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Semantic parsing involves deep semantic analysis that maps natural

language sentences to their formal executable meaning representations. This

is a challenging problem and is critical for developing computing systems that

understand natural language input. This thesis presents a new machine learn-

ing approach for semantic parsing based on string-kernel-based classification.

It takes natural language sentences paired with their formal meaning represen-

tations as training data. For every production in the formal language grammar,

a Support-Vector Machine (SVM) classifier is trained using string similarity

as the kernel. Meaning representations for novel natural language sentences

are obtained by finding the most probable semantic parse using these classi-

fiers. This method does not use any hard-matching rules and unlike previous

and other recent methods, does not use grammar rules for natural language,

probabilistic or otherwise, which makes it more robust to noisy input.

vi



Besides being robust, this approach is also flexible and able to learn

under a wide range of supervision, from extra to weaker forms of supervision.

It can easily utilize extra supervision given in the form of syntactic parse trees

for natural language sentences by using a syntactic tree kernel instead of a

string kernel. Its learning algorithm can also take advantage of detailed super-

vision provided in the form of semantically augmented parse trees. A simple

extension using transductive SVMs enables the system to do semi-supervised

learning and improve its performance utilizing unannotated sentences which

are usually easily available. Another extension involving EM-like retraining

makes the system capable of learning under ambiguous supervision in which

the correct meaning representation for each sentence is not explicitly given,

but instead a set of possible meaning representations is given. This weaker and

more general form of supervision is better representative of a natural training

environment for a language-learning system requiring minimal human super-

vision.

For a semantic parser to work well, conformity between natural lan-

guage and meaning representation grammar is necessary. However meaning

representation grammars are typically designed to best suit the application

which will use the meaning representations with little consideration for how

well they correspond to natural language semantics. We present approaches

to automatically transform meaning representation grammars to make them

more compatible with natural language semantics and hence more suitable for

learning semantic parsers. Finally, we also show that ensembles of different
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semantic parser learning systems can obtain the best overall performance.
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Chapter 1

Introduction

Building computing systems which understand and process natural lan-

guages has been a long-standing goal of artificial intelligence. Most researchers

have approached this goal from what can be described as a “broad and shal-

low” direction. They have focused on tasks which involve analyzing open do-

main natural language text, but the analysis done is typically shallow which

is suitable just enough for inferring some simple properties about the text

or for representing it in some intermediate linguistic representation. Syntac-

tic parsing (Collins, 1997; Charniak, 1997), information extraction (Cardie,

1997; Califf, 1999), word sense disambiguation (Ide & Jéronis, 1998), semantic

role labeling (Gildea & Jurafsky, 2002; Carreras & Marquez, 2004) etc. are

examples of such tasks.

Although considerable progress has been made on these tasks, but for

a computing system to understand natural language at the level of processing

and manipulating its intended meaning, it is necessary for it to map natural

language utterances into computer manipulatable meaning representations.

This is the task of semantic parsing which involves deeper analysis of natural

language text. Not only this task is critical for developing computational sys-
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tems which understand and process natural language, but it can also provide

insights into human language acquisition.

However, doing semantic parsing on open domain text is still imprac-

tical because there is no global meaning representation language for open do-

main. Hence, semantic parsing is restricted to specific application domains,

like answering database questions or controlling a robot, where the application

entails the meaning representation language. This direction of research can

thus be described as “narrow and deep”. It is hoped that the two directions

will successfully meet benefiting from each other and that will significantly

impact the way computers will be used to process natural languages in the

future.

In this thesis, we have considered the task of semantic parsing and have

developed and evaluated a new framework for learning semantic parsers which

works well under various forms of supervision.

1.1 Semantic Parsing

Semantic parsing is the task of mapping natural language (NL) sen-

tences into formal executable meaning representations (MRs). These MRs are

expressed in domain-specific formal meaning representation languages (MRLs).

Given a corpus of NL sentences paired with their MRs, the task of a semantic

parsing learning system is to induce a semantic parser which can map novel

NL sentences to their correct MRs.
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Some of the previous work on semantic parsing has focused on simple

domains, primarily, Atis (Air Travel Information Service; Price, 1990) whose

semantic analysis is equivalent to filling a single semantic frame (Kuhn & De

Mori, 1995; Miller, Stallard, Bobrow, & Schwartz, 1996; Popescu, Armanasu,

Etzioni, Ko, & Yates, 2004). Some previous work does not use any learn-

ing method (Androutsopoulos, Ritchie, & Thanisch, 1995; Popescu, Etzioni,

& Kautz, 2003) which makes them difficult to port to other domains. The

learning systems (Zelle & Mooney, 1996; Tang & Mooney, 2001; Kate, Wong,

& Mooney, 2005) use meaning representations which are more complex with

richer predicates and nested structures, but these systems use deterministic

rule-based learning methods and lack in robustness which is the characteristic

of learning methods currently used in statistical natural language process-

ing. Recently, new learning systems for semantic parsing have been developed

which use statistical feature-based methods (Ge & Mooney, 2005; Zettlemoyer

& Collins, 2005; Wong & Mooney, 2006) and have been shown to perform

better than the systems developed in the past.

In this thesis, we have developed a novel kernel-based statistical method

for semantic parsing. Kernel methods are a powerful new approach to ma-

chine learning that have demonstrated success in a wide variety of applica-

tions (Shawe-Taylor & Cristianini, 2004). Unlike feature-based learning meth-

ods, kernelized learning methods offer the advantage of implicitly working

with potentially infinite number of features defined over complex unbounded

structures like strings and trees, typically encountered in natural language
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processing (NLP) problems. For these reasons, kernel-based methods have re-

cently been effectively applied to a variety of problems in text learning and

NLP, like text categorization (Lodhi, Saunders, Shawe-Taylor, Cristianini, &

Watkins, 2002), syntactic parsing(Collins, 2002b), relational information ex-

traction (Culotta & Sorensen, 2004; Bunescu & Mooney, 2005b), pronoun

resolution (Yang, Su, & Tan, 2006), semantic role labeling (Che, Zhang, Liu,

& Li, 2006) and textual entailment (Wang & Neumann, 2007). Support-Vector

Machines (SVMs; Cristianini & Shawe-Taylor, 2000) are the most commonly

used kernelized learning method. SVMs find a separating hyperplane which

maximizes the margin between training examples in the feature space. This in-

tuitively appealing way of classification also has sound theoretical guarantees

of generalization performance (Vapnik, 1998) even in typically high dimen-

sional feature spaces implicitly induced by kernels.

Our system, Krisp (Kernel-based Robust Interpretation for Semantic

Parsing), takes NL sentences paired with their formal meaning representations

as training data. The productions of the formal MRL grammar are treated like

semantic concepts. For each of these productions, an SVM classifier is trained

using string similarity as the kernel (Lodhi et al., 2002). Each classifier then

estimates the probability of the production covering different substrings of

the sentence. This information is used to compositionally build a complete

meaning representation of the sentence. Given that natural languages are

so flexible, there are various ways to express the same semantic concept and

kernel-based methods capture the full range of natural language expressions
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better than feature-based methods, which makes this framework well suited

for semantic parsing. Our experiments demonstrate that Krisp compares

favorably to recent statistical learning systems for semantic parsing and is

particularly robust to noise. We also extend this framework to work under

various forms of supervision.

1.2 Thesis Contributions

In this section we summarize the main contributions of this thesis.

• The core contribution of this thesis is the new framework for learning for

semantic parsing using kernel-based string classification. This framework

draws benefits from the advantages offered by kernels to implicitly work

with potentially infinite number of features and avoids any specifc feature

representation. Our framework does not learn any hard-matching rules

and unlike all the previous semantic parser learning frameworks, it does

not use grammar rules for natural language, these two factors make it

robust to noisy input. This is an important advantage because for most

applications the input for semantic parsing will most likely be noisy, like

spontaneous utterances with grammatical errors or output from speech

recognizers etc.

• We show how extra supervisions in the form of syntactic parse trees

and semantically augmented parse trees (Ge & Mooney, 2005) can be

incorporated in our learning framework to improve results.
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• We have also looked into how to make the best use of weaker forms

of supervision for learning semantic parsers. Since unannotated data is

usually easily available, we extended our basic semantic parser learn-

ing method to make use of unannotated data in the form of sentences

without meaning representations to improve performance. To our best

knowledge, this is the first semi-supervised learning system for semantic

parsing.

• We also developed a learning framework for semantic parsing to work

with ambiguous supervision in which the correct meaning representation

for each sentence is not explicitly given but instead a set of possible

meaning representations for each sentence is given. This weaker and

more general form of supervision is more representative of a natural

training environment for a language-learning system requiring minimal

human supervision, like a computer system which will learn language

by observing perceptual contexts while simultaneously being exposed to

natural language commentary, similar to the way children learn language

without being explicitly taught to analyze sentences. The experimen-

tal results show that our method learns accurate semantic parsers even

under ambiguous supervision. This contribution can be regarded as a

starting point for building computing systems which learn language from

their perceptual contexts with little human supervision.

• If the constructs in the meaning representation language do not corre-

spond well with natural language, then the semantic parser may not
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perform well. We have also developed a framework for transforming

the meaning representation grammar if it does not conform well with

the natural language semantics. To our best knowledge, this is the first

work to address this issue.

• Krisp and some recent semantic parser learning systems, like Scissor

(Ge & Mooney, 2005) and Wasp (Wong & Mooney, 2006), have different

strengths and weaknesses. The thesis also describes some simple methods

to form ensembles of semantic parser learning systems to obtain the best

overall performance.

1.3 Organization of the Thesis

Following is the outline of the thesis.

• Chapter 2, Background and Related Work: This chapter provides

some background about semantic parsing, kernel-based learning methods

and briefly summarizes the related work.

• Chapter 3, Kernel-based Approach to Learning Semantic Parsers:

We describe our new framework for learning semantic parsers in detail,

and with experimental evaluations we show that our approach performs

competitively with recent approaches and is more robust to noise.

• Chapter 4, Utilizing More Supervision: We describe the extensions

we made to our learning system to utilize extra forms of supervision
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in the form of syntactic trees and semantically augmented parse trees.

Experimentally, we found that our approach does not benefit a lot from

extra supervisions.

• Chapter 5, Utilizing Weaker Forms of Supervision: In this chap-

ter we describe our semi-supervised method for learning semantic pars-

ing which improves the performance of semantic parsing by utilizing NL

sentences not paired with their MRs. We also describe a framework to

learn semantic parsers under ambiguous supervision and show that it

copes well with ambiguities to learn accurate parsers.

• Chapter 6, Transforming the Meaning Representation Gram-

mar to Improve Semantic Parsing: This chapter describes our new

approach to transform the meaning representation grammar to make

it conform to natural language semantics. We experimentally show that

the transformed grammars improve the performance of semantic parsing.

• Chapter 7, Ensembles of Semantic Parsing: We describe simple

methods to form ensembles of semantic parsers and show that it achieves

better performance than the individual semantic parsers. We also give

some experimental analysis.

• Chapter 8, Directions for Future Work: We mention possibilities

of some future research directions based on this work.

• Chapter 9, Conclusions: We summarize the contributions of this

thesis.
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We note that the material presented in Chapter 3 had appeared in our

previous publication (Kate & Mooney, 2006), while the material presented in

Chapter 5 has appeared in (Kate & Mooney, 2007b) and (Kate & Mooney,

2007a).
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Chapter 2

Background and Related Work

This chapter gives background about the task of semantic parsing and

kernel-based learning methods, and summarizes the related work in semantic

parsing.

2.1 Semantic Parsing

Semantic parsing is the task of mapping natural language (NL) utter-

ances into their computer understandable meaning representations (MRs) for

some domain-specific application. These MRs are expressed in formal lan-

guages which we call meaning representation languages (MRLs). We assume

that all MRLs have deterministic context free grammars, which is true for al-

most all computer languages. This ensures that every MR will have a unique

parse tree.

Some early systems for semantic parsing were manually-built (Hendrix,

Sacerdoti, Sagalowicz, & Slocum, 1978; Androutsopoulos et al., 1995). Build-

ing such systems requires a lot of manual effort and domain expertise, and

they can not be easily ported to other domains. These systems are also usu-

ally brittle, i.e. they work well only for a narrow subset of natural language
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input. The alternate to manually building semantic parsers is to use machine

learning to automatically build them from training data.

A learning system for semantic parsing is given a training corpus of

NL sentences paired with their respective MRs from which it has to induce a

semantic parser which can map novel NL sentences to their correct MRs. As

a learning task, this is very different from the task of learning for syntactic

parsing, because the training data for learning for syntactic parsing consists

of the syntactic parse trees built over the NL sentences from which statistics

about the relatedness between parts of the parse trees to the parts of the NL

sentences can be easily estimated. In contrast, the training data for the task

of learning for semantic parsing consists of an NL sentence paired with its MR

with no information about how the different parts of the NL sentence relate

to different parts of its MR.

We describe the three application domains in which the research in

learning for semantic parsing has mainly been focused.

ATIS: Air Travel Information System: ATIS is an ARPA-sponsored

benchmark domain for speech recognition and understanding (Price, 1990). Its

corpus consists of spoken NL questions about air travel, their transcribed forms

and their MR in SQL database query language. The questions are relatively

simple and their semantic analysis is equivalent to filling a single semantic

frame. But one thing that makes this corpus interesting for semantic parsing

is that it was built by engaging the subjects in dialogs through speech which

sometimes leads to noise in the NL sentences as well as coreferences across

11



NL: “Show me flights from New York to Los Angeles.”
SQL: SELECT flight id FROM flight WHERE from airport=’New York’

AND to airport = ’Los Angeles’

Figure 2.1: An example of natural language question and its meaning repre-
sentation in SQL.

sentences. Figure 2.1 gives a sample question and its SQL form.

Geoquery: A Database Query Application: Geoquery is a log-

ical query language for a small database of about 800 U.S. geographical facts.

This domain was originally chosen because of the availability of a hand-built

natural language interface for comparison, Geobase, which came with Turbo

Prolog 2.0 (Borland International, 1988). Its query language is Prolog aug-

mented with several meta-predicates (Zelle & Mooney, 1996). These queries

were converted into a functional, variable-free query language by Kate et al.

(2005) which is more convenient for some semantic parsers.

Figure 2.2 shows an NL query and its MR in Prolog and functional

query language forms. The parse of the functional query language is also

shown with the involved productions, non-terminals and terminals. Brack-

ets are not shown in the parse to avoid clutter. Our learning algorithm ex-

ploits productions and MR parses, and this example is also used later in the

Section 3.2 to illustrate how our system does semantic parsing. Through-

out this thesis, the non-terminals are shown in upper-case and the terminals

are shown in lower-case. The MR in the functional query language can be

read as if processing a list which gets modified by various functions. The

innermost expression, stateid(‘texas’), stands for the list with a single ele-
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ment: the state of Texas. Next, the expression next to(stateid(‘texas’))

denotes the list containing all the states next to the state of Texas. The ex-

pression, traverse(next to(stateid(‘texas’))), denotes the list of all the

rivers which flow through these states which are next to Texas. This list is fi-

nally returned as the answer. The unary function, traverse(S), which returns

the list of rivers traversing through states in the list S, relates to the binary

predicate traverse(A,B) of the query language in Prolog, which is true if A

flows through B. Similarly, there is a unary function, traverse 1(R), in the

functional query language which returns the list of the states through which

the rivers in the list R traverse through.

The original Geoquery corpus used in semantic parsing experiments

was constructed by collecting 250 questions by asking undergraduate students

to generate English queries for the given database. These queries were then

manually translated into logical form (Zelle & Mooney, 1996). We call this the

Geo250 corpus. We note that, on average, the queries in this corpus are more

complex than those in the ATIS corpus which makes semantic parsing harder

on the Geoquery domain. This was also shown by the results of Popescu

et al. (2004). The MRs in Geoquery usually have deep nested structures.

The Geoquery corpus was later expanded to 880 sentences by collecting more

queries, some of them from real users of the web-based interface to the database

(Tang & Mooney, 2001). We call this the Geo880 corpus. The average length

of sentence in this corpus is 7.48 words and the average number of tokens per

MR is 6.47.
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NL: “Which rivers run through the states bordering texas?”
Prolog: answer(A,(river(A),traverse(A,B),state(B),next to(B,C),

const(C,stateid(‘texas’))))

Functional query language: answer(traverse(next to(stateid(‘texas’))))

Parse tree of the MR in functional query language:
ANSWER

answer RIVER

TRAVERSE

traverse

STATE

NEXT TO

next to

STATE

STATEID

stateid ‘texas’

Non-terminals: ANSWER, RIVER, TRAVERSE, STATE, NEXT TO,
STATEID
Terminals: answer, traverse, next to, stateid, ‘texas’
Productions:
ANSWER → answer(RIVER)
RIVER → TRAVERSE(STATE)
STATE → NEXT TO(STATE)
STATE → STATEID
TRAVERSE → traverse

NEXT TO → next to

STATEID → stateid ‘texas’

Figure 2.2: An example of natural language query and its meaning represen-
tation in Prolog and in functional query language with its parse tree.
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CLang: The RoboCup Coach Language: RoboCup1 is an interna-

tional AI research initiative using robotic soccer as its primary domain. One of

the several competitions organized under it is the Coach Competition where

coachable soccer agents compete on a simulated soccer field. The coaching

advice is given to them in a standard formal coach language called CLang

(Chen et al., 2003c). CLang is a simple declarative language with prefix no-

tation like LISP. Figure 2.3 gives an example of a piece of coaching advice

in NL with its corresponding CLang MR. The unique parse of the MR is

also shown along with the involved terminals, non-terminals and productions.

Brackets are again not shown to avoid clutter. In the MR, bowner stands for

ball owner and UNUM stands for uniform numbers (players 1 through 11).

The CLang corpus used in semantic parsing experiments was con-

structed by randomly selecting 300 pieces of coaching advice from the log files

of 2003 RoboCup Coach Competition. These formal advice instructions were

translated into English by one of four annotators. On average there were 22.5

words per sentence and 13.42 tokens per MR in this corpus.

2.2 Kernel-based Machine Learning

Traditionally, machine learning methods accept an explicit feature-

based representation of the input where an example is represented by a collec-

tion of features (feature vector). But often data cannot be expressed effectively

1http://www.robocup.org/
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NL: “If our player 4 has the ball, our player 4 should shoot.”
CLang: ((bowner our {4}) (do our {4} shoot))

CLang parse tree:

RULE

CONDITION

bowner TEAM

our

UNUM

4

DIRECTIVE

do TEAM

our

UNUM

4

ACTION

shoot

Non-terminals: bowner, our, 4, shoot
Terminals: RULE, CONDITION, DIRECTIVE, TEAM, UNUM, ACTION
Productions:
RULE → (CONDITION DIRECTIVE)
CONDITION → (bowner TEAM {UNUM})
DIRECTIVE → (do TEAM {UNUM} ACTION)
TEAM → our UNUM → 4 ACTION → shoot

Figure 2.3: An example of natural language advice and its CLang meaning
representation with parse tree.
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using features, especially when the data is present in some structured form

like strings or trees, as is typically true in several natural language process-

ing (NLP) problems. The structural information is often lost when the data

is reduced to some pre-defined set of features. For example, when a natural

language sentence (a sequence structure) is reduced to a bag of words or even

a bag of bigrams or trigrams, the information about the presence of longer

subsequences is lost. To avoid this, if one tries to explicitly include all possible

features so that no information is lost (like make all possible subsequences as

features) then the number of features blow-up and it becomes computationally

impractical for the feature-based learning algorithms to handle them.

Kernel-based methods (Vapnik, 1998) are an attractive alternative to

feature-based methods. They allow the learning algorithms to work on po-

tentially infinite number of features without explicitly constructing and ma-

nipulating them. The machine learning algorithms which use the data only

to compute similarity (dot-product) between the examples can be kernelized,

like Support Vector Machines (SVMs; Cristianini & Shawe-Taylor, 2000),

Perceptron (Aizerman, Braverman, & Rozonoér, 1964), Principal Component

Analysis (Schölkopf, Smola, & Müller, 1999) or Nearest Neighbor. A ker-

nel is a similarity function satisfying certain properties which maps a pair

of objects to their similarity score. Formally, a kernel function K over the

domain X maps two objects x,y ǫX to their similarity score, K(x, y), which

ranges from 0 to infinity. For all the objects x1, x2, ..., xn ∈ X, the n × n

matrix (K(xi, xj))ij, called the Gram matrix, is required to be symmetric and
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positive-semidefinite. Due to this property, kernel functions can be shown to

implicitly calculate the dot-product of feature vectors of objects in some high-

dimensional feature space. Hence, the underlying kernelized machine learning

algorithm then essentially analyzes the data in this implicit high-dimensional

space.

Kernel-based learning methods are increasingly becoming popular in

NLP. They have been applied to a variety of NLP tasks, like text classifi-

cation(Lodhi et al., 2002), syntactic parsing (Collins, 2002b), relational in-

formation extraction (Culotta & Sorensen, 2004; Bunescu & Mooney, 2005b),

pronoun resolution (Yang et al., 2006), semantic role labeling (Che et al., 2006)

and textual entailment (Wang & Neumann, 2007). We use them in this thesis

for semantic parsing.

The following subsections briefly describe SVMs, the kernelized ma-

chine learning algorithm we use in this thesis, and string-subsequence kernel,

the kernel function we use with SVMs in our main semantic parser learning

system.

2.2.1 Support Vector Machines

Mapping data to a high-dimensional space, as is typically done through

kernels, comes with a problem that learning algorithms tend to overfit the

training data due to sparsity of data likely to be present because of large

number of dimensions (known as the “curse of dimensionality”). But Support

Vector Machines (SVMs) are known to be resistant to this overfitting, hence
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they are typically the best choice for a kernelized learning algorithm.

SVMs were first introduced by Boser, Guyon, and Vapnik (1992) and

have become a popular classification algorithm. Given two sets of points (pos-

itive and negative examples), SVMs learn a separating hyperplane separating

the points such that margin, the distance between the hyperplane and the clos-

est point, is maximized. The points closest to the separating hyperplane are

called support vectors. This solution which maximizes the margin has sound

theoretical justification for valid generalization which is resistant to overfitting

even in high dimensional spaces (Vapnik, 1998).

Since SVMs use data only to find similarity between data points, they

can be kernelized. Through the kernel function the input points are implicitly

mapped to a high dimensional feature space. A linear separating hyperplane

with maximum margin is then found in this high dimensional space. This may

correspond to some complex non-linear separating hyperplane in the original

input space. For training, kernelized SVMs need kernels between every pair

of training examples (i.e. the Gram matrix) and for testing, they need kernels

between the test example and all its support vectors (a subset of the training

examples).

SVMs have been shown to perform particularly well in text domains

(Joachims, 1998) in which the data is typically represented in a very high

dimensional space with a separate dimension for every word or n-gram.
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2.2.2 String Subsequence Kernel

Following the framework of Lodhi et al. (2002), we define a kernel

between two strings as the number of common subsequences between them.

One difference, however, is that their strings are over characters while our

strings are over words. Word subsequence kernels were also used by Cancedda,

Gaussier, Goutte, and Renders (2003). The more the two strings share, the

greater the similarity score will be deemed.

Formally, following the notation of Rousu and Shawe-Taylor (2005), let

Σ be a finite alphabet, a string is a finite sequence of elements from Σ, and the

set of all strings is denoted by Σ∗. For any string s, we denote |s| as the length

of the string s = s1s2..s|s|. The string s[i..k] stands for the substring sisi+1..sk

of s, substrings are contiguous by definition. We say that u is a subsequence of

s, if there exists an index sequence i = (i1i2..i|u|), with 1 ≤ i1 < .. < i|u| ≤ |s|,

such that uj = sij for j = 1, .., |u|, and write u = s[i] for short. Subsequences

need not be contiguous by their definition. We call the distance between the

first index of i to its last index as its span, span(i) = i|u| − i1 + 1. For

example, consider the string s = left1 side2 of3 our4 penalty5 area6 , where

the subscripted numbers are indices of the words in the string. Then u =

left penalty area is a subsequence of s because there is an index sequence

i = (1 5 6) such that u = s[i]. The span of i, span(i) equals 6 − 1 + 1 = 6.

Since there can be multiple index sequences i for a string s, such that

u = s[i], we define Φu(s) as the number of such unique index sequences, i.e.

Φu(s) = |{i|s[i] = u}|. But this definition does not take into account the
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sum total of all the gaps present in different index sequences. If we want to

downweight the presence of gaps, we can do it through a decay factor λ ∈ (0, 1]

and redefine Φu(s) as:

Φu(s) = 1/λ|u|
∑

i:s[i]=u

λspan(i) (2.1)

The normalization 1/λ|u| ensures that only gaps and not the matches

are penalized. Note that for λ = 1, the above reduces to the earlier definition

which had no gap penalties. For the examples of u and s given earlier, Φu(s) =

λ6/λ3 = λ3, which represents the total gap of 3 present in the index sequence

i = (1 5 6) that skips over the three words side2 of3 our4 .

Finally, we define the kernel K(s, t) between two strings s and t as:

K(s, t) =
∑

u∈Σ∗

Φu(s)Φu(t) (2.2)

The kernel so defined is implicitly using the space of all possible subsequences

as features and computing their dot-products.

Table 2.1 shows a sample kernel computation between the two strings

s = left1 side2 of3 our4 penalty5 area6 and t = our1 left2 penalty3 area4 , where

the subscripted numbers are simply the indices of the words in the strings.

Note that the table includes all the subsequences, u, that are common be-

tween the two strings. The chosen value for the parameter λ can be plugged

in the final expression to get the numeric kernel value. Lodhi et al. (2002) give

an efficient dynamic programming algorithm to compute string subsequence
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u {(i, span(i))|s[i] = u} {(i, span(i))|t[i] = u} Φu(s) Φu(t) Φu(s) ∗ Φu(t)
left {((1), 1)} {((2), 1)} 1 1 1
our {((4), 1)} {((1), 1)} 1 1 1
penalty {((5), 1)} {((3), 1)} 1 1 1
area {((6), 1)} {((4), 1)} 1 1 1
left penalty {((1 5), 5)} {((2 3), 2)} λ3 1 λ3

left area {((1 6), 6)} {((2 4), 3)} λ4 λ λ5

our penalty {((4 5), 2)} {((1 3), 3)} 1 λ λ

our area {((4 6), 3)} {((1 4), 4)} λ λ2 λ3

penalty area {((5 6), 2)} {((3 4), 2)} 1 λ λ

left penalty area {((1 5 6), 6)} {((2 3 4), 3)} λ3 1 λ3

our penalty area {((4 5 6), 3)} {((1 3 4), 4)} 1 λ λ

K(s, t) = 4 +
3λ + 3λ3 + λ5

Table 2.1: An example of computing subsequence kernel between the strings
s = left1 side2 of3 our4 penalty5 area6 and t = our1 left2 penalty3 area4 .

kernels in O(n|s||t|) time where n is the maximum length of subsequences one

wants to consider. Rousu and Shawe-Taylor (2005) present another algorithm

which works faster when the alphabet size is large.

The kernel can be normalized to have values in the range [0, 1] to remove

any bias due to different string lengths:

Knormalized(s, t) =
K(s, t)

√

K(s, s)K(t, t)
(2.3)

String subsequence kernels have been previously used with success in

NLP for text classification (Lodhi et al., 2002; Cancedda et al., 2003) and

relational information extraction (Bunescu & Mooney, 2005b). We use them

in this thesis for semantic parsing.

22



2.3 Related Work

This subsection summarizes related work in the area of semantic pars-

ing.

2.3.1 Syntax-based Semantic Parsing

Some approaches have used syntactic and semantic annotations on the

training NL sentences to learn semantic parsers. Miller et al. (1996) present an

approach in which the nodes of full syntactic parse trees of the NL sentences

are augmented with semantic categories. They model this type of augmented

tree parsing by probabilistic recursive transition networks. They have tested

their system on the ATIS corpus.

Ge and Mooney (2005) present a system called Scissor, that learns a

statistical parser that integrates syntax and semantics. It needs semantically

annotated syntactic parse trees of the NL sentences for training in which each

internal node has a semantic label in addition to a syntactic head word. A

state-of-the-art syntactic parsing model, (Collins, 1997) Model 2, is then used

to learn the integrated parser. The MR can be recovered from the parse tree

using a recursive procedure which allows this system to obtain MRs which

are multiple levels deep (unlike (Miller et al., 1996) where the output MRs

are essentially flat). Scissor has been tested in the CLang and Geoquery

domains. The approach by Nguyen, Shimazu, and Phan (2006) also uses se-

mantically annotated syntactic parse trees. This approach uses structured

SVMs (Tsochantaridis, Hofmann, Joachims, & Altun, 2004) and learns en-
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sembles of semantic parsers through bagging (Breiman, 1996) and boosting

(Freund & Schapire, 1996).

The approach by Zettlemoyer and Collins (2005) combines syntactic

and semantic parsing using combinatory categorial grammars (CCG; Steed-

man, 2000). While its training does not require additional syntactic or se-

mantic annotations, it needs some hand-built rules to encode prior knowledge

of syntax. Their system learns rules to construct a bilingual lexicon relating

CCG syntactic categories to the lambda functions associated with the seman-

tics. A log-linear model is used for doing probabilistic parsing of NL sentences

using this lexicon. Their system was further improved by relaxing the CCG

grammar (Zettlemoyer & Collins, 2007).

2.3.2 Semantic Parsing by Transformation Rules

In our previous work (Kate et al., 2005), we developed a system, Silt,

which does semantic parsing by learning transformation rules to incrementally

transform NL sentences into their MRs. The transformation rules associate NL

patterns with MRL templates. During parsing, whenever a rule’s NL pattern

is found to match in a sentence, the matched pattern is replaced by the MRL

template. By the end of parsing, the entire sentence gets transformed into its

MR. One drawback of this system that limits its recall is that it uses hard-

matching transformation rules which are sometimes too brittle to capture all

the range of NL contexts. Its parsing is also done deterministically which is

less robust than probabilistic parsing. Silt has two versions: a tree-based
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version that utilizes syntactic parse trees of the sentences and a string-based

version which does not use NL syntax.

Wong and Mooney (2006) have developed a system called Wasp based

on synchronous context-free grammars (Aho & Ullman, 1972) that uses state-

of-the-art statistical machine translation techniques for semantic parsing. It

uses a statistical word alignment model to find good transformation rules which

are then used to build a probabilistic model for parsing. This is an improve-

ment over Silt. The system was extended to work when MRs are in λ-calculus

(Wong & Mooney, 2007b). This framework for semantic parsing was also in-

verted to form a natural language generation system to map MRs into NL

sentences (Wong & Mooney, 2007a).

2.3.3 Other Approaches

Chill (Zelle & Mooney, 1996; Tang & Mooney, 2001), is an Inductive

Logic Programming (ILP) framework for learning semantic parsers. It learns

rules to control the actions of a deterministic shift-reduce parser. It processes

sentences one word at a time making hard parsing decisions every time, this

makes the system somewhat brittle. Since it also does deterministic parsing,

it may not be able to find the globally best parses of the sentences. The

ILP techniques are also slow and memory-intensive and do not scale to large

corpora.

Precise (Popescu et al., 2003, 2004) is a system to build NL interface

to databases. This system does not involve learning. It uses the notion of
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semantically tractable sentences, the sentences which can have only a unique

semantic interpretation. These are the type of sentences this system can parse.

Using a partly manually constructed lexicon which relates NL words to seman-

tic types and a set of semantic constraints, it reduces the semantic parsing

task to a maximum-flow graph problem. The results show that over 90% of

context-independent sentences in the ATIS corpus are semantically tractable

while only 80% of Geoquery sentences are semantically tractable. This indi-

cates that Geoquery is more challenging domain for semantic parsing than

ATIS.

In the past, there have been a few more approaches for semantic parsing,

mainly tested on the ATIS domain: He and Young (2003) use hidden Markov

model (HMM), Papineni, Roukos, and Ward (1997) and Macherey, Och, and

Ney (2001) use machine translation algorithms, and Kuhn and De Mori (1995)

use decision trees to translate NL questions into SQL queries.

The approach for learning semantic parsers presented in this thesis dif-

fers from the related work in the following important ways. Our approach does

not use any grammar rules for natural language sentences which makes it very

flexible and robust to process a wide range of natural language input, including

when corrupted with noise. The learning method used in our system is kernel-

based, which can capture the full range of natural language expressions which

express the same semantic concept better than feature-based methods, and

does not need any feature-engineering. Finally, through simple and elegant

extensions our approach also works well under a wide range of supervision.
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Chapter 3

Kernel-based Approach to Learning Semantic

Parsers

This chapter presents our novel approach to learning semantic parsers

which we call Krisp, Kernel-based Robust Interpretation for Semantic Pars-

ing. It learns string-kernel-based classifiers for every production of the meaning

representation language grammar. Meaning representations for novel natural

language sentences are obtained by finding the most probable semantic parse

using these string classifiers. Our experiments on two real-world data sets

show that this approach compares favorably to other existing systems and is

particularly robust to noise.

3.1 Overview of KRISP

Krisp learns a semantic parser from the training data of natural lan-

guage (NL) sentences paired with their respective meaning representations

(MRs). The key idea in Krisp is to treat the productions of the grammar of

the meaning representation language (MRL) as semantic concepts. For every

production, a Support-Vector Machine (SVM; Cristianini & Shawe-Taylor,

2000) classifier is trained using string similarity as the kernel (Lodhi et al.,
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MRL grammar

NL sentences with negative examples

Collect positive and

SVM classifiers

Train string−kernel−based

Semantic ParserTesting

Training

Novel NL sentences Best MRs

Best semantic

derivations (correct

and incorrect)

their   MRs

Figure 3.1: Overview of Krisp

2002). Each classifier can then estimate the probability of any NL substring

representing the semantic concept for its production. During semantic pars-

ing, the classifiers are called to estimate probabilities on different substrings

of the input sentence and the most probable MR for the complete sentence is

compositionally built.

Krisp trains the classifiers used in semantic parsing iteratively. Fig-
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ure 3.1 shows its overview diagram. In each iteration, for every production π in

the MRL grammar, Krisp collects positive and negative examples. In the first

iteration, the set of positive examples for production π contains all sentences

whose corresponding MRs use the production π in their parse trees. The set

of negative examples includes all of the other training sentences. Using these

positive and negative examples, an SVM classifier is trained for each produc-

tion π using a string kernel. In subsequent iterations, the parser learned from

the previous iteration is applied to the training sentences and more refined

positive and negative examples, which are more specific substrings within the

sentences, are collected for training. Iterations are continued until the classi-

fiers converge. The following sections describe Krisp in more details.

3.2 KRISP’s Semantic Parsing

In this section we describe how Krisp does semantic parsing using

string classifiers, and in the next section we describe Krisp’s training algo-

rithm which is used to train these string classifiers.

Krisp does semantic parsing using the notion of a semantic derivation

of an NL sentence. In the following subsections, we define the semantic deriva-

tion of an NL sentence and its probability. The task of semantic parsing then

is to find the most probable semantic derivation of an NL sentence which is

determined using an extended version of Earley’s algorithm for context-free

grammar parsing.
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(ANSWER → answer(RIVER), [1..9])

(RIVER → TRAVERSE(STATE), [1..9])

(TRAVERSE →traverse, [1..4])

which1 rivers2 run3 through4

(STATE → NEXT TO(STATE), [5..9])

(NEXT TO→ next to, [5..7])

the5 states6 bordering7

(STATE → STATEID, [8..9])

(STATEID → stateid ‘texas’, [8..9])

Texas8 ?9

Figure 3.2: Semantic derivation of the NL sentence “Which rivers run through
the states bordering Texas?” which gives MR answer( traverse( next to(

stateid( ‘texas’ )))).

3.2.1 Semantic Derivation

We define a semantic derivation, D, of an NL sentence, s, as a parse tree

of an MR (not necessarily the correct MR) such that each node of the parse tree

also contains a substring of the sentence in addition to a production. We denote

nodes of the derivation tree by tuples (π, [i..j]), where π is its production and

[i..j] stands for the substring s[i..j] of s (i.e. the substring from the ith word to

the jth word), and we say that the node or its production covers the substring

s[i..j]. The substrings covered by the children of a node are not allowed to

overlap, and the substring covered by the parent must be the concatenation of

the substrings covered by its children. Figure 3.2 shows a semantic derivation

of an NL sentence and an MR parse. The words are numbered according to

their position in the sentence. Instead of non-terminals, productions are shown
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in the nodes to emphasize the role of productions in semantic derivations. The

substrings s[i..j] covered by each production are shown by [i..j] in its node.

Sometimes, the children of an MR parse tree node may not be in the

same order as are the substrings of the sentence they should cover in a semantic

derivation. For example, if the sentence was “Through the states that border

Texas which rivers run?”, which has the same MR as the sentence in Figure 3.2,

then the order of the children of the node “river → traverse(state)”

would need to be reversed. To accommodate this, a semantic derivation tree

is allowed to contain MR parse tree nodes in which the children have been

permuted.

Note that given a semantic derivation of an NL sentence, it is trivial

to obtain the corresponding MR which is simply the string generated by the

parse. Since children nodes may be permuted, this step also needs to permute

them back to the way they should be according to the MRL productions. If a

semantic derivation gives the correct MR of the NL sentence, then we call it a

correct semantic derivation, otherwise it is an incorrect semantic derivation.

3.2.2 Most Probable Semantic Derivation

Let Pπ(s[i..j]) denote the probability that a production π of the MRL

grammar covers the NL substring s[i..j]. In other words, the NL substring

s[i..j] expresses the semantic concept of a production π with probability Pπ(s[i..j]).

In the next section, we will describe how Krisp obtains these probabilities

using string-kernel based SVM classifiers. Assuming these probabilities are
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independent of each other, the probability of a semantic derivation D of a

sentence s is then the product of the probabilities of all the productions in it

covering their respective substrings of the sentence:

P (D) =
∏

(π,[i..j])∈D

Pπ(s[i..j])

We note that without normalization, the above does not form a probabil-

ity distribution, but since these probabilities are used only for ranking the

semantic derivations, normalization is not done. The task of the semantic

parser is to find the most probable semantic derivation of a sentence s. This

task can be recursively performed using the notion of a partial derivation

En,s[i..j], which stands for a subtree of a semantic derivation tree with n as the

left-hand-side (LHS) non-terminal of the root production and which covers s

from index i to j. For example, the subtree rooted at the node “(state →

next to(state),[5..9])” in the derivation shown in Figure 3.2 is a partial

derivation which would be denoted as ESTATE,s[5..9]. Note that the derivation

D of sentence s is then simply Estart,s[1..|s|], where start is the start symbol of

the MRL’s context free grammar, G.

Our procedure to find the most probable partial derivation E∗
n,s[i..j]

considers all possible subtrees whose root production has n as its LHS non-

terminal and which cover s from index i to j. Mathematically, the most

probable partial derivation E∗
n,s[i..j] is recursively defined as:

E∗
n,s[i..j] = makeTree( arg max

π = n → n1..nt ∈ G,

(p1, .., pt) ∈ partition(s[i..j], t)

(Pπ(s[i..j])
∏

k=1..t

P (E∗
nk,pk

)))
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where partition(s[i..j], t) is a function which returns the set of all partitions of

s[i..j] with t elements including their permutations. A partition of a substring

s[i..j] with t elements is a t−tuple containing t non-overlapping substrings of

s[i..j] which give s[i..j] when concatenated. For example, (“the states border-

ing”, “Texas ?”) is a partition of the substring “the states bordering Texas ?”

with 2 elements. The procedure makeTree(π, (p1, .., pt)) constructs a partial

derivation tree by making π as its root production and making the most prob-

able partial derivation trees found through the recursion as children subtrees

which cover the substrings according to the partition (p1, .., pt).

The most probable partial derivation E∗
n,s[i..j] is found using the above

equation by trying all productions π = n → n1..nt in G which have n as

the LHS, and all partitions with t elements of the substring s[i..j] (n1 to nt

are right-hand-side (RHS) non-terminals of π, terminals do not play any role

in this process and are not shown for simplicity). The most probable partial

derivation E∗
STATE,s[5..9] for the sentence shown in Figure 3.2 is found by trying

all the productions in the grammar with state as the LHS, for example, one of

them being “state → next to state”. Then for this sample production, all

partitions, (p1, p2), of the substring s[5..9] with two elements will be considered,

and the most probable derivations E∗
NEXT TO,p1

and E∗
STATE,p2

will be found

recursively. The recursion reaches base cases when the productions that have

n on the LHS do not have any non-terminal on the RHS or when the substring

s[i..j] becomes smaller than the length t.

According to the equation, a production π ∈ G and a partition (p1, .., pt) ∈
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partition(s[i..j], t) will be selected in constructing the most probable partial

derivation. These will be the ones which maximize the product of the prob-

ability of π covering the substring s[i..j] with the product of probabilities of

all the recursively found most probable partial derivations consistent with the

partition (p1, .., pt).

A naive implementation of the above recursion will be computation-

ally very expensive, but by suitably extending the well known Earley’s (1970)

context-free grammar parsing algorithm it can be implemented efficiently.

We describe this extended version of the algorithm in the next subsection.

The above task has some resemblance to probabilistic context-free grammar

(PCFG) parsing for which efficient algorithms are available (Stolcke, 1995),

but we note that our task of finding the most probable semantic derivation

differs from PCFG parsing in two important ways:

1. The probability of a production is not independent of the sentence but

depends on the substring of the sentence it covers.

2. The leaves of the tree are not individual terminals of the grammar but

are substrings of words of the NL sentence.

3.2.3 Extended Earley’s Algorithm for Computing the Most Prob-
able Semantic Derivation

Parsing a sentence s by Earley’s (1970) algorithm involves a single

left-to-right pass over s while filling an array called a chart, that has |s| + 1

entries. For each word position in the sentence, the chart contains a list of
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states of the subtrees derived so far. Each subtree is compactly represented

in a state only once which is shared by other subtrees which need it. The

possible subtrees are predicted top-down and are completed bottom-up which

makes the parsing very efficient. Jurafsky and Martin (2000) present a good

description of Earley’s algorithm which we extend here for computing the most

probable semantic derivation of a sentence.

A state in each chart entry contains the following information:

1. the root production of the subtree

2. where in the sentence this subtree’s coverage begins

3. up to which RHS non-terminals in the production the subtree has been

completed and where in the sentence its coverage ends

4. the probability of the subtree derived so far

All this information about a state can be compactly represented by a dotted

rule, an example of which is (5STATE → NEXT TO •8 STATE, 0.88). Here

the subscripted number 5 on the LHS non-terminal indicates that this subtree

starts its coverage from the fifth word of the sentence, the dot and its subscript

8 indicates that subtree corresponding to NEXT TO non-terminal has been

completed whose coverage ends at the seventh word in the sentence but the

subtree corresponding to STATE non-terminal on the RHS hasn’t been com-

pleted yet, and 0.88 is the probability of this derivation subtree so far. A state

is called complete if the dot is at the end of the production, a complete state
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means that the whole tree below the root production has been completed. A

state is called a base state if its production has no non-terminal on the RHS,

these correspond to“POS → word” type of productions in syntactic parsing.

In order to recover the tree structures from this chart structure, each state

also contains links to the completed states it is composed. This information

is not shown for simplicity.

Figure 3.3 gives the extended Earley’s algorithm, extended earley,

for obtaining the most probable semantic derivation of a sentence s, given the

MRL grammar G and the classifiers P . It does a beam search and gives the

best ω derivations it finds, where ω is a system parameter called the beam

width. If the beam width is infinite, then this algorithm is guaranteed to

find all the semantic derivations of the sentence (which will include the most

probable one), but this setting is computationally impractical to run. With a

smaller beam width (like ω = 10 in our experiments), the algorithm will do a

greedy approximation search to find the ω most probable derivations.

In the pseudo-code, the Greek alphabets α, β and γ are used to repre-

sent sequences (possibly empty) of non-terminals and terminals on the RHS

of productions while the capitalized alphabets stand for non-teminals. The

parsing starts by inserting the dummy state (0NULL → •0 START ) which

has the start symbol of the MRL grammar on the RHS and the subscripts

tell that nothing has been parsed yet. Parsing then proceeds by examining

chart entries and words of the sentence left-to-right. There are three main

procedures involved: PREDICTOR, SCANNER and COMPLETER.
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function EXTENDED EARLEY(sentence s, MRL grammar, classifiers P )
INSERT((0NULL → •0 start, 1), chart[0])

for i=0 to |s| do
for each state in chart[0..i − 1] do

if (BASE(state) and INCOMPLETE(state))
then SCANNER(state, i)

for each state in chart[i] do
if (not BASE(state) and INCOMPLETE(state))

then PREDICTOR(state)
elseif (BASE(state) and INCOMPLETE(state))

then SCANNER(state,i)
else COMPLETER(state)

return(chart)
procedure PREDICTOR((iA → α •j B β, p))
for each (B → γ) in MRL grammar do

for each permutation γ′ of γ do
INSERT((jB → •j γ′, 1), chart[j])

procedure SCANNER((iA → •i α, p), k)
if (p = PA→α(s[i..k]) ≥ θ) then

INSERT((iA → α •k+1, p), chart[k + 1])
procedure COMPLETER((jB → γ •k, p))
for each ((iA → α •j B β, q) in chart[j]) do

if (INCOMPLETE((iA → α B •k β, p ∗ q)))
INSERT((iA → α B •k β, p ∗ q), chart[k])

elseif (r = PA→α B β(s[i..k − 1]) ≥ θ) then
INSERT((iA → α B •k β, p ∗ q ∗ r), chart[k])

procedure INSERT(state, chart[j])
if (state is not already in chart[j]) then

BEAM PUSH(state, chart[j])

Figure 3.3: The extended Earley’s algorithm for obtaining the most probable
semantic derivation.
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The PREDICTOR procedure generates states representing the top-

down expectations of the parses. Since in a semantic derivation a sentence

may get covered by any permutation of the RHS non-terminals, the predictor

generates states corresponding to all the permutations of RHS non-terminals.

If a state in the chart entry being processed is incomplete and is not a base state

then PREDICTOR is called on that state. For example, when PREDICTOR

is called on the state (5STATE → NEXT TO •8 STATE, q) it will predict

the state (8STATE → •8 STATEID, 1) among some other states, hoping to

find a subtree for the RHS non-terminal STATE. The value 1 is a temporary

placeholder probability which will get multiplied by some real probability when

this state gets completed. Out of the possible substrings the predicted state

can cover, if there is no substring which can be covered with probability greater

than a threshold θ by the production of predicted state, then that predicted

state is not included in the chart to prevent very low probability parses. In

our experiments, the value of θ was 0.5.

If a state is a base state and is incomplete, then SCANNER is called on

it. SCANNER looks at the current word in the sentence and if the substring

from the beginning word of the state till this word has a good probability

for getting covered by the state’s production, then a new complete state is

generated. This probability has to be greater than the threshold θ. Since

the leaves of the derivation can contain any number of words, SCANNER is

called for all previous chart entries first (i.e. base states being completed may

have their begin word anywhere back in the sentence). As an example, when
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SCANNER is called on the state (8STATE → •8 STATEID, 1) while processing

the ninth word, then if the probability p = PSTATE → STATEID(s[8..9]) ≥ θ

then the SCANNER will produce the completed state (8STATE → STATEID

•10, p).

If a state is complete, then COMPLETER is called on it. The COM-

PLETER looks at all the states in the chart which need this completed subtree

and generates new states advancing them from their previous states. The prob-

ability of a new state is the product of the probabilities of its previous state

and the probability of the state on which COMPLETER was called. If a new

state is a complete state, then it is included only if the probability r of its

production covering the substring from the beginning word of the state till

the end word of the state is greater than the parameter θ. The probability r

is also multiplied with the current probability of the new state to get its new

probability. For example, calling COMPLETER on (8STATE → STATEID

•10, p) will generate state (5STATE → NEXT TO STATE •10, p ∗ q) from

the previous state (5STATE → NEXT TO •8 STATE, q). Since this is also

a complete state (i.e. the dot is in the end), this will be included only if

(r = PSTATE → NEXT TO STATE(s[5..9]) ≥ θ) and in that case the new prob-

ability will be also multiplied by r to get the state: (5STATE → NEXT TO

STATE •10, p ∗ q ∗ r).

Finally, a procedure called INSERT inserts states into the chart. A

state is included only if it is not already present in the chart entry. Also, to

do the beam search, beams of only the best ω states are maintained for each
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of the productions starting and ending at the same places in the sentence and

with dots at the same positions. If the beam is full then the new state to be

inserted replaces the lowest probability state in the beam provided the new

probability is greater than that lowest probability. Since threshold θ is used

to prune low probability trees, its is possible that the algorithm may not find

any derivation.

3.3 KRISP’s Training Algorithm

In this section, we describe how Krisp learns the classifiers which give

the probabilities Pπ(u) needed for semantic parsing as described in the previous

section. Given the training corpus of NL sentences paired with their MRs

{(si,mi)|i = 1..N}, Krisp first parses the MRs using the MRL grammar, G.

We represent the parse of MR, mi, by parse(mi).

Figure 3.4 shows pseudo-code for Krisp’s training algorithm. Krisp

learns a semantic parser iteratively, each iteration improving upon the parser

learned in the previous iteration. In each iteration, for every production π of

G, Krisp collects positive and negative example sets. In the first iteration,

the set P(π) of positive examples for production π contains all sentences, si,

such that parse(mi) uses the production π. The set of negative examples,

N(π), for production π includes all of the remaining training sentences.

Using these positive and negative examples, an SVM classifier1, Cπ, is

1We use the LIBSVM package available at: http://www.csie.ntu.edu.tw/~cjlin/

libsvm/
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function TRAIN KRISP(training corpus {(si,mi)|i = 1..N},
MRL grammar G)
// collect positive and negative examples for the first iteration
for each π ∈ G

for i = 1 to N do
if π is used in parse(mi) then

include si in P(π)
else include si in N(π)

for iteration = 1 to MAX ITR do
for each π ∈ G do

Cπ = trainSV M(P(π),N(π)) // SVM training
for each π ∈ G P(π) = Φ // empty the positive examples
for i = 1 to N do

D =EXTENDED EARLEY(si, G, P ) // obtain best derivations
if 6 ∃ d ∈ D such that parse(mi) = getMR(d) then

// if no correct derivation then force to find one
D = D ∪ EXTENDED EARLEY CORRECT(si, G, P,mi)

d∗ = arg maxd∈D&getMR(d)=parse(mi)
P (d)

// collect positives from maximum probability correct derivation
COLLECT POSITIVES(d∗)
for each d ∈ D do

if P (d) > P (d∗) and getMR(d) 6= parse(mi) then
// collect negatives from incorrect derivation with larger
// probability than the correct one
COLLECT NEGATIVES(d, d∗)

return classifiers C = {Cπ|π ∈ G}

Figure 3.4: Krisp’s training algorithm
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trained for each production π using a normalized string subsequence kernel.

Following the framework of Lodhi et al. (2002), we define a kernel between

two strings as the number of common subsequences they share. One differ-

ence, however, is that their strings are over characters while our strings are

over words. A word subsequence kernel like this has been previously used by

Cancedda et al. (2003) for text classification. The more the two strings share,

the greater the similarity score will be. String subsequence kernels have been

previously used with success in natural language processing for text classifi-

cation (Lodhi et al., 2002; Cancedda et al., 2003) and relational information

extraction (Bunescu & Mooney, 2005b). We use them here for semantic pars-

ing.

Although any string classifier can be used in our system, kernel-based

classifiers are particularly suitable because semantic parsing involves mapping

phrases of NL sentences to semantic concepts in MRL. Given that natural

languages are so flexible, there could be various ways in which one can express

the same semantic concept. It is difficult for rule-based classifiers or even

statistical feature-based classifiers to capture the range of NL contexts which

map to a semantic concept, because they tend to enumerate these contexts.

In contrast, kernel methods allow a convenient mechanism to implicitly work

with potentially infinite number of features which can robustly capture these

range of contexts. By using a string-subsequence kernel, Krisp implicitly

uses a very large number of word subsequences as features. In Chapter 4, we

will describe a modification to Krisp which uses syntactic tree-kernels. We
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use SVMs for kernel-based classifiers because they offer the advantage of being

resistant to overfitting in such high dimensional feature spaces (Vapnik, 1998).

Normally, SVM classifiers only predict the class of the test example

but one can obtain class probability estimates by mapping the distance of

the example from the SVM’s separating hyperplane to the range [0,1] using

a learned sigmoid function (Platt, 1999). The classifier Cπ then gives us the

probabilities Pπ(u). We represent the set of these classifiers by C = {Cπ|π ∈

G}.

Next, using these classifiers, the extended Earley’s algorithm, denoted

by extended earley in the pseudo-code, is invoked to obtain the ω best

semantic derivations for each of the training sentences. The procedure getMR

returns the MR for a semantic derivation. At this point, for many training

sentences, the resulting most-probable semantic derivation may not give the

correct MR. Hence, next, the system collects more refined positive and negative

examples to improve the result in the next iteration. It is also possible that

for some sentences, none of the obtained ω derivations give the correct MR.

But as will be described shortly, the most probable derivation that gives the

correct MR is needed to collect positive and negative examples for the next

iteration. Hence in these cases, a version of the extended Earley’s algorithm,

extended earley correct, is invoked which also takes the correct MR as

an argument and returns the best ω derivations it finds, all of which give the

correct MR. This is easily done by making sure all subtrees derived in the

process are present in the parse of the correct MR.
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(ANSWER → answer(RIVER), [1..9])

(RIVER → TRAVERSE(STATE), [1..9])

(TRAVERSE→traverse, [1..7])

Which1 rivers2 run3 through4 the5 states6 bordering7

(STATE → STATEID, [8..9])

(STATEID → stateid ‘texas’, [8..9])

Texas8 ?9

Figure 3.5: An incorrect semantic derivation of the NL sentence “Which
rivers run through the states bordering Texas?” which gives the incorrect MR
answer(traverse(stateid(‘texas’))).

From these derivations, positive and negative examples are collected for

the next iteration as follows. Positive examples are collected from the most

probable derivation which gives the correct MR. Figure 3.2 showed an example

of a derivation which gives the correct MR. At each node in such a derivation,

the substring covered is taken as a positive example for its production. Nega-

tive examples are collected from those derivations whose probability is higher

than the most probable correct derivation but which do not give the correct

MR. Figure 3.5 shows an example of an incorrect derivation for the same

sentence. Here the function “next to” is missing from the MR it produces.

The following procedure is used to collect negative examples from in-

correct derivations. The incorrect derivation and the most probable correct

derivation are traversed simultaneously starting from the root using breadth-

first traversal. The first nodes where their productions differ is detected,

and all of the words covered by the these nodes (in both derivations) are

marked. In the correct and incorrect derivations shown in Figures 3.2 and 3.5
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respectively, the first nodes where the productions differ are “(state →

next to(state), [5..9])” and “(state → stateid, [8..9])”. Hence, the

union of words covered by them: 5 to 9 (“the states bordering Texas?”), will

be marked. For each of these marked words, the procedure considers all of

the productions which cover it in the two derivations. The nodes of the pro-

ductions which cover a marked word in the incorrect derivation but not in the

correct derivation are used to collect negative examples. In the example, the

node “(traverse→traverse,[1..7])” will be used to collect a negative exam-

ple (i.e. the words 1 to 7 ‘‘which rivers run through the states bordering” will

be a negative example for the production traverse→traverse) because the

production covers the marked words “the”, “states” and “bordering” in the

incorrect derivation but not in the correct derivation. With this as a negative

example, hopefully in the next iteration, the probability of this derivation will

decrease significantly and drop below the probability of the correct derivation.

In each iteration, the positive examples from the previous iteration

are first removed so that new positive examples which lead to better correct

derivations can take their place. However, negative examples are accumulated

across iterations for better accuracy because negative examples from each iter-

ation only lead to incorrect derivations and it is always good to include them.

Moreover, since the extended Earley’s algorithm does a limited beam search

and may not find all the derivations, in each iteration it may miss some in-

correct derivations from which negative examples could have been collected.

Hence accumulating them across iterations only helps in collecting more neg-
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ative examples. To further increase the number of negative examples, the

positive examples of a production π are added as negative examples for all

the other productions which have the same LHS non-terminal as π. Sharing

same LHS non-terminal indicates that the MR parse subtrees rooted at those

productions can be used in the same places in MR parse trees, hence this step

prevents the rest of the productions from occurring in the semantic derivations

where π should occur. After a specified number of max itr iterations, the

trained classifiers from the last iteration are returned. Testing involves using

these classifiers to generate the most probable derivation of a test sentence as

described in the previous section, and returning its MR.

In order to make semantic parsing faster, productions whose probabili-

ties of covering the complete sentence are very low, i.e. less than the threshold

θ according to the classifiers trained in the first iteration, are not considered for

obtaining best semantic derivations even in latter iterations. This reduces the

number of productions to be considered in the extended Earley’s algorithm,

which significantly improves training as well as testing time.

The MRL grammar may contain productions corresponding to con-

stants of the domain, for e.g., state names like “stateid → ‘texas’”, or

river names like “riverid → ‘colorado’” etc. Our system allows the user

to specify such productions as constant productions giving the NL substrings,

called constant substrings, which directly relate to them. For example, the

user may give “Texas” as the constant substring for the production “stateid

→ ‘texas’. Then Krisp does not learn classifiers for these constant pro-
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ductions and instead decides if they cover a substring of the sentence or not

by matching it with the provided constant substrings. Whenever a constant

substring is found in the NL sentence, Krisp takes the probability of the cor-

responding production covering this substring as 1. If n productions have the

same constant substring (e.g. “RIVERID → colorado” and “STATEID →

colorado”), then all of them get probability equal to 1 and the maximum

probability semantic derivation gets decided based on the rest of the context.

A constant production is allowed to cover extra words in the sentence with

same probability,2 but none of these extra words should be another constant

substring otherwise the derivation will miss the other corresponding constant

production. If a constant substring found in the sentence corresponds to only

one constant production, then the constant substring in the sentence is re-

placed by the LHS non-terminal (e.g. “texas” in the sentence will be replaced

by STATEID) to facilitate more generalization when learning classifiers for

other productions.

3.4 Experiments

3.4.1 Methodology

Krisp was evaluated on two domains: CLang and Geoquery which

were described in Chapter 2. The CLang corpus has 300 NL-MR pairs and

the Geo880 has 880 NL-MR pairs. Table 3.1 shows some statistics about

2The parent productions above the constant productions in semantic derivations, which
would also cover those words, will however prevent the constant productions from covering
too many extra words.
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Statistic CLang Geo880
No. of examples 300 880

Average NL sentence length 22.52 7.48
Average MR length (tokens) 13.42 6.47

No. of non-terminals 16 44
No. of non-constant productions 102 133

No. of unique NL tokens 337 270

Table 3.1: Some statistics of the corpora used for evaluation.

these corpora. The average length of an NL sentence in the CLang corpus

is 22.52 words while in the Geoquery corpus it is less than 8 words, this

indicates that CLang is the harder corpus. The average length of the MRs is

also larger in the CLang corpus.

Krisp was evaluated using standard 10-fold cross validation. Since

Krisp uses a threshold θ to prune low probability parses, it may fail to return

any complete MR for a test sentence. Hence, we computed the number of test

sentences for which Krisp produced complete MRs, and the number of these

MRs that were correct. For CLang, an output MR is considered correct

if it exactly matches the correct MR, up to reordering of the arguments of

commutative operators like and. For Geoquery, an output MR is considered

correct if the resulting query retrieves the same answer as the correct MR when

submitted to the database. Then, the performance was measured in terms of

precision and recall defined as follows:

Precision =
Number of correct MRs

Number of test sentences with complete output MRs
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Recall =
Number of correct MRs

Number of test sentences

A combined score of precision and recall, called F-measure, is obtained

by taking their harmonic mean:

F measure =
2 ∗ Precision ∗ Recall

Precision + Recall

Krisp gives probabilities for its semantic derivations which can be

taken as confidences in the corresponding MRs. These confidences can be

used to plot precision-recall curves by first sorting the output MRs (from all

the folds) by their confidences and then finding precision for every recall value.

In our experiments, the beam width parameter ω was fixed to 10, the minimum

probability threshold θ was fixed to 0.5 and the maximum length of the string

subsequences used for computing kernels was fixed to 3. These parameters

were found through pilot experiments. The maximum number of iterations,

MAX ITR, required were only 6, beyond this we found that the system only

overfits the training corpus and gives no benefit on testing. Since the NL sen-

tences in the Geo880 corpus are more compact with very few extra words,

than the NL sentences in the CLang corpus, we kept the kernel parameter,

λ (see Subsection 2.2.2), which penalizes gaps in the subsequences equal to

0.75 for experiments with the Geo880 corpus, and equal to 0.25 for CLang

corpus, although the performance does not change significantly by varying this

parameter unless it is at its extreme values.

We compared our system’s performance with the systems described

briefly in the previous chapter: Wasp (Wong, 2005), Scissor (Ge & Mooney,
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2005), the system by Zettlemoyer and Collins (2007) and Chill (with Cock-

tail ILP algorithm (Tang & Mooney, 2001)). Wasp and Scissor also assign

confidences to the MRs they generate which are used to plot precision-recall

curves. The results of the other systems are shown as points on the precision-

recall graph. The results of the system by Zettlemoyer and Collins (2007) are

available only for the Geo880 corpus. Their experimental set-up also differs

from ours, they explicitly set aside 600 Geoquery examples for training and

used the remaining 280 for testing.

3.4.2 Results and Discussion

Figure 3.6 shows the results on the CLang corpus. Note that precision

is shown on the y-axis starting from 50%. Krisp gives slightly lower precision

than Wasp but gives slightly more maximum recall. The difference between

their best F-measures on the precision-recall curves were not found to be sta-

tistically significant (p > 0.05) based on paired t-test. Scissor gives much

higher maximum recall and its best F-measure was found significantly better

(p < 0.05) than Krisp’s best F-measure. However, we note that Scissor

requires more supervision for the training corpus in the form of semantically

annotated syntactic parse trees for the training sentences. Chill could not be

run beyond 160 examples because its Prolog implementation runs out of mem-

ory. For 160 examples, it gave 49.2% precision with 12.67% recall. Figure 3.7

shows the precision-recall curves for Krisp when it is trained on increasing

number of training examples in each fold. The graph shows that increasing
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Figure 3.6: Results on the CLang corpus.

the amount of training data results in significant improvement in performance,

even between the last two curves. This indicates that the performance can be

improved further on this corpus if more training data is provided.

The results on the Geo880 corpus are shown in Figure 3.8. On this

corpus, Krisp obtains higher precision than Wasp at lower recall values but

Wasp obtains higher maximum recall. Both these systems obtain performance

very close to that of Scissor. The difference between their best F-measures

was not found to be statistically significant (p > 0.05) based on paired t-test.

Chill is able to obtain higher recall. The system by Zettlemoyer and Collins

(2007) is able to achieve higher precision and recall, but we note that it relies

on some initial hand-written rules for lexical acquisition. Figure 3.9 shows the
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Figure 3.7: Results on the CLang corpus when trained on increasing number
of training examples.

precision-recall curves for Krisp when it is trained on increasing number of

training examples in each fold. It can be seen that the learning has reached

very close to convergence on this corpus.

In Figure 3.10 we have shown how the performance of Krisp changes

with the number of iterations it makes in its training algorithm. It can be

seen that after the first iteration, in which it collects entire sentence as posi-

tive and negative examples for its classifiers, the performance is very poor. But

after the second iteration, in which it collects more refined positive and neg-

ative examples, the performance shows a big improvement. With subsequent

iterations, the performance improves by only a small amount.
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Figure 3.10: Results on the Geo880 corpus with increasing number of itera-
tions of the of Krisp’s training algorithm.

Krisp took on average 8 minutes and 26 seconds to run each fold of

the Geo880 corpus, and on the CLang corpus it took on average 45 minutes

and 54 seconds on state-of-the-art cluster processors. Although Geo880 has

more examples than CLang, but it takes less time to run because Krisp

spends the majority of the time in parsing the sentences which depends on the

sentence length.3 This shows that sentence length is currently the bottleneck

for Krisp’s efficiency and it will be easier to scale-up Krisp with the number

of training examples.

3Earley’s algorithm runs in cubic time in the length of the sentence
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3.4.3 Robustness to Noise

Any real world application in which semantic parsers would be used to

interpret natural language of a user is likely to face noise in the input. If the

user is interacting through spontaneous speech and the input to the semantic

parser is coming form the output of a speech recognition system then there

are many ways in which noise could creep in the NL sentences: interjections

(like um’s and ah’s), environment noise (like door slams, phone rings etc.),

out-of-domain words, grammatically ill-formed utterances etc. (Zue & Glass,

2000). As opposed to the other semantic parser learning systems, Krisp’s

string-kernel-based semantic parsing does not use grammar rules for natural

language, probabilistic or otherwise, and does not use hard-matching rules

for classification, hence it should be more flexible and robust to noise. We

tested this hypothesis by running experiments on data which was artificially

corrupted with simulated speech recognition errors.

The interjections, environment noise etc. are likely to be recognized as

real words by a speech recognizer. To simulate this, after every word in a sen-

tence, with some probability Padd, an extra word is added which is chosen with

probability proportional to its word frequency found in the British National

Corpus (BNC), a good representative sample of English. A speech recognizer

may sometimes completely fail to detect words, so with a probability of Pdrop

a word is sometimes dropped. A speech recognizer could also introduce noise

by confusing a word with a high frequency phonetically close word. We simu-

late this type of noise by substituting a word in the corpus by another word,
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Figure 3.11: Results on the CLang corpus with increasing amounts of noise
in the test sentences.

w, with probability ped(w) ∗ P (w), where p is a parameter, ed(w) is w’s edit

distance (Levenshtein, 1966) from the original word and P (w) is w’s proba-

bility proportional to its word frequency. The edit distance which calculates

closeness between words is character-based rather than based on phonetics,

but this should not make a significant difference in the experimental results.

Figure 3.11 shows the results on the CLang corpus with increasing

amounts of noise, from level 0 to level 4. The noise level 0 corresponds to no

noise. The noise parameters, Padd and Pdrop, were varied uniformly from being

0 at level 0 and 0.1 at level 4, and the parameter p was varied uniformly from

being 0 at level 0 and 0.01 at level 4. We are showing the best F-measure for

each system at different noise levels. As can be seen, Krisp’s performance
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degrades gracefully in the presence of noise while other systems’ performance

degrade much faster, thus verifying our hypothesis. In this experiment, only

the test sentences were corrupted, we get qualitatively similar results when

both training and test sentences are corrupted. The results are also similar on

the Geoquery corpus.

3.4.4 Semantic Parsing with Different Natural Languages

We have translations of the original Geoquery corpus with 250 ex-

amples, which we call Geo250 corpus, in three other natural languages:

Japanese, Spanish and Turkish. Since Krisp’s learning algorithm does not

use any natural language specific knowledge, it is directly applicable to other

natural languages. Japanese uses different names for the names of the places

(e.g. Tekisasu for Texas, Nyuu Yooku for New York etc.), we provide Krisp

this information through the constant substrings.

Figure 3.12 shows results of running Krisp on other natural languages.

The performance on English and Spanish are comparable. Japanese gives

somewhat low precision, we suspect it is because in Japanese, words are formed

by joining morphemes and there could have been confusion brought by break-

ing these into tokens in our corpus. Turkish gives lower recall, we believe it is

because Turkish has larger number of unique tokens (36% more than English)

due to its complex agglunative morphology, which makes learning from its

corpus less general.
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Figure 3.12: Results of Krisp on Geo250 corpus for different natural lan-
guages.

3.5 Chapter Summary

In this chapter we presented our new kernel-based approach to learn se-

mantic parsers. It trains SVM classifiers based on string subsequence kernels

for each of the productions in the meaning representation language. These

classifiers are then used to compositionally build complete meaning repre-

sentations of natural language sentences. We evaluated our system on two

real-world corpora. The results showed that our system compares favorably

to other existing systems and is particularly robust to noise.
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Chapter 4

Utilizing More Supervision

The training data for learning the semantic parsers described in the

previous chapter consisted of a corpus of natural language (NL) sentences

paired with their meaning representations. If the corpus-builders were willing

to provide more supervision in the form of syntactic or semantic annotations

for the natural language sentences, then the learning system should be able

to utilize them and learn better semantic parsers. In this chapter, we show

how Krisp utilizes two forms of extra supervision - syntactic parse trees and

semantically augmented parse trees.

4.1 Utilizing Syntactic Parse Trees

Given that the semantic interpretation of a sentence largely depends

on how the words are combined according to the NL grammar, using the

syntax of the sentence should help in its semantic parsing. If syntactically

annotated parse trees are provided for the training sentences then existing

syntactic parsers, like that of Bikel (2004), can be trained with the given

training data in addition to the Wall Street Journal (WSJ) corpus to obtain

syntactic parse trees for the test sentences. This was also done in the tree-
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based version of Silt (Kate et al., 2005). In order to exploit the NL syntax,

the most natural extension of the string-kernel-based approach is to make it

tree-kernel-based by defining a tree kernel over syntactic parse trees.

4.1.1 Tree Kernels

Syntactic-tree-kernels were first introduced by Collins and Duffy (2001)

and were also used by Collins (2002a) for the task of re-ranking syntactic parse

trees. They define a kernel between two trees as the number of subtrees shared

between them. A subtree is defined as any subgraph of the tree which includes

more than one node, with the restriction that entire productions must be

included at every node. Figure 4.1 shows two syntactic parse trees and all the

common subtrees between them. The kernel defined this way captures most

of the structural information present in the syntactic parse trees in the form

of tree fragments which the kernelized learning algorithms can then implicitly

use as features. In our system, we use an efficient algorithm to compute tree

kernels introduced by Moschitti (2006) which runs in close to linear time in

the size of the input trees.

4.1.2 Using Tree Kernels in Krisp

The string-kernel-based Krisp described in the previous chapter cal-

culates the similarity between two NL substrings as the number of common

subsequences between them. In order to use the syntactic information, we

modified Krisp so that the similarity between two NL substrings takes into
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Figure 4.1: (a) and (b) are two example syntactic parse trees, (c) shows all
the common subtrees between them.
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account their respective syntactic structures.

The syntactic structure of an NL substring is computed from the syn-

tactic parse of the full NL sentence in the following way. The words of the

NL substring appear as a subset of leaves in the syntactic parse. First, the

lowest common ancestor of these leaves is determined. Then, the smallest

subtree rooted at this node which includes all the leaves of the NL substring

and includes entire productions at every internal node is found. This is taken

as the syntactic structure of the NL substring. For example, in Figure 4.1, the

syntactic structure of the substring “left side of” of the tree shown in (a) will

be the first tree shown in (c). Notice that the NP on the far right is included

to cover the production for PP at its parent but none of the leaves under it is

included.

Similarity between two NL substrings is then computed as the tree

kernel between their syntactic structures. Krisp uses the training and test

sentences only to find the similarity between various substrings, hence in order

to use syntactic parses, substituting tree kernels for string kernels is the only

modification needed in the entire system.

4.1.3 Experiments

Using the provided gold-standard syntactic parse trees for the training

sentences and the first 21 sections of the WSJ corpus, we trained Bikel’s syn-

tactic parser (Bikel, 2004). For the test sentences, syntactic parse trees were

generated using the trained Bikel’s parser. Using the gold-standard syntactic
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Figure 4.2: Precision-recall curves for KRISP using tree, string and combined
kernels on the Geoq880 corpus.
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Figure 4.3: Precision-recall curves for KRISP on the Geo880 corpus using
tree kernel with gold-standard syntactic parses and syntactic parses obtained
from a trained syntactic parser.
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Figure 4.4: Precision-recall curves for KRISP on the Geo880 corpus using
combined string and tree kernels with gold-standard syntactic parses and syn-
tactic parses obtained from a trained syntactic parser.

parse trees of the training sentences, we trained Krisp with a tree kernel.

This tree-kernel-based version of Krisp was used to semantically parse the

test sentences.

Figure 4.2 shows the precision-recall curves for the Geo880 corpus gen-

erated using 10-fold cross-validation. It can be seen that tree-kernel-based

Krisp performs worse than string-kernel-based Krisp. The difference be-

tweeen the best F-measures on the precision-recall curves was found to be

statistically significant (p < 0.01) based on paired t-test. This may be be-

cause syntactic parse trees are more detailed which makes them sparse and

hence difficult to generalize from. When we combined the two kernels by

simply adding the string and tree kernel values between two substrings, the
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performace is close to the performance when only string-kernels are used. The

combined kernel gave best F-measure of 80.3%, slightly better than 80.1%, the

best F-measure given by the string kernel. Although the difference was not

found to be statistically significant (p > 0.05).

We also ran experiments using gold-standard syntactic parse trees for

the test sentences to see if the performane limitation was due to the limitations

of the learned syntactic parser. Figures 4.3 and 4.4 show the precision-recall

curves for the Geo880 corpus when gold standard syntactic parse trees are used

for the test sentences with both tree and combined kernels. The performance

thus obtained is very close to when a learned syntactic parser is used, showing

that a better syntactic parser would not improve the performance substantially.

4.2 Utilizing Semantically Augmented Parse Trees

Another form of detailed supervision can be provided for training se-

mantic parsers by semantically annotating the training sentences with seman-

tic tags taken from the meaning representation language (MRL). For Krisp,

the most useful form of such annotation would be the most suitable correct

semantic derivations for the training sentences. These then can be directly

used to collect positive examples during training instead of using the inferred

correct semantic derivations which are improved iteratively. But we did not

undertake the intensive task of manually annotating the training sentences

with semantic derivations, instead we used another form of semantic annota-

tion, called semantically augmented parse trees, which were already available

65



S-answer

VP-river

VB

Name
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DT
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Figure 4.5: A SAPT for the sentence “Name the rivers in Arkansas” whose
meaning representation is answer(river(loc 2(stateid( ‘Arkansas’ )))) in the
Geoquery corpus.

for our experimental corpora.

4.2.1 Semantically Augmented Parse Trees

Semantically Augmented Parse Trees (SAPTs) were introduced and

used for learning semantic parsers by Ge and Mooney (2005). A SAPT for a

sentence is its syntactic parse tree in which in addition to the syntactic labels,

the internal nodes are augmented with semantic labels which are tokens from

the meaning representation (MR) of the sentence. Figure 4.5 shows a SAPT

for a sentence where the syntactic and semantic labels (in bold) on the internal

nodes are separated by a hyphen symbol. Some semantically vacuous nodes

do not have any semantic label.
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Ge and Mooney (2005) presented an approach called Scissor, in which

a semantic parser is trained directly with SAPTs using extensions of learning

techniques used in statistical syntactic parsing. The trained semantic parser

then generates SAPTs for the test sentences from which MRs are then derived.

Their approach does not need MRL grammar and directly works with the MR

expressions. In the next subsection, we describe an approach for using SAPTs

in Krisp’s training algorithm.

4.2.2 Using SAPTs in Krisp

Krisp can benefit from SAPTs by collecting positive examples in the

form of substrings of the sentences for training its classifiers for the MRL

productions. However, since the semantic labels used in SAPTs are tokens of

the MR expressions and not the productions of the MRL, positive examples for

the productions can not be directly collected. We used the following procedure

to collect possible positive examples from a SAPT and the corresponding MR.

First, the leaves of the SAPT, which are words of the sentence, are

numbered left to right starting from zero. These numbers are then propagated

up the tree to all the nodes with semantic labels, such that each node gets

a range that covers the ranges assigned to its children. Figure 4.6 (a) shows

a sample SAPT along with the ranges of its nodes in square brackets. The

ranges of all the semantic tokens are collected. If a semantic token occurs

multiple times, the union of its ranges is taken. In the example, the token

‘stateid’ is assigned the range [4], ‘loc 2’ is assigned the range [3-4], ‘river’ is
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(a)
S-answer [0-4]

VP-river [0-4]

VB

Name [0]

NP-river [1-2]

DT

the [1]

NNS-river [2]

rivers [2]

PP-loc 2 [3-4]

IN-loc 2 [3]

in [3]

NP-stateid [4]

NNP-stateid [4]

Arkansas [4]
(b)

ANSWER → answer RIVER [0-4]

answer [0-4] RIVER → river LOCATIONS [0-4]

river [0-4] LOCATIONS → LOC 2 STATE [3-4]

LOC 2 → loc 2

loc 2[3-4]

STATE → STATEID [4]

STATEID → stateid ‘Arkansas’ [4]

stateid [4] ‘Arkansas’

Figure 4.6: (a) A SAPT with the leaves numbered and the internal nodes with
semantic labels shown with the ranges they cover. (b) An MR parse with the
leaves shown with the ranges obtained from the corresponding SAPT which
are propagated up the tree to collect appropriate positive examples for the
productions.
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assigned the range [0-4] and ‘answer’ is also assigned the range [0-4].

These ranges of tokens are then transfered to the tokens present at the

leaves (terminals) of the corresponding MR parse tree. Figure 4.6 (b) shows the

MR parse tree and the ranges at its leaves. In the figure, the MRL productions

are shown in the internal nodes and the non-terminals are capitalized. These

ranges are propagated up the MR parse tree, such that a parent gets the

union of the ranges of its children. The positive examples for productions in

the internal nodes are then collected, which are simply the substrings of the

sentence with words in the associated ranges. For example, the production

LOCATIONS → LOC 2 STATE will get “in Arkansas” as a positive example

because its range is [3-4].

The positive examples thus collected from all of the training examples

are used in the first iteration of Krisp’s training algorithm, instead of using

an entire sentence as a positive example for a production if the sentence’s MR

parse uses that production. However, as before, the negative examples in the

first iteration are entire sentences.

If a token appears multiple times in an MR, then this procedure does

not ensure that that the positive examples collected from the children of a node

will not overlap, unlike when positive examples are collected from semantic

derivations. But for the first iteration, the positive examples thus collected

will still be more refined than if the entire sentence is collected as a positive

example for all the productions in the MR parse, which leads to a complete

overlap between all of the positive examples. It may be also noted that the
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SAPTs sometimes may not have all of the MR tokens labeled. For example,

in Figure 4.6 (a), the semantic token ‘Arkansas’ does not appear as a semantic

label for any of the nodes. This may sometimes lead to undefined ranges

for some productions in the MR parse, in which case the entire sentence is

collected as a positive example for that production.

The positive examples collected from SAPTs are used only in the first

iteration during training. For subsequent iterations, the positive examples are

collected as usual from the correct semantic derivations found by the semantic

parser trained from the previous iteration.

4.2.3 Experiments

We trained Krisp with semantic annotations given in the form of

SAPTs for the training examples and compared its performance when it is

not given SAPTs. Figure 4.7 shows the precision-recall curves for the 10-fold

corss-validation on the Geo880 corpus. The performance of Scissor which

directly trains on SAPTs is also shown for comparison. The values of the best

F-measures when trained on different amounts of training data are shown in

Table 4.1. It can be seen that with full training data, the performance using

SAPTs is slightly worse than when not using SAPTs, although the differ-

ence between the best F-measures was not found to be statistically significant

(p < 0.05) based on paired t-test. However, when the training data is less,

giving SAPTs during training helps improve the performance. The difference

between the best F-measures was found to be statistically significant (p < 0.05)

70



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90  100

P
re

c
is

io
n

Recall

KRISP-SAPT
KRISP

SCISSOR

Figure 4.7: Precision-recall curves for KRISP with and without using SAPTs
on the Geoq880 corpus with all the training examples in each fold. The per-
formance of Scissor is also shown for comparison.
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Number of training examples 40 80 160 320 640 792
Krisp’s best F-measure (%) 18.05 39.48 60.00 71.74 78.71 80.13
Krisp-sapt’s best F-measure (%) 20.07 41.98 60.19 70.58 79.14 79.04

Table 4.1: The best-F measures obtained on the Geo880 corpus with in-
creasing number of training examples by Krisp and when it is given SAPTs
(Krisp-sapt).

Number of iterations 1 2 4 6
Krisp’s best F-measure (%) 47.06 77.57 80.53 80.12
Krisp-sapt’s best F-measure (%) 63.47 79.29 79.49 79.04

Table 4.2: The best-F measures obtained on the Geo880 corpus by Krisp and
when it is given SAPTs (Krisp-sapt) with increasing number of iterations of
the training algorithm.

when the number of training examples were 40. The differences were not sig-

nificant when trained with any other number of training examples.

Table 4.2 shows the best F-measures obtained with increasing number

of iterations of the training algorithm. It is evident that after the first iteration,

during which the system with SAPTs uses the information from SAPTs to

collect better positive examples, a much better semantic parser is learned.

However, with subsequent iterations, the system without SAPTs is able to

learn as well as the system with SAPTs.

The increase in performance obtained using SAPTs is less than what

one would have expexted, this may be due to the fact that SAPTs were de-

signed to work with Scissor’s training algorithm. As mentioned in the be-

ginning of this section, annotations in the form of semantic derivations would
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be more helpful to Krisp’s training algorithm.

4.3 Chapter Summary

In this chapter we presented methods to utilize extra forms of supervi-

sion for learning semantic parsers. By giving Krisp more supervision in the

form of syntactic or semantic annotations, its performance can be improved,

although not by a large margin. This also shows that string-kernel based

Krisp with no extra supervision which directly relates words and substrings

to their meanings is able to internally determine the information that the extra

supervision is explicitly providing.
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Chapter 5

Utilizing Weaker Forms of Supervision

Krisp, and all the other learning systems for semantic parsing men-

tioned in chapter 2 use supervised learning methods which need annotations in

the form of meaning representations (MRs) paired with natural language (NL)

sentences as training data. However, it requires considerable human effort to

provide such annotations. In this chapter, we consider two weaker forms of

supervision: semi-supervision and ambiguous supervision, which are easier to

obtain than full supervision, and describe the extensions we made to Krisp

to utilize these forms of supervision.

5.1 Semi-Supervised Learning for Semantic Parsing

Semi-supervised learning methods utilize cheaply available unannotated

data during training along with annotated data and often perform better than

purely supervised learning methods trained on the same amount of annotated

data (Chapelle, Schölkopf, & Zien, 2006). In this section we present a semi-

supervised learning system for semantic parsing. The unannotated data we

consider is in the form of NL sentences that are not paired with their MRs.

We modified Krisp to make a semi-supervised system we call Semisup-

74



Krisp. The key modification is the use of transductive Support Vector Ma-

chines (SVMs) to learn classifiers for the MRL productions instead of the

normal SVMs. The next subsection gives a brief background of transductive

SVMs. We then describe the learning algorithm of Semisup-Krisp. Finally,

experiments on a real-world dataset are presented which show the improve-

ments Semisup-Krisp obtains over Krisp by utilizing unannotated sentences.

5.1.1 Transductive SVMs

Given positive and negative training examples in some vector space,

an SVM finds the maximum-margin hyperplane which separates them. Max-

imizing the margin prevents over-fitting in very high-dimensional data which

is typical in natural language processing and thus leads to better generaliza-

tion performance on test examples. When the unlabeled test examples are

also available during training, a transductive framework for learning (Vapnik,

1998) can further improve the performance on the test examples.

Transductive SVMs were introduced in (Joachims, 1999). The key idea

is to find the labeling of the test examples that results in the maximum-

margin hyperplane that separates the positive and negative examples of both

the training and the test data. Figure 5.1 shows an illustration for how the

presence of unlabeled (test) examples can help in finding a better hyperplane.

Such a hyperplane is found by including variables in the SVM’s objective

function representing labels of the test examples. Finding the exact solution

for the resulting optimization problem is intractable, however Joachims (1999)
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Figure 5.1: An illustration showing that the presence of unlabeled examples
(dots) can help in finding a better hyperplane separating the positive (+) and
negative (-) examples. An SVM will find the hyperplane shown by the solid line
which maximizes the margin separating the positive and negative examples,
but when the unlabeled examples are given, a transductive SVM will find the
hyperplane shown by the dotted line which maximizes the margin separating
all the examples.
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gives an approximation algorithm for it. One drawback of that algorithm is

that it requires the proportion of positive and negative examples in the test

data be close to the proportion in the training data, which may not always

hold, particularly when the training data is small. Chen, Wang, and Dong

(2003a) present another approximation algorithm which we use in our system

because it does not require this assumption. More recently, new optimization

methods have been used to scale-up transductive SVMs to large data sets

(Collobert, Sinz, Weston, & Bottou, 2006), however we did not face scaling

problems in our current experiments.

Although transductive SVMs were originally designed to improve per-

formance on the test data by utilizing its availability during training, they can

also be directly used in a semi-supervised setting (Bennett & Demiriz, 1999),

where unlabeled data is available during training that comes from the same

distribution as the test data but is not the actual data on which the classifier

is eventually to be tested. This framework is more realistic in the context

of semantic parsing where sentences must be processed in real-time and it is

not practical to re-train the parser transductively for every new test sentence.

Instead of using an alternative semi-supervised SVM algorithm, we preferred

to use a transductive SVM algorithm (Chen et al., 2003a) in a semi-supervised

manner, since it is easily implemented on top of an existing SVM system.
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function TRAIN SEMISUP KRISP(Annotated corpus A = {(si,mi)|i =
1..N}, MRL grammar G,Unannotated sentences T = {ti|i = 1..M})
// obtain classifiers by training KRISP
C ≡ {Cπ|π ∈ G} = TRAIN KRISP(A,G)
Let

P = {pπ = Set of positive examples used in training Cπ|π ∈ G}
N = {nπ = Set of negative examples used in training Cπ|π ∈ G}
U = {uπ = φ|π ∈ G} // set of unlabeled examples, initially all empty

for i = 1 to M do
{ui

π|π ∈ G} =COLLECT CLASSIFIER CALLS(PARSE(ti,C))
U = {uπ = uπ ∪ ui

π|π ∈ G}
for each π ∈ G do

// retrain classifiers utilizing unlabeled examples
Cπ =TRANSDUCTIVE SVM TRAIN(pπ, nπ, uπ)

return classifiers C = {Cπ|π ∈ G}

Figure 5.2: Semisup-Krisp’s training algorithm

5.1.2 Semi-Supervised Semantic Parsing

We modified the supervised system Krisp, described in chapter 3, to

incorporate semi-supervised learning. Supervised learning in Krisp involves

training SVM classifiers on positive and negative examples that are substrings

of the annotated sentences. In order to perform semi-supervised learning,

these classifiers need to be given appropriate unlabeled examples. The key

question is: Which substrings of the unannotated sentences should be given as

unlabeled examples to which productions’ classifiers? Giving all substrings of

the unannotated sentences as unlabeled examples to all of the classifiers would

lead to a huge number of unlabeled examples that would not conform to the

underlying distribution of classes each classifier is trying to separate. We had
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initially tried this, and as was expected, it did not give any benefit over fully

supervised learning.

Semisup-Krisp’s training algorithm, shown in Figure 5.2, selects ap-

propriate unlabeled examples in the following way. It first runs Krisp’s ex-

isting training algorithm and obtains SVM classifiers for every production in

the MRL grammar. Sets of positive and negative examples that were used for

training the classifiers in the last iteration are collected for each production.

Next, the learned parser is applied to the unannotated sentences. During the

parsing of each sentence, whenever a classifier is called to estimate the proba-

bility of a substring representing the semantic concept for its production, that

substring is saved as an unlabeled example for that classifier. These substrings

are representative of the examples that the classifier will actually need to han-

dle during testing. Note that the MRs obtained from parsing the unannotated

sentences do not play a role during training since it is unknown whether or not

they are correct. These sets of unlabeled examples for each production, along

with the sets of positive and negative examples collected earlier, are then used

to retrain the classifiers using transductive SVMs. The retrained classifiers are

finally returned and used in the final semantic parser.

5.1.3 Experiments

We compared the performance of Semisup-Krisp and Krisp in the

Geoquery domain for semantic parsing in which the MRL is a functional

language used to query a U.S. geography database (Kate et al., 2005). Its
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original corpus, Geo250, contains 250 NL queries collected from undergrad-

uate students and annotated with their correct MRs (Zelle & Mooney, 1996).

We used this data as the supervised corpus. Later, 630 additional NL queries

were collected from real users of a web-based interface and annotated (Tang

& Mooney, 2001). We used this additional data as unannotated sentences in

our current experiments. We also collected an additional 407 queries from the

same interface, making a total of 1, 037 unannotated sentences.

The systems were evaluated using standard 10-fold cross validation. All

the unannotated sentences were used for training in each fold. Performance

was measured in terms of precision (the percentage of generated MRs that were

correct) and recall (the percentage of all sentences for which correct MRs were

obtained). An output MR is considered correct if and only if the resulting

query retrieves the same answer as the correct MR when submitted to the

database. Since the systems assign confidences to the MRs they generate, the

entire range of the precision-recall trade-off can be obtained for a system by

measuring precision and recall at various confidence levels. We present learning

curves for the best F-measure (harmonic mean of precision and recall) obtained

across the precision-recall trade-off as the amount of annotated training data

is increased. Figure 5.3 shows the results for both systems.

The results clearly show the improvement Semisup-Krisp obtains over

Krisp by utilizing unannotated sentences, particularly when the number of

annotated sentences is small. We also show the performance of a hand-built se-

mantic parser Geobase (Borland International, 1988) for comparison. From
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Figure 5.3: Learning curves for the best F-measures on the Geo250 corpus.

the figure, it can be seen that, on average, Krisp achieves the same perfor-

mance as Geobase when it is given 126 annotated examples, while Semisup-

Krisp reaches this level given only 94 annotated examples, a 25.4% savings

in human-annotation effort.

5.2 Ambiguous Supervision for Semantic Parsing

Most learning systems for natural language processing require very de-

tailed supervision in the form of human annotations such as parse trees or

meaning representations for the training sentences. Ideally, a system would be

able to learn language like a human child, by only being exposed to utterances
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in a rich perceptual context. Frequently, the context of an utterance can be

used to narrow down its interpretation to a fairly small set of reasonable al-

ternatives. There has been some work on inferring the meanings of individual

words given a corpus of sentences each paired with an ambiguous set of mul-

tiple possible meaning representations (Siskind, 1996). However, the methods

developed in that work only acquire lexical semantics and do not learn how

to disambiguate words and compose their meanings in order to interpret com-

plete sentences. In this chapter, we explore the task of learning a semantic

parser from ambiguous supervision, in which each sentence is annotated with

an ambiguous set of multiple, alternative potential interpretations. We show

how an accurate semantic parser can be learned by augmenting an existing

supervised learning system to handle such ambiguous training data.

Testing such a system in a realistic setting would require a perceptual

system that can construct a set of plausible meanings for a sentence from the

context in which it is uttered. Since this is a difficult unsolved problem, we

evaluate the system by artificially obfuscating training data previously used

to assess supervised semantic-parser learners. We also evaluate our system on

another artificially-created corpus that models ambiguities more realistically.

Experimental results indicate that our system is able to learn accurate parsers

even given such ambiguous supervision.
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5.2.1 Ambiguous Supervision

We call the supervision unambiguous when a learning system for seman-

tic parsing is given a corpus of NL sentences in which each sentence is paired

with its respective correct MR. All the previous work on learning for semantic

parsing has used only unambiguous supervision. In this type of supervision,

while the learning system is not given which parts of the MRs correspond to

which portions within the sentences, it is however unambiguously given which

complete MRs correspond to which sentences. There are two major shortcom-

ings with this type of detailed supervision. First, manually constructing an

unambiguous corpus in which each sentence is annotated with its correct MR is

a difficult task. A computer system that observes some perceptual context and

is simultaneously exposed to natural language should be able to automatically

learn the underlying language semantics. But since the training data avail-

able in such a setting will not consist of NL sentences unambiguously paired

with their MRs, it will require human effort to build such a corpus before the

learning can take place. Secondly, unambiguous supervision does not model

the type of data children receive when they are learning a language. In order

to learn to analyze the meaning of sentences, children have to also learn to

identify the correct meaning of a sentence among the several meanings possi-

ble in their current perceptual context. Therefore, a weaker and more general

form of supervision for learning semantic parsers needs to be considered.

Consider the type of supervision a system would receive when learning

language semantics from perceptual contexts. We assume that the low-level
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  :

  :
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   :

SENT1
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SENT4

Figure 5.4: Sample Ambiguous Training Data (solid-line: correct meaning;
dashed-line: possible meaning).

sensory data (real or simulated) from a system’s perceptual context is first

abstracted into symbolic meaning representations (MRs). Our model of su-

pervision corresponds to the type of data that will be gathered from a temporal

sequence of perceptual contexts with occasional language commentary. The

training data in this model thus consists of a sequence of NL sentences and a

sequence of MRs in which each NL sentence is associated with a set of one or

more consecutive MRs. These associated MRs represent the general perceptual

context the system was in when it registered the NL sentence. The association

of multiple MRs with each NL sentence makes such a corpus ambiguous.

We assume that each NL utterance means something unique in the

perceptual context, so that exactly one MR out of all the MRs associated

with an NL sentence represents its correct meaning. Also, since different NL

utterances would normally refer to different things, we assume that an MR
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function TRAIN KRISPER(Ambiguous corpus A = {(senti,Mi)|Mi 6= φ, i =
1..N}, MRL grammar G)
REDUCE AMBIGUITIES(A) // reduce easy to resolve ambiguities
U = φ // corpus for training, initially empty
for i = 1 to N do // collect weighted initial examples

U = U ∪ {(senti,mr, w)|mr ∈ Mi, w = 1/|Mi|}
// obtain classifiers by training KRISP
C ≡ {Cπ|π ∈ G} = TRAIN WEIGHTED KRISP(U,G)
while (not converged) do

V = φ // collect examples with parse confidences, initially empty
for i = 1 to N do

V = V∪{(senti,mr, w)|mr ∈ Mi, w =PARSE ESTIMATE(senti,mr, C)}
U =BEST EXAMPLES(V) // find the best consistent examples
C =TRAIN KRISP(U,G) // retraining

return C // return classifiers trained in the last iteration

Figure 5.5: Krisper’s training algorithm

can be the correct meaning of at most one of the sentences with which it is

associated.1 Figure 5.4 shows a small example of such a corpus. The sentences

are shown connected to their possible MRs by lines. For illustration purpose,

the connections between sentences and their correct MRs are shown with solid

lines and the rest are shown with dotted lines. However, this distinction is

obviously not included in the training data.

1A duplicate MR (or sentence) that reappears later in the sequence will be treated
separately each time.
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5.2.2 Krisper: The Semantic Parsing Learning System for Ambigu-
ous Supervision

We extended Krisp’s training algorithm to handle ambiguous supervi-

sion. We call our new system Krisper (Krisp with EM-like Retraining). It

employs an iterative approach analogous to EM (Dempster, Laird, & Rubin,

1977), where, through retraining, each iteration improves upon determining

the correct MR out of the possible MRs for each sentence.

Figure 5.5 shows Krisper’s training algorithm. It takes the ambigu-

ous corpus as input in which each NL sentence is paired with a non-empty

set of MRs. Using the assumption that an MR in the corpus can be the cor-

rect meaning of at most one sentence, it first removes some easily resolved

ambiguities present in the input. For example, if the input includes the exam-

ples (sent1, {mr1}), (sent2, {mr1,mr2}) and (sent3, {mr2,mr3,mr4}), then it

is clear that mr1 can not be the correct meaning of sent2, because then sent1

will be left without any correct meaning, hence mr2 must be the correct mean-

ing of sent2. This then prohibits mr2 from being the correct meaning of sent3,

reducing the set of its possible MRs to {mr3,mr4}. In general, we use the

following procedure to remove these type of ambiguities. First, we note that

an ambiguous corpus forms a bipartite graph with the sentences and the MRs

as two disjoint sets of vertices and the associations between them as connect-

ing edges. The set of correct NL–MR pairs form a matching on this bipartite

graph which is defined as a subset of the edges with at most one edge incident

on every vertex (Cormen, Leiserson, & Rivest, 1990). Since all NL sentences
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have a correct MR, this matching is in fact a maximum matching with cardi-

nality equal to the number of sentences. In order to check whether an NL–MR

pair can be in the set of the correct NL–MR pairs, our procedure removes the

edge connecting the pair and the edges incident on the two vertices and sees

if the maximum matching on the resulting graph includes all of the remaining

NL sentences.2 If not, then the procedure removes that NL–MR association

from the corpus, because any matching that includes it will not be able to

include edges to cover all of the NL sentences. All of the NL–MR pairs in the

corpus are checked by this procedure, and the whole process is iterated until

no additional NL–MR pairs are removed.

Krisper then assumes that every MR in the set of MRs paired with

each NL sentence is correct for that NL sentence and collects the result-

ing NL–MR paired examples. Each such example is also given a weight

which is inversely proportional to the number of MRs that were associated

with its NL sentence. For example, from the ambiguous input example of

(sent3, {mr3,mr4}), two examples, (sent3,mr3) and (sent3,mr4), will be col-

lected and both will be given weight equal to 1/2. These examples are then

given to Krisp’s training algorithm to learn an initial semantic parser. Since

the training data is noisy with many incorrect NL–MR pairs in this first iter-

ation, the parameter of the SVM training algorithm that penalizes incorrect

2An O(|V ||E|) algorithm exists for finding a maximum matching on a bipartite graph,
where |V | is the number of vertices and |E| is the number of edges (Cormen et al., 1990). Our
procedure finds a maximum matching separately for every maximally connected subgraph
of the graph which makes this step even more efficient.
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classifications is kept low. This parameter is increased exponentially with each

subsequent iteration. Although there will be many incorrect NL–MR pairs in

the first iteration, the parser is expected to learn some regularities due to the

presence of the correct pairs. The weighting procedure ensures that the more

an NL–MR pair is likely to be incorrect, the less weight it receives. Krisp’s

existing training algorithm, however, does not accept weighted examples as

input so we modified it as follows. All of the positive and negative SVM train-

ing examples that Krisp extracts from an input NL–MR pair are given the

same weight as the input example. Then, a version of an SVM which takes

weighted input examples is used for training. We used the tool “Weights for

data instances” available in the LIBSVM package.3

Next, for each NL sentence in the training data, Krisper estimates the

confidence of generating each of the MRs in the sentence’s set of possible MRs

by calling the learned parser’s PARSE ESTIMATE function (this is essentially

the same function as the EXTENDED EARLEY CORRECT function described in

chapter 3, given an MR and a sentence, this function computes the confidence

that the MR is the correct one for that sentence). For the purpose of train-

ing the parser in the next and subsequent iterations, it pairs the NL sentence

with only one MR from its set, the one with the highest confidence.4 But

since the sets of possible MRs of NL sentences could overlap, the new NL–

3http://www.csie.ntu.edu.tw/~cjlin/libsvmtools
4We found that this works better than pairing each NL sentence with all of its associated

MRs with weights proportional to their confidences because after the first iteration the
system usually has a good idea of the correct NL–MR pairs and the remaining pairs only
increase the noise.

88



MR pairs should be consistently chosen so that an MR does not get paired

with more than one sentence. The problem of consistently selecting the best

pairs is an instance of the maximum weight assignment problem on a bipartite

graph which can be solved using the Hungarian Algorithm (Munkres, 1957)

in O(|V |3) time, where |V | is the number of vertices. The pairs found by this

algorithm are then given to Krisp’s training algorithm to learn a better se-

mantic parser. Since now only one MR is associated with each NL sentence,

the weights of all examples are set to 1. The algorithm terminates when the

NL–MR pairs for an iteration differ by less than 5% (a parameter) from the

pairs in the previous iteration. The parser trained on these NL–MR pairs is

then returned as the final learned parser. Although we do not have a theoret-

ical proof of convergence for our method, but empirically we observed that it

converges rapidly. It never needed more than six iterations in our experiments.

5.2.3 Corpora Construction

This subsection describes how the corpora were created to experimen-

tally evaluate Krisper. To our best knowledge, there is no real-world am-

biguous corpus available for learning semantic parsers. Hence, to evaluate

our system, we constructed two ambiguous corpora: Ambig-Geoquery and

Ambig-ChildWorld. The Ambig-Geoquery corpus was constructed by

artificially obfuscating the existing real-world unambiguous Geoquery cor-

pus, while the Ambig-ChildWorld corpus was constructed completely ar-

tificially but attempts to more accurately model real-world ambiguities.
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Ambig-Geoquery Corpus

We used the unambiguous Geoquery corpus to artificially construct the

Ambig-Geoquery corpus which conforms to the model of ambiguous super-

vision described earlier with a sample shown in Figure 5.4. Using the MRs

and NL sentences present in the unambiguous corpus, an ambiguous corpus

was formed in which each NL sentence was paired with a set of multiple possi-

ble MRs. First, a sequence of randomly permuted MRs from the Geoquery

corpus, which we call base MRs, was formed. Next, random MRs, chosen from

the same corpus, were inserted between every pair of adjacent base MRs. The

number of MRs inserted between any two base MRs was randomly chosen

uniformly between 0 and α (a parameter). Next, each NL sentence from the

Geoquery corpus was paired with a set of MRs that formed a window in the

sequence centered at the sentence’s correct base MR. The width of the window

in either direction from the base MR was randomly chosen uniformly between

0 and β (another parameter). Since the window is around the correct MR,

this ensures that there will always be a correct meaning for each sentence in

its set of possible MRs.

By varying the parameters α and β, we generated three levels of am-

biguity, which we call levels 1, 2 and 3. In level 1, both parameters were set

to 1 and this resulted in training data that on average has 24.8% sentences

associated with only one MR, 50.1% with two and 25.1% with three MRs. In

level 2, both parameters were set to 2 and this resulted in an average of 11.2%

sentences associated with one MR, 22.3% with two, 33.7% with three, 22%
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Daisy gave the clock to the mouse. 

The dog threw the ball.

John gave the bag to the mouse.

Mommy saw that Mary gave  

saw(john,walks(man,dog))

runs(dog)

threw(dog,ball)

gave(john,bag,mouse)

gave(woman,toy,mouse)

broke(dog,box)

    gave(mary,hammer,dog))

saw(mother,

ate(dog,apple)

ate(mouse,orange)

gave(daisy,clock,mouse)

the hammer to the dog.

The dog broke the box.

Figure 5.6: A sample of the Ambig-ChildWorld corpus corresponding to a
perceptual context.

with four and 10.8% with five MRs. Finally, in level 3, both parameters were

set to 3 and there were on average 6% sentences associated with only one MR,

12.5% with two, 19.4% with three, 25.9% with four, 18.4% with five, 11.8%

with six and 6% with seven MRs.

Ambig-ChildWorld Corpus

Although the Ambig-Geoquery corpus uses real-world NL sentences and

MRs, it does not model the ambiguities realistically because the MRs associ-

ated with a sentence may have nothing in common, but in a real-world per-

ceptual context, the potential candidate meanings for a sentence will usually

be related. Hence, we created another corpus, Ambig-ChildWorld, which

models ambiguities more realistically. It tries to mimic the type of language

data that would be available to a child while learning a language.
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We first constructed a synchronous context-free grammar (Aho & Ull-

man, 1972) to simultaneously generate simple NL sentences and their correct

MRs which are in predicate logic but without quantification. The synchronous

grammar relates some simple NL verbs to logic predicates and some simple NL

nouns (namely people, animals and things) to the arguments of those predi-

cates. There are 15 verbs and 37 nouns in the grammar. It can also generate

a few complex sentences. The corpus is generated to model occasional lan-

guage commentary on a series of perceptual contexts. A perceptual context is

modelled as a collection of events happening in a room involving a few people,

animals and things. The next perceptual context will involve different people,

animals and things.

The data corresponding to a perceptual context was created in the

following manner. First, a random subset of the synchronous grammar was

extracted. Since people, animals and things are part of the grammar, this

process selects random subsets of them as well. Next, a random sequence

of NL sentences and their correct MRs was generated using this subset of the

synchronous grammar, but only a few of the NL sentences were retained. These

were chosen in such a way that the number of skipped sentences between a

retained sentence and the next retained sentence in the sequence was randomly

chosen uniformly between 0 and α, where α is a parameter.5 Retaining only

a few sentences models the fact that only a few events happening in the room

will receive NL commentary. Next, each NL sentence was associated with a

5It plays the same role here as in the construction of the Ambig-Geoquery corpus.
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set of MRs which form a window in the sequence centered at the sentence’s

correct MR. The width of the window in either direction of the MR was again

randomly chosen uniformly between 0 and β. This models the fact that the

sentence might be referring to one of the multiple events that were happening

while the sentence was being spoken.

The process of generating data then continues with a different subset

of the grammar representing a different perceptual context. Since the MRs

generated from a perceptual context will involve the same people, animals and

things, they will usually be related, thus modelling ambiguities more realisti-

cally. From each perceptual context, 5 to 10 NL sentences with their associated

MR sets were created. A sample of the Ambig-ChildWorld corpus corre-

sponding to one perceptual context is shown in Figure 5.6. For illustration, the

correct NL–MR pairs are shown with solid lines and the remaining pairs with

dotted lines. In this corpus there were on average 5.47 words in a sentence.

Three levels of ambiguity were created for this corpus by varying the

parameters α and β similar to the way in which the three levels of ambiguity

for the Ambig-Geoquery corpus were created. The distributions of the

number of MRs associated with NL sentences in the three levels of this corpus

are also similar to the distributions in the corresponding levels of the Ambig-

Geoquery corpus. On the two corpora, the first step of Krisper’s training

algorithm, which removes easily resolvable ambiguities, removed on average

8% of the NL–MR pairs for level 1, 3.2% for level 2 and 1.3% for level 3.
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5.2.4 Experiments

Methodology

Krisper was evaluated using standard 10-fold cross validation. For the

Ambig-Geoquery corpus, the original unambiguous Geoquery corpus was

divided into ten equal parts. For each fold, one part was used for testing the

accuracy of the learned semantic parser and the remaining nine parts were

used to construct the ambiguous training data by the method described in the

previous subsection. Since Ambig-ChildWorld is artificially created, there

was no scarcity of training data, hence the training data for each fold was gen-

erated separately. The testing data for each fold was also generated separately

using the entire synchronous grammar, but with no ambiguity added.

There are some constants in the Geoquery domain, like state and city

names, which appear in the NL sentences as well as in their corresponding

MRs. This information is normally exploited when training Krisp, but if it

is exploited in the obfuscated data then the introduced ambiguities can often

be trivially resolved because most of the time only one MR out of the possible

candidate MRs will have the constants which are present in the associated

sentence. Therefore, we prevented Krisper from exploiting such matching

constants, making the learning task even harder because the parser now has

to learn the meanings of the constants as well (which is analogous to learning

the names of specific items in the world). This is also true with the Ambig-

ChildWorld corpus.

We used Geo250, the original Geoquery corpus containing 250 NL
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queries annotated with their correct MRs (Zelle & Mooney, 1996) as the un-

ambiguous corpus. Since learning accurate parsers from ambiguous data ob-

viously requires more examples than when using unambiguous data, we also

tried artificially increasing the size of the Ambig-Geoquery training set by

replicating examples in the training set after changing their constants to other

constants of the same type (e.g. changing a state name to another state name).

The other constants were always chosen from within the training corpus being

replicated. In our experiments, the corpus was replicated two, three and four

times for each of the three levels of ambiguities. We also created the train-

ing data for the Ambig-ChildWorld corpus for each ambiguity level in the

same four sizes: each fold containing 225, 450, 675 and 900 examples. The

testing corpus was same for all the sizes, each fold containing 25 examples.

For higher levels of ambiguity when the training size is large, the num-

ber of NL–MR pairs generated in the first iteration of Krisper’s training

algorithm becomes very large. To save running time, we divide the training

data to result in size of around 500 NL–MR pairs in each part. Then the first

iteration of the algorithm is run on each part separately. However, this is not

done in the subsequent iterations and the algorithm is run on the entire train-

ing data. In our experiments, Krisper’s training algorithm did not require

more than six iterations to converge.

Performance of semantic parsing was again measured in terms of pre-

cision (the percentage of generated MRs that were correct) and recall (the

percentage of all sentences for which correct MRs were obtained). For Ambig-
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Geoquery corpus, an output MR is considered correct if the resulting query

retrieves the same answer as the correct MR when submitted to the database,

and for Ambig-ChildWorld corpus, an output MR is considered correct if

it exactly matches the correct MR.

Since Krisper assigns confidences to the MRs it outputs, an entire

range of the precision-recall trade-off can be obtained by varying the confidence

threshold for accepting a parse. We present the results in the form of learning

curves for the best F-measure (harmonic mean of precision and recall) across

the precision-recall tradeoff.

Results and Discussion

Figure 5.7 shows the results obtained by training Krisper on the Ambig-

Geoquery training data with ambiguity levels 1, 2 and 3. The results ob-

tained when the training data is unambiguous are also shown for comparison.

When smaller number of training examples are given, the performance on

ambiguous training data for all the levels is worse than the performance on

unambiguous training data. But as the amount of ambiguous training data

is increased, despite the weak form of supervision, Krisper starts to learn

as accurate a parser as with the same amount of unambiguous training data.

The learning curve for level 3 shows a large performance gain but it has not

yet converged.

Figure 5.8 shows the results obtained when training Krisper on the

Ambig-ChildWorld data with the three ambiguity levels. The results for
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Figure 5.7: Learning curves for Krisper on the Ambig-Geoquery corpus
with various levels of ambiguities.
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Figure 5.8: Learning curves for Krisper on the Ambig-ChildWorld corpus
with various levels of ambiguities.

unambiguous training are also shown for comparison. As the training-set size

is increased, Krisper is able to overcome the ambiguities and learn almost as

accurate a semantic parser as with no ambiguity on this corpus as well. Since

weaker ambiguous supervision is cheaper to obtain than unambiguous super-

vision, it is reasonable to expect availability of higher amounts of ambiguous

training data than unambiguous training data in practice.

Although artificially-constructed ambiguous training data was used in

our experiments, the results indicate a promising potential for using Krisper

to learn language semantics from real-world ambiguous training data.
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5.3 Chapter Summary

In this chapter we described two weaker forms of supervision for se-

mantic parsing which are easier to obtain than full supervision. We extended

our semantic parsing learning algorithm to utilize these forms of supervision.

Experimentally, we showed that the performance of a semantic parser can be

improved by utilizing unlabeled data using semi-supervised learning. We also

showed that accurate semantic parsers can be learned even when the given

supervision is ambiguous.
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Chapter 6

Transforming the Meaning Representation

Grammar to Improve Semantic Parsing

6.1 Motivation

The framework for learning semantic parsers described in the previous

chapters assumes that along with the training data, a context-free grammar

(CFG) for parsing the meaning representations (MRs) is given, which we will

call the meaning representation grammar (MRG). There can, however, be sev-

eral different CFGs that accept the same meaning representation language

(MRL). Given that Krisp uses the productions of the provided MRG as se-

mantic concepts, and learns how well different natural language substrings

probabilistically represent them, it is essential for learning a good semantic

parser that the productions of the provided MRG are closely associated with

the underlying semantics of the natural language.

However, an MRL and its MRG are typically designed to best suit the

application in which the MRs will be used with little consideration for how

well they correspond to the semantics of a natural language. This can result

in an MRG whose productions do not correspond well with the semantics of

the natural language.
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In the experiments reported in the previous chapters, for Krisp as well

as for the other systems which use MRGs, the MRGs for CLang and Geo-

query were first manually modified to make them more compatible with the

natural language. In the original MRG for CLang provided by the RoboCup

community (Chen et al., 2003b), there were several constructs which did not

correspond well with their meanings in the natural language. For example,

the MR expression of the rectangle “(rec (pt -32 -35) (pt 0 35))”, whose parse

according to the original MRG is shown in Figure 6.1, represents “our mid-

field”. As can be seen, the numbers as well as the productions for the POINTs

in the MR expression do not correspond to anything in its natural language

utterance. It is also impossible to derive a semantic derivation of the MR

expression over this natural language utterance because there are not enough

words in it to cover all the productions present in the MR parse at the lowest

level. A new MRG was manually created to make it correspond better with

the natural language by replacing such long MR expressions for regions by

shorter expressions like “(midfield our)”. Note that the names for the new

tokens introduced were chosen for readability and their similarity to the natu-

ral language words is inconsequential for learning semantic parsers. This new

MRG was used in all the previous work which uses the CLang corpus.

The MRL for Geoquery, which is a variable-free functional query

language, was constructed from the original Prolog expressions of its MRs.

From this MRL, the MRG was then manually designed so that its productions

were compatible with the semantics of the natural language. This MRG was
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REGION → ( rec POINT POINT )

POINT → ( pt NUM NUM )

NUM → -32 NUM → -35

POINT → ( pt NUM NUM )

NUM → 0 NUM → 35

Figure 6.1: The parse for the CLang expression “(rec (pt -32 -35) (pt 0
35))” corresponding to the natural language utterance “our midfield” using its
original MRG.

different from some simple MRG one would otherwise design for the MRL.

Since the system Wasp (Wong & Mooney, 2006) does not use productions

as semantic concepts the way Krisp does, a different MRG was used for its

experiments that was more suitable for its learning algorithm. We found that

Krisp does not learn a good semantic parser if it is given a simple MRG or

the MRG used by Wasp. Figure 6.2 (a) shows the parse tree obtained using

a simple MRG for the MR “answer(longest(river(loc 2(stateid(‘Texas’)))))”

corresponding to the natural language sentence “Which is the longest river in

Texas?”. The MR parse obtained using the simple MRG is more like a linear

chain which means that each production will have to cover the entire sentence

in a correct semantic derivation. But ideally, different productions should

correspond to the meanings of different substrings of the sentence. Figure 6.2

(b) shows a parse tree obtained using the manually designed MRG in which

the productions “QUALIFIER → longest” and “LOC 2 → loc 2” would

cover the “longest” and “in” substrings of the NL sentence with possibly other

words in a good semantic derivation. Note that another simple MRG in which
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a separate production is added for every terminal, like “LOC 2 → loc 2” may

not always be good because if there are some superfluous terminals in the

MRL then it will force the semantic parser to learn their meanings as well.

Manually engineering an MRG to work well for semantic parsing is a

tedious task and requires considerable domain expertise in the meaning rep-

resentation language. In this chapter, we present approaches to automatically

transform a given MRG to make it more suitable for learning semantic parsers.

We first describe four operators which transform an MRG into another MRG

that accepts the same MRL. We next describe how these operators are applied

to transform the given MRG in an error-driven manner using Krisp’s seman-

tic parsing learning algorithm. We also describe another way of transforming

an MRG through meaning representation macros. These are able to directly

introduce the transformations needed to eliminate the type of incompatibil-

ities in the MRGs shown in Figure 6.1. We present experimental results to

show how these grammar transformations improve the performance on seman-

tic parsing.

6.2 Using Operators to Transform a Meaning Repre-
sentation Grammar

The meaning representation languages used for semantic parsing are

always assumed to be context-free. There has been some work in learning

context-free grammars (CFGs) for a language given several examples of its

expressions (Lee, 1996). Most of the approaches directly learn a grammar
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(a) ANSWER → answer ( RIVER )

RIVER → longest ( RIVER )

RIVER → river ( LOCATIONS )

LOCATIONS → loc 2 ( STATE )

STATE → STATEID

STATEID → stateid ( ‘Texas’ )

(b) ANSWER → answer ( RIVER )

RIVER → QUALIFIER ( RIVER )

QUALIFIER → longest RIVER → river ( LOCATIONS )

LOCATIONS → LOC 2 ( STATE)

LOC 2 → loc 2 STATE → STATEID

STATEID → stateid ( ‘Texas’ )

Figure 6.2: Different parse trees obtained for the MR “answer( longest( river(
loc 2( stateid( ‘Texas’)))))” corresponding to the NL sentence “Which is the
longest river in Texas?” using (a) a simple MRG (b) a manually designed
MRG.
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from the expressions but there also have been approaches that first start with

a naive grammar and then transform it using suitable operators to a better

grammar (Langley & Stromsten, 2000). The goodness for a grammar is typi-

cally measured in terms of its simplicity and coverage. For the task of learning

semantic parsers, since an initial MRG is always given, there is no need to

first learn it from its MRs. The initial MRG is transformed to a better MRG

using the operators described in the next subsection. Our criteria for good-

ness of an MRG is the performance of the semantic parser learned using the

grammar. Subsection 6.2.2 describes how and when the operators are applied

to transform the MRG.

6.2.1 Transformation Operators

We describe four CFG transformation operators which are used to

transform an MRG. Each of these operators preserves the coverage of the

grammar, i.e. after application of the operator, the transformed grammar

accepts the same language that the previous grammar accepted.

1. Create Non-terminal from a Terminal (CreateNT): Given a ter-

minal symbol t in the grammar, this operator adds a new production

T → t to it and replaces all the occurrences of the terminal t in all the

other productions by the new non-terminal T .

In the context of Krisp’s semantic parsing learning algorithm, this op-

erator introduces a new semantic concept the previous grammar was not

explicit about. For example, this operator may introduce a production
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(a semantic concept) LONGEST → longest to the simple grammar

whose parse was shown in Figure 6.2 (a). This is close to the produc-

tion QUALIFIER → longest of the manual grammar used in the parse

shown in Figure 6.2 (b).

2. Merge Non-terminals (MergeNT): This operator merges n non-

terminals T1, T2, ...Tn, by introducing n productions T → T1, T → T2,

...T → Tn where T is a new non-terminal. All the occurrences of the

merged non-terminals on the right-hand-side (RHS) of all the remaining

productions are then replaced by the non-terminal T . If this leads to

multiple copies of some production then only one copy is kept. In order

to ensure that this operator preserves the coverage of the grammar, be-

fore applying it, it is made sure that if one of these non-terminals, say T1,

occurs on the RHS of a production π1 then there also exist productions

π2, ...πn which are same as π1 except that T2, ...Tn respectively occur in

them in place of T1. If this condition is violated for any production of

any of the n non-terminals then this operator is not applicable.

This operator enables generalization of some non-terminals which oc-

cur in similar contexts leading to generalization of productions in which

they occur on the RHS. For example, this operator may generalize non-

terminals LONGEST and SHORTEST in Geoquery MRG to form

QUALIFIER → LONGEST and QUALIFIER → SHORTEST pro-

ductions. This can lead to generalization of productions RIV ER →

LONGEST RIV ER and RIV ER → SHORTEST RIV ER into a
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single production RIV ER → QUALIFIER RIV ER. This would then

increase the number of positive examples that can be collected from the

training data for this production, all of them representing some superla-

tive quality of rivers. The concepts of “longest” and “shortest” will

be learned separately by the productions LONGEST → longest and

SHORTEST → shortest respectively.

3. Combine Two Non-terminals (CombineNT): This operator com-

bines two non-terminals T1 and T2 into one new non-terminal T by in-

troducing a new production T → T1 T2. All the instances of T1 and

T2 occurring adjacent in this order on the RHS (with at least one more

non-terminal) of all the other productions are replaced by the new non-

terminal T . For example, the production A → a B T1 T2 will be changed

to A → a B T . Without the presence of an extra non-terminal on the

RHS, this change will merely add redundancy to the parse trees which

would use this production. This operator will not eliminate other occur-

rences of T1 and T2 on the RHS of other productions in which they do

not occur adjacent to each other. In the context of semantic parsing, this

operator only adds an extra level in the MR parses which does not seem

useful in itself, but later if the non-terminals T1 and T2 get eliminated

(by the application of the operator described next), this operator will be

combining the concepts represented by the two non-terminals.

4. Delete Production (DeleteProd): This last operator deletes a pro-

duction and replaces the occurrences of its left-hand-side (LHS) non-
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terminal with its RHS in the RHS of all the other productions. For

example, if the production T → a B C is deleted by this operator then

a production A → T c will be changed to A → a B C c. But if there is

another production (say, T → t) with the same LHS as the production

being deleted (T ), then the original copies of the altered productions are

also kept. In this example, the original production A → T c will be kept

in addition to the changed production A → a B C c. This is necessary

because the grammar has an alternate way of generating expressions

from T which could be used in the original production A → T c. This

operator is not applicable if the LHS non-terminal is the start symbol of

the grammar or if its LHS non-terminal also occurs on its RHS (i.e. it

is a recursive production).

In terms of semantic parsing, this operator eliminates the need to learn

a semantic concept. It can undo the transformations obtained by the

previous operators by deleting the new productions they introduce.

Instead of creating an operator to delete a non-terminal, we chose this

operator which deletes a production because deleting a non-terminal can

drastically change the grammar which may reduce its chances of finding

a good MRG for semantic parsing. A non-terminal can, however, get

deleted from the grammar if this operator is applied to all the produc-

tions in which that non-terminal occurs on the LHS.

We note that the CombineNT and MergeNT operators are same as the

two operators used by Langley and Stromsten (2000) to search a good CFG
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for natural language sentences from the space of its possible CFGs. We also

note that the applications of CreateNT and CombineNT operators can reduce a

CFG to its Chomsky normal form (in which all the productions are of the form

A → a and A → B C), and conversely, because of the reverse transformations

achieved by the DeleteProd operator, a Chomsky normal form of a CFG can

be converted into any other CFG which accepts the same language.

6.2.2 Applying Transformation Operators

In order to transform an MRG to improve semantic parsing, a simple

hill-climbing approach will be to search the space of all possible MRGs by

applying one of the applicable transformation operators at a time and mea-

suring the performance on semantic parsing task. If the performance does not

improve then undo that transformation and continue searching. This search

method will be computationally very intensive because it involves re-training

the semantic parser for each application of an operator. We next describe

a faster but a less thorough heuristic search method which typically applies

several operators before re-training the semantic parser to evaluate its perfor-

mance.

First, using the provided MRG and the training data, a semantic parser

is trained using Krisp. The trained semantic parser is applied to each of

the training sentences. Next, for each production π, two values totalπ and

incorrectπ are computed. The value totalπ counts how many training exam-

ples use production π in their MR parses. The value incorrectπ counts the
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number of training examples for which the semantic parser incorrectly uses

the production π during parsing, i.e. it either did not include the production

π in the parse of the MR it produces when the correct MR’s parse included it,

or it included the production π when it was not present in the correct MR’s

parse. These two statistics for a production indicate how well the semantic

parser was able to use the production in semantic parsing. If it was not able

to use a production π well, then the ratio incorrectπ/totalπ, which we call

mistakeRatioπ, will be high indicating that some change needs to be made to

that production.

After computing these values for all the productions, any of the four

procedures described below corresponding to the four operators can be invoked

to transform the MRG. Figure 6.3 shows how these procedures are invoked in

our MRG transformation algorithm.

1. Apply CreateNT: For each terminal t in the grammar, totalt and

incorrectt values are computed by summing up the corresponding val-

ues for all the productions in which t occurs on the RHS with at least

one non-terminal (without a non-terminal on the RHS, the operator will

only add a redundant level to the parses using this production). If totalt

is greater than β (a parameter) and mistakeRatiot = incorrectt/totalt

is greater than α (another parameter), then the CreateNT operator is

applied, provided the production T → t is not already present. A high

mistakeRatiot indicates that the semantic parser incorrectly used most
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of the productions in which t occurs on the RHS, perhaps because an

additional semantic concept was being learned under each of those pro-

ductions, and it is hoped that this will be corrected by introducing a

new semantic concept in the form of the production T → t which will

be learned separately.

2. Apply MergeNT: All the non-terminals occurring on the RHS of all

those productions π are collected whose mistakeRatioπ value is greater

than α and whose totalπ value is greater than β. These non-terminals

are then partitioned such that the criteria for applying the MergeNT is

satisfied by the non-terminals in each partition with size at least two.

The MergeNT operator is then applied to the non-terminals in each

partition with size at least two. Merging the non-terminals will generalize

the productions in which the non-terminals were separately occurring,

and hopefully the semantic parser will then learn better to use these

generalized productions correctly.

3. Apply CombineNT: For every non-terminal pair T1T2, totalT1T2
and

incorrectT1T2
values are computed by summing their values for the pro-

ductions in which the two non-terminals are adjacent in the RHS in

the presence of at least one more non-terminal. If mistakeRatioT1T2
=

incorectT1T2
/totalT1T2

is greater than α and totalT1T2
is greater than β,

then the CombineNT operator is applied to these two non-terminals.

The order in which instances of this operator is applied is the order
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in which the pairs of the non-terminals were collected. If the produc-

tions in which the two non-terminals alway occur adjacent are mostly

incorrectly used, then this could be an indication that the two concepts

represented by the two non-terminals are the same and should not be

learned separately.

4. Apply DeleteProd: The DeleteProd operator is applied to all the

productions π where it is applicable and whose mistakeRatioπ is greater

than α and totalπ is greater than β. The order in which they are applied

is the order in which they are in the grammar. This step simply deletes

the productions which are mostly incorrectly used.

Figure 6.3 shows the complete algorithm we used for applying the oper-

ators. The procedure for applying one of the transformation operators is called

after collecting the total and incorrect values of all the productions. After the

grammar is transformed, the MRs in the training data are re-parsed and the

semantic parser is re-trained. Next, the procedure for applying the next trans-

formation operator is called. The whole process repeats for a specified number

of iterations. If the transformations done by the first three operators did not

help, then they could be undone by the DeleteProd operator. This order was

decided to allow merging and combining of the of the new non-terminals which

may get created, and to allow deletion of the newly created productions which

were not found helpful. However, since the the process proceeds in iterations,

the operators are applied in a cyclic fashion and hence their order is not very
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Train semantic parser on training examples
Repeat for MAX ITERATIONS

Collect total and incorrect values for all productions
Apply CreateNT
Retrain using the transformed grammar

Collect total and incorrect values for all productions
Apply MergeNT
Retrain using the transformed grammar

Collect total and incorrect values for all productions
Apply CombineNT
Retrain using the transformed grammar

Collect total and incorrect values for all productions
Apply DeleteProd
Retrain using the transformed grammar

Return the semantic parser trained with the final grammar

Figure 6.3: The MRG transformation algorithm to improve performance on
semantic parsing.
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critical. In the experiments, we found that the performance does not improve

much after two iterations. For the experiments, we fixed the α parameter to

be 0.75 and β parameter to be 5.

6.2.3 Experiments

We tested our MRG transformation approach to improving semantic

parsing on the Geo880 corpus by giving it the simple MRG and the MRG

used in the Wasp system mentioned in the Section 6.1, and by comparing its

performance with the semantic parser learned using the manually-built MRG.

Figure 6.4 shows that the performance of the semantic parser that

Krisp learns when trained on the simple MRG is not good. But when that

MRG is transformed using the approach described in the last section, the

performance of the semantic parser dramatically improves and is very close

to the performance obtained by the manually-engineered grammar. A similar

trend was observed when using Wasp’s MRG, as shown in Figure 6.5. In

this case, the final performance is only slightly worse than the performance

obtained using the manual grammar.

We found that most of the the performance gain is obtained because

of the CreateNT and DeleteProd operators. The MergeNT operator was only

occasionally used and the CombineNT operator was never used. One reason

for this is that the conditions for applying these operators are very restrictive,

for example, very few non-terminals in the MRGs we considered met the condi-

tions for applying the MergeNT operator, and there were very few productions
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Figure 6.4: The results comparing the performances of the learned seman-
tic parsers on the Geo880 corpus using different grammars: a simple initial
MRG, the MRG obtained after transforming it and and the manually designed
grammar.

with more than two non-terminals on the RHS (a condition for applying the

CombineNT operator). However, we believe that for some different types of

grammars, these operators could be more helpful. When the MRG transfor-

mation algorithm was applied to the manually-engineered grammar, we found

that there was not much change in the performance.

6.3 Using Meaning Representation Macros

As described in Section 6.1, sometimes there can be large parses for

MR expressions which do not correspond well with their semantics in the

natural language. Figure 6.1 showed an example for this. While it is possible
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Figure 6.5: The results comparing the performance of learned semantic parsers
on the Geo880 corpus using different grammars: the MRG used in Wasp,
the MRG obtained after transforming it and the manually designed grammar.
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to transform the MRG using the operators described in the previous section

to reduce the whole parse to just one production which will then correspond

directly to its meaning in the natural language, it will require a particular

sequence of transformation operators to achieve this which may rarely happen

during the heuristic search used in the MRL transformation algorithm. In this

section, we describe a more direct way of obtaining such transformations using

MR macros.

6.3.1 Meaning Representation Macros

A meaning representation macro for an MRG is a production with only

terminals on its RHS which form a legal expression in the MRL and which is

derivable from its LHS non-terminal. For example, for the CLang example

shown in Figure 6.1, the production REGION → (rec(pt −32 −35)(pt 0

35)) is a meaning representation macro. From an MR parse drawn with non-

terminals at the internal nodes (instead of productions) and terminals at the

leaves, a macro can be derived from a subtree rooted at any of the internal

nodes by making its root non-terminal as the LHS non-terminal and the left-to-

right sequence formed by the terminal leaves as the RHS. We use the following

error-driven procedure to introduce macros in the MRG in order to improve

the performance of semantic parsing.
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6.3.2 Learning Meaning Representation Macros

A semantic parser is first learned from the training data using Krisp

and the given MRG. The learned semantic parser is then applied to the training

sentences and if the system can not produce any parse for a sentence then the

parse tree of its corresponding MR is included in a set called failed parse trees.

Common subtrees in these failed parse trees are likely to be good candidates

for introducing macros. A set of candidate trees is created as follows. This set

is initialized to the set of failed parse trees. The largest common subtree1 of

every pair of trees in the candidate trees is then also included in the set if it is

not an empty tree. The process continues with the newly added trees until no

new tree can be included. This process is similar to the repeated bottom-up

generalization of clauses in the inductive logic programming system golem

(Muggleton & Feng, 1992). Next, the trees in this set are sorted based on the

number of failed parse trees of which they are a subtree. The trees which are

part of fewer than β subtrees are removed. Then in highest to lowest order, the

trees are selected one-by-one to form macros, provided their height is greater

than two (otherwise it will be an already existing MRG production) and an

already selected tree is not its subtree. These are the trees which are present

frequently as subtrees in the failed parse trees, which is an indication that

they do not correspond well with the natural language and hence introducing

macros for them may help. A macro is formed from a tree by making the

non-terminal root of the tree as its LHS non-terminal and the left-to-right

1All the leaves of a subtree must be terminals.
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sequence of terminals at the leaves as its RHS. An example macro for CLang

could be REGION → (rec(pt −32 −35)(pt 0 35)) formed from the tree shown

in Figure 6.1.

These newly formed macros (productions) are then included in the

MRG. Although this makes the grammar ambiguous because there are now

two ways to parse the MR expressions from which the macros were derived

(using the macro productions and using the earlier parses), but by inserting

the macros at the front of the list of MRG productions, the parsing is made

unambiguous because the MRL parser we use prefers earlier productions to

resolve ambiguities during parsing. Alternatively, one can introduce a new

terminal for the entire RHS (similar to new terminals like “midfield” that

were introduced by the manual CLang grammar). This will involve changing

the MR expressions as well.

The MRs in the training data are re-parsed and the semantic parser

is re-trained using the new MRG. In order to delete the macros which were

not found useful, a procedure similar to the application of DeleteProd is used.

The total and incorrect values for all the macros are computed as in the

Subsection 6.2.2. The macros for which mistakeRatio = total/incorrect is

found greater than α and total is greater than β are removed. No further

change needs to be done to the grammar since there already is an alternate

way to parse each of the expressions for which the macros were used.

This whole procedure is repeated a specified number of iterations. In or-

der to prevent re-introducing the deleted previously deleted, the list of deleted
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Train semantic parser on training examples
Repeat for MAX ITERATIONS

Collect failed parse trees from the training examples
Form a set of candidate trees and expand it by repeated generalization
Form macros from the best candidate trees
Retrain using the transformed grammar

Collect total and incorrect values for all productions
Delete unsuccessful macros
Retrain using the transformed grammar

Return the semantic parser trained with the final grammar

Figure 6.6: The macro transformation algorithm to improve performance of
semantic parsing.

macros is maintained across iterations and a new macro is not introduced if

it is present in this list. Figure 6.6 shows the complete macro transformation

algorithm for introducing and removing macros. We found that two iterations

are usually sufficient. In the experiments, the value for α was 0.75 and for β

was 5.

6.3.3 Experiments

We tested our macro transformation algorithm on the CLang corpus

using the original MRG in which all the chief regions of the soccer field were in

the form of numeric MR expressions which do not correspond to their mean-

ings in the natural language. We compared the performance of the semantic

parser trained with Krisp using the original MRG, trained with the new MRG

obtained from the original MRG using the macro transformation algorithm de-
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Figure 6.7: The results comparing the performances of the learned semantic
parsers on the Clang corpus using different grammars: the original CLang
MRG, the MRG obtained after applying macro transformations and the man-
ually designed MRG.

scribed in the previous subsection, and trained using the manually-built MRG.

Figure 6.7 shows the results. After applying the macro transformations

the performance improved by a large margin. Although the precision was lower

for low recall values, the recall increased by a large quantity and the best F-

measure improved from 50% to 63%. But the performance still lagged behind

that obtained using the manually-engineered MRG. The most likely reason for

this is that the manual MRG introduced some domain specific expressions,

like left, right, left-quarter etc., which correspond directly to their meanings

in the natural language. For example, the expression “(left (midfield our))”

corresponds to the utterance “left of our midfield”, and because the expression
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“(midfield our)” corresponds to the utterance “our midfield”, the concept of

“left” can easily be learned. On the other hand, the only way to specify “left”

of a region using the original CLang MRG is by specifying the coordinates of

the left region, like “(rec(pt -32 -35)(pt 0 0))” is the left of “(rec (pt -32 -35)

(pt 0 35))”. It is not easy to learn the concept of “left” from such expressions

even with the use of macros.

When we applied transformation operators on the original CLang

MRG and macro transformations on the Geoquery MRGs used in Sec-

tion 6.2.3, it did not lead to any performance gain. This shows that the

productions in the two types of grammars do not conform with natural lan-

guage semantics in different ways.

6.4 Chapter Summary

An MRG whose productions do not correspond well with the natural

language can lead to a bad performance by a semantic parser that uses the

MRG productions. But by using the transformation operators and macros

to transform the MRG to better suit the natural language, the performance

on semantic parsing task can be improved, often close to the performance

obtained using manually engineered grammars.
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Chapter 7

Ensembles of Semantic Parsers

Forming committees or ensembles of learned systems is known to im-

prove performance provided each individual system performs well enough and

these systems are diverse, i.e. they make different types of errors (Dietterich,

2000). In this chapter, we consider forming ensembles of semantic parsers. We

combine Krisp with two other competitive semantic parser learning systems

developed in our research group: Wasp (Wong & Mooney, 2006) and Scis-

sor (Ge & Mooney, 2005), and show that the resulting ensemble achieves the

best overall performance.

Previously, Nguyen et al. (2006) have used ensembles of semantic parsers.

Their semantic parsers are learned using the same learning algorithm from dif-

ferent training data employing Bagging (Breiman, 1996) and Boosting (Freund

& Schapire, 1996) techniques. Their system then selects one final output from

the outputs of their semantic parsers using a classifier which when given an

output, classifies whether it is correct or not. This classifier is trained using

boosting with subtrees as weak decision stump functions (Kudo & Matsumoto,

2004). Such a classifier works in their system because just like their training

data, the outputs of their semantic parsers are semantically augmented parse
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trees (SAPTs; Ge & Mooney, 2005), in which parts of the meaning repre-

sentation are tied with parts of the natural language sentence, and hence a

classifier can be trained using the training data to classify the output as cor-

rect or incorrect. But for two of our systems, Krisp and Wasp, the training

data and the outputs are not in the form of SAPTs and hence we can not use

such a classifier.

In the following section, we describe two simple methods we used to

combine the outputs of our semantic parsers.

7.1 Combining Outputs of Semantic Parsers

We first considered the following simple majority algorithm to combine

the outputs of the three semantic parsers - Krisp, Wasp and Scissor. If

all the three systems output the same meaning representation (MR) for a

natural language (NL) sentence then that is also the output of the ensemble.

If however, two of the systems output an MR which is different from the third

system’s output MR, then the output of those two systems is the output of

the ensemble. If all the three systems output different MRs or one of them

fails to produce an output, then the tie is broken according to a pre-specified

order among the three semantic parsers. In these cases, the output of the first

system (usually the best system according to internal cross-validation) is the

output of the ensemble, but if this system failed to output any MR then the

output of the second system is the output of the ensemble. Finally, if both

these systems fail to output an MR then the output of the third system will
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be the output of the ensemble.

Another way of combining the outputs of semantic parsers is to combine

components of their outputs. This is analogous to the “Parse Hybridization”

method of Henderson and Brill (1999) and the committee-based probabilistic

partial parsing method of Inui and Inui (2000). But we note that their methods

are not directly applicable to our problem because their methods are designed

specifically for syntactic parsing and exploit the fact that the leaves of all the

output syntactic parse trees are same, namely, the words of the sentence. This

is not true for MR parse trees.

We used the following subtree majority algorithm to combine compo-

nents of the outputs of the three semantic parsers. The algorithm can be easily

generalized if there are more than three semantic parsers. The output MRs are

first parsed using the MRL grammar and their MR parse trees are obtained.

The algorithm constructs the final MR parse tree by combining the common

subtrees which are in majority in these MR parse trees. The intuition is that

while a single semantic parser may not have gotten all the subtrees in its MR

parse right, but if majority of the semantic parsers’ output MR parses share

some subtrees, then they are more likely to be correct and should be included

in the final output.

The subtree majority algorithm proceeds as follows. First, if the trees

don’t have the same production at the root, then the output parse tree of the

ensemble is obtained by the simple majority algorithm described earlier. This

is done, because if the root production is different then there is no elegant way
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to combine the subtrees underneath the three roots.1 But if the trees have

the same production at the roots, then the output tree for the ensemble is

created in the following manner. The common production is first included as

its root. Next, for each right-hand-side (RHS) non-terminal in this production,

a subtree is constructed by invoking the subtree majority algorithm recursively

and is added as a child to the root. Figure 7.1 shows an illustration of this

algorithm. Since the roots of the three output trees have the same production

(A → B C D), this production is included at the root of the ensemble’s

output tree. This algorithm is then recursively called for constructing subtrees

under each of the non-terminals B, C and D. Since the productions under B

non-terminal are different in the three trees, the simple majority algorithm is

called on all the subtrees rooted under B. This then selects the tree which

has B → E as the root production (assuming the triangles underneath it are

same). Similarly subtrees with C → H and D → I as the root productions

will be included under the C and D non-terminals respectively to complete

the ensemble output tree. Note that the resulting tree is different from any of

the initial trees.

A different approach to forming ensembles of semantic parsers is to

first learn which parser performs best on which types of sentences and then

simply choose the output MR for a test sentence from the best parser for that

1If more than three trees were to be combined, then at this step it will be reasonable
to include the root production which is in majority, but doing this with only three trees
will degenerate the problem to finding ensemble of the two trees which have the common
production.
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(a) Output trees of the semantic parsers:
A → B C D

B → E

..........

C → G

..........

D → I

..........

A → B C D

B → E

..........

C → H

..........

D → J

..........

A → B C D

B → F

..........

C → H

..........

D → I

..........

(b) Output tree of the ensemble:
A → B C D

B → E

..........

C → H

..........

D → I

..........

Figure 7.1: An example of the subtree majority algorithm to combine trees.
(a) Output MR parse trees obtained from the given semantic parsers. (b)
Output MR parse tree of the ensemble obtained using the subtree majority
algorithm.
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type of sentence. This is similar to the “Parser Switching” approach presented

by Henderson and Brill (1999) for combining syntactic parses from different

parsers. We, however, did not try this approach. Another direction for future

work could be to combine partial outputs from the semantic parsers. If the

semantic parsers fail to generate complete MRs but can generate partial MRs,

then it should be possible in some cases to form a complete MR out of these

partial MRs.

7.2 Experiments

We formed ensembles of the three semantic parser learning systems,

Krisp, Wasp and Scissor, using simple majority and subtree majority al-

gorithms and compared their performance against the individual systems on

the Geo880 and CLang corpora. To break the ties in the simple majority

algorithm, we pre-specified the order of systems as Scissor followed by Krisp

followed by Wasp. We kept Scissor in front because it generally obtains the

best performance. The order of Krisp and Wasp was chosen arbitrarily and

was not found to make a big difference in performance. We found that our two

ensemble algorithms gave exactly the same output on both the corpora. This

implies that there was no example for which combining the majority subtrees

generated a different tree from the one obtained by just choosing the majority

tree. But in general, they can be different.

Tables 7.1 and 7.2 show the results obtained using the individual se-

mantic parsers and their ensemble (same result by either method) on the
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Ensemble Krisp Scissor Wasp Oracle
Precision(%) 87.82 90.33 92.98 87.67 100.00
Recall(%) 84.20 71.47 73.41 75.80 88.52

F-measure(%) 85.96 79.72 81.95 81.27 93.91

Table 7.1: Results obtained on the Geo880 corpus by the individual seman-
tic parser learning systems and their ensemble using simple majority. The
maximum performance achievable by an oracle ensemble is also shown.

Geo880 and CLang corpora respectively. The shown precisions, recalls and

F-measures were obtained by averaging them across the folds of 10-fold cross-

validation. Since the confidence values for the output MRs from different

semantic parsers are not calibrated, confidence values were not assigned to the

outputs of the ensemble. Hence, we could not plot PR curves or determine

the best F-measures.

As can be seen from Table 7.1, on the Geo880 corpus, the ensem-

ble obtains a much higher recall than the individual systems with some drop

in precision. Its F-measure was found to be statistically significantly better

(with p < 0.01 based on paired t-test) than the F-measures obtained by each

of the individual systems. In the last column, we also show the maximum

performance an oracle ensemble can obtain which always chooses the correct

output if at least one is correct. The oracle ensemble achieves around 94%

F-measure while the current ensemble achieves around 86% which shows that

the performance of the ensemble could be further improved.

The results obtained on the CLang corpus are shown in Table 7.2. On

this corpus, the ensemble obtains higher recall than the individual systems, but
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Ensemble Krisp Scissor Wasp Oracle
Precision(%) 83.21 76.11 88.13 87.26 100.00
Recall(%) 80.67 66.67 75.00 61.00 85.00

F-measure(%) 81.91 70.99 80.93 71.47 91.89

Table 7.2: Results obtained on the CLang corpus by the individual seman-
tic parser learning systems and their ensemble using simple majority. The
maximum performance achievable by an oracle ensemble is also shown.

All MRs same Only two MRs same No two MRs same

Examples 366 242
Krisp Scissor Wasp
133 120 169

Precision 99.18% 92.98% 63.91% 73.33% 59.76%

Table 7.3: Analysis of the outputs obtained from the three semantic parser
learning systems on the Geo880.

its F-measure increases only marginally over Scissor’s. This improvement

was not found to be statistically significant (p > 0.05). Although the F-

measures obtained by the ensemble and Scissor were statistically higher (with

p < 0.05) than those obtained by Krisp and Wasp. The oracle ensemble

obtains an F-measure close to 92% while the current ensemble obtains an F-

measure close to 82% showing that there is still sufficient scope to improve the

ensemble.

We did some analysis of the outputs given by the three semantic parsers

to get some insight into the simple majority ensemble. Tables 7.3 and 7.4

summarize this analysis for the Geo880 and CLang corpora respectively.

The first column in both the tables shows for how many examples all the

three systems output the same MR. For Geo880, out of total 880 examples,
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All MRs same Only two MRs same No two MRs same

Examples 142 75
Krisp Scissor Wasp

59 44 19
Precision 98.59% 86.67% 24.42% 59.09% 15.79%

Table 7.4: Analysis of the outputs obtained from the three semantic parser
learning systems on the CLang corpus which has total 300 examples.

for 366 examples all three systems output the same MR, and for CLang, from

total 300 examples, for 142 examples they output the same MR. For both the

corpora, we found that when all the three systems output the same MR, the

precision is very close to 100%. This shows that from these three individual

systems, a very accurate ensemble can be constructed which outputs an MR

only when all three system output the same MR. However, the recall of this

ensemble will be very low, about 42% for Geo880 and about 47% for CLang.

This also shows that when the semantic parsers generate incorrect outputs,

they almost never all generate the same incorrect output, indicating that they

make different types of errors.

The second columns of Tables 7.3 and 7.4 show for how many examples

exactly two systems output the same MR which is different from what the

third system outputs (which could be empty if it fails to generate an MR). On

the Geo880 corpus, this happens with 242 examples, and giving the majority

MR as output obtains close to 93% precision. And on the CLang corpus, this

happens with 75 examples and achieves a precision near 87%. This shows that

occasionally two of the semantic parsers make similar errors and generate the
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same incorrect output.

Finally, the third columns show how the individual parsers perform

when no two of them output the same MR (i.e. when the conditions of the

first two columns are not met). On the Geo880 corpus, out of the remaining

272 examples, Krisp generates outputs for 133 examples and fails to generate

outputs for the rest of them. The corresponding numbers for Scissor and

Wasp are 120 and 169 respectively. The precisions obtained on these examples

by each system are low. On the CLang corpus, out of the remaining 83

examples, Krisp generates outputs for 59 examples, Scissor generates for 44

examples and Wasp generates for 19 examples. The precisions of the systems

are again very low on these examples, particularly for Krisp and Wasp. This

shows that when the systems completely disagree on an output, they are likely

to be incorrect. This also indicates that there are some hard examples in the

corpora for which all the systems have difficulty generating the correct MRs.

For an ensemble, it is difficult to generate the correct outputs in these cases. A

possible solution would be to learn to identify which semantic parser is likely

to generate the correct MR for the given type of input sentence. For example,

the analysis by Ge (2006) showed that for longer sentences (which are more

common in CLang), Scissor is generally more accurate.

In conclusion, we obtained the best overall performance by forming a

simple majority ensemble from the three semantic parser learning systems.

The analysis showed that when the semantic parsers agree on the output, the

output is very likely to be correct, and when they disagree they are more
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likely to be incorrect. We also noted that there is still scope to improve the

performance that can be obtained by an ensemble.

133



Chapter 8

Directions for Future Work

This chapter describes some future research directions based on this

work to improve semantic parsing and to broaden its scope.

8.1 Improving Krisp’s Semantic Parsing Framework

There are a number of directions in which Krisp’s semantic parsing

framework can be improved. For computing the probability of a semantic

derivation, Krisp makes an independence assumption that the probability

of productions covering different substrings of the sentence are independent

(Subsection 3.2.2). This is clearly a simplification, and using a better way to

compute the probability of a semantic derivation without making this inde-

pendence assumption could lead to improvement in performance. Particularly,

the probabilities of parent productions should not be considered independent

of the probabilities of their children productions in a semantic derivation, be-

cause parents always cover the substrings covered by the children. However,

such an approach will also increase the complexity of the system resulting in

slower parsing speed.

Krisp defines a semantic derivation in a restrictive way by not allowing
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the words covered by sibling nodes to overlap. However, it is possible that some

words may be relevant to two or more productions (semantic concepts) which

are at sibling nodes in a semantic derivation. A more relaxed framework which

allows for overlap between the covered words could be beneficial.

8.2 Better Kernels for Semantic Parsing

In this thesis, we used a string-subsequence kernel in our main semantic

parser learning system. We also used a syntactic tree kernel in Chapter 4. It

should be possible to further improve results by using even better kernels.

Often the syntactic information needed for a task is present in the de-

pendency trees (Hudson, 1984) alone and full syntactic parse trees are not

needed, which may in fact lead to over-fitting because of the large number of

irrelevant features they may produce. Cumby and Roth (2003) have shown the

advantage of a syntactically-determined restricted kernel based on dependency

trees over the “all subtrees” kernel from (Collins, 2002a) on the task of named

entity recognition. Recently, various kernels defined over dependency trees

and their variants have also shown success in the task of relational informa-

tion extraction like those by Zelenko, Aone, and Richardella (2003), Culotta

and Sorensen (2004) and Bunescu and Mooney (2005a). Moreover, there also

has been progress in learning dependency tree parsers (McDonald, Pereira,

Ribarov, & Hajic̆, 2005b). Dependency trees capture important aspects of

the functional relationships between words in a sentence, and using similarity

between them as the kernel should help in semantic parsing.
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Using word categories in a learning algorithm can often alleviate the

data sparsity in training data arising due to infrequent use of words, and ob-

tain better generalization performance. Kernels based on word categories have

been shown to be beneficial in relation extraction task (Bunescu & Mooney,

2005b). Constructing kernels based on word categories from the WordNet

(Fellbaum, 1998), or from statistically-determined word clusters (Baker & Mc-

Callum, 1998) or from the application domain specific word ontology should

help improve the performance on the semantic parsing task.

It was noted in in Subsection 3.4.3 that in any semantic parsing applica-

tion, the presence of noise is very likely. We also showed that our kernel-based

approach to semantic parsing is robust to noise. It should be possible to make

it more robust by designing special kernels which handle noise. For example,

if a noise model is given or learned that indicates the likeliness of a word to be

noise, then this information could be easily used to down-weight the contri-

bution of these words in computing the kernel value. Designing kernels which

are resistant to noise is a fruitful avenue for future research.

8.3 Extending to Complex Relation Extraction

Krisp obtains deep semantic parses of sentences by using string-based

kernels to learn classifiers for MRL grammar productions. Bunescu and Mooney

(2005b) have used string-based kernels to learn classifiers for extracting the

binary relation “protein-protein interaction”. This can be viewed as learning

for an MRL grammar which has only one production: “INTERACTION →

136



PROTEIN PROTEIN”. Hence we believe Krisp can be extended for use in

relation extraction, particularly in complex n-ary relation extractions, which

require a level of semantic analysis which is intermediate between the levels

required for semantic parsing and for single entity information extraction.

A complex relation is defined as an n-ary relation among n > 2 typed

entities (McDonald, Pereira, Kulick, Winters, Jin, & White, 2005a). It is

defined by the schema (t1, ..., tn) where ti ∈ T are entity types. An instance

of a complex relation is a list of entities (e1, ...en) such that type(ei) = ti. An

example of a ternary relation schema is (person, job, company) that relates

a person to their job at a particular company. From the sentence “John Smith

is the CEO of Inc. Corp.”, an instance (John Smith, CEO, Inc. Corp.) of the

above relation can be extracted. Some entities are also allowed to be missing

in complex relations.

Most of the work in relation extraction has mainly focused on identify-

ing binary relations like employee-of, located-at etc. (NIST, 2000). Relatively

little work has been done in extracting complex n-ary relations which would

be useful in applications like automatic database generation, intelligent doc-

ument searching etc. To use Krisp in extracting complex relations, it will

require building an appropriate meaning representation grammar, that treats

the complex relation as a higher level production composed of lower level pro-

ductions which correspond to the less complex relations (like binary relations).

Then the process of extracting the complex relation can be treated as seman-

tic parsing. Figure 8.1 shows a possible semantic derivation of the example

137



(person, job) (job, company)

John   Smith   is   the   CEO   of   Inc.   Corp.

(person, job, company)

Figure 8.1: Relation (person,job,company) derived over the given sentence.

sentence from which the complex relation (person, job, company) could be

extracted.

8.4 Learning from Perceptual Contexts

In Chapter 5, we presented an approach to learn semantic parsers from

ambiguous supervision. Although our experimental results were on artificially-

built corpora, the results showed a promising potential in using the approach

to learn language semantics from real-world ambiguous data. One of the fu-

ture directions is to build such corpora and test our approach on them. Our

system directly uses symbolic meaning representations to represent perceptual

contexts, a longer term future research direction would be to combine such a

system with a vision-based system which can map real-world perceptual con-

text into symbolic meaning representations. This could lead to a system which

would learn language from perceptual contexts. There has been some work

in this direction (Bailey, Feldman, Narayanan, & Lakoff, 1997; Roy, 2002; Yu

138



& Ballard, 2004), but the complexity of the natural language used has been

limited.

8.5 Interactive Natural Language Communication with
Computers

While semantic parsing can help the computer understand users’ nat-

ural language utterances, for an interactive natural language communication

with users, the computer should also be able to communicate back in natural

language. For instance, if the computer fails to understand a natural language

utterance, then instead of reporting a failure, it should be able to appropri-

ately converse with the user in natural language for clarification. This then

adds the interesting aspect of discourse processing (Lochbaum, Grosz, & Sid-

ner, 1999; Ortiz & Grosz, 2002) to the problem. The computer should also

be able to interpret new utterances in the context of the past communication.

It will be interesting to explore how the current natural language generation

and discourse processing techniques can be used in conjunction with semantic

parsing to enable interactive communication.

8.6 Broadening Towards Open Domain

A longer term future direction would be to broaden the applicability

of “narrow and deep” semantic parsing to open domain text. This will be

helpful in several applications including question-answering systems, creating

personalized software assistants, better natural language communication with
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robots etc. While it is difficult to construct one global meaning representa-

tion language (MRL) for open domain text, but based on what actions the

computer is expected to perform in response to the natural language input,

one can narrow down or “ground” the meaning of natural language in terms

of the computer’s actions. Once this is done, a semantic parser can be trained

to convert NL sentences into their meanings in this MRL. To successfully pro-

cess open domain NL sentences, a semantic parser will need to employ the

techniques developed from the “broad and shallow” direction like syntactic

parsing, word sense disambiguation, anaphora resolution etc. to first reduce

the ambiguities present in the input. This will also need training data in

the form of open domain corpora annotated with appropriate semantics, like

FrameNet (Fillmore, Baker, F., & Sato, 2002) and OntoNotes (Hovy, Marcus,

Palmer, Pradhan, Ramshaw, & Weischedel, 2006).
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Chapter 9

Conclusions

This thesis presented a new machine learning framework for seman-

tic parsing. Using the productions of the meaning representation language

as semantic concepts, it learns string classifiers for them which estimate the

probability of a natural language substring to represent the semantic concepts.

This information is used to parse the sentence into its meaning representation.

The string classifiers are learned using sound statistical machine learning tech-

nique of Support-Vector machines (SVMs) using string subsequence kernels.

This framework was experimentally shown to perform competitively with re-

cent statistical learning methods. Unlike other methods, this method does

not use grammar rules for natural language, probabilistic or otherwise, and

does not use hard-matching rules for classification, which makes it flexible and

robust to noisy input.

We showed that our approach is capable of learning under a wide range

of supervision. It can utilize extra supervision provided in the form of syntactic

parse trees or semantically augmented parse trees. Although experimentally,

we found that extra supervision is not very useful because our basic learn-

ing algorithm without extra supervision usually determines the information
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provided by the extra supervision.

The thesis also presented a semi-supervised learning algorithm for se-

mantic parsing which uses transductive SVMs. Experiments showed that using

unannotated sentences can help improve the performance of semantic parsing,

particularly when training data is limited. The thesis also introduced a new

method for learning from ambiguous supervision in which more than one mean-

ing representation can be associated with each training sentence. This form

of supervision is better representative of the supervision a learning system

would receive when learning from its perceptual contexts with minimal hu-

man supervision. Our experiments demonstrated that our method can cope

with ambiguities to learn accurate semantic parsers given sufficient training

data.

If the meaning representation grammar does not conform to natural lan-

guage semantics, then it could degrade the performance of a semantic parser.

Manually transforming a meaning representation grammar is a non-trivial task

and requires considerable expertise in the meaning representation language. In

this thesis, we also investigated ways to automatically transform meaning rep-

resentation grammars if they do not conform with natural language semantics.

We showed the effectiveness of our proposed methods through experimental

evaluation. Finally, the thesis also presented simple ensembles of semantic

parsers which were shown to achieve the best overall performance.

Overall, the thesis contributed in improving the state-of-the-art in se-

mantic parsing by providing a robust learning framework which works under
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various forms of supervision. It also investigated previously unexplored aspects

of semantic parsing: learning under ambiguous supervision and transforming

the meaning representation grammar. It is hoped that this work will help

in the development of semantic parsers for practical applications as well as

stimulate further research in semantic parsing.
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