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Abstract

We present a novel commentator system that

learns language from sportscasts of simulated

soccer games. The system learns to parse and

generate commentaries without any engineered

knowledge about the English language. Train-

ing is done using only ambiguous supervision

in the form of textual human commentaries and

simulation states of the soccer games. The sys-

tem simultaneously tries to establish correspon-

dences between the commentaries and the simu-

lation states as well as build a translation model.

We also present a novel algorithm, Iterative Gen-

eration Strategy Learning (IGSL), for deciding

which events to comment on. Human evaluations

of the generated commentaries indicate they are

of reasonable quality compared to human com-

mentaries.

1. Introduction

Children acquire language through exposure to linguistic

input in the context of a rich, relevant, perceptual envi-

ronment. By connecting words and phrases to objects and

events in the world, the semantics of language is grounded

in perceptual experience (Harnad, 1990). Ideally, a ma-

chine learning system would be able to acquire language in

a similar manner without human supervision. As a step

in this direction, we present a commentator system that

can describe events in a simulated soccer game by learn-

ing from sample human commentaries paired with the sim-

ulation states. A screenshot of our system with generated

commentaries is shown in Figure 1.

Although there has been some interesting computational

work in grounded language learning (Roy, 2002; Bailey

et al., 1997; Yu & Ballard, 2004), most of the focus has

been on dealing with raw perceptual data and the com-

plexity of the language involved has been very modest.
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Figure 1. Screenshot of our commentator system

To help make progress, we study the problem in a simu-

lated environment that retains many of the important prop-

erties of a dynamic world with multiple agents and ac-

tions while avoiding many of the complexities of robotics

and vision. Specifically, we use the Robocup simulator

(Chen et al., 2003) which provides a fairly detailed physi-

cal simulation of robot soccer. While several groups have

constructed Robocup commentator systems (André et al.,

2000) that provide a textual natural-language (NL) tran-

script of the simulated game, their systems use manually-

developed templates and are incapable of learning.

Our commentator learns to semantically interpret and gen-

erate language in the Robocup soccer domain by observing

an on-going commentary of the game paired with the dy-

namic simulator state. By exploiting existing techniques

for abstracting a symbolic description of the activity on

the field from the detailed state of the physical simulator

(André et al., 2000), we obtain a pairing of natural language

with a symbolic description of the perceptual context in

which it was uttered. However, such training data is highly

ambiguous because each comment usually co-occurs with

several events in the game. We integrate and enhance ex-

isting methods for learning semantic parsers and NL gen-
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erators (Kate & Mooney, 2007; Wong & Mooney, 2007a)

in order to learn to understand and produce grounded lan-

guage from such ambiguous training data.

2. Background

Systems for learning semantic parsers induce a function

that maps NL sentences to meaning representations (MRs)

in some formal logical language. Existing work has fo-

cused on learning from a supervised corpus in which

each sentence is manually annotated with its correct MR

(Mooney, 2007). Such human annotated corpora are ex-

pensive and difficult to produce, limiting the utility of this

approach. The systems described below assume they have

access to a formal context-free grammar, called the mean-

ing representation grammar (MRG), that defines the MR

language (MRL).

2.1. KRISP and KRISPER

KRISP (Kate & Mooney, 2006) uses SVMs with string ker-

nels (Lodhi et al., 2002) to learn semantic parsers. For

each production in the MRG, the system learns an SVM

string classifier that recognizes the associated NL words or

phrases. The resulting suite of classifiers is then used to

construct the most probable MR for a complete NL sen-

tence. Given the partial matching provided by string ker-

nels and the over-fitting prevention provided by SVMs,

KRISP has been experimentally shown to be robust to noisy

training data.

KRISPER (Kate & Mooney, 2007) is an extension to KRISP

that handles ambiguous training data, in which each sen-

tence is annotated only with a set of potential MRs, only

one of which is correct. It employs an iterative approach

analogous to EM that improves upon the selection of the

correct NL–MR pairs in each iteration. In the first itera-

tion, it assumes that all of the MRs paired with a sentence

are correct and trains KRISP with the resulting noisy su-

pervision. In subsequent iterations, KRISPER uses the cur-

rently trained parser to score each potential NL–MR pair,

selects the most likely MR for each sentence, and retrains

the parser. In this manner, KRISPER is able to learn from

the type of weak supervision expected for a grounded lan-

guage learner exposed only to sentences in ambiguous con-

texts. However, the system has previously only been tested

on artificially corrupted or generated data.

2.2. WASP

WASP learns semantic parsers using statistical machine

translation (SMT) techniques (we use the Wong & Mooney

(2007b) version). It induces a probabilistic synchronous

context-free grammar (PSCFG) (Wu, 1997) to translate NL

sentences into logical MRs using a modification of recent

Purple goalie turns the ball over to 
Pink8

Purple team is very sloppy today

Pink8 passes to Pink11

Pink11 looks around for a teammate

Pink11 makes a long pass to Pink8

Pink8 passes back to Pink11

badPass ( PurplePlayer1 , 

PinkPlayer8 )

turnover ( PurplePlayer1 , 

PinkPlayer8 )

kick ( PinkPlayer8 ) 

pass ( PinkPlayer8 , PinkPlayer11 ) 

kick ( PinkPlayer11 ) 

kick ( PinkPlayer11 ) 

ballstopped 

kick ( PinkPlayer11 ) 

pass ( PinkPlayer11 , PinkPlayer8 )

kick ( PinkPlayer8 ) 

pass ( PinkPlayer8 , PinkPlayer11 )
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Figure 2. Sample trace of ambiguous training data

methods in syntax-based SMT (Chiang, 2005). Since a

PSCFG is symmetric with respect to input/output, the same

learned model can also be used to generate NL sentences

from formal MRs. Thus, WASP learns a PSCFG that sup-

ports both semantic parsing and natural language gener-

ation. Since it does not have a formal grammar for the

NL, the generator also learns an n-gram language model

for the NL and uses it to choose the overall most probable

NL translation of a given MR using a noisy-channel model

(Wong & Mooney, 2007a).

3. Sportscasting Data

To train and test our system, we assembled human-

commentated soccer games from the Robocup simulation

league (www.robocup.org). Since our focus is language

learning not computer vision, we chose to use simulated

games instead of real game video to simplify the extrac-

tion of perceptual information. Symbolic representations

of game events were automatically extracted from the sim-

ulator traces by a rule-based system. The extracted events

mainly involve actions with the ball, such as kicking and

passing, but also include other game information such as

whether the current playmode is kickoff, offside, or cor-

ner kick. The events are represented as atomic formulas in

predicate logic with timestamps. These logical facts consti-

tute the requisite MRs, and we manually developed a sim-

ple MRG for this formal semantic language.

For the NL portion of the data, we had humans commen-

tate games while watching them on the simulator. The com-

mentators typed their comments into a text box, which were

recorded with a timestamp. To construct the final ambigu-

ous training data, we paired each comment with all of the

events that occurred five seconds or less before the com-

ment was made. A sample set of ambiguous training data

is shown in Figure 2. Note that the use of English words

for predicates and constants in the MR is for human read-
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Number of comments Events per comment

Number of events Total Have MRs Have Correct MR Max Average Std. Dev.

2001 final 3992 722 671 520 9 2.235 1.641

2002 final 2125 514 458 376 10 2.403 1.653

2003 final 2112 410 397 320 12 2.849 2.051

2004 final 2223 390 342 323 9 2.729 1.697

Table 1. Statistics about the dataset

ability only, the system treats these as arbitrary conceptual

tokens and must learn their connection to English words.

We annotated a total of four games, namely, the finals for

the Robocup simulation league for each year from 2001 to

2004. Summary statistics about the data are shown in Ta-

ble 1. The 2001 final has almost twice the number of events

as the other games because it went into double overtime.

For evaluation purposes only, a gold-standard matching

was produced by examining each comment manually and

selecting the correct MR if it exists. The bold lines in Fig-

ure 2 indicate the correct matches. Notice some sentences

do not have correct matches (about one fifth of our data).

For example, the sentence “Purple team is very sloppy to-

day” cannot be represented in our MRL and consequently

does not have a corresponding correct MR. On the other

hand, in the case of the sentence “Pink11 makes a long pass

to Pink8”, the correct MR falls outside the 5-second win-

dow. For each game, Table 1 shows the total number of NL

sentences, the number of these that have at least one recent

extracted event to which it could refer, and the number of

these that actually do refer to one of these recent extracted

events. The maximum, average, and standard deviation for

the number of recent events paired with each comment is

also given.

4. New Algorithms

While existing systems are capable of solving parts of the

sportscasting problem, none of them are able to perform

the whole task on their own. We introduce three new end-

to-end systems below which are able to learn from the am-

biguous supervision in our training data and generate com-

mentaries on unseen games.

4.1. WASPER

Since our primary goal is to learn a sportscaster rather than

a parser, we use WASP to learn a system that can also

generate NL from MRs produced by the perceptual sys-

tem. However, WASP requires unambiguous training data

which is not available for our domain. Therefore, we ex-

tend WASP using EM-like retraining similar to KRISPER to

handle ambiguously annotated data, resulting in a system

we call WASPER. In general, any system that learns se-

mantic parsers can be extended to handle ambiguous data

as long as it can produce confidence levels for given NL–

MR pairs.

4.2. KRISPER-WASP

KRISP has been shown to be superior to WASP at handling

noisy training data (Kate & Mooney, 2006). Consequently,

we can expect KRISPER’s parser to outperform WASPER’s

because EM-like training on ambiguous data initially cre-

ates a lot of noisy, incorrect supervision. Even if the aver-

age number of possible MRs per sentence is only 2, it still

results in at least 50% noise in the training data in the first

iteration. However, KRISPER cannot learn a language gen-

erator, which is necessary for our sportscasting task. As a

result, we create a new system called KRISPER-WASP that

is both good at disambiguating the training data and capa-

ble of generation. We first use KRISPER to train on the

ambiguous data and produce a disambiguated training set

by using its prediction for the most likely MR for each sen-

tence. This unambiguous training set is then used to train

WASP to produce both a parser and a generator.

4.3. WASPER-GEN

In both KRISPER and WASPER, the criterion for selecting

the best NL–MR pairs during retraining is based on maxi-

mizing the probability of parsing a sentence into a particu-

lar MR. However, since WASPER is capable of both parsing

and generation, we could alternatively select the best NL–

MR pairs by evaluating how likely it is to generate the sen-

tence from a particular MR. Thus, we built another version

of WASPER (WASPER-GEN) that disambiguates the train-

ing data in order to maximize the performance of genera-

tion rather than parsing. It uses a generation-based score

rather than a parsing-based score to select the best NL–MR

pairs. Specifically, an NL–MR pair (n, m) is scored by

using the current trained generator to generate an NL sen-

tence for m and then comparing the generated sentence to

n to compute the NIST score. NIST score is a machine

translation (MT) metric that measures the precision of a

translation in terms of the proportion of n-grams it shares

with a human translation (Doddington, 2002). It is also

used to evaluate NL generation. Another popular MT met-

ric is BLEU score (Papineni et al., 2002) but we found

it inadequate for our domain because it overly penalizes
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translations shorter than the target sentences. Most of our

generated commentaries are shorter than the human com-

mentaries due to the fact that humans are more verbose and

many details of the human descriptions are not represented

by our MRL.

4.4. Learning for Strategic Generation

A language generator alone is not enough to produce a

sportscast. In addition to knowing how to say something,

one must also know what to say. A sportscaster must also

choose which events to describe. In NLP, deciding what to

say is called strategic generation.

We developed a simple method for learning which events

to describe. For each event type (i.e. for each predicate like

pass, or goal), the system uses the training data to esti-

mate a probability that it is mentioned by the sportscaster.

Given the gold-standard NL–MR matches, this probability

is easy to estimate; however, the learner does not know the

correct matching. Instead, the system must estimate the

probabilities from the ambiguous training data. We com-

pare two basic methods for estimating these probabilities.

The first method uses the inferred NL–MR matching pro-

duced by the language-learning system. The probability

of commenting on each event type, Ei, is estimated as the

percentage of events of type Ei that have been matched to

some NL sentence.

The second method, which we call Iterative Generation

Strategy Learning (IGSL), uses a variant of EM, treating

the matching assignments as hidden variables, initializing

each match with a prior probability, and iterating to im-

prove the probability estimates of commenting on each

event type. Unlike the first method, IGSL uses MRs not

associated with any sentences explicitly in training. Algo-

rithm 1 shows the pseudocode. Each sentence accounts for

at most one occurrence of an event being commented (some

comments do not correspond to any MRs), so we enforce

that the counts associated with a sentence add up to exactly

one. In the initial iteration, every possible match gets as-

signed a weight inversely proportional to its amount of am-

biguity. Thus, a sentence associated with five possible MRs

will assign each match a weight of 1
5 . In the subsequent it-

erations, we use the learned estimates for each event type

to assign weights to the edges, again normalizing to make

sure that the weights of the edges coming out of each sen-

tence sum to one.

To generate a sportscast, we first use the learned probabil-

ities to determine which events to describe. For each time

step, we only consider commenting on the event with the

highest probability. The system then generates a comment

for this event stochastically based on the estimated proba-

bility for its event type.

Algorithm 1 Iterative Generation Strategy Learning

input event types E = {E1, ..., Ei, ..., En}, the number

of occurrences of each event type totalCount(Ei), sen-

tences S and their associated sets of meaning represen-

tations MR(s),
output probabilities of commenting on each event type

Pr(Ei)

for event type Ei ∈ E do

Initialize count = 0
for sentence s ∈ S and Ei ∈ MR(s) do

count = count + 1
|(MR(s))|

end for

Pr(Ei) = count

totalCount(Ei)

end for

repeat

for event type Ei ∈ E do

Initialize count = 0
for sentence s ∈ S and Ei ∈ MR(s) do

totalProb = 0
for event Ej ∈ MR(s) do

totalProb = totalProb + Pr(Ej)
end for

count = count + Pr(Ei)
totalProb

end for

Pr(Ei) = count

totalCount(Ei)

end for

until Convergence or MAX ITER reached

5. Experimental Evaluation

This section presents experimental results on the Robocup

data for four systems: KRISPER, WASPER, KRISPER-

WASP, and WASPER-GEN. To better gauge the effect of ac-

curate ambiguity resolution, we also include results of un-

modified WASP. Since WASP requires unambiguous train-

ing data, we randomly pick a meaning for each sentence

from its set of potential MRs. Finally, we also include the

result of WASP trained using gold matching which con-

sists of the correct NL–MR pairs annotated by a human.

This represents an upper-bound on what our systems could

achieve if they disambiguated the training data perfectly.

We evaluate each system on three tasks: matching, pars-

ing, and generation. The matching task measures how well

the systems can disambiguate the training data. The pars-

ing and generation tasks measure how well the systems can

translate from NL to MR, and from MR to NL, respectively.

Since there are four games in total, we trained using all

possible combinations of one to three games, and in each

case, tested on the games not used for training. Results

were averaged over all train/test combinations. We evalu-
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Figure 3. Matching Results

ated matching and parsing using F-measure, the harmonic

mean of recall and precision. Precision is the fraction of the

system’s annotations that are correct. Recall is the fraction

of the annotations from the gold-standard that the system

correctly produces. Generation is evaluated using NIST

scores which roughly estimates how well the produced sen-

tences match with the target sentences.

5.1. Matching NL and MR

Since handling ambiguous training data is an important as-

pect of grounded language learning, we first evaluate how

well the various systems pick the correct NL–MR pairs.

Figure 3 shows the F-measure for identifying the correct

set of pairs for the various systems. WASPER does bet-

ter than random matching, but worse than the other two

systems. While we expected KRISPER to perform better

since it is more adept at handling noisy data, it is some-

what surprising that WASPER-GEN does about the same. A

potential explanation is that WASPER-GEN avoids making

certain systematic errors typical of the other systems. This

is discussed further in section 5.3.

5.2. Semantic Parsing

Next, we present results on the accuracy of the learned se-

mantic parsers. Each trained system is used to parse and

produce an MR for each sentence in the test set that has a

correct MR in the gold-standard matching. A parse is con-

sidered correct if and only if it matches the gold standard

exactly. Parsing is a fairly difficult task because there is

usually more than one way to describe the same event. For

example, “Player1 passes to player2” can refer to the same

event as “Player1 kicks to player2.” Thus, accurate pars-

ing requires learning all the different ways people describe

an event. Synonymy is not limited to verbs. In our data,

“Pink1”, “PinkG” and “pink goalie” all refer to player1 on
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the pink team. Since we are not providing the systems with

any prior knowledge, parsers have to learn all these differ-

ent ways of referring to the same entity.

Results are shown in Figure 4, and, as expected, follow the

matching results. Systems that did better at disambiguat-

ing the training data also did better on parsing since their

supervised training data is less noisy. When trained on 3

games, KRISPER does the best since it is most effective at

handling the noise in the final supervised data. However, it

tends to do worse than the other systems when given less

training data.

5.3. Generation

The third evaluation task is generation. All of the WASP-

based systems are given each MR in the test set that has a

gold-standard matching NL sentence and asked to generate

an NL description. The quality of the generated sentence is

measured by comparing it to the gold-standard using NIST

scoring.
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This task is easier than parsing because the system only

needs to learn one way to accurately describe an event. This

property is reflected in the results, shown in Figure 5, where

even the baseline system WASP does fairly well, outper-

forming WASPER and KRISPER-WASP. As the number of

event types is fairly small, only a relatively small number

of correct matchings is required to perform this task well as

long as each event type is associated with a correct sentence

pattern more often than any other sentence patterns. Con-

sequently, it is far more costly to make systematic errors as

is the case for WASPER and KRISPER-WASP.

Even though systems such as WASPER and KRISPER-

WASP do fairly well at disambiguating the training data,

the mistakes they make in selecting the NL–MR pairs of-

ten repeat the same basic error. For example, a bad pass

event is often followed by a turnover event. If initially the

system incorrectly determines that the comment “Player1

turns the ball over to the other team” refers to a bad pass,

it will parse the sentence “Player2 turns the ball over to the

other team” as a bad pass as well since it just reinforced

that connection. Even if the system trains on a correct ex-

ample where a bad pass is paired with the linguistic input

“Player1 made a bad pass”, it does not affect the parsing of

the first two sentences and does not correct the mistakes.

As a result, a bad pass becomes incorrectly associated

with the sentence pattern “Someone turns the ball over to

the other team.”

On the other hand, WASPER-GEN does the best due to the

imbalance between the variability of natural language com-

ments and the MRs. While the same MR will typically oc-

cur many times in a game, the exact same comments are

almost never uttered again. This leads to two performance

advantages for WASPER-GEN.

WASPER-GEN avoids making the same kind of system-

atic mistakes as WASPER and KRISPER-WASP. Follow-

ing the previous example, when WASPER-GEN encounters

the correct matching for bad pass, it learns to associate

bad passes with the correct sentence pattern. When it goes

back to those first two incorrect pairings, it will likely cor-

rect its mistakes. This is because the same MR bad pass
is present in all three examples. Thus, it will slowly move

away from the incorrect connections. Of course, parsing

and generation are symmetrical processes, so using gener-

ation to disambiguate data has its own problems. Namely, it

is possible to converge to a point where many events gener-

ates the same natural language description. However, since

there is much more variability in natural language, it is very

unlikely that the same sentence pattern will occur repeat-

edly, each time associated with different events.

Another performance advantage of WASPER-GEN can be

found by looking at the objective differences. Systems

such as WASPER and KRISPER-WASP which use parsing
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IGSL WASPER-GEN

corner kick 1 pass 1

pass 0.983 badPass 0.708

badPass 0.970 corner kick 0.438

goal 0.970 block 0.429

block 0.955 turnover 0.377

Table 2. Top scoring predicates with their estimated probabilities

of being described

scores, try to learn a good translation model for each sen-

tence pattern. On the other hand, WASPER-GEN only tries

to learn a good translation model for each MR pattern.

Thus, WASPER-GEN is more likely to converge on a good

model as there are fewer MR patterns than sentence pat-

terns. However, it can be argued that learning good transla-

tion models for each sentence pattern will help in producing

more varied commentaries, a quality that is not captured by

the NIST score.

5.4. Strategic Generation

The different methods for learning strategic generation are

evaluated based on how often the events they describe co-

incide with those the human decided to describe in the test

data. For the first method, results from using the inferred

matchings produced by KRISPER, WASPER, KRISPER-

WASP, and WASPER-GEN as well as the gold and random

matching for establishing baselines are all presented in Fig-

ure 6. From the graph, it is clear that IGSL outperforms

learning from the inferred matchings and actually performs

at a level close to using the gold matching. However, it is

important to note that we are limiting the potential of learn-

ing from the gold matching by using only the predicates to

decide whether to talk about an event.

The top scoring predicates from IGSL as well as the best

result from using inferred matchings, WASPER-GEN, are
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English Semantic Sportscasting

Fluency Correctness Ability

Human 3.938 4.25 3.625

Machine 3.438 3.563 2.938

Table 3. Human evaluation of overall sportscast

shown in Table 2. While both systems learn to talk about

frequent events such as passing, WASPER-GEN does poorly

on rare, but significant events such as goal scoring. This

is because WASPER-GEN saw those events very rarely in

training and did not learn to correctly match them to sen-

tences. It is worth noting that IGSL learns a higher prob-

ability for events in general. This improves its recall and

hurts its precision. However, since many of its top-ranked

events such as goals are rare, the overall quality is main-

tained without becoming overly verbose. Therefore, we

used IGSL for the human evaluations below.

5.5. Human Evaluation

Automatic evaluation of generation is an imperfect approx-

imation of human assessment at best. Moreover, automati-

cally evaluating the quality of an entire generated sportscast

is even more difficult. Consequently, we recruited four

fluent English speakers with no previous experience with

Robocup or any of our systems to serve as human judges.

We compared their subjective evaluations of human and

machine generated sportscasts. Each judge was given 8

clips of simulated game video along with subtitled com-

mentaries. The 8 clips use 4 game segments of 2 minutes

each, one from each of the four games. Each of the 4 game

segments is shown twice, once with human commentary

and once with generated commentary. We use IGSL to de-

termine the events to comment on and use WASPER-GEN

(our best performing system for generation) to produce the

commentaries. The system was always trained on three

games, leaving out the one from which the test segment was

extracted. The videos are shown in random order with the

human and machine commentaries of a segment flipped be-

tween judges to ensure no consistent bias toward segments

being shown earlier or later. We asked the judges to score

the commentaries using the following metrics:

English Semantic Sportscasting

Score Fluency Correctness Ability

5 Flawless Always Excellent

4 Good Usually Good

3 Non-native Sometimes Average

2 Disfluent Rarely Bad

1 Gibberish Never Terrible

Fluency and semantic correctness, or adequacy, are stan-

dard metrics in human evaluations of NL translations and

generations. Fluency measures how well the commentaries

are structured, including syntax and grammar. Semantic

correctness indicates whether the commentaries actually

describe what is happening in the game. Finally, sportscast-

ing ability measures the overall quality of the sportscast.

This includes whether the sportscasts are interesting and

flow well. The scores are averaged over all four games and

across all the judges. Table 3 shows the results.

While human commentaries are clearly superior to the ma-

chine’s, the largest difference between the average scores

is only 0.7. Moreover, the judges indicated that they were

able to understand and follow the generated commentaries

without trouble. Part of the reason for the lower scores

actually result from our impoverished MRL. Semantic cor-

rectness scores were deducted when the machine misses

commenting on certain facts not represented in our MRL

such as the location of the ball and the players. The lack

of temporal or locality information also results in dry and

repetitive comments which hurt the sportscasting score.

This is an important point that is not captured by the NIST

score. In our NIST score evaluation, each sentence is

treated separately and no attempt was made at measuring

how well the individual comments fit together. However, it

is clear from the human evaluations that variability of sen-

tence pattern is vital to a good sportscast. The machine can

correctly comment on all the factual events in a game and

still produce a bad sportscast that no one wants to listen to.

6. Related Work

Robotics and vision researchers have worked on inferring

a grounded meaning of individual words or short refer-

ring expressions from visual perceptual context, e.g. (Roy,

2002; Bailey et al., 1997; Barnard et al., 2003; Yu & Bal-

lard, 2004). However, the complexity of the natural lan-

guage used in this existing work is very restrictive, many of

the systems use pre-coded knowledge of the language, and

almost all use static images to learn language describing

objects and their relations, and cannot use dynamic video

to learn language describing actions. Some recent work on

video retrieval has focused on learning to recognize events

in sports videos and connect them to English words (Fleis-

chman & Roy, 2007). There has also been recent work on

grounded language learning in simulated computer-game

environments (Gorniak & Roy, 2005). However, none of

this prior work makes use of modern statistical-NLP pars-

ing techniques, learns to build formal meaning representa-

tions for complete sentences, or learns to generate natural

language.

There has been some recent work on learning generation

strategies using reinforcement learning (Zaragoza & Li,

2005). In contrast, our domain does not include interaction

with the users and no feedback is available.
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7. Future Work

The current system is limited by its simple MRL. For ex-

ample, the location of players or the ball is not represented.

Moreover, we do not keep contextual information which

makes it difficult to generate interesting, non-repetitive

sportscasts. Contextual information would also help us pro-

vide comments not directly induced by the events happen-

ing now, such as the current score. Finally, it is clear that

we need a more hierarchical representation that captures

the relationships between events in order to avoid mak-

ing systematic matching errors on frequently co-occurring

events.

With respect to algorithms, using learned strategic-

generation knowledge (information about what events are

likely to illicit comments) could improve the resolution of

ambiguities. We would also like to eventually apply our

methods to real captioned video input using the latest meth-

ods in computer vision.

8. Conclusion

We have presented an end-to-end system that learns from

sample commentaries and generates sportscasts for novel

games. Dealing with the ambiguity inherent in the training

environment is a critical issue in learning language from

perceptual context. We have evaluated various methods for

disambiguating the training data in order to build a lan-

guage generator. Using a generation evaluation metric as

the criterion for selecting the best NL–MR pairs produced

the best results overall. Our system also learns a simple

model of strategic generation from the ambiguous training

data by estimating the probability that each event type in-

vokes a comment. Experimental evaluation verified that the

system learns to accurately parse and generate comments

and to generate sportscasts that are competitive with those

produced by humans.
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