (e)[q] is the highest index of any state interval of pro- another procesgwill lag behindg’s actual weak dependency

cess that procesy depends upon through the execution YECtor, and sdMat, (g, +| will notin general be able to satisfy
of evente. Condition 8.a. However, it is straightforward to design update

o ] rules that satisfy Condition 8.b. Here is one such set of rules:
Specializing Equation 5 to dependency vectors, we get:

o DMat,[p, +] is the weak dependency vector of procgss
e DMat,[q, %] is procesg’s estimate of the weak depen-
dency vector of process

1. When procesg receives a message from g¢:

deliver,(m) — deliver,(m’) = (a) p incrementDMat, [p, p] by one.DMat,[p, p] is now
DV,,(deliver,(m))[p] < DV,(delivery,(m'))|p] (6) the value of the receive sequence numbemofThis
is the vector clock update rule used when a process
Dependency vectors track arbitrary dependencies between executes a relevant event.
delivery events. In the context of FBL, we are interested in (b) psetsDMat, [p, *] to the component-wise maximum of
determining which processes depend on ewsiiver,(m) the current value dDMat, [p, *] and ofPBC(m). This
only when|Log(m)| < f. We therefore define an abstraction, is the vector clock update rule used when a process
which we callweak dependency vector WOKat satisfies the receives a piggybacked vector clock.
following weaker version of Condition 6: Even thoughPBC(m) is weaker than a weak depen-
. . dency vector, the new value @fMat,[p, | is still a
deliver,(m) — deliver,(m’) A |Log(m)| < f = weak dependency vector. As notetg[gbgve, a compo-
WDV, (deliver,(m))[p] < WDV, (deliver,(m'))[p] (7.8) nentPBC(m)[q] can be zero for three different rea-
sons. If one of the first two reasons hold, then for that
WDV, (deliver, (m))[p] < WDV, (deliver,(m))[p] = cr?mﬁpgenPBq?)lés a r;/vgk delpenéien_cy v§ct0kr- 3‘
; ; / the third reason holds, t as already piggybacke
deliver, (m) — deliver, (m’) (7:) the non-zero value of this component that would make
whereWDV, andWDV, are the weak dependency vectors of it a weak dependency vector. _ .
procesg andq respectively. (c) psetdDMat,[q, *] to be the component-wise maximum
From the definition oDependm), the Properties 7.a and of the current value obMat, [q, *| and of PBC(m).
7.b, and thaDependm) C Log(m) it follows that, for any Doing so ensures thats estimate of;'s dependency
given message: for which |Dependm)| < f one can deter- vector is up to date. As above, even tholRBC(m) is
mine if ¢ is in Dependm) from ¢’s current weak dependency not a weak dependency vector, the resulting value of
vector. In particular, the following conditions hold: DMat,[q, *] is a weak dependency vector.
(d) Forallvaluesof: 1 < i <n,psetsdDMat,[i, ] tothe
q € Dependm) A |Dependm)| < f = maximum ofDMat, [z, ;] andPBC(m)[i]. This is done
WDV, [m.des} > m.rsn (8.a) becausgy may Igam about some procefzsseaphing
WDV, [m.dest > m.rsn — q ¢ Dependim) (8.b) ?rosrtnaf interval indirectly frong rather than directly

One can define useful vector clocks that are weaker thar2. When procesg receives an acknowledgement for mes-
weak dependency vectors. For example, it is useful to define  sagem from p, it setsDMat,[p, «] to be the component-
a vector clockPBC(m) that is constructed from the set of wise maximum of the current value &Mat,[p, «] and
determinants piggybacked on a messagé his vector clock, PBC(m).

which only satisfies Condition 8.b, is constructed as follows: _ . L )
Given Condition 8.b, it is simple fop to estimate

¢ where/ is the largest value of2'.rsn Dependm) and thereforé.og(m): Log(m),, contains the pro-
def for all determinants #’ piggybacked cesseg such thabMa desti -
lef q, m.destis atleastn.rsn.And, pro
PBC(m)[p] onm such thatrn’.dest= p i t P
0 if there is no such determinant ¥ Because the order of events executed by a processor is in fact a

total order, itis also straightforward to construct a dependency matrix
AnelemenPBC(m)[p] may be zero for three reasons: (1) there that has size.p x np wherenpis the number of processors in the
are no messages’ for whichp € Dependm’); (2) for all system [4].
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cessp can consider # to be stable when more thgnentries  The stability matrix can be computed directly from the depen-
of DMat, [+, m.dest are greater than or equal te.rsn. dency matrix. Consider the colunMat, [+, g]. The values

The set of rules given above implements Protadgl,;. in this column are a multi-sébf receive sequence numbers
In the next section we describe three more sets of rules th&br messages that were deliveredgoy et/ be the first largest
implement/7}_,, 117 andIl}, . value in this multi-set/ is also the receive sequence number of

|Log Log .
the lastmessage thaknowsq has delivered. Thus, for all mes-

sagesn delivered byg, if if m.rsn < ¢ then|Log(m)|, > 1
and ifm.rsn> ¢ then|Log(m)|p = 0. Thus,SMat,[1, ¢] = /.

Generalizing this observatiolsMat,[i, g] is the i'" largest
As it turns out, it is simpler to present the set of rules thatvalue ofDMat,[+, g].

implementiI},_,, H|T_og| andII},, by starting from the last In protocolHIogl, all processes piggyback their stability

protocol and working our way backwards to the first. The matrix instead of their dependency matrix. Doing so allows a

reason lies in the observation that the dependency matrix gfrocesg to compute a more accurate valueSdfla,. The set

process; can be used to computeg(m), for all messages  of update rules is:

m for which ¢ is a member oDependm). So, to implement )

1T}, q can simply piggyback its dependency matrix on every 1. When process receives a message from ¢:

message it sends. (a) p incrementdDMat,[p, p] by one.DMat,[p, p] is now

the value of the receive sequence numbenof

(b) Consider a determinant# piggybacked onm. If
m’.rsn > DMat,[p, m'.dest thenp is receiving #n’
for the first time. Call such a determinam¢w top.
For any determinant:#' new top, p ¢ Log(m’),
and solLog(m’)|, is set to|Log(m')|, + 1. Procesgp

computes a new valu8Mat,’ of SMay, that reflects
this fact. Specificallyp first setsSMat’ to SMat,.
Then, for each determinant:# new top, let s be
|Log(m/)[, as computed from the piggybacked sta-
bility matrix, i.e., SMat,[s + 1,m’.desf < m/.rsn
andm/.rsn < SMat,[s, m’.dest. p setsSMat,'[s +

1, m’.desf to max(SMat,/[s + 1, m’.des}, m’.rsn).

(c) p setsDMat, [p, #] to be the maximum of the current
value ofDMat, [p, ] and ofPBC(m).

(d) p setsDMat,[q, *| to the component-wise maximum
of the current value obMat, g, x] and of PBC(m).

(e) Forallvaluesof: 1 <i < n,psetsDMat,[q, ] to be
the component-wise maximum of the current value of
DMat,[qg, 9] and ofPBC(m)[i]. This bringg’s estimate
of ¢’s weak dependency vector up to date.

(f) For all values ofi : 1 < i < n, p setsDMat,[i, i] to
the maximum value obMat, [z, *].

(9) p setsSMay, [, g to the larger of its current value and
of thei*" largest value oDMat,[r, ¢] for all r € N.
This is the rule given above for generating a stability
matrix from a dependency matrix.

(h) Finally, for all values ofi : 1 < ¢ < n, p sets
SMat,[4, ] to the component-wise maximum of the
current value oSMat, [¢, ] and the modified version
of the piggybacke&Mat,'[:, «] obtained from rule (b).

When procesg receives an acknowledgement for mes-
sagem from p, it setsDMat,[p, «] to be the component-

et?

4.4 Piggybacking the dependency matrix

4.4.1 ImplementingT;/,

The update rules foﬂfog are as follows:

1. When processg receives a message from g:

(@) p incrementDMat,[p, p] by one.DMat,[p, p] is now
the value of the receive sequence numbenof

(b) p setsDMat,[p, *| to the component-wise maximum
of the current value ddMat,[p, ] and ofDMat, g, *].

(c) Forall values of : 1 < i < n, p setsDMat,[g, %] to
the component-wise maximum of the current value of
DMat,[i, ] and of the piggybacked vali@Mat, [z, *].

. When procesg receives an acknowledgement for mes-
sagem from p, it setsDMat, [p, % to be the component-
wise maximum of the current value BMat, [p, *] and of
PBC(m).

The resulting protocol implemenﬁjog and piggybacks

n? additional data oveflp.,, which is independent of the
number of determinants in boBL, andUnstableDL,.

4.4.2 ImplementingY‘T_og‘

A second set of update rules can be used to derive an imple-
mentation ofIYlJIF_Og| that is analogous tél| o and that pig-

gybacksO(f x n) additional data per message. Consider the
following data structure that is extracted from the dependency
matrix:

2.
Stability Matrix: SMay, is a(f + 1) x n matrix of integers.

For all processegin \/, SMat, 4, ¢] is the highest receive
sequence number of any messagedelivered byq for
which |Log(m)|, = 1.

wise maximum of the current value BMat, [p, | and of
PBC(m).

The stability matrix is a compact way of representing

4 A multi-setsS is a set in which the same value may occur more

than once. Th&'" largestvalue inS is defined recursively as follows:
the first largest value i is the largest value that occurs$hand the

k'™ largest value ir§ is the (k — 1)°* largest value of the multi-set

of S with the first largest value removed. Thus, the first and second
largest values of2, 1, 2} are both 2, and the third largest value is 1.

|Log(m)|,,. Specifically, if|Log(m)|, = i then

1> f whenm.rsn < SMay, [ f, m.dest
1 <i < fwhenSMat,[i 4+ 1, m.dest < m.rsn
andm.rsn < SMat, i, m.dest
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4.4.3 ImplementindZ},,,

ProtocolIl},_,requires process to inform g of which deter-

o I |+Log|: the stability matrix is piggybacked on each mes-

sage. Again, if we use bits to represent a receive se-
guence number, then the overhea®igD + nf)w).

minants have become stable. Recall that for each prggess e H;Oq: the dependency matrix is piggybacked on each mes-

SMat,[f +1, j] is the highest receive sequence number of any

message delivered bjythat p knows to be stable (i.e. that

knows to have been logged by atlefst1 processes). Hence,

p can fulfill its requirement simply by piggybacking rofv- 1
of its stability matrix on the messages it sendg.té/e call the
vector corresponding t8Mat,[f + 1, x| procesg’s stability
vector, or SV,.

In addition to the steps (a)—(d) afip.;, in protocol
H‘geta proces® that receives a messagefrom ¢ takes the
following steps:

(e) For all values ofi : 1 < i < n, p setsSV,[i] to the
f +1stlargest value iDMat,[*, 7], thei-th column ofp’s
dependency matrix.

(f) For all values ofi : 1 < i < n, p setsSV,[i] to the
component-wise maximum of the current valuesdf, []
and the piggybacke8V,[i].

sage. Again, if we usev bits to represent a receive se-
quence number, then the overhea®igD + n?)w).

At this level of abstraction one might tempted to conclude,
for example, thafl) oy should be a better choice thdfy.;
because the former tracks causality better while piggybacking
only a logarithmic number of bits more per determinant than
the latter. And, given thab can be huge, the last three pro-
tocols appear attractive because the additional number of bits
used to increase the precision of causal tracking over than of
Il pe; is independent oD. Whether these observations hold
in practice, though, depends strongly on the communication
pattern exhibited by the application.

To understand the relative performance of the different
protocols, we developed a synthetic application model that
we call the BBL application modelThis model specifies
how bursty communication i(rstines} what percentage
of the total number of processes process communicates with

I7}_,'s management of acknowledgements is identical to thagpranchinesy and how slowly acknowledgements retulas (

of IIpet.

tency. We construct synthetic applications for different com-

1T}, uses the stability vector to get a more accurate estipinations of these three parameters. For each constructed ap-

mate of which determinants should be partfstableDL,.
For such a determinantn# both of the following condi-
tions must hold: (1)f or fewer entries oDMat,[q, m.des}
are greater thatn.rsn (just as inIlp.), and (2)m.rsn >
SV, [m.dest.

5 Comparing piggyback overheads

plication, we measure the piggyback overhead for each pro-
tocol for different values of.

We then construct three other synthetic applications not
within the BBL model and again measure the piggyback over-
head for the FBL protocols. These three applications have
communication structures that resemble specific system struc-
tures.

We start our comparison of the different protocols by examin->-1 The BBL model
ing their asymptotic piggyback overheads. These bounds are

expressed in terms of the numh®rof determinants piggy-
backed on the message and the siz&f a determinant. These
two values are not independentmust be larger than the log

The BBL communication model is similar to other models
that have been proposed (for example, [3,7,21]). The model
assumes that processes do not crash and that channels are reli-

of D. In the worst cas@ can be as large as the number of able and maintain FIFO ordering. Each process alternates be-

receive events any process can execute. Additionallyust

be larger thaiog(n) since the determinant encodes the sourc

tween two stages of operationcammunication stageuring

gwhich the process sends messages, acohaputation stage

and destination of a message, but it is not hard to imagine runduUring which the process receives and acknowledges mes-

inwhich D is much larger than. (In any real implementation,

w is most likely a constant, such as 64 bits.)

sages. During any communication stage a process never sends
more than one message to any other process. The processes
to which proces® sends messages in a run are called the

e IIp.:: only the determinants are added, and so the overheighborsof p for that run.

head isO(Dw).

The model is parameterized by the five-tupte M, bu,

e [I) 44 with each piggybacked determinant for some mes-br, [) wheren is the number of processes in the system and
sagem’ the estimatgLog(m’)| is included. Since we M is the total number of messages sent in the system. The
can express this estimate liog(f) bits, the overhead is value ofbr determines the size of the set of neighbors. At the

O(D(w +log(f)))-

beginning of each run, each process assigned a random set

e I1;,,: with each piggybacked determinant for some mes-of neighbors. This size of this set is pulled from a restricted
sagem’ the estimatd_og(m’) is included. This estimate uniform distributionn x U (br).> For example, if the random

cannot include more thafi process ids, and so the over-

head isO(D(w + flog(n)).

e I7}, . the stability vector is piggybacked on each message

® The restricted uniform distributiol (m) is a uniform distribu-

tion that has an expected valuerafand a maximum value &fm:
- m =0.5: the uniform distribution from0to 1

A stability vector contains elements, where each element 0 < m < 0.5 : the uniform distribution from 0 t@m

is a receive sequence number. If we ugleits to represent

a receive sequence number, then the overhe@d(i® +

0.5 < m < 1: the uniform distribution fron2m — 1to 1
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variablebr = 0.1, then on average each process will have asTable 1. Parameters of the BBL model
neighbors 10% of the remaining processes.

The value obu determines the number of messages a pro symbol _meaning values used
cess sends in each communication stage. Specificalby,Jet " number processes 10
be a random variable that indicates the fraction of neighbors number messages sentinrun 500
to which proces® sends messages during thle communi- bu communication burstiness 0.2,04,0.6,0.8
cation stage. The value o, ; is pulled from the restricted  br communication branchiness 0.2, 0.4, 0.6, 0.8
uniform distributionU (bu). For example, ifor = 0.1 and 1 communication latency 0.2,0.4,0.6,0.8
bu = 0.5, then on average each process will send messages
to 5% of the other processes during each communications,, [ standard
stage. The message recipients are selected randomly witho _ bt - LEE
replacement from the process’ neighbors. 15000 2o+

The value ofl models the speed of the underlying com-
munication system. This parameter determines how quickly o
on average, acknowledgement are received by the sender. Tl o408
time is measured in terms of the number of events the sende “*— s |
executes between sending the message and receiving the ¢
knowledgement. Specifically, I&t; be arandomvariablethat "~ G . . s i
determines the number of events processegd bgfore it re-  a Number of piggybacked b Number of piggybacked bits
ceives the acknowledgement for tith message that it sent. determinants
The value of this random variable is pulled from the restricted_. .

. . = Fig. 5a,b. A comparison of the performance of the standard vs.
uniform distribution|2n « U (1) |. ) o

. L L ) . . plus™ protocols

Consider a point in the five-dimensional space that has co-

ordinatesn, M, bu, br, andl. Let acommunication graplbe

a run of a synthetic application, represented as a patrtial order-hOWS the average number of determinants piaavbacked over
ing of events of the: processes and generated stochasticall 9 PIggy

pdhuidehed + + +
from a distribution defined by the tuple:, M, bu, br,1). By the course of the run. Protocal#y, ,, H\LoglandHLogsend

generating many communication graphs for different points inB-3%, 9.1% and 10.6% fewer determinants respectively than

this space, we can evaluate the performance of the messag@-e corresponding standard protocol. This shows that the extra

logging protocols as a function of the parameters of the modelinformation that these protocols send is useful. However, as
We fixed the number of processeat 10 and the number of Fig.5b shows, the co_st of send|r+lg this extra mformaﬂon can
message#/ at 500. We found that larger valueskf did not ~ far exceed the benefit. Protochly,., sends 6.9% more bits
significantly change our evaluation. Thus, the space is reducelan protocollIp.;. Protocolsl; . and IT}, send 59.8%
to a 3-dimensional subspace of the original model with axesand 100.1% more bits than their corresponding standard pro-
bu, br, andl, whose values range from 0 to 1. We examine thetocol.
64 points(.2, .4, .6,.8) x (.2, .4, .6, .8) x (.2, .4, .6, .8) in this Recall that protocoldI}, ,, U\Lgp and I7/, add fixed
subspace. o sized data structures to each messagel gy, this data struc-
Wg generated 21 communication graph; for each of thgs&lre is a vector of size, for I1  a matrix of sizef x n,
64 points and ran each of the six causal logging protocols with A _ Y
four values off € {2,3,4,9}. This resulted in over 32,000 &nd foril;, ,a matrix of sizen”. Assumingn = 10 and 32
runs. The performance of the protocols at each point in th&it words, this overhead is between 320 and 3,200 bits. Slnce_
application space was averaged over the 21 communication0C Messages are sent in a run, the accumulated overhead is
graphs. The results presented are accurate to 95% confiden&tween 160,000 a'ld 1,600,000 bits. The latter value, which
We use small values gfsince for real systems of ten processes'S the overhead OHLO‘?’ accounts for 61.5% of the average
the probability of having more than a few failures at any time numbe_r of bits sent. This overhead is directly related to the
is very small. We includef = 9 since this allows recovery O(n) size of vector clocks, which has been shown to be a
from total failures. lower bound [20]. So, at least for the part of the BBL space

. : 4 + .
Table 1 summarizes the parameters of the BBL model. thatwe consided/; , andIl;, are not competitive.

To understand the relative performance of the protocols
we compared them as follows: for each point sampled in the
5.1.1 Exploring the BBL space BBL space, we counted the number of times one protocol sig-
+ + + nificantly outperformed the other. One protocol significantly
M er, 11, pq), NI, BUGMENTT D, 1| og|, ANATTLog DY outperformed the other when it piggybacked on average fewer
sending information about stable determinants. Two questiongjts and the 95% confidence intervals did not overlap. Table 2
regarding these protocols are: shows the pairwise comparison of the six protocols. The values
1. How much does information about stable determinants 'Sm the table represent the number of points in the BBL space
duce the number of piggybacked determinants? where the protocol in the column outperformed the protocol
2. Does this reduction in determinants, if any, lead to a re4n the row. For example, the value of 43 in the first column,
duction in the overall number of bits piggybacked? second row, is the number of points at which protabig).,
Figure 5 shows summary statistics for each protocol avpiggybacked on average significantly fewer bit than protocol
eraged over the sampled application space. The first graph;_,.
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Table 2.Pairwise comparison of the relative performance of the pro- = m
tocols as measured by the total number of bits piggybacked ]
Hpet ngt 1| 1og| H|Ji09| I1oq Hfog 7 i

Hpet - 0 0 0 0 0

i}, 43 - 25 0 25 0 6.5~

I g 0 0 - 0 0 0

Hﬁog\ 256 256 256 - 256 24 0.25—

o4 59 20 56 0 - 0

Hjog 256 256 256 192 256 - 0

2 3 4 9
. i f
These results again show tﬂatzw\ andHLogare notcom- Fig. 6. Piggyback overhead df p.: as function off, normalized to

petitive with the other &rotocols. (The tagle also shows thatyanetho's piggyback overhead
over most ofthe spacﬂ‘ Log| outperformdI;, . We expected

this for smallf but not forf = 9). Because they are not com-

petitive, we exclude protocold ; , and 1T}, from the rest 5 determinant to its neighbor, it never needs to send it to the
of the discussion and concentrate on the performance of theame neighbor again. When the size of the neighborhood is
four remaining protocols. small, the neighborhood quickly becomes saturated with the
determinant. The reasoning for the sensitivitytads similar.

Protocol ;. Table 2 shows that over all the points sam- When this parameter is high, processes broadcast messages to
I I [ ks signifi ly f its th ; SO0 ; :
bled, no protocol ever piggybacks significantly fewer bits t ana high percentage of their neighbors, therefore saturating their

ITp.:. This suggests that if no knowledge about the applica-" .
tion’s characteristic is known thefi p..; is a good choice. We neighborhood.
therefore usdip.; as our baseline protocol.

The regression equation for the number of bits piggy-
backed bylTp.; is:®

Protocol I1|1,,,4. The performance of protocdl|,, is sta-
tistically indistinguishable from our baselidép.;. The extra
integer per determinant piggybackedin; ., can reduce the

. — — - number of piggybacked determinants when the communica-
number of bits= 237, 000bu + 481, 100br — 4942 tion graph has long linear paths. In the sampled applications
+860, 100( f/10) + Cges. there are few linear paths since each process sends messages
in each round. Overall]| ., is able to send only 1.2% fewer

The R.—Squared 'significan.ce test of this regression of 0.63.  jaterminants thaiil p.;, not enough to reduce the extra cost
This regression equation suggests that the performance ¢fssgciated with this protocol.

Hpe is domingted by the value _Q‘ffor the protqcol. Recall One might, in fact, argue from Table 2 tHa., is slightly
that Maneth_o is essent|all;ZDet instantiated W|thf = n.  petter thani’| ,,,|, Since there are 59 points whel,.; Sig-
Since there is no difference in the number of piggybacked b't%ificantly outperformdT,,,, and only 56 points wherd, .,

_ _ 7 i — e g .2
for f = n—1andf = n, IIp.; piggybacks forf = 9 gjgnificantly outperformdIy,,. Similarly, ITp.; does better
the same number of bits as Manetho. However, given the hig ore often in comparison oy, thanl|,,,
Det og|*

sensitivity to f, I1p.: appears to piggyback much fewer bits

than Manetho wherf is small. o Protocol ITz,,,. Figure 5 shows that overall, the extra infor-
Figure 6 examines this Issue. In this figure, we comparemation carried byl1;,4 reduces the number of piggybacked
the number of piggybacked bits éf.; and Manetho as a  determinants by over 10% as compared with.;. Looking
function Off The f|gure shows that qu' = 2, pI’OtOCO|HDet ] at the pairwise Comparison betweﬂflog andHDet: we see
sends 47% fewer bits than Manetho. These performance gainfiat at 197 pointdIy,,, is statistically indistinguishable from
deprease ag increases. As we shqw in Sect.5.2, thls is an 7., and at 59 pointsl ., performs significantly worse than
artifact ofn being relatively small: with1p.,’s relative inac- 7 o
curacy in tracking causality, it does not take long for a deter-  Figure 7 shows the breakdown of the 59 points whgrg,

minant to be piggybacked to a substantial fraction of the terberforms poorly as a function of, b, bu and latency. This

prosl;'isesreesg.ression equation also shows tfiat,, is relatively figure shows that the performancel@t.., as compared with
ot . . L — —_~
insensitive to the latency of the underlying communicationggreé fglsr;e;avr\ii/]:%rrela;eec:f\évrlt;]bg. r;Ac\)sol;i;/mcreases, there are
Log .

system, and moderately sensitive to the size of the commu- In addition, I7.,, is also affected by the value gt We

nication neighborhood and the burst frequency. This makes . = i
sense intuitively. When the neighborhood size is small, pro_sampled 64 points fof = 2, and for 35 of thesdl,,, per
[ms worse thadlp,;.

cesses send more messages to the same recipients, resultlnggq Figure 7 also shows that the performancdhfog is in-

tighter synchronization among them. Once a process has SeHtependent of the latency, and indeterminate with respect to

® We write the equation in terms ¢ff /10) rather thanf so that  bu.
the ranges of all of the independent variables are between 0 and 1.

7 In both cases, a procepspiggybacks a determina#}tm to q Protocolnﬁet. OVera”,HEet iS indistinguishablefrorﬂDet
wheng ¢ Log(m),,. over most of the runs. In 43 of the 256 poinfg},_, does
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60 60 message to another process, again chosen randomly with-
out replacement. The message chain continues until 20
40— 40— processes are selected. The twentieth process sends a reply
message to the nineteenth process. This reply chain con-
20— /\/ 20— tinues until the first process receives a reply message. This
0 0 process of generating request and reply chains of depth 20
is repeated 20 times.
002040608 1 002040608 1 CS3 This application also has a client-server-like communi-
bu br cation structure. Instead of generating chains of length 20,
60 60 though, this application generates ternary trees of depth
four (and hence, containing 40 processes). A non-leaf pro-
40— 40— cess sends three messages, one each to three processes
chosen at random without replacement. A leaf process im-
N— 20 \/ mediately sends areplyto its parent, and a non-leaf process
0 0 sends areply to its parent once it receives the three replies
U 1T 171 from its children. The application generates 20 of these
0 02040608 1 2 4 6 8 10 trees.
! f SG This application has a group-based communication struc-
Fig. 7. Performance of7 ., ture. A process is chosen at random without replacement.
The chosen process selects eight processes and sends each
of them a message without waiting for acknowledgements;
60 60 thus, a degree-eight tree of depth one is constructed. Each
process sends a reply to the original process. When the
40— 40— original process receives the eight replies, a new tree with
arandomly-chosen process is constructed. The application
20— /\/ 20— generates 20 of these trees.
T R R - _
0 02040608 1 0 02040608 1 _ _AIIthree apphcatlon_s repeqteqlly generate trees,w_hlch are
W = trivially shortcut-free. Given this simple pattern, one might be
tempted to conclude thdf p.; would be the best protocol.
60 60 However, as Figs. 9 and 10 shal, ., performs significantly
better than the other protocols for all but the smallest values
40— 40— of f. Each figure shows the piggyback overhead of the four
protocolslipet, I Log|s H1Log andﬂget as a function off €
20— 20— {2,3,10, 20,30, 40}.
0 — 0 — The reason for this behavior is that the communication
T T T 1 graph is in fact not a tree: a processhat receives a mes-
002040608 1 2 4 6 810 sage fromy in one iteration may in another iteration send a
! f message tg. A determinant may follow a very complex path,
Fig. 8. Performance of7},,, which, as we saw in the BBL model, is a situation for which

11,4 performs well. In addition, Manetho performs relatively
poorly both overall and in comparison withy.;. It is not un-
til f = 20 that I1p.. effectively piggybacks determinants to
all processes.

For SG, howevetI .., (andII},,) do poorly.IT 1, and
IIp.; have similar piggyback loads, withip.; edging out
I, 1.4 forlarger values of . Infact, by f = 10 the _piggyback
load for all protocols has reached 80% of their piggyback load
for f = n. In SG, the process at the root of each tree quickly
learns that the determinants it piggybacks are logged in at least
nine different processes. For smaller valueg,afe additional
The BBL model has the processes communicate asyninformation provided byl is helpfulin spreading the fact
chronously in a bursty manner. While this is not unusual forthat these determinant are stable, but for larger values of
many scientific applications, many other applications are moréléterminants spread quickly around the system, in which case
synchronous in their communications. Hence, we construct/pet does best.
three additional synthetic applications. Each application uses
40 processes.

significantly worse thail ;. Figure 8 shows how the relative

performance varies as a function of each of the dimensions.
Like protocolll;,,, 1T}, is inversely sensitive thr. Un-

like ITy.,4, I}, Seems to perform relatively better for low

values off.

5.2 The client/server model

CS1 This application has a client-server-like communication
structure. A process is chosen at random without replace-
ment from the 40 processes. The chosen process sends a
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Fig. 10. Piggyback overhead
for CS3 as a function of

5.3 Discussion dicate, though, that there are no situations Wwéﬁgoqland

II are appropriate.

Lo

The results of the simulations are specific to the application Igf0t000|17u:og| performs very similarly talp;, and is
models in which they were run. Here, we give some general insomewhat better when the average fanout of messages is low
tuition that could help application programmers choose among@nd f is small. However, if it is known that the application
the protocols. anout is low, therlI,, is a more logical choice since it does

The “plus” protocols are theoretically attractive becausemuch better in this case and is less sensitivg.to
they convey so muchinformation using arepresentationwhose These recommendations would most likely change for
size is independent from the number of determinants piggylarger values of. and for other patterns of communications.
backed on a message. The results from our simulations inAnother issue worth studying is how the results change with
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the frequency of checkpointing. The more frequent check-  Piggyback overhead is not the only metric with which
pointing occurs, the more determinants can become stable viane could compare the different FBL protocols. For exam-
checkpointing. Frequent checkpointing, though, imposes ample, the overhead of processing individual determinants may
overhead both on storage and on computation. make protocols likél; advantageous.A more detailed com-
parison, however, would most likely depend on very specific
environmental factors, such as the relative processor speed
with respect to the communication bandwidth and the over-
head (and hence the frequency) of checkpointing.

i Putting these results in a broader context, causal message
In causal message logging protocols, each process track§yqing protocols are related to causal multicast [25] which

causality to estimate both the number and the identities of proy, t,rn are related to global state detection [1,14]. All of these
cesses that store a copy of a determinant. We have shown thgl,ocols track causal dependencies to implement some level
the tradeoff between excess piggybacking due to inaccuratg gistributed knowledge about the execution history of some
causality tracking and the extra piggybacked information toapplication. For example, in [4] we showed how a causal mes-
increase the accuracy of causality tracking is both complex angage logging protocol can be derived starting from causal mul-
applipation specific. We have giver_1 some situatio_ns i”_WhiChticast. And, if f = n then casual message logging ensures
the simplest of the FBL protocols is the best choice with ré-yhat each process has stored locally all of the nondeterminis-
spect to piggyback overhead, and then given some heuristiGg; chojices made in the causal past of that process. A simple
for when to use other protocols. The choice almost alwayssytension to causal message logging would allow a process to
comes down between the simplest protoébh., and one of  paye |ocally all “important” events in its causal past available
the more accurate protocol,o- . for debugging or for global state detection purposes. Hence,
The piggyback overhead of causal logging can becomgne tradeoffs explored in this paper should be useful to those
large, and so understanding how to reduce the piggyback ovegy, qying other protocols that build upon causality tracking.
head is important. Further reduction can be accomplished by  The simulator and the data we generated for the analysis

compressing the information that is piggybacked (see, for ey, his paper is available from the authors upon request.
ample, [3]). We don’t believe that such compression would

change the relative rankings we have found for the various

FBL protocols. If there is considerable locality in the commu- Acknowledgementsie thank Bruce Hoppe and Fred Schneider for
nications patterns, though, then large parts of the dependendfjeir help in refining our ideas and both Wanda Chiu and Alessandro
matrix may not change very frequently, and so compressioMmoroso for their detailed comments on our work. We a_llso thank
of the dependency matrix based on difference encoding migrﬁlmootazbellah N. Elnozahy fpr hls comment_s onan _earller draft of
make HZF competitive. This question (and the related oneth's paper and for helping us with implementation dgtalls ofManetho.
concerning compression of the stability matrix) would be best”"a!ly, we thank the anonymous referees for their careful reading
explored by considering real, rather than synthetic, applica?nd their constructive criticism of the original manuscript.

tions.

6 Conclusions
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