
Symmetry in Gardens of Eden

Christiaan Hartman
Delft University of Technology

The Netherlands

c.hartman.cit@gmail.com

Marijn J. H. Heule∗

The University of Texas at Austin
United States

marijn@cs.utexas.edu

Kees Kwekkeboom
Delft University of Technology

The Netherlands

keeskwekkeboom@gmail.com

Alain Noels
Delft University of Technology

The Netherlands

alainnoels@gmail.com

Submitted: Aug 9, 2012; Accepted: Jul 28, 2013; Published: Aug 9, 2013

Abstract

Conway’s Game of Life has inspired enthusiasts to search for a wide range of
patterns for this classic cellular automaton. One important challenge in this context
is finding the smallest Garden of Eden (GoE), a state without a predecessor. We
take up this challenge by applying two techniques. First, we focus on GoEs that
contain a symmetry. This significantly reduces the size of the search space for
interesting sizes of the grid. Second, we implement the search using incremental
satisfiability solving to check thousands of states per second. By combining these
techniques, we broke several records regarding GoEs: the fewest defined cells, the
smallest bounding box, and the lowest living density. Furthermore, we established
a new lower bound for the smallest GoE.

1 Introduction

Conway’s Game of Life (Life) is a highly popular zero-player game that generates fas-
cinating patterns using a simple cellular automaton. Cells are either “alive” or “dead”
and they are updated based on the state of their neighbours. Life enthusiasts have been
searching for patterns such as still lifes, oscillators, and space ships1. Many of these pat-
terns can be detected with a random initial state. A state that can only exist as an initial
state is called a Garden of Eden (GoE).

∗Supported by DARPA contract number N66001-10-2-4087.
1see http://www.conwaylife.com/wiki/

the electronic journal of combinatorics 20(3) (2013), #P16 1

http://www.conwaylife.com/wiki/


The quest for the smallest GoE started shortly after Life was designed in the early
’70s. The first published GoE was found by a team from MIT in 1971 and consists of
226 alive cells and fitted in a 33×9 bounding box [25]. The GoE with the smallest width
fits in a bounding box of 117×6 [16]. Flammenkamp discovered many small GoEs; His
latest improvement (2004) is a GoE with 72 alive cells fitting within a 11×12 bounding
box. Beluchenko made the latest improvements (2009) to this area by showing that there
exists a GoE with 45 alive cells within a 11×11 bounding box. In this paper, we further
improve upon these records by applying two satisfiability (SAT) solving techniques.

First, we exploit symmetries to significantly reduce the search space. This includes
breaking symmetries between solutions as well as enforcing symmetries within solutions,
or internal symmetries [17]. The latter technique is more useful, but no longer guaran-
tees that all solutions will be found: the search is restricted to solutions that contain
the forced symmetry. Several record-breaking patterns regarding GoEs reveal internal
symmetries [11]. This also holds for other patterns in Life such as maximum density still
life [5].

Second, we use the latest SAT solving techniques to systematically explore the search
space. In most cases, even after reduction, over a billion states need to be explored. This
can only be accomplished in a reasonable amount of time if the check for a single state
requires less than a fraction of a second. We realize this by translating the check into
SAT, equivalent to [2], and solve the translated problem using a SAT solver.

The existence of a GoE in an n×m grid is most compactly represented as a two level
Quantified Boolean Formula (2QBF). Given a SAT translation F of the Life transition
relationship with a certain bounding box, one simply adds quantifiers ∀x′ ∃xF , with x′

referring to the parent (output) state variables and x to the predecessor (input) state
variables. However, existing QBF solvers are not efficient on these problems.

Alternatively, one could translate the entire search problem into a single large SAT
instance by eliminating the universal quantified variables in the 2QBF representation.
A recent trend in SAT solving suggests that solving millions of simple SAT problems is
more efficient. Two techniques in this context are currently used in the field of Formal
Verification [6, 7]. We follow this trend by translating only the check whether there exists
a predecessor state into SAT and include it in a search procedure that enumerates the
entire search space after symmetry breaking and forced internal symmetries.

We use incremental SAT solving [10] to implement this search. With this technique,
each state of the grid is assigned as an assumption (decision before search). The advan-
tages of this approach are that 1) the SAT solver has to be initialized only once, avoiding
the overhead of repetitive parsing; 2) heuristics can be reused to solve similar states; 3)
learned clauses can be kept; and 4) in the case that a GoE is found, then the orphan
(minimal sized GoE) can be extracted cheaply by checking which assumptions were re-
quired. Incremental SAT solving facilitates checking thousands of states per second on a
single core machine.

Our compact incremental SAT based 2QBF solver shows strong performance on GoE
benchmarks and could be effective for other small hard 2QBF problems. Using our solver,
we were able to establish several new records regarding GoE’s: the smallest bounding box

the electronic journal of combinatorics 20(3) (2013), #P16 2



of 10×10, the fewest defined cells of 92, and the lowest alive density of 0.320. Additionally,
we show that there is no GoE within a bounding box of 6×6.

The rest of this paper is organized as follows. As preliminaries, Conway’s Game of
Life is explained, focussing on orphans and the basics of SAT and QBF solving. Then,
we discuss how the predecessor problem can be translated into 2QBF and SAT. Next, we
present how symmetries can be exploited to reduce the search space. In the experimen-
tal results section, we show that these techniques are sufficient to break several records
regarding GoEs. Finally, we draw some conclusions.

2 Preliminaries

2.1 Conway’s Game of Life

The Game of Life is a cellular automaton invented by John Conway [12]. Life consists of
a two-dimensional grid of cells that are either “alive” or “dead” called the cellular space.
Each cell in Life is a finite state automaton with update rules that are based only on local
information: i.e., the states of its neighbours and the current state of the cell. Neighbours
are cells that are either horizontally, vertically or diagonally adjacent; the neighbourhood
of a cell therefore consists of eight cells.

Analogous to biological evolution, Life implements well-known mechanisms like
survival-of-the-fittest. This means that the game evolves in time, where the state of
all cells in each discrete time step is a called a generation. Each cell is alive or dead in
the next generation depending on four simple rules:

1. Under-population: any cell with less than two alive neighbours will be dead in the
next generation.

2. Overcrowding : any cell with more than three alive neighbours will be dead in the
next generation.

3. Status-quo: any alive cell with exactly two alive neighbours will survive in the next
generation; and any dead cell with exactly two alive neighbours will stay dead.

4. Birth: any cell with exactly three alive neighbours will be alive in the next genera-
tion.

This update process is done synchronously and can be repeated infinitely.

2.2 Orphans

Life begins by setting the cells in a state called the initial generation. The next state
of a cell only depends on its current state and the states of the surrounding neighbours.
This implies that every generation has a successor. However, the contrary is not true: not
every generation has a predecessor. That is, Life is a non-surjective cellular automaton.

the electronic journal of combinatorics 20(3) (2013), #P16 3



Figure 1: On the left is the smallest orphan containing 51 alive (black) cells, 56 dead
(white) cells and fits in an 11×11 bounding box. Grey cells are undefined. On the right
is the quarter-rotational symmetric orphan known as the Flower of Eden.

A generation that cannot evolve from a previous generation by following the rules of
Life is called a Garden of Eden. An orphan is a minimal subset of cells of a generation
that has no predecessor. In other words, each generation that contains an orphan is a
GoE.

Several orphans have been discovered [11]. The smallest known orphan was found by
Beluchenko and is shown in Figure 1. There exists no orphan fitting in a 6×5 bounding
box2.

Checking whether a given generation is a GoE is difficult because Life is not reversible;
instances of Life can have multiple predecessors or none. No automaton is known which
can perform the reverse step. The reversibility problem scales exponential with the size of
the input grid: a given generation of an n×m grid has 2(n+2)(m+2) possible previous gen-
erations. Of course, only a fraction of these generations are predecessors. This explosion
of possible previous generations makes it difficult to verify an orphan.

Several techniques have been developed to find GoEs. A non-deterministic finite au-
tomaton can accept states that have a predecessor [16]. Reversing this automaton gives
an automaton that only accepts states without predecessor. Searching for states that
are accepted by the automaton gives orphans. Beluchenko [3] uses predecessor counts to
successively approximate GoEs. In each step, one cell is added to the pattern which grows
spiral-wise. The state of all prior cells remains the same. Whether the new cell in each
step is alive or dead depends on which state in combination with the existing pattern has
the fewest predecessors. The process is repeated until adding a cell reduces the number
of predecessors to zero.

2.3 Satisfiability solving

The Boolean satisfiability problem (SAT) decides if a given CNF formula has a solution.
For a Boolean variable x, there are two literals : the positive literal x and the negative lit-
eral x̄. A clause is a finite disjunction of literals and a CNF formula is a finite conjunction
of clauses. A truth assignment for a CNF formula F is a function τ that maps literals in

2http://www.conwaylife.com/wiki/Garden_of_Eden

the electronic journal of combinatorics 20(3) (2013), #P16 4

http://www.conwaylife.com/wiki/Garden_of_Eden


F to the set {0, 1}. If τ(x) = v, then τ(x̄) = 1− v. A clause C is satisfied by τ if τ(l) = 1
for some literal l ∈ C. A clause C is falsified by τ if τ(l) = 0 for every literal l ∈ C. An
assignment τ satisfies F if it satisfies every clause in F . A CNF formula F is satisfiable
if there exists an assignment that satisfies F , otherwise F is called unsatisfiable.

2.4 Quantified Boolean Formula solving

The Quantified Boolean Formula problem (QBF) is a generalization of SAT. An existen-
tial (∃) or a universal (∀) quantifier can be applied to each Boolean variable. A QBF
formula in prenex normal form Q1x1Q2x2 . . . QnxnF consists of two parts: a sequence of
quantifiers Qi ∈ {∃,∀} and CNF formula F . Solving a QBF formula in prenex normal
form can be viewed as a two player game with a universal and an existential player. The
universal player tries to falsify F , while the existential player tries to satisfy F . The
variables are assigned from left (or outer scope) to right (or inner scope). If a variable is
universally quantified, then the universal player assigns it, if it is existentially quantified,
the existential player assigns it. A QBF formula is satisfiable if the existential player can
always win. Otherwise the formula is unsatisfiable.

A special class of QBF is 2QBF. In 2QBF, formulas have only two levels of quantifiers.
These formulas are of the form ∀x1, x2, . . . , xr ∃y1, y2, . . . , ys F . Expansion [1] of universal
variables works as follows. Let G denote a copy of F in which all existential variables yi
are replaced by zi and let F (x = 0) denote that x is assigned to 0. Now expansion of x1
equals

∀x1, x2, . . . , xr ∃y1, . . . , ys F ⇒ ∀x2, . . . , xr ∃y1, . . . , ys, z1, . . . , zs F (x1 = 0) ∧G(x1 = 1)

Expansion of all universal variables in a 2QBF formula yields a corresponding SAT prob-
lem.

2.5 Incremental SAT solving

Conflict driven clause learning (CDCL) [21] is the most successful SAT solver architecture.
The CDCL algorithm repeats the following: (1) If not all variables are assigned, then a
free variable is selected (decide) and assigned a truth value followed by simplifying the
formula; otherwise a solution is returned; (2) In case the current assignment falsifies
a clause, then analyze the conflict —producing a learned clause which is added to the
formula— to avoid this conflict in the future; otherwise go to step 1; (3) If the learned
clause has no literals return unsatisfiable; (4) Backtrack to the point where the newly
learned clause becomes a unit clause (one unassigned literal and all other literals are
falsified). Simplify the formula and go to step 2.

Heuristics are crucial to achieve fast performance in CDCL SAT solvers. The two
main heuristics of these solvers are variable selection and value selection heuristics. In
short, variable selection heuristics prefer variables that were frequently involved in re-
cent conflicts. These heuristics are known as Variable State Independent Decaying Sum

the electronic journal of combinatorics 20(3) (2013), #P16 5



(VSIDS) [22]. The most commonly used value selection heuristics are called phase-
saving [23]. These heuristics store for each variable the truth value to which it was
forced most recently during simplification. When a variable is selected by VSIDS, it is
assigned to the stored truth value.

Incremental SAT solving [10], a technique supported by most CDCL solvers, can be
used to solve similar SAT instances. It allows addition and removal of clauses to the
formula. The addition of unit clauses is realized by assumptions : decisions at level 0
(before the search). The solver runs and returns the solution, after which the assumptions
are removed. Learned clauses are independent of the assumptions under which they have
been recorded. These learned clauses can be reused to help solving the other instances.
There is also another big advantage: because new instances are provided as assumptions
to the solver instead of a CNF formula, variable and value selection heuristics can be
cached. Again, this helps solving similar SAT instances.

3 Encoding

The existence of a GoE in a certain bounding box can naturally be encoded into 2QBF.
A similar SAT encoding can be used to check if a certain generation has a predecessor.
Highly specialized solvers exist for both representations.

3.1 General encoding

For a finite pattern in a grid of size (1, 1)−(n,m), the previous generations fit in a grid
of size (0, 0)−(n+1,m+1) as only information from the neighbourhood is needed by the
rules of Life.

A Boolean variable xi,j naturally encodes the state of a single cell on position (i, j).
A cell on (i, j) is alive if and only if xi,j = 1; and dead otherwise. Variable x′i,j denotes
the truth value of the cell on (i, j) in the next generation. The neighbourhood Ni,j of
a cell at (i, j) is the set of variables corresponding to the adjacent cells of xi,j. Thus
Ni,j = {xi+1,j+1, xi+1,j, xi+1,j−1, xi,j+1, xi,j−1, xi−1,j+1, xi−1,j, xi−1,j−1}. Let Nk

i,j denote
the set containing all subsets of Ni,j of size k. Cells in (1, 1)−(n,m) are called inner cells.
Notice that N8

i,j = Ni,j for inner cells. One could add clauses for corner and border cells,
but preprocessing techniques used in QBF and SAT solvers such as variable elimination [8]
and blocked clause elimination [19] will identify these clauses as redundant (and remove
them). The rules of Life can be expressed as follows:

Under-population ( ∨
S∈N7

i,j

( ∧
xk,l∈S

x̄k,l
))
→ x̄′i,j (1)

Over-crowding ( ∨
S∈N4

i,j

( ∧
xk,l∈S

xk,l
))
→ x̄′i,j (2)

the electronic journal of combinatorics 20(3) (2013), #P16 6



Status-quo ( ∨
S∈N2

i,j

( ∧
xk,l∈S

xk,l ∧
∧

xk,l∈Ni,j\S

x̄k,l
))
→ (xi,j ↔ x′i,j) (3)

Birth ( ∨
S∈N3

i,j

( ∧
xk,l∈S

xk,l ∧
∧

xk,l∈Ni,j\S

x̄k,l
))
→ x′i,j (4)

These implications are then translated into a conjunctive normal form (CNF) formula,
the input format for QBF / SAT solvers. The resulting encoding requires per inner
cell 8 =

(
8
7

)
clauses of length 8 for under-population, 70 =

(
8
4

)
clauses of length 5 for

overcrowding, 56 = 2
(
8
2

)
clauses of length 10 for status quo, and 56 =

(
8
3

)
clauses of

length 9 for birth. In total 190 clauses per (inner) cell. The status quo clauses can be
reduced to either length 8 or 9 by resolving them with the other clauses.

3.2 QBF and SAT encoding examples

To create a 2QBF encoding, quantifiers need to be added to the encoding above. The
universal quantifier is applied to all x′i′,j′ variables, while the existential quantifier is
applied to all xi,j variables. If the formula is unsatisfiable it means that there is an
assignment to the universal variables that eliminates all solutions. Such an assignment
corresponds to a GoE.

Example 1. Consider the problem of checking whether there exists an orphan within
a bounding box of 3×3. The corresponding grid is (0, 0) − (4, 4) and the CNF formula
has 25 xi,j and 9 x′i′,j′ Boolean variables, and 9 · 190 = 1710 clauses. This encoding can
be transformed into a 2QBF problem by adding the quantifier prefix: ∀x′i′,j′ ∃xi,j F for
i′, j′ ∈ {1, 2, 3} and i, j ∈ {0, 1, 2, 3, 4}. This formula is satisfiable, so there is no GoE
within a 3×3 grid.

A similar SAT encoding can be used to check if a given generation has predecessors:
simply assign the variables x′i′,j′ of the generation to the corresponding truth values. A
solution in this context means that the generation has a predecessor. If the formula is
unsatisfiable, then the generation is a GoE. Additionally, by enumerating all generations
of a certain grid, SAT solvers can also be used to find an orphan in the dimensions for
that grid.

Example 2. Again, consider the problem of checking whether there exists an orphan
within a bounding box of 3×3. The corresponding grid is (0, 0) − (4, 4) with 25 xi,j and
9 x′i′,j′ Boolean variables. This problem can be partitioned into 29 states that cover all
possible truth values for the variables x′i′,j′ with i′, j′ ∈ {1, 2, 3}. For each state, we add
unit clauses (x′i′,j′) or (x̄′i′,j′) to the encoding depending on the truth value in the state.

The same SAT encoding has been proposed in [2] to check how many random gen-
erations are GoEs. Experimental results based on grids of size 15×15 to 25×25 showed
that there are many GoEs where 48−88% of the cells are alive. Instances generated from

the electronic journal of combinatorics 20(3) (2013), #P16 7



grids of size 15×15 are rarely unsatisfiable. Alternatively, we perform systematical search
for GoEs and focus on smaller grids. As we will show in Section 5, the combination of
systematic search and incremental SAT boosts performance which makes it possible to
explore many more generations per second.

3.3 Implementation and parallelization

Given both encodings above, there are three possible methods to find GoEs. First, one
can solve the 2QBF representation with a QBF solver. However, QBF solvers have trou-
ble with performance (see Section 5.2). Second, one can transform the 2QBF instance
into a single SAT instance by expansion of the universal variables. Although the 2QBF
representation is small, expansion for interesting grid sizes increases the formula size by
a factor million, making it too large for contemporary SAT solvers. Even for small grids
this approach yielded poor results. Third, perform enumerative induction over the entire
search space of 2nm possible states and prove or disprove GoE existence: assign the vari-
ables x′i′,j′ with i′ ∈ {1, . . . n}, j′ ∈ {1, . . .m} to all possible truth values and check each
distinct generation for an orphan.

One way to enumerate the entire search space is to generate 2nm copies of the encoding
and add unit clauses (x′i,j) or (x̄′i,j) depending on the truth value of the corresponding
cells for each generation, as described in Example 2. This is very inefficient: the SAT
solver has to parse the same encoding for every instance and the entire search problem
is enumerated, resulting in similar instances. With incremental SAT solving [10], each
generation can be provided as a set of assumptions to the solver and the encoding needs
to be parsed only once. Reuse of conflict clauses helps to solve similar SAT instances, as
we will show in Section 5.1.

Enumeration of the search problem has one inherent advantage: this process is ideal
for exploiting multiple cores in contrast to solving one large SAT instance. In CDCL,
parallelization of one large SAT instance is non-trivial, as sharing learned clauses be-
tween processors easily increases the communication between processors [15]. But with
incremental SAT solving, partitioning of the search space is trivial. The generations —
converted to assumptions— can be spread over multiple cores, realizing a linear speed-up
of the search process in practice.

4 Symmetries

4.1 Symmetry Breaking

Several symmetries exist when searching for an orphan O within a square grid. For
instance, if O has no predecessor, then the generation O∗, which is a rotation of O by
180 degrees, is also not an orphan. By identifying and breaking solution symmetries, the
search space can be reduced, while it still guaranteeing that all solutions can be found.

The predecessor problem for a given generation in Life has at most seven distinct sym-
metrical instances. Those instances can be obtained by flipping the problem horizontally,

the electronic journal of combinatorics 20(3) (2013), #P16 8



vertically, diagonally, or combining these reflections.

Example 3. Recall Example 1. Each state can be represented by a string of 9 Boolean
values that correspond to the truth values for the variables x′i,j with i, j ∈ {1, 2, 3}.
Consider the state 100001000 which assigns the variables x′1,1 and x′2,3 to true and the
others to false. The states 100100000, 001100000, 001000010, 010000100, 000100100,
010000001, 000100001 are symmetric to 100001000.

During the experiments, we skip all generations that have a symmetric equivalent
with a large string representation. Thus, we only consider the generation with the largest
string representation. We refer to this as symmetry breaking (SB).

4.2 Internal Symmetry

The smallest known orphan and the Flower of Eden, both shown in Figure 1, reveal a
clear symmetry within the solution [17]: the first a reflection in both diagonals (left), the
second a rotation by 90 degrees (right). Moreover, most of the currently known GoEs
reveal internal symmetries [11]. Other patterns, like maximum density still lives [5] and
oscillators in Life often expose internal symmetries as well. These symmetric patterns
seem to naturally evolve in Life as a consequence of the uniform rules. We can use this
observation to pragmatically reduce the search space by enforcing internal symmetries.

More formally, a generation G contains an internal symmetry or symmetry within
the solution if there exist a (non-trivial) mapping σ that maps G onto itself: σ(G) =
G. Enforcing internal symmetries reduces the search at the cost of being incomplete
and makes it possible to systematically explore interesting parts of the search space for
reasonably large grid sizes. Exploiting internal symmetries can reduce the search space
by orders of magnitude when compared to symmetry breaking.

We propose three levels of internal symmetries that add increasing restrictions to the
search space. The symmetries are presented for n × n grids, because those will be the
focus of our experiments, but are applicable to n×m grids with n 6= m as well. The first
level (approximately) halves the number of distinctly defined cells, reducing the search
space from 2n2

to about 2n2/2. With this first level of internal symmetry, SB can further
reduce the search space by a factor of four.

• Horizontal reflection: σH . Enforce that x′i,j ↔ x′n+1−i,j for i, j ∈ {1, . . . , n} reducing
the number of distinctly defined cells to ndn/2e.

• Diagonal reflection: σD. Enforce that x′i,j ↔ x′j,i for i, j ∈ {1, . . . , n} reducing the
number of distinctly defined cells to n(n+ 1)/2.

• Rotation by 180 degrees: σ180. Enforce that x′i,j ↔ x′n+1−i,n+1−j for i, j ∈ {1, . . . , n}
reducing the number of distinctly defined cells to dn2/2e.

If enforcing one internal symmetry does not sufficiently reduce the search space, we
combine two internal symmetries to reduce the number of distinct cells by a factor of at
most four. SB can further reduce the space by a factor of two.

the electronic journal of combinatorics 20(3) (2013), #P16 9



• Rotation by 90 degrees: σ90. Enforce that x′i,j ↔ x′j,n+1−i for i, j ∈ {1, . . . , n}
reducing the number of distinctly defined cells to dn/2ebn/2c+ (n mod 2).

• Combining σH and σ180. Enforce that x′i,j ↔ x′n+1−i,j ↔ x′n+1−i,n+1−j for i, j ∈
{1, . . . , n} reducing the number of distinctly defined cells to dn/2edn/2e.

• Combining σD and σ180. Enforce that x′i,j ↔ x′j,i ↔ x′n+1−i,n+1−j for i, j ∈ {1, . . . , n}
reducing the number of distinctly defined cells to bn/2cdn/2e+dn/2e.

For large sizes of the grid, we can enforce an internal symmetry to reduce the number
of distinctly defined cells by a factor of at most eight. In this case, SB cannot be applied.

• Combining σD and σ90. Enforce that x′i,j ↔ x′j,n+1−i ↔ x′j,i for i, j ∈ {1, . . . , n}
reducing the number of distinctly defined cells to 2b(n+ 1)/2cd(n+ 2)/2e.

Enforcing that a↔ b in SAT can be done by adding clauses (a ∨ ¬b) ∧ (¬a ∨ b) or by
replacing all occurrences of literal b by a and literal ¬b by ¬a. In the 2QBF representation,
only the latter is valid when the equivalent variables are universal. Symmetry breaking
and enforcing rotational symmetry was applied by Barbara Smith [24] to find maximum
density still-lifes in Life using the ILOG solver.

5 Experimental results

Three experiments have been performed. The first one shows the effectiveness of the
incremental SAT approach. The second experiment evaluates the performance of (2)QBF
solvers. The third describes our systematic search for GoEs and the results.

5.1 Efficiency of a predecessor check in SAT

We used the iCNF patch3 for MiniSAT 2.2 [9] for our experiments. This patch allows us
to easily use the assumption techniques in MiniSAT by adding a few lines to the input
formula. To evaluate the SAT based predecessor check we compared our implementation
with other software for GoE checks. Achim Flammenkamp was willing to provide us with
the software he used to perform predecessor checks. This software is written in C and
counts predecessors for a given generation. It must be noted that this program has never
been optimized for speed. In order to do a fair comparison, a small adaptation has been
made to the software, so that execution terminates when detecting one predecessor. The
parsing load is comparable: the SAT solver accepts the iCNF format, and the C program
accepts a pattern description of a single character per cell. The SAT solver has to parse
the problem encoding once.

Compared to “simple SAT”, i.e., not using assumptions, incremental SAT has several
features that may help to reduce the computational costs. Simple SAT, as in [2], parses

3The patch is available on http://users.ics.tkk.fi/swiering/icnf/.

the electronic journal of combinatorics 20(3) (2013), #P16 10

http://users.ics.tkk.fi/swiering/icnf/


the problem for each generation, while incremental SAT parses only once. Simple SAT
initializes (variable selection and value selection) heuristics before solving a generation,
while incremental SAT reuses heuristics values of the last solved generation. The simple
SAT approach starts without learned clauses, while incremental SAT can keep learned
clauses obtained from solving earlier generations in its database.

The performance of the different approaches has been evaluated using 10, 000 genera-
tions of Life — without applying internal symmetry or symmetry breaking. We generated
100 random generations for a grid of size 10×10. Each cell of Life had a probability of
50% of being alive. Each random generation was used to generate the next 100 sub-
sequent generations. The latter was performed to let the solver take advantage of the
incremental SAT approach. The test has been executed on an Intel Xeon X5570 (@2,93
GHz) processor with 32 GB RAM. The results are shown in Table 1.

Table 1: Comparing runtimes for the C program and SAT approaches.

Checker runtime (s) generations/s

C program 14, 826.00 0.67

simple SAT, i.e., solve a new CNF formula for each generation 224.00 44.64

incremental SAT + reset heuristics + remove learned clauses 211.35 47.31

incremental SAT + reuse heuristics + remove learned clauses 26.65 375.23

incremental SAT + reset heuristics + keep learned clauses 3.33 3, 003.00

incremental SAT + reuse heuristics + keep learned clauses 2.18 4, 589.00

The incremental SAT approach with all features enabled (i.e., reusing heuristics and
keeping some learned clauses) is able to check thousands of generations per second, mak-
ing it almost four orders of magnitude faster when compared to the C program. Passing
on the heuristic values from each generation to the next is the most effective feature. Re-
moving all learned clauses, while keeping the heuristics hardly influences the performance.
Resetting both heuristics and the learned clause database significantly hurts performance.
In fact, this version is hardly faster than the simple SAT approach. The cost of initializing
the SAT solver (for each generation in the simple SAT approach) appears marginal. Due
to this huge performance improvement, many more generations can be explored at the
same time, making it possible to explore much larger grid sizes.

5.2 Gray code based 2QBF Solver

Finding a GoE is most naturally represented in 2QBF, so we experimented with QBF
solvers to study to which extent QBF techniques can be used to improve performance.
We experimented with three state-of-the-art QBF solvers: depQBF version 0.1 [20], QuBE
version 7.2 [13], and areqs2 version 0.1 [18]. Additionally, the QBF preprocessor bloqqer [4]
was applied because of its effectiveness on many other QBF problems.

For comparison, we transformed our approach into a 2QBF solver. Recall that reusing
the heuristics was most important contribution of our incremental approach (Section 5.1).

the electronic journal of combinatorics 20(3) (2013), #P16 11



Given that insight, our QBF solver uses Gray codes [14] to ensure that two consecutive
generations solved by the incremental SAT solver differ on exactly one assumption.

Example 4. Consider the problem of finding a GoE in a 2 × 2 grid. As discussed in
Example 2, each generation can be expressed as a Boolean string of length 2 × 2 = 4.
Using Gray codes the 16 different generations can be evaluated in the following order:
0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011,
1001, 1000.

The source code of our QBF solver based on incremental SAT, called GrayQBF, is
shown in Appendix A. It is a conversion script that translates a QBF formula in the
standard DIMACS encoding into an iCNF file that can be used with any incremental
SAT solver. Consecutive generations only differ in the assignment of one x′ variable using
Gray codes. Our solver consists of only 40 lines of C code of which half are used for
parsing.

Table 2 compares the QBF solvers on relatively small grid sizes of 3 × 3, 4 × 4 and
5× 5. The runtimes rapidly increase for larger grids. All the state-of-the-art QBF solvers
struggle to solve the 5 × 5 grid. Our compact GrayQBF solver outperforms the others
on these GoE benchmarks. Applying bloqqer as preprocessor is clearly beneficial for the
other solvers though not as useful for GrayQBF.

5.3 Search for Gardens of Eden

Currently, the smallest GoE is bounded by an 11×11 grid with a lower bound of 6×5.
Problem sizes between those bounds are of interest to find GoEs and improve existing
records. Records as tracked by [11] are currently:

1. The smallest bounding box, 11×11;

2. Fewest number of defined cells, 107;

3. Fewest alive cells, 45;

4. Lowest density of alive cells, 0.388;

5. The lower bound for GoEs, 6×5.

Table 2: Comparing the runtimes in seconds for QBF solvers and the effect of preprocess-
ing.

grid size bloqqer |∀| |∃| |F | depQBF QuBE areqs2 GrayQBF
3× 3 no 9 25 1710 0.03 0.08 0.48 0.01
3× 3 yes 7 84 3767 0.01 0.05 0.14 0.01
4× 4 no 16 36 3040 6.81 16.59 81.56 0.56
4× 4 yes 15 33 2485 1.17 0.94 4.61 0.54
5× 5 no 25 49 4750 > 36, 000 > 36, 000 > 36, 000 438.05
5× 5 yes 25 45 4195 24, 712 30, 597 11, 578 394.88

the electronic journal of combinatorics 20(3) (2013), #P16 12



Bounding box sizes larger than 11×11 will reveal information about how GoEs are
spread over problem sizes. Therefore, we consider problem sizes of 6×6 to 14×14 as
interesting. Only square grid sizes have been considered, to keep the number of tests
limited.

With the current incremental SAT efficiency, 230 generations can be checked in reason-
able time (about a day). We used two Intel Xeon X5570 quadcore (@2,93 GHz) processors
with 32 GB RAM. These processors contain 8 cores and thus the search space should not
grow beyond 233 generations. Enforcing internal symmetries restricts the search space to
symmetric solutions and should be minimized. Symmetry breaking is used when applica-
ble, as this does not restrict the search space.

Example 5. The 9×9 grid predecessor problem has 281 states (generations). Applying
σH , σD, or σ180 reduces the number of generations to approximately 245 — larger than
233. Therefore a double internal symmetry needs to be used, for example (σH , σ180). The
number of distinctly defined cells is d9/2ed9/2e=25, resulting in 225/21 = 224 generations.

Table 3: Overview of the experimental results. n indicates a grid of size n×n, IS the
internal symmetry enforced, SB symmetry breaking reductions, size the search space size,
GoEs denoted the number of GoEs found, and ET(h) the summed execution time of all
cores in hours.

n IS SB size GoEs ET(h)

6 - 23 233 0 283.31

7 σ180 22 223 0 0.30

7 σH 22 226 0 2.41

7 σD 22 226 0 2.34

8 σ180 22 230 0 56.80

8 σH 22 230 0 54.70

9 σ90 21 220 0 0.06

9 σH , σ180 21 224 0 0.76

9 σD, σ180 21 224 0 0.71

10 σ90 21 224 8 1.21

10 σH , σ180 21 224 0 1.05

10 σD, σ180 21 229 62 38.75

11 σ90 21 230 42, 044 141.79

13 σ90, σD 20 228 1, 501, 648 249.81

14 σ90, σD 20 228 673, 925 460.77

the electronic journal of combinatorics 20(3) (2013), #P16 13



Experiments close to the limit of 233 states have been solved in parallel by manually
partitioning the search space. We fixed the innermost three cells to the 23 possible truth
values to equally divide the load over eight cores. In terms of 2QBF, three universally
quantified variables are expanded, and each of the eight resulting formulas is solved by a
different core.

Table 3 summarizes the experiments. The number of GoEs found explodes with the
problem size. This is expected by observing that every σ90, σD GoE in an 11×11 grid is
also included in 13×13 searches, where one extra ring of cells surrounds the orphan. This
adds 7 free cells, yielding 128 GoEs of size 13×13 for every 11×11 GoE with equivalent
internal symmetries.

That is also the reason why no experiment is performed with a 12×12 grid. All
solutions found for n=12 (σ90, σD) are included in the test with n=14 (σ90, σD). The
n=11 (σ90) test is less restricted by internal symmetry than the n=13 (σ90, σD) test;
therefore both tests have been performed.

The number of GoEs has been plotted as function of the number of alive cells for n=14
in Figure 2. It shows a normal distribution with mean µ=115.753 and standard deviation
σ=158.395 alive cells. Most GoEs have been found for an alive ratio of 0.592. For 13×13
grids this ratio is 0.574. It seems there is a relation between the density of Life and the
occurrence of GoEs.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

64 68 72 76 80 84 88 92 96

10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

G
o

Es

Alive cells

Figure 2: Number of GoEs vs. number of alive cells in 14x14

Many of the detected GoEs can be reduced to the same orphan. For instance, all 8
GoEs of n=10 (σ90) can be reduced to two symmetric GoEs of which one is shown in
Figure 3 (left). The 62 GoEs of the n=10 (σD, σ180) test can be reduced to 37 orphans.
The n=11 test resulted in 42044 GoEs which can be reduced to 24391 orphans. The
smallest one defines 93 cells and is shown in Figure 4 (left). For the 13×13 and 14×14
tests, the number of GoEs was too large to determine all the orphans.

the electronic journal of combinatorics 20(3) (2013), #P16 14



5.4 Improving existing records

During the experiments, we broke most existing records. We found an orphan with a
bounding box of 10×10 with 56 alive and 36 dead cells, the smallest at the time of
writing, see Figure 3 (left). With 92 defined cells, we also broke the record for the fewest
defined cells. We nearly matched this record with an 11×11 bounded orphan of 93 defined
cells, see Figure 4 (left).

The third record we broke is for the lowest density of alive cells, see Figure 3 (right).
This orphan has 49 alive and 104 dead cells, yielding a density of 0.320. We did not
improve the record of the fewest alive cells, but we matched the record of 45 alive cells,
see Figure 4 (right). Notice that there are only two grey corners in this figure. By
assigning two diagonal corners to grey, this generation has predecessors.

Finally, we improved the lower bound of 6×5 by proving that no orphans exist within
a bounding box of 6×6 or smaller. Improving this lower bound to 6×7 or larger grid sizes
falls outside currently available resources. A 6×7 experiment would last about 26 times
as long as 6×6.

Figure 3: Our records. On the left is an orphan with smallest bounding box (10×10) and
fewest defined cells (92). On the right is an orphan with the lowest density 0.320.

Figure 4: Almost records. On the left is an 11×11 with only 93 defined cells. On the
right is an 11×11 orphan with a density of only 0.378 and 45 alive cells.

the electronic journal of combinatorics 20(3) (2013), #P16 15



6 Conclusions and Future work

In this paper, we demonstrated how QBF and SAT techniques can be used to find Gardens
of Eden in Conway’s Game of Life. We used incremental SAT solving to perform pre-
decessor checks for instances of Life. Reuse of heuristics in combination with systematic
search strongly improved the performance of our checks; this may be the most effective
feature of incremental SAT for applications consisting of many instances. The key to the
performance boost is ensuring that similar instances are succeeding each other. This is
best realized using Gray codes. We integrated this into our GrayQBF solver which appears
to be very effective on small, hard 2QBF instances such as finding GoEs.

To further reduce the computational costs, we enforced observed internal symmetries.
Additionally, we exploited the fact that our approach is trivial to parallelize by running
the experiments on multiple cores. We broke most records regarding GoEs and increased
the lower bound.

Still the challenge remains: can someone prove the existence of a smaller orphan? Or
find orphans with fewer living cells, a lower density of living cells, or fewer defined cells?

Acknowledgements

We thank Donald Knuth and Nathan Wetzler for detailed comments and suggestions on
a draft version of this paper.

References

[1] Abdelwaheb Ayari and David A. Basin. Qubos: Deciding quantified boolean logic
using propositional satisfiability solvers. In Proceedings of the 4th International Con-
ference on Formal Methods in Computer-Aided Design, FMCAD ’02, pages 187–201,
London, UK, UK, 2002. Springer-Verlag.

[2] Stuart Bain. Time-reversal in Conway’s Life as SAT. In Proceedings of the 20th
Australian joint conference on Advances in artificial intelligence, AI’07, pages 614–
618, Berlin, Heidelberg, 2007. Springer-Verlag.

[3] Nicolay Beluchenko. Garden of Eden search. http://oeis.org/A196447, 2011.

[4] Armin Biere, Florian Lonsing, and Martina Seidl. Blocked clause elimination for
qbf. In Proceedings of the 23rd international conference on Automated deduction,
CADE’11, pages 101–115, Berlin, Heidelberg, 2011. Springer-Verlag.

[5] Robert Bosch and Michael Trick. Constraint programming and hybrid formulations
for three life designs. Annals OR, 130(1-4):41–56, 2004.

[6] Aaron R. Bradley. SAT-based model checking without unrolling. In Proceedings
of the 12th international conference on Verification, model checking, and abstract
interpretation, VMCAI’11, pages 70–87, Berlin, Heidelberg, 2011. Springer-Verlag.

the electronic journal of combinatorics 20(3) (2013), #P16 16

http://oeis.org/A196447


[7] Edmund M. Clarke, Robert P. Kurshan, and Helmut Veith. The localization reduc-
tion and counterexample-guided abstraction refinement. In Essays in Memory of
Amir Pnueli, pages 61–71, 2010.

[8] Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and
clause elimination. In Proc. SAT, volume 3569 of LNCS, pages 61–75. Springer, 2005.

[9] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, SAT, volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer, 2003.

[10] Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving.
Electr. Notes Theor. Comput. Sci., 89(4):543–560, 2003.

[11] Achim Flammenkamp List of orphan patterns. http://wwwhomes.uni-bielefeld.

de/achim/orphan.html.

[12] M. Gardner. The fantastic combinations of John Conway’s new solitaire game “life”.
Scientific American, 223:120–123, October 1970.

[13] Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano. Qube7.0. JSAT, 7(2-
3):83–88, 2010.

[14] Frank Gray. Pulse code communication, 03 1953.

[15] Youssef Hamadi, Said Jabbour, and Lakhdar Säıs. Control-based clause sharing in
parallel sat solving. In Proceedings of the 21st international jont conference on Ar-
tifical intelligence, IJCAI’09, pages 499–504, San Francisco, CA, USA, 2009. Morgan
Kaufmann Publishers Inc.

[16] J. Hardouin-Duparc. Paradis terrestre dans l’automate cellulaire de Conway. Rev.
Française Automat. Informat. Recherche Operationnelle Ser. Rouge, 8:64–71, 1974.

[17] Marijn J. H. Heule and Toby Walsh. Symmetry within solutions. In Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI ’10), pages
77–82. AAAI Press, 2010.

[18] Mikoláš Janota and Joao Marques-Silva. Abstraction-based algorithm for 2qbf. In
Proceedings of the 14th international conference on Theory and application of satis-
fiability testing, SAT’11, pages 230–244, Berlin, Heidelberg, 2011. Springer-Verlag.

[19] Matti Järvisalo, Armin Biere, and Marijn J. H. Heule. Blocked clause elimination.
In TACAS’10, volume 6015 of LNCS, pages 129–144. Springer, 2010.

[20] Florian Lonsing and Armin Biere. Depqbf: A dependency-aware qbf solver. JSAT,
7(2-3):71–76, 2010.

[21] Joao P. Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-Driven Clause Learn-
ing SAT Solvers, volume 185 of Frontiers in Artificial Intelligence and Applications,
chapter 4, pages 131–153. IOS Press, February 2009.

[22] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: engineering an efficient sat solver. In Proceedings of the 38th annual
Design Automation Conference, DAC ’01, pages 530–535, New York, NY, USA, 2001.
ACM.

the electronic journal of combinatorics 20(3) (2013), #P16 17

http://wwwhomes.uni-bielefeld.de/achim/orphan.html
http://wwwhomes.uni-bielefeld.de/achim/orphan.html


[23] Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme
for satisfiability solvers. In Proceedings of the 10th international conference on Theory
and applications of satisfiability testing, SAT’07, pages 294–299, Berlin, Heidelberg,
2007. Springer-Verlag.

[24] Barbara Smith. A dual graph translation of a problem in ‘life’. In Pascal Van Henten-
ryck, editor, Principles and Practice of Constraint Programming - CP 2002, volume
2470 of Lecture Notes in Computer Science, pages 89–94. Springer Berlin / Heidel-
berg, 2006.

[25] Robert Wainwright. Lifeline volume 3, 1971.

the electronic journal of combinatorics 20(3) (2013), #P16 18



A 2QBF solver GrayQBF

The figure below shows the C code of our 2QBF solver that actually transforms a 2QBF
formula in DIMACS format into an iCNF file for incremental SAT solvers in DIMACS
format.

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3
4 void main ( int argc , char ∗∗ argv ) {
5 long long i , j , Gray ;
6 int l i t e r a l , nVars , nLines , tmp , ∗ un ive r sa l , s i z e = 0 ;
7
8 FILE ∗ f i l e = fopen ( argv [ 1 ] , ” r ” ) ;
9

10 do { // f i nd the ”p cnf ” l i n e
11 tmp = f s c a n f ( f i l e , ” p cn f %i %i \n” , &nVars , &nLines ) ;
12 i f (tmp > 0 && tmp != EOF) break ;
13 tmp = f s c a n f ( f i l e , ”% ∗ s \n” ) ; // s k i p a comment l i n e
14 }
15 while (tmp != 2 && tmp != EOF) ;
16
17 u n i v e r s a l = ( int ∗) mal loc ( s izeof ( int ) ∗ nVars ) ;
18
19 f s c a n f ( f i l e , ” a ” ) ; // parse the un i v e r s a l s
20 for ( ; ; ) {
21 f s c a n f ( f i l e , ” %i ” , &l i t e r a l ) ;
22 i f ( l i t e r a l == 0) break ; // found end o f a−l i n e
23 else u n i v e r s a l [ s i z e++ ] = l i t e r a l ; // add un i v e r s a l to array
24 }
25 f s c a n f ( f i l e , ”% ∗ s \n” ) ; // ignore the 2QBF e−l i n e
26
27 p r i n t f ( ”p i n c c n f \n” ) ; // p r i n t the format l i n e
28 while ( nLines ) { // copy the c l au s e s
29 f s c a n f ( f i l e , ” %i ” , &l i t e r a l ) ;
30 p r i n t f ( ”%i ” , l i t e r a l ) ;
31 i f ( l i t e r a l == 0) { p r i n t f ( ”\n” ) ; nLines−−; }
32 }
33
34 for ( i = (1LL << s i z e )−1; i >= 0 ; i−−) { // loop over the un i v e r s a l
35 Gray = ( i >>1) ˆ i ; // v a r i a b l e s us ing Gray codes
36 p r i n t f ( ”a ” ) ; // to maximally reuse the
37 for ( j = 0 ; j < s i z e ; j++) // h e u r i s t i c s o f the s o l v e r
38 p r i n t f ( ”%i ” , ( ( Gray >> j ) & 1LL) ? u n i v e r s a l [ j ] :− u n i v e r s a l [ j ] ) ;
39 p r i n t f ( ”0\n” ) ;
40 }
41
42 f c l o s e ( f i l e ) ;
43 f r e e ( u n i v e r s a l ) ;
44 }

the electronic journal of combinatorics 20(3) (2013), #P16 19


	Introduction
	Preliminaries
	Conway's Game of Life
	Orphans
	Satisfiability solving
	Quantified Boolean Formula solving
	Incremental SAT solving 

	Encoding
	General encoding
	QBF and SAT encoding examples
	Implementation and parallelization

	Symmetries
	Symmetry Breaking
	Internal Symmetry

	Experimental results
	Efficiency of a predecessor check in SAT
	Gray code based 2QBF Solver
	Search for Gardens of Eden
	Improving existing records

	Conclusions and Future work
	2QBF solver GrayQBF

