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Abstract

Semi-supervised clustering uses a small amount of super-
vised data to aid unsupervised learning. One typical ap-
proach specifies a limited number of must-link and cannot-
link constraints between pairs of examples. This paper
presents a pairwise constrained clustering framework and a
new method for actively selecting informative pairwise con-
straints to get improved clustering performance. The clus-
tering and active learning methods are both easily scalable
to large datasets, and can handle very high dimensional data.
Experimental and theoretical results confirm that this active
querying of pairwise constraints significantly improves the
accuracy of clustering when given a relatively small amount
of supervision.

1 Introduction

In many data mining and machine learning tasks, there is a
large supply of unlabeled data but limited labeled data, since
labeled data can be expensive to generate. Consequently,
semi-supervised learning, learning from a combination of
both labeled and unlabeled data, has become a topic of sig-
nificant recent interest [6, 20, 30]. More specifically, semi-
supervised clustering, the use of class labels or pairwise con-
straints on some examples to aid unsupervised clustering,
has been the focus of several recent projects [4, 22, 33, 34].

In a semi-supervised clustering setting, the focus is on
clustering large amounts of unlabeled data in the presence of
a small amount of supervised data. In this setting, we con-
sider a framework that has pairwise must-link and cannot-
link constraints between points in a dataset (with an asso-
ciated cost of violating each constraint), in addition to hav-
ing distances between the points. These constraints specify
that two examples must be in the same cluster (must-link) or
different clusters (cannot-link) [33]. In real-world unsuper-
vised learning tasks, e.g., clustering for speaker identifica-
tion in a conversation [17], visual correspondence in multi-
view image processing [7], clustering multi-spectral infor-
mation from Mars images [32], etc., considering supervision
in the form of constraints is generally more practical than

providing class labels, since true labels may be unknown
a priori, while it can be easier to specify whether pairs of
points belong to the same cluster or different clusters.

We propose a cost function for pairwise constrained
clustering (PCC) that can be shown to be the configuration
energy of a Hidden Markov Random Field (HMRF) over
the data with a well-defined potential function and noise
model. Then, the pairwise-constrained clustering problem
becomes equivalent to finding the HMRF configuration with
the highest posterior probability, i.e., minimizing its energy.
We present an algorithm for solving this problem.

Further, in order to maximize the utility of the limited
supervised data available in a semi-supervised setting, super-
vised training examples should be actively selected as maxi-
mally informative ones rather than chosen at random, if pos-
sible [27]. In that case, fewer constraints will be required to
significantly improve the clustering accuracy. To this end,
we present a new method for actively selecting good pair-
wise constraints for semi-supervised clustering.

Both our active learning and pairwise constrained clus-
tering algorithms are linear in the size of the data, and hence
easily scalable to large datasets. Our formulation can also
handle very high dimensional data, as our experiments on
text datasets demonstrate.

Section 2 outlines the pairwise constrained clustering
framework, and Section 3 presents a refinement of KMeans
clustering [13, 25], called PCKMeans, that utilizes pairwise
constraints. In Section 4, we present a method for actively
picking good constraints by asking queries of the form “Are
these two examples in same or different classes?”. Experi-
mental results on clustering high-dimensional text data and
UCI data demonstrate that (1) PCKMeans clustering with
constraints performs considerably better than unconstrained
KMeans clustering, and (2) active PCKMeans achieves sig-
nificantly steeper learning curves compared to PCKMeans
with random pairwise queries.

2 Pairwise Constrained Clustering

Centroid-based partitional clustering algorithms (e.g.,
KMeans) find a disjoint

�
partitioning ����������
	�� (with each



partition having a centroid � � ) of a dataset ��� ����� ���� 	��
such that the total distance between the points and the cluster
centroids is (locally) minimized. We introduce a framework
for pairwise constrained clustering (PCC) that has pairwise
must-link and cannot-link constraints [33] between a subset
of points in the dataset (with a cost of violating each
constraint), in addition to distances between points. Since
centroid-based clustering cannot handle pairwise constraints
explicitly, we formulate the goal of clustering in the PCC
framework as minimizing a combined objective function:
the sum of the total distance between the points and their
cluster centroids and the cost of violating the pairwise
constraints.

For the PCC framework with both must-link and cannot-
link constraints, let 	 be the set of must-link pairs such
that 
��������������	 implies ��� and ��� should be assigned
to the same cluster, and � be the set of cannot-link pairs
such that 
��������������� implies ��� and ��� should be assigned
to different clusters. Note that we consider the tuples in	 and � to be order-independent, i.e., 
�� � �� � �������
�� � �� � ����� , and so also for 	 . Let � � ��! �"� � and � �
� ! �"� � be two sets that give the weights corresponding to the
must-link constraints in 	 and the cannot-link constraints
in � respectively. Let # � be the cluster assignment of a
point � � , where # � � �%$ � ��
	�� . The cost of violating must-
link and cannot-link constraints is typically quantified by
metrics [23]. We restrict our attention to the uniform metric
(also known as the generalized Potts metric), for which the
cost of violating a must-link 
����&������'�(	 is given by!)�"�+*-, #.�0/�1#2�43 , i.e., if the must-linked points are assigned
to two different clusters, the incurred cost is !5�"� . Similarly,
the cost of violating a cannot-link 
6���&879���:�;� is given by!5�<�=*-, #.�>�?#2�43 , i.e., if the cannot-linked points are assigned
to the same cluster, the incurred cost is ! �<� . Note that here* is the indicator function, with *-, @BA�C�DE3 = 1 and *-, F�G=#IH�DE3 =
0. Using this model, the problem of PCC under must-link
and cannot-link constraints is formulated as minimizing the
following objective function, where point � � is assigned to
the partition �KJML with centroid � JML :

N
pckm �

O
PRQS LUTWV

X � �-Y � JML X4Z(2.1)

[ Q\ S LB] S�^`_ Tba ! �<� *-, # � /�c# � 3
[ Q\ S LB] S�^`_ T%d ! �<� *-, # � �e# � 3

Minimizing this objective function can be shown to be equiv-
alent to maximizing the posterior configuration probabil-
ity of a Hidden Markov Random Field, details of which
are given in Appendix A.1. The mathematical formula-
tion of this framework was motivated by the metric label-
ing problem and the generalized Potts model [7, 23], for
which Kleinberg et al. [23] proposed an approximation al-
gorithm. Their formulation only considers the set 	 of

must-link constraints, which we extended to the PCC frame-
work by adding the set � of cannot-link constraints. Our
proposed pairwise constrained KMeans (PCKMeans) algo-
rithm greedily optimizes

N
pckm using a KMeans-type iter-

ation with a modified cluster-assignment step. For experi-
ments with text documents, we used a variant of KMeans
called spherical KMeans (SPKMeans) [11] that has com-
putational advantages for sparse high dimensional text data
vectors. We will present our algorithm and its motivation
based on KMeans in Section 3, but all of it can be easily
extended for SPKMeans. In the domains that we will be
considering, e.g., text clustering, different costs for different
pairwise constraints are not available in general, so for sim-
plicity we will be assuming all elements of � and � to have
the same constant value ! in (2.1). We will make a detailed
study of the effect of the choice of ! in Section 5.

Note that KMeans has a running time of fg
�h�i � � , whereh is the number of data points, i is the number of dimensions
and

�
is the number of clusters. SPKMeans has a running

time of fj
I# � � , where # is the number non-zero entries in
the hlkmi input data matrix. So they are both linear in the
size of the input, making our PCKMeans algorithm for the
PCC framework quite efficient. PCKMeans can also handle
sparse high-dimensional data (e.g. text, gene micro-array),
since it has the computational advantage of SPKMeans in
these domains.

3 Clustering Algorithm

Given a set of data points � , a set of must-link constraints	 , a set of cannot-link constraints � , the weight of the
constraints ! and the number of clusters to form

�
, we

propose an algorithm PCKMeans that finds a disjoint
�

partitioning � � ������
	�� of � (with each partition having a
centroid � � ) such that

N
pckm is (locally) minimized.

In our previous work [4], we had observed that proper
initialization of centroid-based algorithms like KMeans us-
ing the provided semi-supervision in the form of labeled
points greatly improves clustering performance. Here, in-
stead of labeled points, we are given supervision in the form
of constraints on pairs of points – in this case also, our goal
in the initialization step will be to get good estimates of the
cluster centroids from the pairwise constraints.

In the initialization step of PCKMeans, we take the
transitive closure of the must-link constraints [33] and aug-
ment the set 	 by adding these entailed constraints.1 Note
that our current model considers consistent (non-noisy) con-
straints, but it can also be extended to handle inconsistent
(noisy) constraints, as discussed in Section 7. Let the num-
ber of connected components in the augmented set 	 ben

, which are used to create
n

neighborhood sets ��oqp �%rp 	�� .
1A note on complexity: the transitive closure and constraint augmenta-

tion takes sutwv x'v`yzv {�v | operations.



For every pair of neighborhoods o p and o p�� that have at
least one cannot-link between them, we add cannot-link con-
straints between every pair of points in o p and o p � and
augment the cannot-link set � by these entailed constraints,
again assuming consistency of constraints. From now on, we
will refer to the augmented must-link and cannot-link sets as	 and � respectively.

Note that the neighborhood sets o p , which contain
the neighborhood information inferred from the must-link
constraints and are unchanged during the iterations of the
algorithm, are different from the partition sets � � , which
contain the cluster partitioning information and get updated
at each iteration of the algorithm.

After this preprocessing step we get
n

neighborhood sets
��o p �%rp 	�� , which are used to initialize the cluster centroids.
If
n�� �

, where
�

is the required number of clusters, we
select the

�
neighborhood sets of largest size and initialize

the
�

cluster centers with the centroids of these sets. Ifn�� �
, we initialize

n
cluster centers with the centroids of

the
n

neighborhood sets. We then look for a point � that is
connected by cannot-links to every neighborhood set. If such
a point exists, it is used to initialize the 
 n [ O ��� � cluster.
If there are any more cluster centroids left uninitialized,
we initialize them by random perturbations of the global
centroid of � [14].

�
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Figure 1: PCKMeans algorithm

The algorithm PCKMeans alternates between the clus-
ter assignment and centroid estimation steps (see Figure 1).
In the cluster assignment step of PCKMeans, every point

� is assigned to a cluster such that it minimizes the sum
of the distance of � to the cluster centroid and the cost of
constraint violations incurred by that cluster assignment (by
equivalently satisfying as many must-links and cannot-links
as possible by the assignment). Note that the cluster assign-
ment step is order-dependent, since the subsets of 	 and� associated with each cluster may change with the assign-
ment of a point. For our experiments, we consider a random
ordering of the points in this assignment step. The centroid
re-estimation step is the same as KMeans, i.e., each clus-
ter centroid is calculated by taking the mean of the points
assigned to that cluster.

LEMMA 1. The algorithm PCKMeans converges to a local
minimum of

N Ø�Ù1Ú�Û
.

Proof. For analyzing the cluster assignment step, let us
consider (2.1). Each point � moves to a new cluster $
only if the component ( �Z X � Y � � X Z [ !yÜ \ S ] S ^ _ Tba *-, $m/�#2� 3 [ ! Ü \ S ] S�^`_ T%d *-, $c� #2�43 ) of

N
pckm, contributed by the

point � , decreases. So when all points are given their new
assignment,

N
pckm will decrease or remain the same.

For analyzing the centroid re-estimation step, let us
consider an equivalent form of (2.1):

N
pckm �

O
P �Q
�
	��
QS L TWVnÝ
X ��� Y � � X Z(3.2)

[ Q\ S L ] S ^ _ Tba ! �"� *-, # � /� # � 3
[ Q\ S L ] S ^ _ T%d ! �"� *-, # � � # � 3

Each cluster centroid � � is re-estimated by taking the
mean of the points in the partition � � , which minimizes
the component ( �Z�Ü S LUTWVnÝ X � �)Y � � X Z ) of

N
pckm in (3.2)

contributed by the partition � � . The pairwise constraints
do not take in part in this step because the constraints are
not an explicit function of the centroid. As a result only the
first term ( �Z
Ü ��
	�� Ü S L TWV Ý X ��� Y � � X Z ) of

N
pckm in (3.2) is

minimized in this step.
Hence the objective function decreases after every clus-

ter assignment and centroid re-estimation step till conver-
gence, implying that the PCKMeans algorithm will converge
to a local minimum of

N
pckm.

4 Active Learning Algorithm

In the semi-supervised setting, getting labels on data point
pairs may be expensive. In this section, we discuss an active
learning scheme in the PCC setting in order to improve
clustering performance with as few queries as possible.
Formally, the scheme has access to a noiseless oracle that
can assign a must-link or cannot-link label on a given pair
6���`8����� , and it can pose a constant number of queries to the



oracle.2

In order to get pairwise constraints that are more in-
formative than random in the PCC model, we have devel-
oped an active learning scheme for selecting pairwise con-
straints using the farthest-first traversal scheme. The basic
idea of farthest-first traversal of a set of points is to find

�
points such that they are far from each other. In farthest-first
traversal, we first select a starting point at random, choose
the next point to be farthest from it and add it to the tra-
versed set, then pick the following point farthest from the tra-
versed set (using the standard notion of distance from a set:i 
6� �� ���������	��T�
�i�
�� � � ), and so on. Farthest-first traver-
sal gives an efficient approximation of the

�
- �4D�h�@UD�A prob-

lem [18], and has also been used to construct hierarchical
clusterings with performance guarantees at each level of the
hierarchy [10]. For our data model (see Appendix A.2), we
prove another interesting property of farthest-first traversal
(see Appendix A.4) that justifies its use for active learning.

In [4], it was observed that initializing KMeans with
centroids estimated from a set of labeled examples for each
cluster gives significant performance improvements. Un-
der certain generative model-based assumptions, one can
connect the mixture of Gaussians model to the KMeans
model [21]. A direct calculation using Chernoff bounds
shows that if a particular cluster (with an underlying Gaus-
sian model) with true centroid � is seeded with � points
(drawn independently at random from the corresponding
Gaussian distribution) and the estimated centroid is �� , then

(4.3) ���9
�� �� Y ��� ��� ����D������ "! Z
where

� �$# [ . Thus, the deviation of the centroid
estimates falls exponentially with the number of seeds, and
hence seeding results in good initial centroids. Since good
initial centroids are very critical for the success of greedy
algorithms such as KMeans, we follow the same principle
for the pairwise case: we will try to get as many points
(proportional to the actual cluster size) as possible per cluster
by asking pairwise queries, so that PCKMeans is initialized
from a very good set of centroids.

The proposed active learning scheme has two phases.
The first phase explores the given data to get

�
pairwise dis-

joint non-null neighborhoods, each belonging to a different
cluster in the underlying clustering of the data, as fast as pos-
sible. Note that even if there is only one point per neigh-
borhood, this neighborhood structure defines a correct skele-
ton of the underlying cluster. For this phase, we propose
an algorithm Explore that essentially uses the farthest-first
scheme to form appropriate queries for getting the required
pairwise disjoint neighborhoods.

2The oracle can also give a don’t-know response to a query, in which
case that response is ignored (pair not considered as a constraint) and that
query is not posed again later.

At the end of Explore, at least one point has been
obtained per cluster. The remaining queries are used to
consolidate this structure. The cluster skeleton obtained
from Explore is used to initialize

�
pairwise disjoint non-

null neighborhoods �%o p ���p 	�� . Then, given any point � not
in any of the existing neighborhoods, we will have to ask
at most 
 � Y O � queries by pairing � up with a member
from each of the disjoint neighborhoods o p to find out the
neighborhood to which � belongs. This principle forms the
second phase of our active learning algorithm, and we call
the algorithm for this phase Consolidate. In this phase,
we are able to get the correct cluster label of � by asking
at most 
 � Y O � queries. So, 
 � Y O � pairwise labels are
equivalent to a single pointwise label in the worst case.

Now, we present the details of the algorithms for per-
forming the exploration and the consolidation.
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Figure 2: Algorithm Explore

4.1 Explore In the exploration phase, we use a very inter-
esting property of the farthest-first traversal. Given a set of�

disjoint balls of unequal size in a metric space, we show
that the farthest-first scheme is sure to get one point from
each of the

�
balls in a reasonably small number of attempts

(see Appendix A.4). Hence, our algorithm Explore (see
Figure 2) uses farthest-first traversal for getting a skeleton
structure of the neighborhoods. In Explore, while queries
are still allowed and

�
pairwise disjoint neighborhoods have

not yet been found, the point � farthest from all the existing
neighborhoods is chosen as a candidate for starting a new
neighborhood. Queries are posed by pairing � with a ran-
dom point from each of the existing neighborhoods. If � is
cannot-linked to all the existing neighborhoods, a new neigh-
borhood is started with � . If a must-link is obtained for a par-
ticular neighborhood, � is added to that neighborhood. This
continues till the algorithm runs out of queries or

�
pairwise

disjoint neighborhoods have been found. In the latter case,
the active learning scheme enters the consolidation phase.
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Figure 3: Algorithm Consolidate

4.2 Consolidation The consolidation phase starts when at
least one point has been obtained from each of the

�
clus-

ters. The basic idea in the consolidation phase is that since
we now have points from all the clusters, the proper neigh-
borhood of any random point � can be determined within a
maximum of 
 � Y O � queries. The queries will be formed
by taking a point � from each of the neighborhoods in turn
and asking for the label on the pair 
6� �� � till a must-link
has been obtained. We will either get a must-link reply in
 � Y O � queries, else if we get cannot-link replies for the
 � Y O � queries to the 
 � Y O � neighborhoods, we can in-
fer that the point is must-linked to the remaining neighbor-
hood. Note that it is practical to sort the neighborhoods in
increasing order of the distance of their centroids from � so
that the correct must-link neighborhood for � is encountered
sooner in the querying process. The outline of the algorithm
Consolidate is given in Figure 3.

Both Explore and Consolidate add points to the
clusters at a good rate. It can be shown using the result in
Appendix A.4 that the Explore phase gets at least one
point from each of the

�
underlying clusters in maximum�e� � Z
� queries. When the active scheme has finished running

Explore and is running Consolidate, it can also be
shown using a generalization of the coupon collector’s prob-
lem (Appendix A.4) that with high probability it will get
one new point from each cluster in approximately

� ZV����� �
queries. Consolidate therefore adds points to clusters at
a faster rate than Explore by a factor of fg
 �� �L� � � , which
is validated by our experiments in Section 5. Note that this
analysis is for balanced clusters, but a similar analysis with
unbalanced clusters gives the same improvement factor.

Finally, we briefly address the case when the right num-
ber of clusters

�
is not known to the clustering algorithm,

so that
�

is also unknown to the active learning scheme. In
this case, only Explore is used while queries are allowed.
Explore will keep discovering new clusters as fast as it

can. When it has obtained all the clusters, it will not have
any way of knowing this. However, from this point onwards,
for every farthest-first � it draws from the dataset, it will al-
ways find a neighborhood that is must-linked to it. Hence,
after discovering all the clusters, Explore will essentially
consolidate the clusters too. However, when

�
is known,

it makes sense to invoke Consolidate since (1) it adds
points to clusters at a faster rate than Explore, and (2) it
picks random samples following the underlying data distri-
bution, which have certain nice properties in terms of esti-
mating good centroids (e.g., Chernoff bounds on the centroid
estimates, as shown in (4.3)), that the samples obtained using
farthest-first traversal need not have.

5 Experiments

In this section, we outline the details of our experiments.

5.1 Datasets In our experiments with high-dimensional
text documents, we used datasets created from the 20
Newsgroups collection.3 It has messages collected from
20 different Usenet newsgroups, 1000 messages from each
newsgroup. From the original dataset, a reduced dataset
News-all20was created by taking a random subsample of
100 documents from each of the 20 newsgroups – this sub-
sample is a more difficult dataset to cluster than the original
20 Newsgroups, since each cluster has fewer documents.
News-all20 has 2000 points in 16089 dimensions. By se-
lecting 3 categories from the reduced dataset News-all20,
two other datasets were created: News-sim3 that con-
sists of 3 newsgroups on similar topics (comp.graphics,
comp.os.ms-windows, comp.windows.x) with significant
cluster overlap, and News-diff3 that consists of 3 news-
groups on different topics (alt.atheism, rec.sport.baseball,
sci.space) with well-separated clusters. News-sim3 has
300 points in 3225 dimensions, while News-diff3 had
300 points in 3251 dimensions. Another dataset we used
in our experiments is a subset of Classic3 [11] containing
400 documents – 100 Cranfield documents from aeronautical
system papers, 100 Medline documents from medical jour-
nals, and 200 Cisi documents from information retrieval pa-
pers. This Classic3-subset dataset was specifically de-
signed to create clusters of unequal size, and has 400 points
in 2897 dimensions. Similarities between data points in the
text datasets were computed using cosine similarity, follow-
ing SPKMeans [11]. SPKMeans maximizes the average
cosine similarity between points and cluster centroids, so
that the objective function monotonically increases with ev-
ery iteration till convergence. All the text datasets were pre-
processed following the methodology of Dhillon et al. [11].

For experiments on low-dimensional data, we selected
the UCI dataset Iris [5], which has 150 points in 4 dimen-

3http://www.ai.mit.edu/people/jrennie/20Newsgroups



sions. The Euclidean metric was used for computing dis-
tances between points in this dataset, following KMeans. In
this case, the objective function, which is the average squared
Euclidean distance between points and cluster centroids, de-
creases at every iteration till convergence. The Iris dataset
was not pre-processed in any way.

5.2 Clustering evaluation We have used three metrics for
cluster evaluation: normalized mutual information (NMI),
pairwise F-measure, and objective function.

Normalized mutual information (NMI) determines the
amount of statistical information shared by the random vari-
ables representing the cluster assignments and the user-
labeled class assignments of the data points. We computed
NMI following the methodology of Strehl et al. [31]. NMI
measures how closely the clustering algorithm could recon-
struct the underlying label distribution in the data. If � is
the random variable denoting the cluster assignments of the
points, and � is the random variable denoting the underlying
class labels on the points, then the NMI measure is defined
as [2]:

o����q� ��
����	� �

�
0
��>� [ 
0
�� ����� P

where � 
���	� � ��
0
� � Y 
0
��� �q� is the mutual informa-
tion between the random variables  and � , 
0
� � is the
Shannon entropy of  , and 
0
��� �q� is the conditional en-
tropy of  given � .

Pairwise F-measure is defined as the harmonic mean of
pairwise precision and recall, the traditional information re-
trieval measures adapted for evaluating clustering by consid-
ering pairs of points – for every pair of points that do not have
explicit constraints between them, the decision to cluster this
pair into same or different clusters is considered to be correct
if it matches with the underlying class labeling available for
the points. Pairwise F-measure is defined as:

��������������� �"!$# ��%&���'�)(*� �+�+���	,�-/.0������12���	,��)1&3'�546%&7"� (�-/89��,��)�
#;: � ,�%0-<��%&���'�����+��12����,=��1&3'�546%07>� (�-/89��,=���

?����	%0-<-9!$# ��%&���'�)(*� �+�+���	,�-/.0������12���	,��)1&3'�546%&7"� (�-/89��,��)�
#;: � ,�%0-<��%&���'��@A��,�8B%0-<-C.D3'�546%&7"� (�-/89��,��)�

EGFH7>�)%D��8B�+�H!$IKJ ���+�)��������� � J ?����	%0-<-
���+���	������� �ML�?����	%0-<-

Measures like modified Rand Index [22, 33, 34] that
are frequently used for evaluation of clustering in the PCC
framework are very similar to pairwise F-measure. NMI has
also become a popular clustering evaluation metric [2, 12,
15]. We present results using both these evaluation measures
and observe from the results that they are strongly correlated.
We also show results for the objective function
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Figure 4: Comparison of NMI values on News-sim3
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Figure 5: Comparison of pairwise F-measure values on
News-sim3

5.3 Experimental Methodology For all the algorithms,
on each dataset, we have generated learning curves with 10-
fold cross-validation, where the x-axis represents the number
of pairwise constraints given as input to the algorithms. For
non-active PCKMeans the pairwise constraints are selected
at random, while for active PCKMeans the pairwise con-
straints are selected using our active learning scheme. For
studying the effect of pairwise constraints and active learn-
ing, 10% of the dataset is set aside as the test set at any
particular fold. The training sets at different points of the
learning curve are pairwise constraints obtained from the re-
maining 90% of the data, with increasing number of pair-
wise constraints being given as input to the clustering along
the learning curve. The clustering algorithm is run on the
whole dataset, and the corresponding objective function is
reported. Following the methodology of Basu et al. [4], NMI
and pairwise F-measure are calculated only on the test set,



from which no constraints were supplied. The results at each
point on the learning curve are obtained by averaging over 10
folds. We did not continue the learning curve beyond 1000
queries (5000 for News-all20), since the general nature
of the results was evident in this range. Moreover, in practi-
cal active learning applications, it is unrealistic to expect the
user to answer even 1000 queries.

5.4 Results The results of the experiments are shown in
Figures 4-11. Since the standard deviations of NMI, pairwise
F-measure and objective function values in the plots were
small for all the datasets, they have not been shown in the
plots to reduce clutter.

Choice of ! : We experimented with different values
of the constraint weight parameter ! . If ! is set to 0, the
algorithm is initialized with neighborhoods derived from the
given constraints and then normal KMeans iterations are run
till convergence. This is similar to the SeededKMeans
algorithm outlined in [4], where the labeled data (seeds) are
used to only initialize the KMeans algorithm and are not used
in the following steps of the algorithm.

If ! is set to a very high value, the algorithm is initial-
ized with neighborhoods derived from the given constraints
and the constraints become hard constraints, since the con-
straint cost violation component of the

N
pckm objective func-

tion far supersedes its distance component. This is similar
to the ConstrainedKMeans algorithm outlined in [4].
In this algorithm, the seeds are also used to initialize the
KMeans algorithm. However, in the subsequent steps, the
cluster labels of the seed data are kept unchanged and only
the labels of the non-seed data are re-estimated.

If ! is set to an intermediate value, the algorithm gives
a tradeoff between minimizing the total distance between
points and cluster centroids and the cost of violating the
constraints. In the result plots in Figures 4-12, PCKMeans
refers to running the algorithm with the intermediate value
of ! . The parameter ! can be chosen by the user according
to the degree of confidence in the constraints, or chosen to
be a constant of the same order as the average similarity
(for Spherical KMeans) or distance (for EuclideanKMeans)
between pairs of points in the dataset. We set ! to be 0.001
for the text-datasets and 1 for Iris dataset.

Thus, the ! parameter acts as a tuning knob, giv-
ing us the continuum between a SeededKMeans-like
algorithm on one extreme, where there is no guaran-
tee of the constraint satisfaction in the clustering, and a
ConstrainedKMeans-like algorithm on the other ex-
treme, where the clustering process is forced to respect all
the given constraints. Note that we can selectively guarantee
that any particular constraint is satisfied throughout the clus-
tering iterations, by selecting a very high corresponding cost
of constraint violation.

The comparative results of active and non-active algo-

0 100 200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Pairwise Constraints

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

PCKMeans
Active PCKMeans

Figure 6: Comparison of NMI values on News-diff3
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Figure 7: Comparison of objective function on
News-diff3
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Figure 8: Comparison of NMI values on News-all20
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Figure 9: Comparison of NMI values on Classic400
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Figure 10: Comparison of NMI values on Iris
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Figure 11: Comparison of objective function on Iris

rithms obtained for different values of ! were similar for
the datasets considered (see Figures 4 and 5). This leads us
to conclude that proper initialization (by active learning) us-
ing the constraints gives much more benefit than satisfying
the constraints during the algorithm, which validates the ob-
servation in [4] that proper initialization is crucial for good
performance of centroid-based clustering algorithms. This
point is explained in more detail in the discussion below. In
Figures 6-11, we only present the results for the intermedi-
ate value of ! for clarity of the plots. The curves for NMI
and Pairwise F-measure were very similar for the datasets
we considered (see Figures 4 and 5), so we only presenting
the NMI results.

Objective function results: We show a representative
objective function plot for a text dataset clustered using
SPKMeans (Figure 7), for which the objective function
increases along the learning curve. For Figure 11, the
objective function is decreasing along the learning curve
since simple KMeans with Euclidean distance was used for
this dataset.

Note that for each objective function plot, the active and
non-active schemes have the same number of constraints in
the 	 and � sets at any point on the learning curve, but
the actual constraints they have may be different. The active
and the non-active schemes are allowed to both choose their
own sets of constraints, and the objective function value after
running PCKMeans clustering depends on this choice. For
active PCKMeans, the constraints it chooses give it a better
initialization (which is discussed in detail below), resulting
in better value of the objective function after running the
clustering algorithm.

Non-active schemes: As shown in Appendix A.3, if the
number of random pairwise constraints is low, the probabil-
ity that the

�
largest neighborhoods are in fact from

�
differ-

ent clusters is very low. Until this point on the learning curve,
some of the neighborhoods used to initialize PCKMeans can
actually belong to the same cluster, so that we may not get
representatives from all the clusters. This gives a poor initial-
ization of PCKMeans that may cause the algorithm to con-
verge to bad local minima. Consequently the clustering pro-
duced by PCKMeans can be unstable, resulting in varying
pairwise F-measure and NMI values on the test set. This ini-
tial jitter can be observed in all the Figures 4-11. Beyond this
point on the learning curve, non-activePCKMeanswill most
likely be initialized with points from each cluster. So after
the initial jitter, the performance of non-active PCKMeans
improves steadily along the learning curve with respect to
objective function, NMI and pairwise F-measure, showing
the benefit of incorporating supervised data (constraints) in
the clustering process.

Active schemes: For the active algorithms, we consis-
tently get significant improvements over the non-active algo-
rithms, for all datasets we have considered. Firstly, we see



the jitter only in the very early part of the learning curve.
This is because the Explore phase creates only one neigh-
borhood from each cluster and continues until

�
pairwise

disjoint neighborhoods are found, creating all the neighbor-
hoods within a small number of queries (see Appendix A.4).
The jitter is so early in the learning curve that it cannot be
even observed in the plots. In Figure 8, the jitter disappears
after about the first 20 queries. The Explore phase of the
active selection algorithm guarantees that the pairwise dis-
joint neighborhoods inferred from the constraints belong to
different clusters in the actual underlying clustering, and so
these neighborhoods would give us good initializations for
the clustering algorithm. The Consolidate phase grows
the

�
pairwise disjoint neighborhoods already created, so

that when the active learning scheme runs out of queries,
PCKMeans is initialized using centroids constructed from
good neighborhoods. The improvement of the active scheme
is more pronounced for the difficult high-dimensional text
datasets, e.g., Figure 4-9.

From the above results, we conclude:

� Semi-supervised clustering with constraints performs
considerably better than unsupervised clustering for the
datasets we have considered (note that unsupervised
clustering corresponds to semi-supervised clustering
with 0 constraints). For both the active and non-active
algorithms, the clustering evaluation measures (NMI
and pairwise F-measure) and the objective function
improve with increasing number of pairwise constraints
provided along the learning curve.

� Active selection of pairwise constraints, using our two-
phase active learning algorithm, significantly outper-
forms random selection of constraints.
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Figure 12: Comparison of Explore and Consolidate phases
w.r.t. NMI on News-diff3

Explore Vs Consolidate: We also ran some ab-
lation experiments, comparing the performance of the
active PCKMeans scheme with both Explore and
Consolidate with active PCKMeans with Explore
only. We ran the ablation experiment on the News-diff3
dataset. From the NMI result shown in Figure 12, we can
see that running Explore only in the active learning phase
gives improvement over random choice of constraints, but
running both Explore and Consolidate gives even bet-
ter results. So, both Explore and Consolidate are use-
ful phases of the active learning algorithm.

6 Related Work

COP-KMeans is another algorithm in the pairwise con-
strained clustering model [33], but it does not handle soft-
constraints, i.e., constraints that can be violated with an as-
sociated violation cost, which PCKMeans does. A soft-
constrained algorithm SCOP-KMeans has been recently
proposed [32], whose performance would be interesting to
compare with PCKMeans. Bansal et al. [3] proposed a the-
oretical model where they performed clustering using only
pairwise constraints, which is different from our model since
we consider both constraints and an underlying metric be-
tween the points while clustering. Other work with the pair-
wise constrained clustering model includes learning distance
metrics for clustering from pairwise constraints [17, 22, 34].
In this domain, Cohn. et al. [8] have proposed iterative user-
feedback to acquire constraints, but it was not an active learn-
ing algorithm.

Active learning in the classification framework is a long-
studied problem, where different principles of query selec-
tion have been studied, e.g., reduction of the version space
size [16], reduction of uncertainty in predicted label [24],
maximizing the margin on training data [1], finding high
variance data points by density-weighted pool-based sam-
pling [27], etc. However, active learning techniques in classi-
fication are not applicable in the clustering framework, since
the basic underlying concept of reduction of classification er-
ror and variance over the distribution of examples [9] is not
well-defined for clustering. In the unsupervised setting, Hof-
mann et al. [19] consider a model of active learning which is
different from ours – they have incomplete pairwise simi-
larities between points, and their active learning goal is to
select new data, using expected value of information esti-
mated from the existing data, such that the risk of making
wrong estimates about the true underlying clustering from
the existing incomplete data is minimized. In contrast, our
model assumes that we have complete similarity information
between all pairs of points, along with pairwise constraints
whose violation cost is a component of the objective func-
tion (2.1), and the active learning goal is to select pairwise
constraints which are most informative about the underlying
clustering. Klein et al. [22] also consider active learning in



semi-supervised clustering, but instead of making example-
level queries they make cluster level queries, i.e., they ask the
user whether or not two whole clusters should be merged.
Answering example-level queries rather than cluster-level
queries is a much easier task for a user, making our model
more practical in a real-world active learning setting.

7 Conclusions and Future Work

In this paper, we have presented a pairwise constrained clus-
tering framework and a new theoretically well-motivated
method for actively selecting good pairwise constraints for
semi-supervised clustering. Experiments on text and UCI
data show that (1) PCKMeans with constraints performs
considerably better than unconstrained KMeans, and (2) our
active learning scheme performs quite well, giving signifi-
cantly steeper learning curves compared to random pairwise
queries. The active learning and pairwise constrained clus-
tering algorithms are both linear and hence suitable for real-
world clustering applications, as they can be easily scaled to
large datasets and can handle very high-dimensional data.

The Explore stage of the active learning scheme is
currently sensitive to outliers in the data. Note however
that it is as sensitive to outliers as the baseline algorithm
KMeans. Outlier sensitivity can be handled by density-
weighted point selection in Explore, where we could
have a modified farthest-first traversal that selects distant
points from dense regions of the data space [27]. Such
a formulation of active learning would be more robust to
outliers, and can be used with more outlier-robust clustering
algorithms, e.g., KMedian [28].

Our current clustering model assumes that the con-
straints are consistent, i.e., there is no noise in the con-
straints. We are working on incorporating a noise model
into our PCC framework, so that we will be able to handle
noisy constraints. This would involve some changes to the
algorithms, e.g., not adding the inferred constraints between
neighborhoods in the initialization step of PCKMeans,
selectively rejecting points using a noise model in the
Explore stage of the active learning algorithm, etc. The
clustering model also assumes that the right number of clus-
ters is given as an input – in the future, we want to select the
number of clusters automatically, by incorporating a model
selection criterion into the PCC objective function.

The cluster assignment step in the PCKMeans algo-
rithm is an incremental step, dependent on the order in which
the points are assigned to the cluster. Currently, we used a
random ordering for cluster assignment for our experiments.
We plan to investigate other cluster assignment schemes in
future, and look into an online version of PCKMeans.

On the theoretical side, we want to explore the correla-
tion between NMI and F-measure that we have empirically
observed in our experiments, and come up with better guar-
antees for improvement of PCC with actively selected con-

straints over PCC with randomly selected constraints.
Finally, we also want to apply our active learning al-

gorithm in the PCC framework to other domains, especially
gene micro-array data analysis in bioinformatics.
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A Appendix

A.1 Hidden Markov Random Field The PCKMeans ob-
jective function in (2.1) tries to minimize the total distance
between points and their cluster centroids such that the mini-
mum number of specified constraints between the points are
violated. This mathematical formulation can be motivated by
considering a Markov Random Field (MRF) [7] defined over
� such that the field (or set)

� � � � � � �� 	�� of random vari-
ables over � can take values ��#�� � �� 	�� with #.�u� �b$ � ��
	�� ���� .
Let a configuration # denote the joint event � � �e# � � � � � �# � � �� 	�� . Restricting the model to MRFs whose clique poten-
tials involve pairwise points, the prior probability of a con-
figuration # is � 
I#I���	��
��
 Y Ü � Ü ��� \ �6] � _ 
I# �  # � �&� , where

� \ �6] � _ 
I# �  # � �K�
�� � ! �"� *-, # � /�c# � 3 if 
�� � �� � � �z	! �"� *-, # � �c# � 3 if 
�� � �� � � ����

otherwise

We assume an identity covariance Gaussian noise model
for the observed data (von-Mises Fisher distribution [26]
was considered as the noise model for high-dimensional
text data)4, and also assume that the observed (noisy) data
points have been drawn independently of each other follow-
ing this model. If �%� � ����
	�� denote the true representatives
corresponding to the labels �b$ � ��
	�� , the conditional prob-
ability of the observation � for a given configuration # is� 
 � � #I������
��
 Y �Z Ü S L X ��� Y � JML X Z � . Since the MRF is
defined over the hidden true labels �%#�� � �� 	�� of the observed
points ����� ���� 	�� , this model is called a Hidden Markov Ran-
dom Field (HMRF) [35], which is a direct generalization of
a Hidden Markov Model.

Since the posterior probability of a configuration # is� 
I#�� �j����� 
6#w��� 
 � � #w� , the PCC objective function is pro-
portional to the negative logarithm of the posterior probabil-
ity of the specified HMRF. Hence, finding the MAP config-
uration of the HMRF becomes equivalent to minimizing the
objective function in (2.1).

A.2 Model Assumptions First of all, we present the for-
mal model of the dataset based on which all analysis will
be done. The data is assumed to be coming from

�
dis-

joint uniform density balls of unequal size in a metric space.

4The framework can be shown to hold for arbitrary exponential noise
models.



The balls are defined in terms of the metric. All data points
inside any particular ball are assumed to be in the same
cluster, and points from different balls are assumed to be
from different clusters. The oracle is assumed to know this
model. Let h be the total number of points under considera-
tion. Let ��� � ����
	�� be the probabilities of drawing a point
randomly from the $ -th ball

� � . Without loss of gener-
ality, we assume � � ��� Z �������\��� � . Further, letO ��# ��� � . Let � � be the number of points in the dataset
from

� � . Then, � �e� � � ��h and � � � � � , the volume
of
� � , ��$ . Now, the number of possible cannot-links is

Ü
	 � ] J.] ��� J� � � � J and the number of must-links is Ü � �  ÝZ�� .
Let � � Ü 	 � ] J.] ��� J� � � ��J�� Ü � �  ÝZ�� .
A.3 Analysis of random initialization In PCKMeans,
initialization is done using the

�
largest sized neighborhoods.

We argue that within a small number of queries, the prob-
ability of getting even a 3-point neighborhood from any
cluster is very low. Given � pairs at random, on average
there will be one must-link in every 
 O [ � � pairs. Hence,
there will be a total of � � 
 O [ � � must-link pairs in the
expected behavior. Then, for the $ -th cluster, there will beA � ��� � � �9
 O [ � ��� � � must-link pairs on average. We
focus on a particular cluster

� � on which A � pairs have been
selected at random. The size of the cluster is � � ��h � � .
We will not get a 3-point neighborhood from

� � if none of
the points �m� � � gets drawn more than once in the random
pair sampling. If the sampling of A � pairs is replaced by the
sampling of

P A � vertices, the probability of getting a vertex
twice is increased. Hence, the probability � � of not getting a
3-point neighborhood is lower bounded by the probability of
not getting a vertex twice in the vertex sampling setting. So,� � � Q����� � 	 Z�� Ý� � � Z ] ��J

� P A �� ������� �  Ý� 
� O
� �! Z"� Ý

� O � � O Y O� �  � � O Y P� �  ����� � O Y P A
� Y O� �  
� � O Y P A �� �  Z"� Ý$# O Y&% A Z�� � �

O Y % � ��� Z
h Z 
 O [ � � Z

which is close to 1 for small values of � . Hence, the
probability of getting 3-point neighborhoods is very low.
Therefore, the initialization is essentially done by

�
random

draws from a set of approximately � � 
 O [ � � 2-point
neighborhoods. In this setting, the probability of getting
exactly one neighborhood from each cluster is

�(' �)
�
	��

� � � �('
� � �+* P � �D � 
 O [ OO�P � [-, 
 O� Z ���

using the AM-GM inequality and the Stirling’s formula.
Clearly, the probability is quite low. This results in signif-
icant variance in the initializing neighborhoods and explains

the initial jitter for the non-active algorithms for low values
of � .

A.4 Analysis of Explore We shall refer to points from the
same cluster as having the same color. If the probability
of drawing points of different colors is given by

O ��# �� � ��� Z �.����� ��� � , then, by an extension of the
coupon collector’s problem [29], one can show that points
of all colors will be drawn with high probability within# � � � [/, 
I#I� draws. We claim that the farthest first scheme
gets points of all colors within # attempts with probability 1.

In the worst case, if the disjoint balls are placed by
an adversary, the adversary will try to place the balls such
that getting a point from at least one ball is very difficult.
One can show that the optimum strategy for the adversary
will be to make the smallest ball the most difficult to reach.
Using a packing argument, we show that irrespective of
the placement of the balls, the farthest first traversal cannot
avoid any particular ball for long. Consider two balls 0� �
with probabilities �21 ��23 . Let A414�A53 be the radii of the two
balls, and � 1  � 3 be the volumes of the two balls. Further,
let 671E
 � � denote the packing number of

�
with 0 balls —

the maximum number of disjoint 0 balls that can be packed
inside the ball

�
. Now, if there are just these two balls

in the universe and if farthest-first traversal starts in
�

, the
points obtained from

�
before entering 0 must have pairwise

distances (between their centers) of at least
P A 1 , because

otherwise the traversal would have picked the farthest point
from 0 and got a distance of at least

P A 1 . Hence, the traversal
cannot stay in

�
for more that 6 1 
 � � farthest-first jumps

because there are exactly these many points inside
�

that
can be at a distance of at least

P A 1 from each other. Now, the
packing number 6 1 
 � ��� � 3 � � 1 �8� 3 �4� 1 , the ratio of their
probabilities. This argument can be extended to the general
case of

�
balls. In the general case, the number of times the

farthest first traversal can continue without entering the ball� � is
h���� �Q

�
	���:9	 � 6 3 L4
 � � ��� �Q
�
	���:9	 � � � �4���

Clearly, this number is largest for the smallest ball
� � . So,

the maximum number of farthest-first jumps before reaching� � is given by

h � � �Q
�
	 Z � � ��� � ��
 O Y � � ����� � � O �4� � Y O � # Y O

In the next jump, farthest-first gets a point from
� � . Hence,

the farthest first traversal will find points of all the colors in
I# Y O � [ O �'# attempts. Note that this is a significant
� � �

factor improvement over the random scheme.
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