In Proceedings of the IJCAI-09 Workshop on Plan, Activity, and Intent Recognition (PAIR-09), Pasadena, CA, July 2009.

Probabilistic Abduction using Markov Logic Networks

Rohit J. Kate Raymond J. Mooney
Department of Computer Sciences
The University of Texas at Austin

1 University Station C0500
Austin, TX 78712-0233, USA
{rjkate,mooney } @cs.utexas.edu

Abstract

Abduction is inference to the best explanation of a
given set of evidence. It is important for plan or
intent recognition systems. Traditional approaches
to abductive reasoning have either used first-order
logic, which is unable to reason under uncertainty,
or Bayesian networks, which can handle uncer-
tainty using probabilities but cannot directly han-
dle an unbounded number of related entities. This
paper proposes a new method for probabilistic ab-
ductive reasoning that combines the capabilities
of first-order logic and graphical models by using
Markov logic networks. Experimental results on a
plan recognition task demonstrate the effectiveness
of this method.

1 Introduction

Abduction is inference to the best explanation. Its appli-
cations include tasks in which observations need to be ex-
plained by inferring the best hypothesis, for example, plan
or intent recognition, medical diagnosis, fault diagnosis etc.
Most previous approaches to automated abduction have been
based either on first-order logic and determine a small set of
assumptions sufficient to deduce the observations to be ex-
plained, or on Bayesian networks and compute the posterior
probability of alternative explanations given the observations.
The former approaches cannot handle uncertainty in the evi-
dence or background knowledge and are incapable of estimat-
ing the likelihood of alternative explanations. While the lat-
ter approaches handle uncertainty, they do not directly handle
structured representations involving relations amongst multi-
ple entities since Bayesian networks are essentially proposi-
tional in nature.

In this paper, we introduce a new method that combines the
strengths of these two previous approaches by using prob-
abilistic first-order logic. Our method uses Markov logic
networks (MLNs) [Richardson and Domingos, 2006] which
combine first-order logic and probabilistic graphical mod-
els. However, the inference mechanism in MLNs is based
on deduction, not abduction, so we present a method for au-
tomatically adapting MLNSs to perform a kind of probabilistic
abduction using its probabilistic deductive inference mecha-
nism. Since MLNs can be trained using supervised data for

a particular task, unlike traditional logic-based approaches,
our method has the additional advantage that it can be eas-
ily adapted to a particular domain by providing it with train-
ing examples. Finally, since we use an existing off-the-shelf
framework for MLNSs, any progress in efficiency or capability
made to MLNSs is readily incorporated into our method.

2 Background

This section provides some background on abduction and
Markov logic networks (MLNs), in the next section we de-
scribe our method of doing probabilistic abduction using
MLNS.

2.1 Abduction

The process of finding the best explanation from a set of ob-
servations is called abduction. In other words, abduction is
inferring cause from effect and abductive reasoning works in
the reverse direction from deductive reasoning in which effect
is inferred from cause. Abduction is widely used in finding
explanations for events and actions of agents, scientific the-
ory formulation, medical diagnosis etc. For example, in plan
recognition, actions are observed and the underlying plan that
the agent is executing is abduced.
Formally, logical abduction is usually defined as follows:

e Given: Background knowledge B and observations O,
both represented as sets of formulae in first-order logic
but O is restricted to only ground formulae.

e Find: A hypothesis H, also a set of logical formulae,
suchthat BUH ¥ 1L and BUH F O.

Here - means logical entailment and | means contradiction,
i.e. find a hypothesis (a set of assumptions) which is con-
sistent with the given background theory and together with it
explains the observations.

In general, there could be multiple hypotheses H that ex-
plain a particular set of observations O given the background
knowledge B. In these cases, the best hypothesis is selected
where quality is typically based on the size or simplicity
of the hypothesis, following the principle of Occam’s Ra-
zor. In order to keep the abduction process computationally
tractable, often the background knowledge B is restricted to

a set of Horn clauses '. In the rest of the paper we will also
make this restriction. In some formalisms, a set of predicates
are declared by the user as abducibles [Kakas et al., 1993],
which are the only predicates that can be used in assumptions.

Several first-order logic based approaches to abduction
have been developed [Poole et al, 1987; Stickel, 1988;
Ng and Mooney, 1991; Kakas et al., 1993]. These approaches
perform first-order logical reasoning to determine the set of
assumptions sufficient to deduce the observations. Their
search is heuristically guided in accordance with the good-
ness criteria desired of the set of assumptions. However, a
significant limitation of these purely logical approaches is
that they are unable to reason under uncertainty or estimate
the likelihood of alternative explanations. In many real-world
applications, clauses in the provided background knowledge
may be true in most cases but sometimes violated. There-
fore, it may be desirable to choose an explanation even though
it violates some uncertain clauses in the background knowl-
edge but is otherwise a very good explanation. However, in
purely logical approaches to abduction, such an explanation is
ruled out because it contradicts the background knowledge. A
probabilistic form of abduction is needed in order to account
for uncertainty in the background knowledge and to handle
noisy and incomplete observations.

A widely-used alternative framework for abduction is
based on Bayesian networks [Pearl, 1988]. In these networks,
the background knowledge with its uncertainties is encoded
in a directed graph. Then, given a set of observations, proba-
bilistic inference over the graph structure is done to compute
the posterior probability of alternative explanations. How-
ever, a major limitation of Bayesian networks is that they are
essentially based on propositional logic and cannot handle
structured representations, hence preventing their use in sit-
vations that involve an unbounded number of entities with a
variety of relations between them.

Finally, weighted abduction [Hobbs et al., 1993] is a first-
order logic-based approach to abduction which has some de-
sirable features of probabilistic methods. It uses a weighting
scheme to incorporate relevance and plausibility for the as-
sumptions it makes and finds the lowest weight explanation.
However, unlike probability theory, their weighting scheme
does not have any solid theoretical basis and does not lend
itself to a complete probabilistic analysis.

2.2 Markov Logic Networks

Markov logic [Richardson and Domingos, 2006] is a recently
developed theoretically sound framework for combining first-
order logic and probabilistic graphical models. A traditional
first-order knowledge base can be seen as a set of hard con-
straints on the set of possible worlds: if a world violates even
one formula, its probability is zero. In order to soften these
constraints, Markov logic attaches a weight to each of the
first-order logic formula in the knowledge base. Such a set of
weighted first-order logic formulae is called a Markov logic
network (MLN). A formula’s weight reflects how strong a
constraint it imposes on the set of possible worlds: the higher

'A disjunction of literals with at most one positive literal or
equivalently in the form of an implicationp Ag A ... At — u

the weight, the lower the probability of a world that violates
it; however, that probability need not be zero. An MLN with
all infinite weights reduces to a traditional first-order knowl-
edge base with only hard constraints. Since current MLN
implementations do not support logical functions, we will as-
sume function-free formulae.

Formally, an MLN L is a set of formula—weight pairs
(F;, w;). Given a set of constants, it defines a joint probability
distribution over a set of boolean variables X = (X7, X5...)
corresponding to the possible groundings (using the given
constants) of the literals present in the first-order formulae:

P(X =) = erp(Y wani(a) (1)

where n;(x) is the number of true groundings of F; in x and
Z is a normalization term obtained by summing P(X = x)
over all values of X.

Semantically, an MLN can be viewed as a set of templates
for constructing Markov networks [Pearl, 1988], the undi-
rected counterparts of Bayesian networks. An MLN and a set
of constants produce a Markov network in which each ground
literal is a node and every pair of ground literals that appear
together in some grounding of some formula are connected by
an edge. Different sets of constants produce different Markov
networks, however, there are certain regularities in their struc-
ture and parameters. For example, all groundings of the same
formula have the same weight.

Probabilistic inference for an MLN (such as finding the
most probable truth assignment for a given set of ground liter-
als, or finding the probability that a particular formula holds)
can be performed by first producing the ground Markov net-
work and then using well known inference techniques for
Markov networks, like Gibbs sampling. Given a knowledge
base as a set of first-order logic formulae, and a database of
training examples each consisting of a set of true ground lit-
erals, it is also possible to learn appropriate weights for the
MLN formulae which maximize the probability of the train-
ing data. An open-source software package for MLNS, called
Alchemy 2, is also available with many built-in algorithms for
performing inference and learning.

3 Probabilistic Abduction using MLNs

In this section, we present a method that adapts Markov
logic networks to automatically perform probabilistic abduc-
tion using its standard inference mechanism. We make the
standard assumption that the initial background knowledge
for abduction is specified as a set of Horn clauses. These
clauses are then automatically transformed to an augmented
set of MLN clauses that support traditional abductive infer-
ence. We first illustrate this method through examples and
then formally describe the algorithm.

First, note that MLNs do not directly support abductive in-
ference. Logical clauses in ML N are soft constraints on pos-
sible worlds, increasing the probability of worlds in which
the clauses are satisfied. Given a clause P — () and an ob-
servation (), we ideally want the probability of the world in

*http://alchemy.cs.washington.edu

which P is true to be higher than the world in which P is
false because P is a potential explanation for). However,
the clause P — (is trivially satisfied when P is false; hence
in a possible world in which @ is true, the world has the same
probability whether P is true or false (since the clause is satis-
fied in either case). Therefore, MLNs have no mechanism to
infer P from @ in this case. The MLN inference mechanism
is thus inherently deductive, not abductive.

In order to adapt MLNs for abductive inference, we need
to explicitly include clauses with reverse implications. For
example, if we include — P in the database, specifying
that () is true increases the probability of worlds in which P
is true. However, by giving the reverse implications lower
weights, abductive rules are treated as “soft” and can be vio-
lated if other evidence contradicts their conclusions. Ideally,
the proper weights on the reverse rules can be learned from
training data.

So far in this description we have ignored the fact that the
original Horn clauses can contain multiple literals on their
left-hand-side (LHS) and that the arguments of the literals
could be variables or constants. As a concrete example, con-
sider the Horn clause:

VaVy(mosquito(x) Nin fected(x, Malaria) Abite(z,y) —
infected(y, Malaria))

This states that if x is a mosquito which is infected with
malaria and it bites y, then y must also be infected with
malaria. In order to adapt MLNSs to do abductive inference for
this clause, we need to include its reverse implication clause.
But note that this clause is universally quantified in its vari-
ables and to explain that y has malaria, it is not necessary to
assume that y was bitten by every infected mosquito x, how-
ever, it must be assumed that y was bitten by at least one
infected mosquito z. Hence the appropriate reverse implica-
tion clause will be:

Vy(infected(y, Malaria) —

Jz(mosquito(z) A infected(x, Malaria) A bite(z,y)))
Hence the general procedure to reverse the implication of a
Horn clause requires existentially quantifying the universally
quantified variables which appear on the left-hand-side (LHS)
of the original clause but not on its right-hand-side (RHS).

But there could be multiple explanations in the back-
ground knowledge for the same observation. For example, a
background knowledge base may state that someone can also
get infected with malaria by having blood transfused from a
person who is already infected with malaria:
VaVy(infected(x, Malaria) Atrans fuse(Blood, z,y) —
infected(y, Malaria))

Upon reversing its implication, we get:

Vy(infected(y, Malaria) —

Jz(infected(x, Malaria) A trans fuse(Blood, x,y)))
Now, if we are given the evidence that John is in-
fected with malaria and he had blood transfused
from Mary (ie. infected(John, Malaria) and
trans fuse(Blood, Mary, John) are true), through the
above reverse implication it can be concluded that Mary
must have been infected with Malaria. But then we do not
want to also conclude that John was bitten by an infected
mosquito using the earlier reverse implication clause because
Mary being infected by malaria is a better explanation. In

general, an observation should only be explained by the
best explanation and not by multiple explanations. Hence,
in addition to reversing the implications we also need to
bias MLNs against generating multiple explanations. In
other words, we need the system to support what Pearl calls
“explaining away” [Pearl, 1988]. We do this by first adding
the reverse implication clause making a disjunction of the
possible explanations:

Vy(infected(y, Malaria) —

(Fz(mosquito(x) Ainfected(x, Malaria) A bite(z,y))) V
(Fz(infected(x, Malaria) A trans fuse(Blood, z,y))))
which states that if y is infected with malaria then at least
one of the possible explanations must be true. Next, we add
a mutual exclusivity clause:

Yy(infected(y, Malaria) —

—(Fz(mosquito(x) Nin fected(x, Malaria) Abite(z,y)))V
—(Jz(infected(x, Malaria) A trans fuse(Blood, x,y))))
which states that both explanations cannot be true simulta-
neously. But note that because clauses in an MLN are soft
constraints, while it would prefer a world in which both
explanations are not simultaneously true, it still leaves open
the possibility that both may be true (if the remaining clauses
or explanations for other observations strongly imply this).

In general, for clauses P, — Q, P» — @, ..., P, — Q in
the background knowledge, we include the reverse implica-
tion clause: Q@ — P,V P,V ...V P,, and a mutual exclusivity
clause for every pair of explanations: @ — —P; V =P, ...,
Q — —P VP, .. Q — —P, VP, etc. Note that these
are not Horn clauses, but this is not a problem since MLNSs are
not restricted to Horn clauses. The weights for these clauses
can be typically learned from the training examples.

Before we describe our complete algorithm to adapt
MLN’s deductive inference mechanism for abduction, we
want to mention how our approach avoids the potential
problem that was pointed out regarding deductive solu-
tions to abduction [Pearl, 1988]. Consider the knowledge
base with the two clauses rained — grass_is_wet and
sprinkler_was_on — grass_is_wet. If grass is found wet
then abductive inference should conclude that it either rained
or the sprinkler was on. To perform such an abductive infer-
ence deductively, the reverse implications, grass_is_wet —
rained and grass_is.wet — sprinkler_was_on, will be
added to the knowledge base. Then with such a knowl-
edge base, suppose it is given that the sprinkler_was_on is
true, a deduction procedure will conclude that grass_is_wet
is true using sprinkler_was_on — grass_is_wet clause,
but next, using the clause grass_is_.wet — rained, it will
also conclude that rained is true. In effect, it will con-
clude that it rained because the sprinkler was on, which is ab-
surd. But this absurd reasoning is prevented in our approach
because our approach also includes the mutual exclusivity
clause grass_is.wet — -—rained V —sprinkler_was_on.
With this, given sprinkler_was_on is true, once it is con-
cluded that grass_is_wet is true, then both rained and
sprinkler_was_on cannot be true. Since sprinkler_was_on
is already true, rained cannot be true.

Now we formally describe our general algorithm for ex-
panding an existing knowledge base to a set of MLN clauses
that supports abduction. For all the predicates on the RHS

(1) u(a,b) A z(c,b) — t(a,b,c)

(i) v(a,b,d,e) — t(a,b,d)

(iii) y(b, c) — t(A, b, c)

(iv) u(a, B) A 2(B, ¢, f) — t(a, B, ¢)

Figure 1: A sample background knowledge base of Horn
clauses with the same RHS predicate.

of the given Horn clauses, it adds the reverse implication
and mutual exclusivity clauses for every suitable variable—
constant combination for the arguments of those predicates.

e Given: A set of universally quantified first-order Horn
clauses as the background knowledge.

e Partition the background knowledge into sets of Horn
clauses with the same right-hand-side (RHS) predicate.
For example, Figure 1 shows such a set with the same
RHS predicate ¢(-,,-). In the figure, variables are
shown in lower-case and constants are shown in upper-
case. If the user has declared a set of abducible predi-
cates, then only consider these predicates as the potential
RHS predicates for this step.

e Do the following for each set H in the above partition.

e Collect the set of RHS literals 7 of H. For ex-
ample, for the set H shown in Figure 1, 7 =
{t(a,b,c),t(a,b,d),t(A,b,c),t(a,B,c)}.

e For each subset of 7, find the most general unifier. Call
the resulting set of literals M. For 7 above, M =
{t(a,b,c),t(A,b,c),t(a, B,c),t(A,B,c)}.

e For each literal m in M, consider every Horn clause
L — R inH, where R is a literal and £ is a conjunction
of literals, and R and m are unifiable, but there is no
argument in which R has a constant and m has a vari-
able. Unify m and R to obtain a substitution §. For
example, for m = t(a,b,c) and for the Horn clause
(ii) in Figure 1, unifying t(a,b,c) and ¢(a,b,d) gives
6 = {d/c}. Note that the Horn clause (iii) cannot be
used with m = t(a,b, ¢) because its R, t(A, b, c), has
a constant for the first argument where t(a, b, ¢) has a
variable.

e Continuing with the £ — R, m and 6 from the previ-
ous step, let £ be the set of variables present in Ly but
not in m. Construct a new clause m — 3JELy. For
the Horn clause (ii) in Figure 1, and for m = ¢(a, b, ¢)
and § = {d/c} from the previous step, the set & is
{e}. Hence, the constructed clause will be ¢(a,b,c) —
Jev(a, b, c,e).?

e Using the new clauses obtained through the previous two
steps for each m, add the corresponding reverse impli-
cation and mutual exclusivity clauses to the background

3This step may require renaming variables to avoid name clashes.
For example, if the variable e was ¢, then ¢ would have to be re-
named. It is essential to add the existential variable e because the
reverse implication need not be true for all values of e but must be
true for at least one value of e.

m = t(a, b, ¢), combine (i) and (ii):

t(a,b,¢) — (u(a,b) A z(c,b)) vV
(a,b,c) — =(u(a,b) A z(c, b))

(Fe v(a,b, c,e))
V —(Je v(a b ce))

~+

m = t(A4,b, c), combine (i), (ii) and (iii):

t(A,b,¢) — (u(A, b) Ax(c, b))V (Fe v(A, b, ¢,e)) V (y(b; ¢))
t(A,b,¢) — —(u(A,b) Ax(c,b)) V—(Tev(A,bd,c,e))
t(A,b,¢) = =(u(A, b) Ax(c,b)) V =(y(b, c))
t(A,b,¢) = =(3ev(A,b,c,e)) vV = (y(b, ¢))
m = t(a, B, ¢), combine (i), (ii) and (iv):
t(a, B,c) — (u(a, B) A z(c, B)) \/(ﬂevche))\/
(3f (ula, B) Aa(B, ¢, f)))
a, B, c¢) — =(u(a, B) AN z(c, B)) V =~(3e v(a, B, ¢, e))
t(a, B,c) — = (u(a, B) A x(c, B)) V
~(3f (u(a, B) Ax(B,¢, f)))
t(a,B,c) — —(Jev(a, B,c,e)) V
~(3/ (u(a, B) Nx(B.c.)))

t(A,B,c) — (u(A,B) ANx(e, B)) V (Je v(A, B,c,e)) V
(W(B,c)) v (3f (u(A, B) A (B, ¢, [)))
t(A, B,¢) — —(u(A, B) Az(c, B)) V ~(Jev(A, B, c,e))
t(A, B,c) — =(u(A, B) Ax(c, B)) V =(y(B; ¢))
A,B,c) — —(u(A,B) Nx(c,B)) vV
-3f (U(A7B) A .’L‘(B,C, f)))
t(A,B,c) — =(3e v(A, B,c,e)) V =(y(B, c))
t(A,B,c) — —(Jev(A, B,c,e)) V
=(3f (u(A, B) Nx(B,c, f)))
t(A, B,c) = =(y(B,¢)) vV ~(3f (u(A, B) A (B, ¢, [)))

Figure 2: The abductive MLN clauses constructed for the
knowledge base shown in Figure 1.

knowledge. * Figure 2 shows the clauses that will be
added to the knowledge base for each value of m given
the initial knowledge base in Figure 1

Once the clauses are added to the background knowledge,
their weights can be set manually or can be learned us-
ing training examples along with the weights of the original
clauses.

4 Experiments

This section describes experiments that evaluated the pro-
posed abductive MLN approach on a previously studied plan-
recognition task.

4.1 Dataset

We used a dataset for plan recognition previously used to
evaluate abductive systems ° [Ng and Mooney, 1991; Char-

“This step may also require variable re-naming to avoid variable
name clashing.

>This data can be downloaded from http://www.cs.
utexas.edu/ " ml/accel.html

niak and Goldman, 1991]. In this task, character’s higher-
level plans must be inferred in order to explain their observed
actions described in a narrative text. A logical representation
of the literal meaning of the narrative text is given for each
example. Some examples of narratives are: “Bill went to the
liquor-store. He pointed a gun at the owner.”; “Jack went to
the supermarket. He found some milk on the shelf. He paid
for it.”; and “Fred went to the supermarket. He pointed a gun
at the owner. He packed his bag. He went to the airport.” The
dataset consists of 25 development and 25 test examples. The
development data was constructed by Goldman [1990] and
the testing data was later added by Ng and Mooney [1992].
Their logical representations which form the observations to
be explained contain an average of 12.6 literals.

The background knowledge-base was initially constructed
for the ACCEL system [Ng and Mooney, 1991] to work with
the 25 development examples. It was constructed such that
the high-level plans (like shopping and robbing) together with
appropriate role-fillers (such as someone being the shopper of
a shopping plan or a robber of a robbing plan) imply the in-
put literals representing the observed actions (like going to a
store and pointing a gun). The plans in the knowledge base in-
clude shopping, robbing, restaurant dining, traveling in a ve-
hicle (bus, taxi or plane), partying and jogging. Each of these
plans in turn has subplans, and some of the plans contain re-
cursive subplans. For example, traveling by plane includes a
subplan of traveling (in some vehicle) to the airport to catch a
plane. There are 107 such knowledge base rules. In addition,
there are also consistency checking rules. For example, there
has to be a shopper for a shopping plan etc. There are also
some rules which ensure unique argument values for some
predicates; for example, two different people cannot both be
shoppers for the same shopping plan.

Figure 3 (a) shows a sample of the background knowledge
base that was used in this task. The first clause says that if
s is an instance of a shopping event and g is the going step
required for the shopping event s, then g must be an instance
of a going event. The next clause says that if, in addition, p is
the shopper of the shopping event s, then p must be the goer
of the going event g. Similarly, the following clause says that
if str is the store of the shopping event s, then it must be
the destination of the going event g. The next three clauses
analogously relate the shopping event s to the paying event

pay.

An example of a narrative text along with its logical rep-
resentation is shown in Figure 3 (b). Figure 3 (c) shows
what assumptions must be true in order to explain the obser-
vations shown in Figure 3 (b) using the background knowl-
edge shown in Figure 3 (a). For this example, it can be
determined through abduction that there must have been a
shopping event, call it S1, whose shopper was Bill and who
shopped for Milk. Note that if instead of “He paid for some
milk”, the observation was “He pointed a gun”, an existence
of a robbing event must be assumed whose robber would be
Bull, instead of a shopping event whose shopper was Bill
(the part of the background knowledge about robbing is not
shown in Figure 3 (a)).

(2)
instance_shopping(s) A go_step(s,g) —
instance_going(g)

instance_shopping(s) A go_step(s, g) A
shopper (s, p) — goer(g, p)

instance_shopping(s) A go_step(s, g) A
store(s, str) — destination_go(g, str)

instance_shopping(s) A pay_step(s, pay) —
instance_paying(pay)

instance_shopping(s) A pay_step(s, pay) A
shopper(s, p) — payer(pay, p)

instance_shopping(s) A pay_step(s, pay) A
thing_shopped_for(s,t) — thing_paid(pay,t)

(b)

“Bill went to the store. He paid for some milk”
instance_going(Gol)

goer(Gol, Bill)

destination_go(Gol, Store)
instance_paying(Payl)

payer(Payl, Bill)

thing_paid(Payl, Milk)

(©

instance_shopping(S1)
shopper(S1, Bill)
go_step(S1,Gol)
pay_step(S1, Payl)
thing_shopped_for(S1, Milk)

Figure 3: (a) A sample of the background knowledge for the
evaluation task. (b) An example of narrative text and its log-
ical representation. (c) The assumptions which explain the
observations in (b) using the background knowledge (a).

4.2 Methodology

We used the algorithm described in the previous section to au-
tomatically add clauses to the background knowledge base to
perform abduction using MLNs. We used the Alchemy soft-
ware for MLNs. Alchemy requires specifying types for the
arguments of the predicates which are then used along with
the provided constants to ground the MLN into a Markov
network. It is desirable to keep the MLN from generating
useless groundings, for example, a constant used to spec-
ify a shopper should not be used to specify a store. Hence,
we provided very specific types for predicate arguments. We
also renamed some predicates in the original knowledge base
to allow for even more specific types. For example, we re-
named instance(a,action) where action could be shopping,
robbing etc. into instance_shopping(s), instance_robbing(r)
etc., where the arguments of each predicate could be con-
strained to a specific type. In the future, one could design

an automatic method for generating the more specific typing
in order to improve the efficiency of the resulting MLN.

We found that the 25 development examples were too few
to learn weights from for the fairly large knowledge base.
Hence, we heuristically set the weights. We put soft weights
(i.e. 2) on the reverse implication clauses and hard weights
(practically infinite) for all the mutual exclusivity clauses. In
addition, we put small negative weights (—1) on unit clauses
for all of the predicates in the knowledge base to discourage
the system from assuming instances of them to be true unless
there is a clear reason to do so. Given a set of observations
as ground literals, we use Alchemy’s probabilistic inference
to determine the most likely truth assignment for the remain-
ing ground literals, i.e the most probable explanation (MPE)
[Pearl, 1988].

We compared the results of our system with that of AC-
CEL [Ng and Mooney, 1992] which is a purely logic-based
system. It internally uses a metric to guide its search for se-
lecting the best explanation. For the plan recognition task, it
can use two different metrics. The first is simplicity, which
selects the explanation of the smallest size, i.e. the one with
the fewest number of assumptions. The second is coherence,
which selects the explanation that maximally connects the in-
put observations. This second metric is specifically geared
towards the task of text interpretation to provide explanatory
coherence [Ng and Mooney, 19901, i.e., how well the input
sentences are tied together in the final interpretation. The
metric exploits the well known fact that sentences in natu-
ral language text are usually connected in a coherent way.
For instance, in the example “John took a bus. He bought
milk.”, the coherence metric will bias the abduction towards
the interpretation in which John took the bus to a store where
he bought the milk. Currently, we have not incorporated this
bias into the MLN’s abduction process.

The development data was also used by Charniak and
Goldman [1989; 1991]. They used a Bayesian probabilistic
approach for this task. Their approach constructs a Bayesian
network for each example. Given the observations, the most
probable explanation is selected using the conditional proba-
bilities attached to the Bayesian network. Their method criti-
cally depends on the values assigned to various probabilities
and these were carefully set manually using common sense
knowledge about the various events. ACCEL achieved re-
sults similar to their system on the 25 development examples
without manually setting any numeric probabilities.

In the traditional definition of abduction, the answer is
given in the form of a best set of assumptions that explain
the observations, however, the answer given by a deductive
system like an MLN will always include other facts that can
be deduced from that best set of assumptions. Hence, in or-
der to compare ACCEL and MLNs fairly, we deductively
expand ACCEL’s answers, i.e. we use the original knowl-
edge base to deduce additional facts that can be inferred from
the assumptions and the observations. Similarly, we also de-
ductively expanded the gold-standard answers in the dataset.
We measured the precision (what fraction of the predicted
ground literals are in the gold-standard answers) and recall
(what fraction of the ground literals in the gold standard an-
swers were predicted). We also computed the F-measure, the

MLN | ACCEL-Simplicity | ACCEL-Coherence
Development

Recall 90.10 84.98 93.70
Precision 92.53 91.93 93.65
F-measure 91.30 88.32 93.68

Testing
Recall 81.44 71.87 88.30
Precision 77.76 88.58 89.06
F-measure 79.56 79.36 88.68

Table 1: Results on abduction for the plan recognition task
using MLN and using the two metrics for the ACCEL sys-
tem.

harmonic mean of precision and recall.

4.3 Results and Discussion

The results are shown in Table 1. MLN took only 25 seconds
to run all the 50 examples on a 2.3GHz 4 GB machine. Re-
sults for the two datasets are shown separately because the
knowledge base was constructed to work with the develop-
ment data without any knowledge of the testing data. The re-
sults show that the MLN does better than the simplicity met-
ric, particularly on the development data. On the test data, it
obtains better recall than the simplicity metric but lags behind
in precision. The MLN performs very close to the coherence
metric on the development data but does worse on the test
data. We again note that the coherence metric was specifi-
cally designed to do well on this particular task, but MLNs
are more general and are not tailored for the specific task of
narrative understanding. When recognizing plans from ob-
served actions rather than from those relayed by a human
story teller, the bias for explanations that tie all of the ob-
servations together is less useful and simply maximizing the
probability of an explanation is more desirable.

We also note that this specific dataset does not really re-
quire a full probabilistic treatment, since there is little noise
or uncertainty in the knowledge base or the observations, and
the correct explanations are usually very clear. We believe
that probabilistic abduction using MLNs will have a greater
advantage on tasks where uncertainty is more pronounced and
where there are multiple plausible explanations that must be
evaluated based on the underlying probability of various in-
ferences and assumptions. We also note that an advantage of
MLN:s is that they do not need specific heuristics to pick the
best explanation but simply find the most probable interpreta-
tion. Also, given sufficient training examples, clause weights
and even additional clauses can be learned, and thus the sys-
tem can automatically adapt to a specific task. Previous ab-
ductive systems like ACCEL and Charniak and Goldman’s
system do not provide any learning mechanisms.

5 Future Work

An obvious direction for future work is evaluating the MLN
approach on a task in which uncertainty plays a greater role.
Such a task could more clearly demonstrate the advantages
of using a probabilistic framework like MLNs. Also, a larger
dataset could be used to learn weights and additional clauses

to automatically adapt the system to a particular domain. An-
other issue for future work is how task-specific biases, like
the coherence metric, could be incorporated into the general
MLN abduction framework.

Besides MLNSs, there are other frameworks for combin-
ing first-order logic and graphical models [Getoor and Taskar,
2007]. For example, Bayesian logic programs (BLPs) [Ker-
sting and De Raedt, 2001] combine Bayesian networks and
first-order Horn-clause logic. Therefore, BLPs use a directed
graphical model while MLNs use an undirected one. Given
that directed models like Bayesian networks are particularly
suited for doing abduction, it would be interesting to perform
probabilistic abduction using BLPs and compare it with the
current MLN approach.

6 Conclusions

We have presented a general method for probabilistic first-
order logical abduction using Markov logic networks. The
existing deductive inference system of MLNs is employed for
abduction by automatically adding suitably reversed implica-
tions to the knowledge base. The resulting abductive system
offers the advantages of handling uncertainty using probabil-
ities and of handling an unbounded number of related entities
using first-order logic. It is also capable of adapting to a do-
main by learning from training examples. Experiments on
a small plan-recognition data set demonstrated that it com-
pares favorably with special-purpose logic-based abductive
systems even on a domain which favors those systems.

Acknowledgments
This research was funded by ARO grant W911NF-08-1-0242.

References

[Charniak and Goldman, 1989] Eugene Charniak and
Robert P. Goldman. A semantics for probabilistic
quantifier-free first-order languages, with particular
application to story understanding. In Proceedings of

the Eleventh International Joint Conference on Artificial
Intelligence (IJCAI-89), Detroit, M1, 1989.

[Charniak and Goldman, 1991] Eugene Charniak and
Robert Goldman. A probabilistic model of plan recog-
nition. In Proceedings of the Ninth National Conference
on Artificial Intelligence (AAAI-91), pages 160-165,
Anaheim, CA, 1991.

[Getoor and Taskar, 2007] L. Getoor and B. Taskar, editors.
Introduction to Statistical Relational Learning. MIT Press,
Cambridge, MA, 2007.

[Goldman, 1990] Robert P. Goldman. A Probabilistic Ap-
proach to Language Understanding. PhD thesis, Depart-
ment of Computer Science, Brown University, Providence,
RI, December 1990. Technical Report CS-90-34.

[Hobbs et al., 1993] Jerry R. Hobbs, Mark E. Stickel, Dou-
glas E. Appelt, and Paul A. Martin. Interpretation as ab-
duction. Artificial Intelligence, 63(1-2):69-142, 1993.

[Kakas et al., 1993] Andonakis C. Kakas, Robert A. Kowal-
ski, and Francesca Toni. Abductive logic programming.
Journal of Logic and Computation, 2(6):719-770, 1993.

[Kersting and De Raedt, 2001] Kristian Kersting and Luc De
Raedt. Towards combining inductive logic programming
with Bayesian networks. In Proceedings of the 11th In-
ternational Conference on Inductive Logic Programming
(ILP-01), pages 118131, Strasbourg, France, September
2001.

[Ng and Mooney, 1990] Hwee Tou Ng and Raymond J.
Mooney. The role of coherence in abductive explanation.
In Proceedings of the Eighth National Conference on Arti-
ficial Intelligence (AAAI-90), pages 337-442, Detroit, MI,
July 1990.

[Ng and Mooney, 19911 Hwee Tou Ng and Raymond J.
Mooney. An efficient first-order Horn-clause abduction
system based on the ATMS. In Proceedings of the Ninth
National Conference on Artificial Intelligence (AAAI-91),
pages 494-499, Anaheim, CA, July 1991.

[Ng and Mooney, 1992] Hwee Tou Ng and Raymond J.
Mooney. Abductive plan recognition and diagnosis:
A comprehensive empirical evaluation. In Proceedings
of the Third International Conference on Principles of

Knowledge Representation and Reasoning, pages 499—
508, Cambridge, MA, October 1992.

[Pearl, 1988] Judea Pearl. Probabilistic Reasoning in Intel-
ligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, San Mateo,CA, 1988.

[Poole et al., 1987] D. L. Poole, R. G. Goebel, and R. Aleli-
unas. Theorist: A logical reasoning system for defaults
and diagnosis. In N. J. Cercone and G. McCalla, editors,
The Knowledge Frontier: Essays in the Representation of
Knowledge, pages 331-352. Springer Verlag, New York,
1987.

[Richardson and Domingos, 2006] Matthew Richardson and
Pedro Domingos. Markov logic networks. Machine Learn-
ing, 62:107-136, 2006.

[Stickel, 1988] M. E. Stickel. A Prolog-like inference system
for computing minimum-cost abductive explanations in
natural-language interpretation. Technical Report Techni-
cal Note 451, SRI International, Menlo Park, CA, Septem-
ber 1988.

