
Appears in Proceedings of AAAI Spring Symposium on Applying Machine Learning 
to Discourse Processing, pp. 6-11, March, 1998

Relational Learning of Pattern-Match Rules for
Information Extraction

Mary Elaine Cali� and Raymond J. Mooney
Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712
fmecaliff,mooneyg@cs.utexas.edu

Abstract

Information extraction is a form of shallow text
processing which locates a speci�ed set of relevant
items in natural language documents. Such sys-
tems can be useful, but require domain-speci�c
knowledge and rules, and are time-consuming and
di�cult to build by hand, making infomation ex-
traction a good testbed for the application of ma-
chine learning techniques to natural language pro-
cessing. This paper presents a system, Rapier,
that takes pairs of documents and �lled templates
and induces pattern-match rules that directly ex-
tract �llers for the slots in the template. The learn-
ing algorithm incorporates techniques from several
inductive logic programming systems and learns
unbounded patterns that include constraints on
the words and part-of-speech tags surrounding the
�ller. Encouraging results are presented on learn-
ing to extract information from computer job post-
ings from the newsgroup misc.jobs.offered.

Introduction

Text understanding is a di�cult and knowledge in-
tensive task. As an increasing amount of infor-
mation becomes available in the form of electronic
documents, the need to intelligently process such
texts makes shallow text understanding methods
such as information extraction (IE), the task of lo-
cating speci�c pieces of data from a natural lan-
guage document, particularly useful. In recognition
of their signi�cance, IE systems have been the fo-
cus of DARPA's MUC program (Lehnert & Sund-
heim 1991). Unfortunately, IE systems, although
they don't attempt full text understanding, are still
di�cult and time-consuming to build and the re-
sulting systems generally contain highly domain-
speci�c components, making them di�cult to port
to new domains.

IE systems, then, are an attractive testbed for
the application of machine learning methods to
natural language processing. Recently, several re-

searchers have begun to apply learning methods
to the construction of IE systems (McCarthy &
Lehnert 1995; Soderland et al. 1995; Rilo� 1993;
1996; Kim & Moldovan 1995; Hu�man 1996). Sev-
eral symbolic and statistical methods have been
employed, but learning is generally used to con-
struct only part of a larger IE system. Our sys-
tem, Rapier (Robust Automated Production of
Information Extraction Rules), learns rules for the
complete IE task. The resulting rules extract
the desired items directly from documents with-
out prior parsing or subsequent processing. Using
only a corpus of documents paired with �lled tem-
plates, Rapier learns unbounded Eliza-like pat-
terns (Weizenbaum 1966) that utilize limited syn-
tactic information, such as the output of a part-
of-speech tagger. Induced patterns can also eas-
ily incorporate semantic class information, such as
that provided by WordNet (Miller et al. 1993).
The learning algorithm was inspired by several In-
ductive Logic Programming (ILP) systems and pri-
marily consists of a speci�c-to-general (bottom-up)
search for patterns that characterize slot-�llers and
their surrounding context.

The remainder of the paper is organized as fol-
lows. Section 2 presents background material on
IE and relational learning. Section 3 describes
Rapier's rule representation and learning algo-
rithm. Section 4 presents and analyzes results
obtained on extracting information from messages
posted to the newsgroup misc.jobs.offered. Sec-
tion 5 discusses related work in applying learning
to IE, Section 6 suggests areas for future research,
and Section 7 then presents our conclusions.

Background

Information Extraction

In IE, the data to be extracted from a natural lan-
guage text is given by a template specifying a list of



Posting from Newsgroup

Telecommunications. SOLARIS Systems
Administrator. 38-44K. Immediate need

Leading telecommunications firm in need

of an energetic individual to fill the
following position in the Atlanta

office:

SOLARIS SYSTEMS ADMINISTRATOR
Salary: 38-44K with full benefits

Location: Atlanta Georgia, no
relocation assistance provided

Filled Template

computer_science_job
title: SOLARIS Systems Administrator

salary: 38-44K
state: Georgia

city: Atlanta
platform: SOLARIS

area: telecommunications

Figure 1: Sample Message and Filled Template

slots to be �lled. The slot �llers may be either one
of a set of speci�ed values or strings taken directly
from the document. For example, Figure 1 shows
part of a job posting, and the corresponding slots
of the �lled computer-science job template.

IE can be useful in a variety of domains. The var-
ious MUC's have focused on domains such as Latin
American terrorism, joint ventures, microelectron-
ics, and company management changes. Oth-
ers have used IE to track medical patient records
(Soderland et al. 1995) or company mergers (Hu�-
man 1996). A general task considered in this
paper is extracting information from postings to
USENET newsgroups, such as job announcements.

Relational Learning

Most empirical natural-language research has em-
ployed statistical techniques that base decisions on
very limited contexts, or symbolic techniques such
as decision trees that require the developer to spec-
ify a manageable, �nite set of features for use in
making decisions. Inductive logic programming
and other relational learningmethods (Birnbaum&
Collins 1991) allow induction over structured exam-
ples that can include �rst-order logical predicates
and functions and unbounded data structures such
as lists, strings, and trees. Detailed experimen-
tal comparisons of ILP and feature-based induction
have demonstrated the advantages of relational rep-
resentations in two language related tasks, text cat-
egorization (Cohen 1995) and generating the past

tense of an English verb (Mooney & Cali� 1995).
While Rapier is not strictly an ILP system, its
relational learning algorithm was inspired by ideas
from the following ILP systems.

Golem (Muggleton & Feng 1992) employs a
bottom-up algorithm based on the construction of
relative least-general generalizations, rlggs (Plotkin
1970). The algorithm operates by randomly select-
ing pairs of positive examples, computing the deter-
minate rlggs of each pair, and selecting the result-
ing consistent clauses with the greatest coverage of
positive examples. That clause is further general-
ized by computing the rlggs of the clause with new
randomly selected positive examples, and general-
ization terminates when the coverage of the best
consistent clause stops improving.

Chillin (Zelle & Mooney 1994) combines
bottom-up and top-down techniques. The algo-
rithm starts with a most speci�c de�nition (the
complete set of positive examples) and introduces
consistent generalizations that make the de�nition
more compact. The search for consistent general-
izations combines bottom-upmethods fromGolem

with top-down methods from Foil (Quinlan 1990).
At each step, a number of possible generalizations
are considered; the one producing the greatest com-
paction of the theory is implemented, and the pro-
cess repeats.

The third system, Progol (Muggleton 1995)
also combines bottom-up and top-down search. Us-
ing mode declarations provided for both the back-
ground predicates and the predicate being learned,
it constructs a most speci�c clause for a random
seed example. Then the system employs a A*-like
search through the set of clauses containing up to
k literals from the most speci�c clause in order to
�nd the simplest consistent generalization to add
to the de�nition.

The Rapier System

Rule Representation

Rapier's rule representation uses patterns that
make use of limited syntactic and semantic infor-
mation, using freely available, robust knowledge
sources such as a part-of-speech tagger and a lex-
icon with semantic classes, such as the hypernym
links in WordNet (Miller et al. 1993). The initial
implementation does not use a parser, primarily be-
cause of the di�culty of producing a robust parser
for unrestricted text and because simpler patterns
of the type we propose can represent useful extrac-
tion rules for at least some domains. The extrac-



Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: leading 1) list: len: 2 1) word: [�rm, company]

tags: [nn, nns]

Figure 2: A Rule Extracting an Area Filler from
the Example Document

tion rules are indexed by template name and slot
name and consist of three parts: 1) a pre-�ller pat-
tern that must match the text immediately pre-
ceding the �ller, 2) a pattern that must match
the actual slot �ller, and 3) a post-�ller pattern
that must match the text immediately following
the �ller. Each pattern is a sequence (possibly of
length zero in the case of pre- and post-�ller pat-
terns) of pattern items or pattern lists. A pattern
item matches exactly one word or symbol from the
document that meets the item's constraints. A pat-
tern list speci�es a maximum length N and matches
0 to N words or symbols from the document that
each must match the list's constraints. Possible
constraints are: a list of words, one of which must
match the document item; a list of part-of-speech
(POS) tags, one of which must match the docu-
ment item's POS tag; a list of semantic classes, one
of which must be a class that the document item
belongs to. Figure 2 shows a rule created by hand
that extracts the area �ller from the example docu-
ment in �gure reftemplate. This rule assumes that
the document has been tagged with the POS tagger
of (Brill 1994).

The Learning Algorithm

As noted above, Rapier is inspired by ILP meth-
ods, and primarily consists of a speci�c to gen-
eral (bottom-up) search. First, for each slot, most-
speci�c patterns are created for each example, spec-
ifying word and tag for the �ller and its complete
context. Thus, the pre-�ller pattern contains an
item for each word from the beginning of the doc-
ument to the word immediately preceding the �ller
with constraints on the item consisting of the word
and its assigned POS tag. Likewise, the �ller pat-
tern has one item from each word in the �ller, and
the post-�ller pattern has one item for each word
from the end of the �ller to the end of the docu-
ment.

Given this maximally speci�c rule-base, Rapier
attempts to compress and generalize the rules for
each slot. New rules are created by selecting pairs
of existing rules and creating generalizations. The
aim is to make small generalization steps, covering
more positive examples without generating spuri-

ous �llers, so a standard approach would be to gen-
erate the least general generalization (LGG) of each
pair of rules. However, in this particular repre-
sentation which allows for unconstrained disjunc-
tion, the LGG may be overly speci�c. Therefore,
in cases where the LGG of two constraints is their
disjunction, we want to create two generalizations:
one would be the disjunction and the other the re-
moval of the constraint. Thus, we often want to
consider multiple generalizations of a pair of items.
This, combined with the fact that patterns are of
varying length, making the number of possible gen-
eralizations of two long patterns extremely large,
makes the computational cost of producing all in-
teresting generalizations of two complete rules pro-
hibitive. But, while we do not want to arbitrarily
limit the length of a pre-�ller or post-�ller pattern,
it is likely that the important parts of the pattern
will be close to the �ller. Therefore, we start by
computing the generalizations of the �ller patterns
of each rule pair and create rules from those gen-
eralizations. We maintain a list of the best n rules
created and specialize the rules under considera-
tion by adding pieces of the generalizations of the
pre- and post-�ller patterns of the seed rules, work-
ing outward from the �llers. The rules are ordered
using an information value metric (Quinlan 1990)
weighted by the size of the rule (preferring smaller
rules). When the best rule under consideration pro-
duces no negative examples, specialization ceases;
that rule is added to the rule base, and all rules em-
pirically subsumed by it are removed. Specializa-
tion will be abandoned if the value of the best rule
does not improve across k specialization iterations.
Compression of the rule base for each slot is aban-
doned when the number of successive iterations of
the compression algorithm which fail to produce a
compressing rule exceed either a pre-de�ned limit
or the number of rules for that slot. An outline of
the algorithm appears in Figure 3 where RuleList is
a prioritized list of no more than Beam-Width rules.
The search is somewhat similar to a beam search
in that a limited number of rules is kept for consid-
eration, but all rules in RuleList are expanded at
each iteration, rather than only the best.

As an example of the creation of a new rule, con-
sider generalizing the rules based on the phrases
\located in Atlanta, Georgia." and \o�ces in
Kansas City, Missouri." The rules created from
these phrases for the city slot would be

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: located 1) word: atlanta 1) word: ,

tag: vbn tag: nnp tag: ,
2) word: in 2) word: georgia

tag: in tag: nnp



For each slot, S in the template being learned
SlotRules = most speci�c rules from documents for S
while compression has failed fewer than lim times
randomly select r pairs of rules from S

�nd the set L of generalizations of the �llers of
the rule pairs

create rules from L, evaluate, and initialize RulesList

let n = 0
while best rule in RuleList produces spurious �llers

and the weighted information value of the
best rule is improving

increment n
specialize each rule in RuleList with generalizations
of the last n items of the pre-�ller
patterns of the antecedent rule pair and add
specializations to RuleList

specialize each rule in RuleList with generalizations
of the �rst n items of the post-�ller
patterns of the antecedent rule pair and add
specializations of RuleList

if best rule in RuleList produces only valid �llers
Add it to SlotRules

Remove empirically subsumed rules

Figure 3: Rapier Algorithm for Inducing IE Rules

3) word: .
tag: .

and

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: o�ces 1) word: kansas 1) word: ,

tag: nns tag: nnp tag: ,
2) word: in 2) word: city 2) word: missouri

tag: in tag: nnp tag: nnp
3) word: .

tag: .

The �llers are generalized to produce two possible
rules with empty pre-�ller and post-�ller patterns.
Because one �ller has two items and the other only
one, they generalize to a list of no more than two
words. The word constraints generalize to either a
disjunction of all the words or no constraint. The
tag constraints on all of the items are the same,
so the LGG's tag constraints are also the same.
Since the three words do not belong to a single
semantic class in the lexicon, the semantics remain
unconstrained. The �llers produced are:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) list: len: 2

word: [atlanta, kansas, city]
tag: nnp

and

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) list: len: 2

tag: nnp

Either of these rules is likely to cover spurious ex-
amples, so we add pre-�ller and post-�ller LGGs.
The items produced from the \in"'s and the com-
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Figure 4: Performance on job postings

mas are identical and, therefore, unchanged. As-
suming that our lexicon contains a semantic class
for states, generalizing the state names produces a
semantic constraint of that class along with a tag
constraint nnp and either no word constraint or the
disjunction of the two states. Thus, a �nal best rule
would be:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: in 1) list: len: 2 1) word: ,

tag: in tag: nnp tag: ,
2) tag: nnp

semantic: state

Evaluation

The task we have chosen for initial tests of Rapier
is to extract information from computer-related job
postings that could be used to create a database of
available jobs. The computer-related job posting
template contains 17 slots, including information
about the employer, the location, the salary, and
job requirements. Several of the slots, such as the
languages and platforms used, can take multiple
values. The current results do not employ semantic
categories, only words and the results of Brill's POS
tagger.

The results presented here use a data set of 100
documents paired with �lled templates. We did
a ten-fold cross-validation, and also ran tests with
smaller subsets of the training examples for each
test set in order to produce learning curves. We use
three measures: precision, the percentage of slot
�llers produced which are correct; recall, the per-
centage of slot �llers in the correct templates which
are produced by the system; and an F-measure,
which is the average of the recall and the precision.

Figure 4 shows the learning curves generated.
At 90 training examples, the average precision was



87.1% and the average recall was 58.8%. These
numbers look quite promising when compared to
the measured performance of other information ex-
traction systems on various domains. This perfor-
mance is comparable to that of Crystal on a med-
ical domain task (Soderland et al. 1996), and bet-
ter than that of AutoSlog and AutoSlog-TS

on part of the MUC4 terrorism task (Rilo� 1996).
It also compares favorably with the typical sys-
tem performance on the MUC tasks (DARPA 1992;
1993). All of these comparisons are only general,
since the tasks are di�erent, but they do indicate
that Rapier is doing relatively well. The relatively
high precision is an especially positive result, be-
cause it is highly likely that recall will continue
to improve as the number of training examples in-
creases.

Related Work

Previous researchers have generally applied ma-
chine learning only to parts of the IE task and their
systems have typically required more human inter-
action than just providing texts with �lled tem-
plates. Resolve uses decision trees to handle coref-
erence decisions for an IE system and requires an-
notated coreference examples (McCarthy & Lehn-
ert 1995). Crystal uses a form of clustering to
create a dictionary of extraction patterns by gener-
alizing patterns identi�ed in the text by an expert
(Soderland et al. 1995; 1996). AutoSlog cre-
ates a dictionary of extraction patterns by special-
izing a set of general syntactic patterns (Rilo� 1993;
1996). It assumes that an expert will later examine
the patterns it produces. Palka learns extraction
patterns relying on a concept hierarchy to guide
generalization and specialization (Kim & Moldovan
1995). AutoSlog, Crystal, and Palka all rely
on prior sentence analysis to identify syntactic ele-
ments and their relationships, and their output re-
quires further processing to produce the �nal �lled
templates. Liep also learns IE patterns (Hu�-
man 1996). Liep's primary limitations are that it
also requires a sentence analyzer to identify noun
groups, verbs, subjects, etc.; it makes no real use
of semantic information; it assumes that all infor-
mation it needs is between two entities it identi�es
as \interesting"; and it has been applied to only
one domain in which the texts are quite short (1-3
sentences).

Future Research

Currently, Rapier assumes slot values are strings
taken directly from the document; however, MUC

templates also include slots whose values are taken
from a pre-speci�ed set. We plan to extend the sys-
tem to learn rules for such slots. Also, the current
system attempts to extract the same set of slots
from every document. Rapiermust be extended to
learn patterns that �rst categorize the text to deter-
mine which set of slots, if any, should be extracted
from a given document. Finally, the same pattern
learning algorithm may prove applicable to other
natural language processing tasks such as identify-
ing the sense of an ambiguous word based on its
surrounding context.

Conclusion

The ability to extract desired pieces of information
from natural language texts is an important task
with a growing number of potential applications.
Tasks requiring locating speci�c data in newsgroup
messages or web pages are particularly promising
applications. Manually constructing such IE sys-
tems is a laborious task; however, learning meth-
ods have the potential to help automate the devel-
opment process. The Rapier system described in
this paper uses relational learning to construct un-
bounded pattern-match rules for IE given only a
database of texts and �lled templates. The learned
patterns employ limited syntactic and semantic in-
formation to identify potential slot �llers and their
surrounding context. Results on extracting infor-
mation from newsgroup jobs postings have shown
that for one realistic application, fairly accurate
rules can be learned from relatively small sets of
examples. Future research will hopefully demon-
strate that similar techiques will prove useful in a
wide variety of interesting applications.
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