
Small Byzantine Quorum Systems

Jean-Philippe Martin, Lorenzo Alvisi, Michael Dahlin

University of Texas at Austin - Dept. of Computer Science
Email:

�
jpmartin, lorenzo, dahlin � @cs.utexas.edu

Abstract

In this paper we present two protocols for asynchronous
Byzantine Quorum Systems (BQS) built on top of reli-
able channels—one for self-verifying data and the other
for any data. Our protocols tolerate � Byzantine failures
with � fewer servers than existing solutions by eliminat-
ing nonessential work in the write protocol and by using
read and write quorums of different sizes. Since engineer-
ing a reliable network layer on an unreliable network is dif-
ficult, two other possibilities must be explored. The first
is to strengthen the model by allowing synchronous net-
works that use time-outs to identify failed links or machines.
We consider running synchronous and asynchronous Byzan-
tine Quorum protocols over synchronous networks and con-
clude that, surprisingly, ”self-timing” asynchronous Byzan-
tine protocols may offer significant advantages for many
synchronous networks when network time-outs are long. We
show how to extend an existing Byzantine Quorum protocol
to eliminate its dependency on reliable networking and to
handle message loss and retransmission explicitly.

1. Introduction

Quorum systems are valuable tools for implementing
highly available distributed shared memory. The principle
behind their use is that if a shared variable is stored at a
set of servers, then read and write operations need only be
performed at some set of servers (a quorum). The inter-
section property of quorums ensures that each read has ac-
cess to the most recently written value of the variable. Any
practical use of quorum systems must account for the pos-
sibility that some of the servers may be faulty; hence, quo-
rum systems must enforce the intersection property even in
the presence of failures. Malkhi and Reiter introduce quo-
rum systems, called masking quorum systems, that guaran-

This work was supported in part by DARPA/SPAWAR grant N66001-
98-8911, the Texas Advanced Technology Program and Tivoli. Alvisi was
also supported by an NSF CAREER award (CCR-9734185) and an Al-
fred P. Sloan Fellowship. Dahlin was also supported by an NSF CAREER
award (CCR-9733842) and an Alfred P. Sloan Fellowship.

tee data availability in the presence of arbitrary (Byzantine)
failures [19]. They also introduce a special class of quorum
systems, dissemination quorum systems, which can be used
by services that support self-verifying data, i.e. data that
cannot be undetectably altered by a faulty server, such as
data that have been digitally signed. To tolerate � Byzan-
tine failures, masking quorum systems must include at least� ����� servers, while dissemination quorum systems need
only �	�
��� servers to provide the same guarantee.

In this paper, we present two new quorum systems, one
for generic data and the other for self-verifying data, that
need only �	����� servers and ������ servers, respectively,
to tolerate � Byzantine failures. These results apply in the
same system model used by Malkhi and Reiter, i.e. one
in which communication is authenticated and reliable, but
asynchronous.

Our quorums thus use fewer servers to tolerate a given
number of failures than previously possible. Reducing the
required number of servers is particularly important where
Byzantine protocols protect against security breaches of
servers [7, 8, 20]. Note that using Byzantine protocols to
tolerate security breaches is sound only if server failures
are independent, i.e. if breaking into one server does not
increase the probability of successfully breaking into oth-
ers. Achieving such failure independence may require de-
veloping and maintaining multiple independent implemen-
tations of the server and underlying operating system [26].
Because implementing these multiple variations is expen-
sive, the number of different implementations is, in practice,
limited. It is therefore essential to minimize the number of
servers needed to tolerate a given number of failures.

We call our new quorum systems a-masking and a-
dissemination, where the leading “a” indicates the distin-
guishing characteristic of these quorums, namely, that they
are asymmetric with respect to the operations they support:
reads and writes use quorum of different sizes.

The key insight that allows us to exploit asymmetric quo-
rums is the recognition that assuming reliable communi-
cation has different implications for read and write opera-
tions. Although reads need a response from a read quo-
rum of servers in order to return a reliable value, writes do

not need to be explicitly acknowledged by a corresponding
write quorum: a reliable communication abstraction already
guarantees that every value written by a correct client will
eventually be stored by every correct server in the write quo-
rum, and the writer itself has no use for the knowledge that
the write completed. We call read and write protocols that
exploit this insight Small Byzantine Quorum (SBQ) proto-
cols.

Reliable asynchronous communication is a common
model for Byzantine quorum algorithms [19, 20], and our
protocol aggressively exploits that model’s properties to im-
prove efficiency. In an asynchronous system, unfortunately,
if the underlying network is unreliable then the presence
of even crash failures can pose significant challenges to
engineering a reliable messaging layer because a message
sender cannot distinguish a crashed receiver from a slow
one. For example, if an asynchronous reliable messaging
layer requires senders to buffer and retransmit unacknowl-
edged messages, a failed receiver can force the system to
consume unbounded amounts of buffer memory.

To understand such practical concerns, we explore the
trade-offs for building Byzantine quorum systems (BQS) as
we vary the properties of the underlying communication in-
frastructure. In this analysis, we consider not just the SBQ
protocols but also existing protocols [4, 19].

We begin by strengthening the reliable and asynchronous
communication model to consider systems that implement
reliable and synchronous communication. Under these as-
sumptions, read and write protocols that tolerate � Byzan-
tine failures require just �� � � servers for generic data
(� � � for self-verifying data) [4]. However, these pro-
tocols are vulnerable to slow reads: even a single faulty
server can delay each read until a timeout occurs. Unfor-
tunately, for some systems of practical interest, the natu-
ral timeout at which network transmission should be aban-
doned is long compared to the desired performance of read
operations. Unexpectedly, our analysis suggests that some
systems that assume a reliable and synchronous networks
may still choose to use an asynchronous BQS protocol such
as SBQ. Such systems may use timeouts in the network-
ing layer to bound network retransmission buffers, but they
may choose an asynchronous BQS protocol to allow reads
to proceed at a rate governed by the speed of the fastest
quorum of servers rather than at a rate governed by commu-
nication timeouts to failed servers. To address these trade-
offs more generally, we develop a new class of synchronous
SBQ protocols, which we call S-SBQ. S-SBQ protocols can
be tuned with respect to two parameters: � , the maximum
number of faulty servers for which the protocol is safe and
live, and

�
(
��� �), the maximum number of faulty servers

for which the protocol is free from slow reads. When
�����

,
S-SBQ uses the same number of servers as the synchronous
protocol described in [4], and when

��� � , S-SBQ is iden-

tical to the asynchronous SBQ protocol.
We then explore the implications of weakening the as-

sumption of asynchronous reliable communication. We
consider authenticated unreliable asynchronous networks,
in which protocols must explicitly manage both server faults
and network faults, and show that the quorum systems and
protocols introduced by Malkhi and Reiter for reliable asyn-
chronous networks can be easily extended to operate in this
weaker model.

In summary, our analysis results in a series of Byzantine
quorum systems and protocols over a range of system mod-
els, with increasing numbers of servers required to toler-
ate progressively weaker system models. For generic data,
 � � � servers are needed for synchronous reliable network
systems where timeouts are short, �� � � to ��� � � for
synchronous reliable network systems where timeouts are
long, ��� � � for asynchronous reliable network systems,
and

� � � � for asynchronous unreliable network systems.
Self-verifying-data allows systems to be built for each of
these scenarios using � fewer servers.

The rest of this paper is organized as follows: Section 2
presents the system model. Section 3 presents the new a-
masking and a-dissemination quorum systems. Section 4
discusses the design space of BQS protocols under differ-
ent system models. Section 5 puts our results in perspective
with related work and Section 6 summarizes our conclu-
sions.

2. System Model
We assume the system model commonly adopted by pre-

vious works [2, 4, 19, 20, 21] that have applied quorum
systems in the Byzantine failure model. In particular, our
system consists of an arbitrary number of clients and a set	

of data servers such that the number
 ��� 	 � of servers
is fixed. A quorum system �� �� is a non empty set of
subsets of

	
, each of which is called a quorum. We de-

note with �� the set of quorums used by read operations
(read quorums) and with �� and the set of quorums used
by write operations(write quorums). Any pair of read and
write quorums intersect, and � ��� � .

Servers can be either correct or faulty. A correct server
follows its specification; a faulty server can arbitrarily de-
viate from its specification. Following [19], we define a
fail-prone system ��� �� as a nonempty set of subsets of	

, none of which is contained in another, such that some��� � contains all faulty servers. Fail-prone systems can
be used to express the common f-threshold assumption that
up to a threshold � of servers fail (in which case, � contains
all sets of � servers) but they can also describe more general
situations, as when some computers are known to be more
likely to fail than others.

The set of clients of the service is disjoint from
	

. We re-
strict our attention in this work to server failures; clients are

assumed to be correct. Clients communicate with servers
over point-to-point channels. In this paper, we consider
Byzantine quorum systems for the following models of
communication:

Reliable Synchronous A correct process � receives a mes-
sage from another correct process � if and only if � sent
it; furthermore, � can determine that � was the sender
of the message. Also, there exists a bound on mes-
sage delivery time that can be used to timeout failed
processes that do not respond to requests [4].

Reliable Asynchronous A correct process � receives a
message from another correct process � if and only if
� sent it; furthermore, � can determine that � was the
sender of the message. However, no bound is assumed
on message transmission times [19].

Authenticated Unreliable Asynchronous If a correct pro-
cess � sends a message infinitely often to another cor-
rect process � , then � will eventually receive the mes-
sage and know that it came from � ; a correct process �
receives a message only if a correct process � sent the
message; and no bound is assumed on message trans-
mission times.

We explicitly state which model is assumed at each point
of our discussion.

3. Small Byzantine Quorums

Figures 1 and 2 show our Small Byzantine Quorum
(SBQ) protocols for generic and self-verifying data, respec-
tively, under the assumption of reliable asynchronous com-
munication. To write data � to a variable � in either proto-
col, a client first queries a read quorum of servers to choose
a timestamp that is larger than the timestamp for any com-
pleted write (steps 1-4) and then sends the data and the new
timestamp to a write quorum of servers (step 5). To read
data, a client queries a read quorum of servers for their most
recent values (steps 1-2) and then chooses and returns the
valid answer with highest timestamp (step 3-4). Each cor-
rect server updates its local variable and timestamp to the
values � ����� �
	 received by a client only if

���
is larger than

the timestamp currently associated with � .
A noteworthy aspect of the protocol is that unlike op-

erations on read quorums, an operation on a write quorum
does not wait for replies from the servers it contacts. For re-
liable asynchronous communication, the eventual delivery
of all messages sent by a correct client to correct servers is
assured, and the write operation can complete at the client
without gathering information from the servers to which the
write messages have been sent. Note, however, that this
means that a client’s local write operation may return be-
fore the global write completes. In order to define an order

among reads and writes, we say that a global write operation
completes when all correct servers in some write quorum
have finished processing the STORE messages sent in step
5 of the write() operation defined in Figures 1 and 2. Fur-
thermore, we say that a write operation �� happens before
a write operation ��� if ��� ends (according to the above def-
inition) before ��� starts. A disadvantage of this definition
of write completion is that a client issuing a write may not
know when the write completes. This is not a problem from
a theoretical standpoint, since this knowledge is required by
neither safe semantics (provided by the SBQ protocol for
generic data) nor regular semantics (provided by the SBQ
protocol for self-verifying data) [16]. Furthermore, comple-
tion of write operations is both well defined from the point
of view of an observer external to the system, and timely,
in the sense that completion cannot be delayed by faulty
servers because it only depends on actions taken by correct
processes. Nonetheless, SBQ protocols do carry a price:
they do not support the implicit synchronization that can be
obtained through write operations that block until the write
completes. Fortunately, there are several interesting appli-
cations that do not require this implicit synchronization,
either because they don’t need any synchronization (e.g.,
in networked sensors [14], nodes producing data often do
not need to receive acknowledgments, implicit or explicit,
from consumers) or because they only require end-to-end
explicit acknowledgments in which clients synchronize by
reading values written to various memory locations by other
clients. For instance, two clients can communicate using an
SBQ protocol in the same way as two pen-pals communi-
cate through regular mail: in both cases, the writer relies on
the fact that its message will be eventually received, even if
it does not know when. Its counterpart can assure the writer
of the receipt of his message by acknowledging it in his next
message.

The rest of this section explains this protocol in more
detail. We first describe how quorums are constructed and
why the SBQ protocols’ quorums are small, needing only
��� � � servers in the f-threshold case for generic data and
 � � � for self-verifying data. We then compare our protocol
to existing protocols to identify the differences and explain
why these differences allow quorums based on SBQ proto-
cols to be smaller than those of existing protocols for re-
liable asynchronous communications systems. Finally, we
step through the details of the SBQ protocol and provide a
proof of its correctness.

3.1. Quorum definition

The key advantage of SBQ protocols over existing
Byzantine quorum systems protocols is their reduction in
the number of servers required by the system. This re-
duction stems from the different constraints SBQ places
on read and write quorums. Because the protocol places

Write(�)

1. send (GET-TS) to all servers.

2. wait until received timestamp ����� from each server ��� in a read quorum.

3. let last ts be the largest received timestamp.

4. choose a new timestamp ��� � ��� that is larger than both last ts and any times-
tamp previously chosen by this server.

5. send (STORE, �
	���� � ���) to a write quorum of servers.

� =Read()
1. send (GET) to all servers.

2. wait until received pairs �� � 	���� ��� from each server � � in a read quorum���
.

3. � Build a set A’ containing all pairs returned by a voucher set of servers �
compute �����������
	���� ��� ��!#"%$'& ���)((�+*�"-,/. ("0$21&'" (
�+* �43 ,5"%$ ((�637�/�98
���437�:����;�;�;��

4. if ��� 1�/< then
select the pair ���
	���� � with the highest timestamp ts
return �

else
return =

Figure 1. SBQ protocol for generic (non-self-
verifying) data

Write(�)

1. send (GET-TS) to all servers.

2. wait until received timestamp ����� from each server ��� in a read quorum.

3. let last ts be the largest received timestamp.

4. choose a new timestamp ��� � ��� that is larger than both last ts and any times-
tamp previously chosen by this server.

5. send (STORE, �
	���� � ���) to a write quorum of servers.

� =Read()
1. send (GET) to all servers.

2. wait until received pairs ��>�?	������ � from each server ��� in a read quorum���
.

3. discard all pairs that are not verifiable.

4. select among the remaining pairs the pair ���
	���� � with the highest timestamp
return �
Figure 2. SBQ protocol for self-verifying data

asymmetric constraints on read and write quorums, it can
use asymmetric masking quorums (a-masking quorums) for
generic data and asymmetric dissemination quorums (a-
dissemination quorums) for self-verifying data in place of
the traditional (symmetric) masking and dissemination quo-
rums [19].

To understand how the protocol’s constraints on quorum
construction influence the minimum number of services re-
quired by a system, consider the simple case of f-threshold
quorums for self-verifying data under the SBQ protocol and
let
� @ � � and

� @ � � denote, respectively, the size of read and
write quorums. In order to guarantee safety and liveness
for this protocol, there are effectively three constraints that
must be met:

SBQ1.
� @ � ���
BA � (Availability)

This constraint is required for step 2 of Read() and step

2 of Write() to be live.

SBQ2.
� @ � � � � @ � � A
DC � � � (Consistency)

This constraint is required for the intersection of reads
(in step 2 of Read() and step 2 of Write()) and writes
(in step 5 of Write()) to be large enough to ensure that
each read intersects with each completed write in at
least one correct server. This constraint is essential for
the safety of the protocol.

SBQ3.
� @ � ���
 (Realism)

The following values meet these constraints:
� @ � � �E ��F ��HG � � and

� @ � � � E ��F ��HG . Substituting this value for� @ � � into SBQ1 gives
DC ��
��� .
Similar reasoning applies for non-self-verifying data,

where the consistency constraint requires that read and
write quorums intersect in a majority of correct processes.
SBQ2 then becomes:

SBQ2 I . � @ � � � � @ � � A
'C �
� � (Consistency)

The corresponding bound for
 is
'C ��� � � .
The above arguments capture the intuition behind a-

masking and a-dissemination quorums. We now define
them formally.

3.1.1 Asymmetric quorum systems

We say that a set J of servers is a voucher set, if, under all
possible failure scenarios, it is guaranteed to contain at least
one correct server, i.e. K � � �MLNJPO� � .

We define asymmetric quorum system for generic (non-
self-verifying) data and self verifying data as follows.

Definition 1 A quorum system is an a-masking quorum
system if the sets of read and write quorums � and ��
have the following properties.

AM-Consistency The intersection of any pair of read and
write quorums always contains a voucher set consist-
ing entirely of correct servers.
K @ � � � K @ � � � K � � � � � � �QL @ �SR @ �UT � � O�� �

AM-Availability One read quorum is always available.
K � � �DV @ � � ��WL � R @ � �HX

Definition 2 A quorum system is an a-dissemination quo-
rum system if the sets of read and write quorums � and
�� have the following properties.

AD-Consistency The intersection of any pair of read of
read and write quorums is a voucher set.
K @ � � � K @ � � � K � � �QL @ �>R @ � O� �

AD-Availability One read quorum is always available.
K � � � V @ � � � L � R @ � � X

Note that the consistency requirement is easier to dis-
charge when the data is self-verifying. As a result, in the
f-threshold case, a-masking quorums require
HC �	� � � ,� @ � � � E ��F � F �� G , and

� @ � � � E ��F � F �� G � � , while a-
dissemination quorum systems only need
 C �� � � ,� @ � � � E ��F �� G , and

� @ � � � E ��F �� G � � .

3.2. Comparison with existing protocols

The SBQ protocols for generic and self-verifying data
are similar to the protocols introduced by Malkhi and Re-
iter for masking and dissemination quorum systems [19].
There are two differences between these protocols and SBQ
protocols. First, in the Write(�) operation, in place of the
SBQ protocol’s step 5, which just sends data to a write quo-
rum, earlier protocols for masking and dissemination quo-
rum systems first send the data and then wait for acknowl-
edgments from a quorum of servers. In essence, these pro-
tocols send writes to a quorum of responsive servers while
SBQ sends writes to a quorum of servers that may or may
not be responsive. Second, earlier protocols use same-sized
quorums for both reads and writes, while the SBQ protocols
allow asymmetric read and write quorums.

To illustrate these differences, consider the f-threshold
case. In addition to the constraints SBQ1, SBQ2, and SBQ3
listed above, Malkhi and Reiter protocols (MR protocols for
short) add two more constraints.

First, MR protocols require that writes wait for a write
quorum of acknowledgments.

MR1.
� @ � � �
BA � (Availability)

Second, MR protocols use symmetric quorums.

MR2.
� @ � � � � @ � � � � @ � (Symmetry)

Note that because MR1 and SBQ1 impose symmetric
constraints on read and write quorums the use of symmet-
ric quorums is a natural design decision for MR proto-
cols. Note also that either of MR1 and MR2, when com-
bined with constraints SBQ1 to SBQ3, is sufficient in the
f-threshold case to increase by � the number of servers re-
quired to tolerate � failures: generic data now requires
DC� � � � servers, with minimum quorum size

� @ � � ��F � � F ��
(
 C �	� � � and

� @ ��� � F � F �� for self-verifying data).
The following table compares the minimum quorum sizes
in the f-threshold case for the MR protocols and the SBQ
protocols.
For generic data:

MR SBQ
Server count

� �
��� �	�
���
Write quorum

E � F � � F �� G E ��F � F �� G � �
Read quorum

E � F � � F �� G E ��F � F �� G

For self-verifying data:
MR SBQ

Server count �	�
��� ��
���
Write quorum

E ��F � F �� G E ��F �� G � �
Read quorum

E ��F � F �� G E ��F ��HG
Because SBQ quorums are formed under strictly weaker

constraints than the dissemination and masking quorums
used in the MR protocols, the SBQ quorums never need to
be larger than the MR quorums. The formulas above con-
firm this observation.

Conversely, for a given number of servers, the SBQ pro-
tocols can tolerate more failures than the MR protocols. For
example in the case of self-verifying data on 13 servers, MR
can tolerate 4 failures and SBQ can tolerate 6. The quorum
sizes are 9 for MR and 13/7 for SBQ (for the write/read
quorum, respectively).

Finally, we note that SBQ protocols use the same reli-
able asynchronous messaging system model as MR proto-
cols, and, as we show in the next section, they provide the
same consistency guarantees: regular semantics in the case
of self-verifying data and safe semantics otherwise.

Although SBQ protocols can reach the same level of
fault-tolerance with fewer servers, they sacrifice something
in order to get these improvements: a writer that uses SBQ
can not determine when a write operation ends. A mitigat-
ing factor is that all write operations are guaranteed to end
eventually.

Section 4 shows that as a result, our protocol cannot be
adapted to unreliable networks. Instead, we adapt the orig-
inal protocols of Malkhi and Reiter to this more general
model.

Because of space constraints, we refer the reader to our
extended technical report [22] for the correctness proof of
the SBQ protocols.

4. Network models

Both the MR and the SBQ protocols assume a reliable
asynchronous network, that is for any pair of correct ma-
chines � and

�
, if � sends a message, then

�
is guaranteed

to eventually receive it. In some systems, reliable commu-
nication is provided by the underlying network subsystem.
In other cases, however, the network provides weaker guar-
antees such as unreliable asynchronous communication, in
which each message sent has a non-zero probability of ar-
riving at its destination but there are no bounds on message
delivery time.

In that case, communicating machines commonly at-
tempt to construct a network layer that provides a reliable
network abstraction over unreliable network hardware. Un-
fortunately, Byzantine machine failures can make this dif-
ficult because faulty servers can flush their network buffers
or refuse to send acknowledgments. In particular, we are

concerned about bounding memory consumption of mes-
sage buffers. Commonly, a system achieves reliable mes-
sage delivery by requiring a sender to buffer and occa-
sionally retransmit each message it sends until it receives
an acknowledgment from the receiver [1, 12, 23]. In an
asynchronous system, such an approach can consume un-
bounded buffer memory even if failures are restricted to
crash failures [24]. This danger arises because a correct
but slow machine cannot be distinguished from a faulty
(crashed) machine. Therefore, a sender can never safely
delete an unacknowledged message from its buffer and a
faulty server can easily force clients to consume infinite
memory by never acknowledging messages.

Table 1 summarizes the key results discussed in this sec-
tion. Our analysis results in a series of Byzantine quo-
rum systems and protocols over a range of system mod-
els, with increasing numbers of servers required to toler-
ate progressively weaker system models. For generic data,
 � � � servers are needed for synchronous reliable network
systems where timeouts are short, �� � � to �	� � � for
synchronous reliable network systems where timeouts are
long, ��� � � for asynchronous reliable network systems,
and

� � ��� for asynchronous unreliable network systems.
Self-verifying-data allows systems to be built for each of
these scenarios using � fewer servers.

In Subsection 4.1 we explain the circumstances under
which the reliable asynchronous network abstraction can be
implemented on top of an unreliable network. If this con-
struction is not possible then other network models must be
considered, for example a synchronous model or one that
makes no assumption of reliability. These models are dis-
cussed in Subsections 4.2 and 4.3 respectively.

4.1. Engineering an asynchronous reliable network

If the network layer is subject to arbitrary Byzantine fail-
ures then a faulty receiver can prevent a sender from ever
deleting buffered messages. Nonetheless, one can engineer
a reasonable approximation of an asynchronous reliable net-
work abstraction when one can (1) restrict the failures to
which the system or the network layer is vulnerable or (2)
restrict the workload so that infinite buffering is not a con-
cern. To illustrate when a reliable network layer can be
built, we provide a few examples of both types of restric-
tion below.

Restricting failures. For a fail-stop system model, this
problem may not be a large concern because there exist rea-
sonable engineering approaches to avoid the need for infi-
nite memory while providing a reasonable approximation
of reliable asynchronous messaging. For example, several
reliable messaging systems [1, 15] store unacknowledged
messages on in an on-disk log. It may be safe in practice to

assume that it is extremely unlikely that the log will over-
flow by assuming (1) a large log, (2) a reasonable bound
on crash or partition durations, and (3) that a machine will
acknowledge received messages after the repair of a crash
or partition. Although such an approach may be theoreti-
cally unsatisfying (it implicitly assumes a bound on the du-
ration of failures and therefore is no longer, strictly speak-
ing, an asynchronous system), this approach seems com-
mon in practice.

Restricting network failures. In some systems, the
Byzantine quorum protocol layer is vulnerable to arbitrary
Byzantine failures, but the network layer is less vulnera-
ble. Examples include “System/Storage Area Networks”
(SANs) (such as Fibre Channel [27]), networks for Mas-
sively Parallel Processors (MPPs) (such as the Thinking
Machines CM5 and Cray T3D), networks with built-in re-
dundancy and automatic fail-over such as Autonet [28], and
networks with automatic link-level retransmission [25]. A
second, related, approach to bounding memory consump-
tion by assuming a restricted model of network failures is to
construct a network protocol without relying on acknowl-
edgments to free network retransmission buffers. For ex-
ample, consider the case where the primary cause of mes-
sage loss is bit errors from transient electronic interference,
where each packet has a probability � of arriving at its des-
tination. A sender that retransmits a message a constant
number of times or with sufficient forward error control re-
dundancy [6] may in this case regard the packet as success-
fully sent, even if no acknowledgments are received; such a
system may still use acknowledgments to reduce the num-
ber of retransmissions in the common case of a responsive
sender. A third approach that insulates the network layer
from some failures is to rely on protection across software
modules. For example, in some systems the network layer
may be a protected kernel subsystem and may be consid-
ered less vulnerable to Byzantine failures than higher-level
protocols.

Restricting the workload. Rather than restricting the net-
work failure model, some systems may approximate reli-
able asynchronous messaging with finite buffers by assum-
ing a restricted workload. If the request rate is low and the
retransmission buffer large (e.g., on disk as in MQS [1] for
example), then a system may reasonably buffer all sent mes-
sages regardless of whether they have been acknowledged.
An example of a system where such an assumption is natu-
ral is a system that already maintains a persistent log of all
transactions for another purpose such as auditing.

4.2. Synchronous network

Given the challenges to engineering a reliable asyn-
chronous network, it may not be much more difficult to en-

Network Model Protocol servers for generic data servers for self-verifying data

reliable synchronous Bazzi [4] 2f+1 f+1
(fast timeouts)

reliable synchronous S-SBQ 2f+1 to 3f+1 f+1 to 2f+1
(slow timeouts) SBQ 3f+1 2f+1

reliable asynchronous SBQ 3f+1 2f+1
unreliable asynchronous U-masking/U-dissemination 4f+1 3f+1

Table 1. Summary of protocols tolerating � Byzantine failures for different network models.

gineer a reliable synchronous network that allows network
buffers to be bounded by placing an upper bound on de-
livery time. In effect, such a system declares that a server
has failed if it fails to acknowledge a message within a pre-
scribed time.

An obvious strategy to constructing Byzantine storage
in a synchronous system is to use time-outs not only to
garbage collect network buffers but also to detect server fail-
ures at the BQS-protocol level. This additional information
can improve the efficiency of the BQS protocol. In partic-
ular, Bazzi [4] describes a synchronous BQS protocol for
generic (or self-verifying) data that requires just � � � (or
��� �) servers to provide storage with safe (or regular) se-
mantics. Bazzi’s read protocol for self-verifying data, for
example, sends read requests to all � � � servers, waits for
� � � replies or time-outs, and then returns the correct value
with the highest timestamp from the set of replies.

The disadvantage of such an approach is that a single
faulty server can force each read request to wait for a time-
out. Unfortunately, for many systems the natural network
timeout may be long or it may be difficult to estimate pre-
cisely. For example, empirical measurements of network
failures show a heavy-tailed distribution for the duration of
Internet connectivity failures, with significant numbers of
failures lasting several minutes and some network failures
lasting hours [10]. As another example, TCP’s protocol for
establishing an initial connection attempts retransmissions
at increasing intervals that can exceed one minute if several
packet losses occur in a row [3]. Therefore, it may often be
desirable to conservatively set such timeouts to be as long as
possible in order to avoid introducing spurious server fail-
ures. When messages can be buffered on disks, timeouts of
minutes, hours, or longer may be desirable.

Unfortunately, if a synchronous BQS protocol is used,
such timeouts could result in unacceptable read perfor-
mance for many applications. In some cases, the impact
of long timeouts can be mitigated by having clients track
which servers have timed out in the past so that clients can
avoid sending messages to or waiting for servers known to
have failed. Unfortunately, this solution is not always ap-
propriate. For example, for some applications or environ-
ments such an approach can (1) increase the complexity of
a client, (2) increase the complexity of server recovery [8],

(3) inflict a timeout that is too long (e.g., minutes or hours)
to be accepted for even a single operation per client, or (4)
remain vulnerable to a server that consistently responds a
few moments before a series of timeouts.

An alternative approach is to use an asynchronous
Byzantine quorum protocol over a synchronous network. In
this approach, a server that fails to acknowledge a message
within a timeout is defined to have failed, and the network
layer uses timeouts to bound buffer consumption by delet-
ing messages to failed servers. The Byzantine quorum pro-
tocol, however, is asynchronous and does not make use of
timeouts. In effect, we are deploying an asychronous proto-
col on top of a synchronous network. Although the concept
may be surprising, this approach has a number of advan-
tages. First, this approach allows for a clean separation of
concerns. Second, it is “self-timing”: reads and writes pro-
ceed at the rate of the correct servers rather than the rate
imposed by failed servers and timeouts. The price for this
speed is that the SBQ protocol requires � more servers than
Bazzi’s synchronous protocol.

This naturally raises the question of how much perfor-
mance can be achieved using fewer additional servers. In
fact, a continuum exists between (a) the option of syn-
chronous protocols such as Bazzi’s that use � � � servers
for generic data but that can suffer slow reads if even one
server is faulty and (b) the option of asynchronous protocols
that use ���
� � servers for generic data servers but that can
keep all failed servers off the critical path of read and write
operations. We cover this complete continuum by adapt-
ing the SBQ protocol to the reliable synchronous network
model. The resulting protocol, S-SBQ, provides two differ-
ent guarantees: it can still tolerate � failures, and in addition
it is guaranteed to complete operations without waiting for
time-outs as long as the number of actual failures stays be-
low some threshold

�
(
� � �). We say that S-SBQ is f-safe,

t-fast. By comparison, the Bazzi protocol is f-safe, 0-fast
and the asynchronous BQS protocols are f-safe, f-fast. The
quorum construction used by S-SBQ allows it to be f-safe,
t-fast using � � � � � servers (�� � � � � for non-self-verifying
data). Because the choice of the value of

�
is left to the im-

plementor, S-SBQ can either use as few servers as Bazzi’s
protocol or always be self-timing like SBQ. More interest-
ingly, its performance can be adjusted to any intermediate

scenario.
Due to space constraints, we refer the reader to [22] for

the complete description of the S-SBQ protocol. Note that
even though the discussion of the previous paragraph was
limited to the threshold case, S-SBQ uses a more general
failure model that includes not only a fail-prone system but
also a new delay-prone system to describe the conditions
under which the protocol must be fast.

The following theorems describe the key behaviors of
the S-SBQ protocol.

Theorem 1 The S-SBQ protocol for self-verifying data fol-
lows regular semantics and the S-SBQ protocol for non-self-
verifying data follows safe semantics. (Safety)

This theorem expresses the safety of the protocol. Its
proof derives from the intersection property of our quorum
construction.

Theorem 2 The S-SBQ protocols are live (i.e. all requests
eventually terminate). (Liveness)

It is easy to show by inspection that all protocol oper-
ations terminate at most after a time-out delay. The next
theorem expresses the conditions under which the protocol
does not need to wait for this delay.

Theorem 3 The S-SBQ protocols are self-timed as long as
the failure set is covered by some delay scenario. (Perfor-
mance)

This derives from the availability property of the quo-
rums.

It is also straightforward to adapt Bazzi’s protocol to
construct an f-safe, t-fast version by adding more servers.
However, because Bazzi’s protocol includes synchronous
acknowledgments of writes, the natural definition of such an
“S-Bazzi” protocol retains symmetric read and write quo-
rums and therefore requires � � � � � servers for generic
data (� � � � � servers for self-verifying data).

4.3. Unreliable asynchronous network

In this section we describe a U-masking and U-
dissemination Byzantine quorum protocol for authenticated
unreliable networks as defined in Section 2 in which the
protocol deals with network-layer failures, retransmission,
and buffering. We also show how variations of this proto-
col can bound network retransmission buffer consumption.
This protocol is a straightforward extension of Malkhi and
Reiter’s protocol for asynchronous reliable networks [19].
Due to space constraints, we summarize the protocol and
its properties in this section. We refer the reader to [22]
for a full statement of the protocol as well as proofs for the
theorems and lemmas stated in this section.

Although the model used by Malkhi and Reiter’s original
protocol ensures that all correct servers receive all transmit-
ted messages, the protocol itself only relies on a quorum
of servers receiving each message. Thus, once a sender re-
ceives responses to a request from a quorum of machines,
it may safely stop retransmitting that request. Because the
protocol requires explicit responses to all requests, includ-
ing writes, it is simple to adapt it to manage retransmission
buffers. In particular, we modify the protocol to replace
each step that waits for a quorum of replies to instead re-
peatedly resend the message sent in the previous step to all
servers that have not responded until a quorum of servers
has responded. Note that a sender can space the repeated
resends arbitrarily far apart in time as long as it follows
an algorithm that ensures an infinite number of retries to
a receiver if no response from that receiver is ever received
and if the send to that receiver is not cancelled. Also note
that these application-level retransmissions provide weaker
guarantees than the reliable asynchronous networking ab-
straction because some correct servers may not receive mes-
sages transmitted to them.

The resulting U-masking (or U-dissemination) protocol
provides safe (or regular) semantics for generic (or self-
verifying) data. The protocol is live because the avail-
ability property guarantees that it must always eventually
stop resending messages: under an unreliable asynchronous
network as defined here, a message sent repeatedly must
eventually reach its destination. Given that, we show that
each send/receive/wait step is equivalent to a reliable asyn-
chronous send to a responsive quorum of servers. Then,
the proof of safety and liveness follows Malkhi and Reiter’s
original proof.

The advantage of managing message retransmission in
the Byzantine quorum protocol as opposed to abstracting it
into the communications layer is that doing so makes it easy
to bound buffer consumption even if a server’s network pro-
tocol software is considered vulnerable to Byzantine fail-
ures of the server. In particular, under these protocols, a
read or write request may consume client buffer memory
proportional to
 , the number of servers. If a client issues

� concurrent operations, then the client’s total memory con-
sumption is O(
 �). Unfortunately, in an asynchronous sys-
tem, each request may take arbitrary time to complete, so

� may, in general, be unbounded. Fortunately, this protocol
is amenable to several techniques for bounding the number
of outstanding requests from each client. For example, if a
client application using the BQS system is single-threaded
and blocks for reads and writes, then system buffer con-
sumption is naturally bounded to O(
) buffers per client.

A more general solution is for the protocol itself to man-
age allocation and deallocation from a finite set of buffer
and to block incoming requests when insufficient buffers
are available to complete a request. In particular, in the

Finite Buffer U-masking or U-dissemination protocol, we
assume

�
local buffers and add a step FIRST before and a

step LAST after both the read and the write function.

FIRST) Wait for
 local buffers to be available then lock

local buffers.

LAST) Unlock the
 local buffers claimed in step FIRST.

We provide the complete proofs for the following three
theorems in our technical report [22].

Theorem 4 The Finite Buffer U-masking protocol for
generic data follows safe semantics and the Finite Buffer U-
dissemination protocol for self-verifying data follows regu-
lar semantics. (Safety)

The safety of the Finite Buffer protocol follows from the
fact that each send/wait/repeat step is equivalent to a reliable
asynchronous send and the safety properties of Malkhi and
Reiter’s original protocol.

Theorem 5 The Finite Buffer U-masking and U-
dissemination protocols are live (i.e. all requests eventually
terminate). (Liveness)

This follows from three facts: (1) step FIRST terminates
because the rest of the protocol is live, (2) each network
send/wait/resend step terminates because it must eventually
reach a responsive set of servers, and (3) the original Malkhi
and Reiter protocols terminate.

Theorem 6 The Finite Buffer U-masking and U-
dissemination protocol consumes at most

�
buffers.

(Finite Buffering)

This follows from the locking of step FIRST.

5. Related Work

There is a significant body of work on quorum systems
[11, 13, 18, 29] but Byzantine failures were first considered
by Malkhi and Reiter [19]. They have extended this work
in other directions, for example by distinguishing between
crash and Byzantine failures [21]. In the same work, Malkhi
and Reiter show how to use smaller quorums (as opposed to
smaller quorum systems, as examined here), of size �����
�� .
These constructions however require as many total servers
as their previous work. Investigating whether our SBQ pro-
tocols can be adapted to these smaller quorums remains fu-
ture work. Malkhi and Reiter also explore the load of the
quorum system and present a quorum construction which
does not require the clients to know about the failure sce-
narios [19]. Exploring these concepts in the context of SBQ
is future work.

The idea of distinct read and write quorums has been ex-
plored before [11] but not in the context of Byzantine fail-
ures.

Bazzi [4] explored Byzantine quorums in a synchronous
environment with reliable channels. In this context it is pos-
sible to require fewer servers (� � � for self-verifying data,
 � � � otherwise). Our work shows an alternative asyn-
chronous algorithm that can efficiently utilize additional
servers to avoid slow reads.

Bazzi [5] argues that an important metric of a quorum
system is the asynchronous access cost – the number of
servers that are contacted during an operation. In a sense,
SBQ has already optimized its use of messages by using
asymmetric quorums. As a result, the asynchronous cost
cannot be optimized further.

Triantafillou and Taylor [30] have extended work in quo-
rums under a fail-stop assumption by reasoning about the
location of the replicas. They present results which provide
similar availability to quorum systems but with improved
latency. Extending these results to Byzantine environments
remains future work.

Phalanx [20] builds shared data abstractions and pro-
vides a locking service, both of which can tolerate Byzan-
tine failure of servers or clients. It uses dissemination and
masking quorums. Asymmetric quorums would not be ap-
propriate in this case because to implement locks, one must
be able to determine when the write operation completes.

Castro and Liskov [9] also attacked the problem of re-
liable storage under Byzantine failures. They implement a
Byzantine-fault-tolerant NFS service using a technique dif-
ferent from quorum systems. They use self-verifying data
only for the (relatively infrequent) view-change and new-
view messages and can tolerate � Byzantine failures using
���
� � servers.

When using non-self-verifying data, faulty servers can
force new timestamps to take arbitrarily large values. This
is a problem because in practice timestamps can only take
values from a finite range and therefore faulty servers can
compromise the safety of the protocol. All the quorum pro-
tocols discussed in this paper are vulnerable to this problem,
but it can be solved by applying known techniques [17].

6. Conclusion
We present two Small Byzantine Quorum (SBQ) proto-

cols for shared variables, one that provides safe semantics
for generic data using �	� � � servers and the other that pro-
vides regular semantics for self-verifying data using � � �
servers. This reduces by � the number of servers needed by
previous protocols in the reliable asynchronous communi-
cation model. Our protocols use the novel a-masking and
a-dissemination quorums. They differ from existing quo-
rums for Byzantine systems in that they make a distinction
between read and write quorums.

The reliable channels required by our protocols can be
difficult to engineer, particularly when Byzantine failures
are a concern. We therefore consider Byzantine quorum
protocols with different system models.

In the case of reliable synchronous networks, protocols
that rely on synchrony can be forced to wait for a time-out
if faulty servers do not reply. It can therefore be advan-
tageous to use asynchronous protocols and to use the syn-
chrony assumption only in the network layer. We propose
an intermediate protocol for the synchronous model which
tolerates � Byzantine failures but also provides the guaran-
tee of self-timed operation as long as the number of actual
failures does not exceed a threshold

� � � � � � .
For the case of unreliable asynchronous networks we

show how to adapt Malkhi and Reiter’s protocol to this en-
vironment to provide safe semantics using

� � � � servers or,
if the data is self-verifying, regular semantics using ��� � �
servers.

A limitation of the asymmetric quorums used by the
SBQ protocols is that the implicit synchronization provided
by blocking writes is lost. We are exploring the benefits and
limitations of solutions that combine SBQ protocols with
explicit end-to-end acknowledgments of writes that have
been successfully read.

References

[1] MQSeries, IBM,
http://www-4.ibm.com/software/ts/mqseries.

[2] L. Alvisi, D. Malkhi, E. Pierce, and R. Wright. Dynamic
Byzantine quorum systems. In Proceedings of the Inter-
national Conference on Dependable Systems and Networks,
June 2000.

[3] G. Banga and P. Druschel. Measuring the capacity of a web
server. In Usenix Symposium on Internet Technologies and
Systems, Oct. 1997.

[4] R. A. Bazzi. Synchronous Byzantine quorum systems. Dis-
tributed Computing Journal Volume 13, Issue 1, pages 45–
52, January 2000.

[5] R. A. Bazzi. Access cost for asynchronous Byzantine quo-
rum systems. Distributed Computing Journal volume 14, Is-
sue 1, pages 41–48, January 2001.

[6] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A
digital fountain approach to reliable distribution of bulk data.
In SIGCOMM, pages 56–67, 1998.

[7] M. Castro and B. Liskov. Authenticated Byzantine fault tol-
erance without public-key cryptography. Technical Report
/LCS/TM-595, MIT, 1999.

[8] M. Castro and B. Liskov. Proactive recovery in a Byzantine-
fault-tolerant system. In Proceedings of the Fourth Sym-
posium on Operating Systems Design and Implementation
(OSDI ’00), San Diego, USA, pages 273–287, October 2000.

[9] M. Castro and N. Liskov. Practical Byzantine fault tolerance.
In Proceedings of the Third Symposium on Operating Sys-
tems Design and Implementation (OSDI ’99), New Orleans,
USA, pages 173–186, February 1999.

[10] B. Chandra, M. Dahlin, L. Gao, and A. Nayate. End-to-end
WAN service availability. In Third Usenix Symposium on
Internet Technologies and Systems (USITS01), March 2001.

[11] S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency
in a partitioned network: a survey. ACM Computing Sur-
veys (CSUR) Volume 17, Issue 3, pages 341–370, September
1985.

[12] J. Gray and A. Reuter. Transaction processing: Concepts and
techniques, 1993.

[13] M. Herlihy. A quorum-consensus replication method for ab-
stract data types. In ACM Transactions on Computer Systems
(TOCS) Volume 4 , Issue 1, pages 32–53, 1986.

[14] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked sen-
sors. In Proceedings of the Ninth International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’00), Cambridge, USA, pages
93–104, October 2000.

[15] A. D. Joseph, F. A. deLespinasse, J. A. Tauber, D. K. Gifford,
and F. M. Kaashoek. Rover: A Toolkit for Mobile Informa-
tion Access. In Proceedings of the 15th ACM Symposium
on Operating Systems Principles, pages 156–171, Copper
Mountain, Co., 1995.

[16] L. Lamport. On interprocess communications. Distributed
Computing, pages 77–101, 1986.

[17] M. Li, . Tromp, and P. M. B. Vitányi. How to share concur-
rent wait-free variables. Journal of the ACM, 43(4):723–746,
1996.

[18] N. A. Lynch and A. A. Shvartsman. Robust emulation
of shared memory using dynamic quorum-acknowledged
broadcasts. In Symposium on Fault-Tolerant Computing,
pages 272–281, 1997.

[19] D. Malkhi and M. Reiter. Byzantine quorum systems. Dis-
tributed Computing, pages 203–213, 1998.

[20] D. Malkhi and M. Reiter. Secure and scalable replication in
Phalanx. In Proc. 17th IEEE Symposium on Reliable Dis-
tributed Systems, West Lafayette, Indiana, USA, Oct 1998.

[21] D. Malkhi, M. Reiter, and A. Wool. The load and availability
of Byzantine quorum systems. SIAM Journal on Computing
29(6), pages 1889–1906, 2000.

[22] J.-P. Martin, L. Alvisi, and M. Dahlin. Small Byzantine quo-
rum systems. Technical report, University of Texas at Austin,
Department of Computer Sciences, December 2001.

[23] J. Postel. Transmission control protocol. Technical Report
RFC-793, Internet Engineering Task Force Network Work-
ing Group, Sept. 1981.

[24] A. Ricciardi. personal communication, Nov. 2001.
[25] J. Robinson. Reliable link layer protocols. Technical Report

RFC-935, Internet Engineering Task Force Network Work-
ing Group, Jan. 1985.

[26] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using ab-
straction to improve fault tolerance. In Proceedings of the
18th Symposium on Operating Systems Principles (SOSP
’01), October 2001.

[27] M. Sachs and A. Varma. Fibre channel. IEEE Communica-
tions, pages 40–49, August 1996.

[28] M. Schroeder, A. Birrell, M. Burrows, H. Murray, R. Need-
ham, T. Rodeheffer, E. Satterthwaite, and C. Thacker. Au-
tonet: A high-speed, self-configuring local area network us-
ing point-to-point links. IEEE Journal on Selected Areas in
Communications, 9(8), October 1991.

[29] R. H. Thomas. A majority consensus approach to concur-
rency control for multiple copy databases. Database Sys-
tems, 4(2):180–209, 1979.

[30] P. Triantafillou and D. J. Taylor. The location-based
paradigm for replication: Achieving efficiency and availabil-
ity in distributed systems. In IEEE Transactions on Software
Engineering, 21/1, pages 1–18, January 1995.

