Monitoring of Timing Constraints with Confidence Threshold Requirements *

Chan-Gun Lee, Aloysius K. Mok

Department of Computer Sciences,

The University of Texas at Austin
{cglee,mok} @cs.utexas.edu

Abstract

We propose an algorithm for monitoring timing con-
straints to satisfy confidence threshold requirements when
there is uncertainty in the exact timing of event occurrences.
In our model, a timed event trace is examined for possible
satisfaction/violation with respect to a given set of timing
constraints. Every event occurrence has a timestamp given
by a time interval. Assuming that the time of occurrence is
uniformly distributed over the time interval, our algorithm
determines whether the probability that a timing constraint
has been satisfied exceeds a specified threshold value. Tim-
ing constraints are composed of deadline and delay con-
straints for which satisfaction probabilities are defined. A
confidence threshold is a minimum satisfaction probability
of the timing constraint. A timing constraint is violated if the
confidence threshold is not reached by the timed event trace.
We present a PTime monitoring algorithm for detecting tim-
ing violation by finding the earliest expiration time (EET)
of the deadline timer for each of the cases P = 100%,
50% < P < 100%, and 0% < P < 50%, where P is
the confidence threshold of the timing constraint. We give
a derivation of the implicit constraints needed for comput-
ing the EET, and we show how to use an all-pairs shortest
path algorithm to compute the implicit constraints.

1. Introduction

Monitoring timing constraints for violation or satisfac-
tion is important in real-time systems for many purposes.
The satisfaction of a timing constraint may for example sig-
nal a mode change by the software. Hard real-time systems
are designed to avoid violating any timing constraints since
a violation may lead to catastrophic system failures. In such
cases, a responsible system architect must try to design for

* This research is supported partially by a National Science Founda-
tion CAREER Award under contract No. IIS-9875746, by ONR grant
N00014-03-1-0705 and by NSF grant CCR-0207853

Prabhudev Konana
Department of MSIS,
The University of Texas at Austin
pkonana@mail.utexas.edu

defense in depth by executing masking and compensatory
actions to mitigate the damage caused by the system’s fail-
ure to meet a critical timing constraint, e.g., to mask the fail-
ure of hardware components by a software mode change.
Timing failures are well recognized as an important class
of faults in fault-tolerance system models in [3]. Hence, the
design of detectors for timing failures has been a topic of
interest for both the real-time system and fault-tolerant sys-
tem communities.

In this paper, we continue to extend our previous work
in detecting timing constraint satisfaction/violation by in-
corporating quantitatively into our analysis the uncertainty
in when events occur exactly. Our approach is event-based,
and our timing constraints are expressed in terms of the tem-
poral distance between event pairs. In general, there are two
types of simple timing constraints from which more com-
plex timing constraints can be constructed: a deadline tim-
ing constraint specifies a maximum separation between a
pair of events; a delay timing constraint specifies a mini-
mum separation. More complex timing constraints are com-
posed of logical combinations of deadline and delay timing
constraints.

The time of occurrence of an instance of an event is a
value in the domain of time which may be a discrete or
dense set; we consider dense time in this paper. The time
of occurrence is captured by a timestamp. If the exact time
value is known, the timestamp denotes a point in the time
domain. However, in practice the exact time of occurrence
may not be available because of the lack of precision in the
measurement system, but it is usually possible to bracket
the time of occurrence to within a range [13]. Timestamps
are then given by a pair of time values that bound the in-
terval in which the event is thought to have occurred. Some
researchers, especially those in active database and artificial
intelligence [17, 19, 4] prefer to deal with timestamps as in-
tervals in order to allow more convenient semantics for de-
scribing their applications. Interval timestamps can be use-
ful in a distributed environment where the clock uncertainty
is unavoidable. Pietzuch et al. use the interval to represent
the timestamp of the event and define proper ordering op-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 30, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

erators for the event composition in a distributed environ-
ment [16].

In our previous work [13], we presented a monitoring al-
gorithm for timing constraints that uses interval timestamps.
The analysis performed by that algorithm is qualitative and
supports two modalities for detecting timing constraint sat-
isfaction/violation: certain and possible.

In this paper, we extend our previous work in [13] by al-
lowing users to specify a confidence threshold which de-
notes the minimum acceptable probability with which a
timing constraint is satisfied by the observed event occur-
rences in a computation. A violation of a timing constraint is
deemed to have occurred when the probability of the timing
constraint being satisfied falls below the confidence thresh-
old, as computed from the observed timestamp values.

The following example illustrates a practical situa-
tion where the event monitor capable of detecting satis-
factions/violations of timing constraints with confidence
thresholds is useful.

Example 1 Consider a sensor-based monitoring sys-
tem composed of two sensor devices and a transmitter.
Each of the sensors S1 and S monitors a different sig-
nal and sends it to the transmitter in the form of detect-
ing event E1 or E5 with interval timestamps. Suppose the
event Ey from S1 conveys key information and event FEo
from S2 conveys only supporting information. Further-
more, only event pairs (E1, E3) for which the difference
in the time of occurrence between E1, Es is within § mil-
liseconds should be transmitted. Owing to the high cost
of information transmission, the transmitter is to re-
lay only Ei to the user whenever the transmitter cannot
receive with a high probability (say, above 80%) the corre-
sponding event Es in time to satisfy the maximum allow-
able separation between E, and Es.

In this paper, we assume that the exact time of occur-
rence of an event is uniformly distributed over the interval
of the timestamp of the event. With the uniform distribu-
tion assumption, we calculate the satisfaction probabilities
for both the deadline constraint and the delay constraint. In
our analysis, we compute the earliest expiration time (EET)
of a timer which waits for an event instance appearing in a
timing constraint to confirm the satisfaction/violation of the
timing constraint, as a function of the desired confidence
threshold P. The key to our analysis involves the deriva-
tion of implicit constraints from the input set of timing con-
straints. We show that implicit constraints can be computed
by using an all-pairs shortest-path algorithm.

The rest of this paper is organized as follows. Section 2
reviews related work. In Section 3, we introduce the event
model of our system and a set of event functions with which
we define the syntax of timing constraints and the probabil-
ity of deadline/delay satisfaction from interval timestamps.

Section 4 illustrates an efficient monitoring algorithm for
a simple timing constraint. Section 5 presents an all pairs
shortest path algorithm to derive implicit constraints from a
set of timing constraints. Section 6 is the conclusion.

2. Related work

Research in event monitoring has been reported in the
real-time systems literature as well as other areas such as
fault tolerance, active databases etc. In the real-time sys-
tems area, Chodrow et al. observed that the derivation of im-
plicit constraints is essential for catching timing violations
as early as possible in their seminal paper [2]. They also pro-
posed a graph-based monitoring algorithm for detecting vi-
olations of timing constraints. Jahanian et al. extended their
work [2] to the distributed system environment in [7]. They
showed that the minimization of the number of messages to
be forwarded among processors for detecting violations in
timing constraints as early as possible is an NP-hard prob-
lem. In [15, 14], Mok and Liu presented a timing constraint
monitoring algorithm which uncovers most hidden informa-
tion required to detect violations of timing constraints as
early as possible at event compilation time.

Recently, we introduced an algorithm for monitoring
timing constraints in [13] which extended the algorithm
in [15, 14] to process events whose timestamps are time in-
tervals. We proposed two new modalities, certain and pos-
sible to allow a user to specify his desired degree of cer-
tainty whether a timing violation has occurred.

Besides the real-time systems area, much research has
been done in the active database systems and distributed
systems areas under the topic of event detection. To name
a few, Ode [6], SAMOS [5] and Sentinel [1] are active
database systems designed to detect composite events as
well as primitive events. However, most active database sys-
tems that have been proposed have limited functionalities
for monitoring of timing constraints efficiently.

In the distributed systems area a number of efforts have
been made toward an event monitoring system. The GEM
(Generalized Event Monitor) [12] implements a generalized
language for event monitoring in a distributed environment.
This system permits time intervals in the event specifica-
tion. Schwiderski proposed a new composition method for
the timestamps of events in a distributed system and de-
fined several temporal operators to order the timestamps
based on the 2g, precedence in [18]. Liebig et al. pro-
posed a new timestamping method in which timestamps of
events are modeled by accuracy intervals with reliable er-
ror bounds [11].

Applications of the event monitoring technique have
been discussed recently in several papers. An E-Brokerage
system based on a real-time composite event monitoring
system was explained in [9]. Lee et al. applied event moni-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 30, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

toring techniques to verify the run-time properties of a pro-
gram in [10]. An extended work for providing the steering
functionality as well as monitoring and checking was done
in [8].

3. Timing constraints with confidence thresh-
olds

We use the event model proposed in [13] to capture the
uncertainties in event occurrence times. In this event model,
the timestamp of an event is represented as a time inter-
val, which consists of a pair of time values: the start and
the end time. The pair brackets the time of occurrence of an
event. Time values may be in the domain of non-negative in-
tegers or reals. In what follows, we present the definition of
a timestamp and event functions of our event model.

Definition 1 A timestamp consists of a pair of time points:
(min_time, max_time) where min_time is the earliest possi-
ble time of occurrence of the event and max time is the lat-
est possible time of occurrence of the event.

Definition 2 min function: min(I) = min_time where I is
the timestamp given by (min_time, max _time).

Definition 3 max function: max(I) = max_time where I is
the timestamp given by (min_time, max_time).

Definition 4 length function: len(I) = maz(I) — min(I)
where I is the timestamp given by (min_time, max time).

Definition 5 7 is the maximum length of any timestamp in
the system. We assume that 7 is bounded and known to the
monitoring system.

Definition 6 Q function: Q(e, 1) = timestamp of the ith in-
stance of event e.

Definition 7 A timing constraint on time intervals with a
confidence threshold is given by:

L +d> I with P

where I and I are timestamps. d is an integer constant
representing a deadline (> 0) or a delay (< 0). P is a con-
fidence threshold ranging from 0% to 100% .

Example 2 The following constraint specifies that there is
a deadline constraint 30 from event (el, 1) to event (e2,1)
with a confidence threshold 70%.

@(el,i) + 30 > @(e2, 1) with 70%

In our system, the distribution of the event occurrence
time in the timestamp is assumed to be uniform. Theorem 1
and Theorem 2 present the calculation of the satisfaction
probability of a deadline constraint and a delay constraint
respectively.

d d

& &

I] l IZ Il IZ
° ° ° — —e o——l

. x . x+d . x . x+d
min(l) max(I) min(l,) max(l,) min(I,) max(I,) min(l,) max(l,)

(A) Deadline (B) Delay
Figure 1. Satisfaction probability

Theorem 1 Given a deadline constraint, ¢t : I, +d > I,
where d > 0, the satisfaction probability of c*, SP |+ is
given by the expression:

Jreh) MIN(MAX (2 + d — min(I), 0), len(I5))dz
len(Iy)len(I5)

Theorem 2 Given a delay constraint, ¢~ : Iy +d > I,
where d < 0, the satisfaction probability of ¢c—, SP |.- is
given by the expression:

f&%ﬁ) MIN(MAX (maz(L) — (z + d),0), len(I5))dz
len(Iy)len(I5)

In Theorem 1 and Theorem 2, M IN (a,b) returns b if
b < a or returns a otherwise. M AX (a,b) returns bif b > a
or returns a otherwise. To calculate the satisfaction prob-
ability of the deadline constraint ¢, we need to calculate
for each time point z in I; the length in interval I for
which ¢ is satisfied and integrate with respect to x, for
min(l;) < z < maz(ly). The resulting integral divided
by the length of I; times the length of I yields the prob-
ability that the two interval timestamps jointly satisfy the
deadline. Figure 1(A) illustrates this idea: the gray box de-
notes the region that satisfies the deadline constraint as-
suming that the event occurrence time is exactly x, where
min(l;) < ¢ < maz(l;). Similarly, Figure 1(B) illus-
trates the calculation of the satisfaction probability of a de-
lay constraint c™.

Corollary 1 Given a deadline constraint, ct : I +d > I,
where d > 0 and a delay constraint, ¢~ : Is +d > I, where
d <0, we have SP |+ =1 — SP
Proof:

This directly follows from Theorem 1 and Theorem 2.

c—-

a

Definition 8 A violation of a timing constraint is said to
occur when the satisfaction probability of the timing con-
straint is less than the specified confidence threshold.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 30, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

4. An efficient monitoring algorithm for a
specified confidence threshold

4.1. Simpler formulae for satisfaction probabili-
ties

Although it is conceptually simple to compute the sat-
isfaction probability of the deadline constraint and that of
the delay constraint from the Theorem 1 and Theorem 2,
the formulae in those theorems are not easy to use in prac-
tice since they include MIN and MAX functions with inte-
grals.

We can simplify and make the analysis more efficient by
dividing our analysis into cases which are based on the con-
figuration of the time intervals with respect to their dead-
lines (or delays), as illustrated in Figure 2. Throughout this
subsection, we assume that we have a deadline constraint
c:I; +d > I where d > 0.

The cases corresponding to a division of the configura-
tion space into regions are as follows: a = (max1, minz)*
, B = [ming,mazs], and v = (mazs,00). Note that
only region 3 includes the two end points. a is de-
fined to be empty when miny < maz;. We say that
a timing constraint ¢ is in XY configuration when-
ever X is the region where min; + d belongs and Y is
the region where maz; + d belongs. For example, Fig-
ure 3 illustrates a timing constraint in the 8-y configuration.
At first glance, there can be nine possible configura-
tions, ac, aﬂv a7, ,BCK, /857 B’Y? Y&, 757 and Y. How-
ever, it is evident that the configurations Ba, ya, and v(3
are not permissible because it is always true that
min; + d < max; + d. Two trivial cases are aoa
and vyvy. In aa configuration, the satisfaction probabil-
ity is zero because there is no possibility that any pair of
time points, each of which is from time interval /; and I, re-
spectively, can satisfy the deadline. Likewise, for the v
configuration, every pair of time points from respec-
tively the intervals I; and I> must satisfy the deadline;
therefore the satisfaction probability is 1.0 for the vy con-
figuration.

In what follows, we present simpler formulae for the sat-
isfaction probability of the deadline constraint ¢ in configu-
rations a3, ay, B, and 5.

af configuration:

St g(@ +d — ming)dz

len(I1)len(I5)

_ (ming — (d + maz1))?
2len(I)len(I5)

* For the sake of brevity, we use minyg to denote min(Iy). For ex-
ample, miny means min(I1). A similar notation mazwy, is used for
maz(Iy).

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)

0-7695-2044-8/03 $ 17.00 © 2003 IEEE

o
len(l, /—M p ﬁ/vH
—ft=-2____ | _
d [PR s -
fleeninfunibe St SRR R N
IIT_T T—TIZ ‘
minl max, min2 max, g

Figure 2. Regions

Qd—>
d
I, L
»
mlnl maxl m1n2 max2

Figure 3. 3 configuration

ary configuration:

fmamg —d
mins —d

(z + d — ming)dz + (maz1 — (mazs — d))len(Iz)
len(Iy)len(I5)

_ 2d+ 2maz; — mins — maz:
B 2len(Iy)

(8 configuration:

[25 (2 + d — ming)dz

miny
len(I1)len(I5)
_ 2d+ maw; + ming — 2ming
2len(Iz)
(B~ configuration:
fs;ird(x + d — mins)dz + (maz; — (mazs — d))len(I)

len(Iy)len(I5)

3 (d — mazs + min)?
2len(I)len(I5)

4.2. Efficient deadline monitoring

In this subsection, we design an efficient monitoring al-
gorithm for a simple deadline timing constraint with a con-
fidence threshold.

Throughout this paper, we shall assume for the sake of
simplicity that we detect an event when its timestamp is de-
termined; in other words, the detection time of an event in-
stance with timestamp I is max([).

YF]',F.

COMPUTER
SOCIETY

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 30, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

d oz lend)
IR o-le
I, o "(.C) min, max,
o-----t--9(d)
0 max, d dt+r d+mtlen() »
Deadline Satisfaction 100% 50% 0%
Delay Satisfaction 0% 50% 100%

Figure 4. Earliest expiration times (EET) from
min(Iy)

Definition 9 Consider a timing constraint c¢: I + d >
I, with P where d > 0. The earliest expiration time of
a deadline timer from a time point t for ¢, EET (t) |, is the
time difference between t and the earliest time t' when the
event monitor can safely claim that c is violated in case the
event instance corresponding to I does not occur by t'.

Knowledge of EET enables the event monitor to stop
waiting for an event that is needed for the satisfaction of a
timing constraint whenever the timing constraint is already
violated by the time.

Figure 4 summarizes Theorem 3, Theorem 4, and Theo-
rem 5, assuimg that min(I;) is 0. For a deadline constraint
c1: 11 +d > I, where d > 0, each value to the right of the
label Deadline Satisfaction in the figure denotes the maxi-
mum satisfaction probability which ¢; can achieve as long
as maz(l2) does not exceed the corresponding time val-
ues d, d+ 7', d+ 7+ len(I). For example, the satisfaction
probability of the timing constraint of case (b) is lower than
100%. If the monitored timing constraint requires 100% and
the event instance corresponding to I3 does not occur by
d, the event monitor can claim that the timing constraint
cannot be satisfied at time d without further waiting for the
event instance. For a delay constraint ¢c; : I, +d > I; where
d < 0, each value to the right of the label Delay Satisfac-
tion in the figure denotes the minimum satisfaction proba-
bility which cs can achieve if maz(I) exceeds the corre-
sponding time point d, d + 7, d + 7 + len(I). For exam-
ple, the satisfaction probability of the timing constraint of
case (c) is at least 50%.

Theorem 3 Given a timing constraint c: Iy +d > I with P
where P = 100% and d > 0, we have EET (min([1)) |.=
d.

Proof:

EET(min(I1)) |. cannot be smaller than d because
SP |.= 100% always when maz(Iz) = d + min(l). In

t mis the maximum length of the timestamp in the system. Refer to Def-
inition 5 for details.

Y
L4

. . '
mm, mdx, mmn, mdx, max,

Figure 5. Shortening a time interval in o3 con-
figuration

case max(Iz) > d + min(Iy), the satisfaction probabil-
ity cannot be 100%.
O

Theorem 4 Given a timing constraint c: Iy + d >
I, with P where 0% < P < 50% and d > 0, we have
EET(min(I1)) |.=d + len(I;) + .
Proof:
EET (min(I1)) | cannot be smaller than
d + len(I;) + m because there exists a case where
maz(lz) = d+len(ly) + m, min(Iy) = d + len(I;) and
SP |c> 0%. In case max(Il2) > d+len(ly)+m+min(ly),
SP |.= 0% holds always.

O

Lemma 1 and Lemma 2 are needed to prove that the
satisfaction probability of a deadline constraint in a3 con-
figuration is maximized when the timestamps of the corre-
sponding event instances are spanned as shown in Figure 6.

Lemma 1 Suppose that we have a deadline constraint, c :
I, +d > I, where d > 0 and c is in a3 configuration. Let
p be the satisfaction probability of c. While preserving the
configuration a3, moving maxs towards I, by decreasing
the value of maxy will result in p' > p where p' is the sat-
isfaction probability of the modified constraint.

Proof:

Suppose we have a time interval I} for which mazl is
smaller than mazxs by 6 as illustrated in Figure 5.

(ming — (d + maz))?

2len(I1)len(I2)

p:

,_ (ming — (d + maz,))?
P = len(l) (len(I) — 6)

§(ming — (d + maz1))?
f =
P P = (T len(B)len()

because § > 0, (miny — (d + maz1))? > 0 (by miny <
d + miny < d+ mazy), len(l;) > 0, len(I3) > 0, and
len(I}) > 0.

O

YF]',F.

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03) COMPUTER
0-7695-2044-8/03 $ 17.00 © 2003 IEEE SOCIETY

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 30, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

Lemma 2 Suppose that we have a deadline constraint, c :
I, +d > Iy where d > 0 and c is in a3 configuration. Let
p be the satisfaction probability of c. While preserving the
configuration a3, moving mins towards I by decreasing
the value of mins will result in p' > p, where p' is the sat-
isfaction probability of the modified constraint.

Proof:

Proof is similar to that of Lemma 1.

Theorem 5 Given a timing constraint c: Iy +d > Iy with P
where 50% < P < 100% and d > 0, we have
EET (min(I1)) |.=d+ .
Proof:
The theorem we need to prove can be rewritten as fol-
lows: In case maxo > d + m+ main, the satisfaction prob-
ability of the timing constraint is lower than 50%.
Since the configurations oy, By, and vy require
mazes < d + ® + miny, they cannot satisfy the condi-
tion of the theorem. Case o trivially satisfies the theorem
because its satisfaction probability is zero. Case B re-
quires the condition d + mini > minsy which cannot sat-
isfy maze > ming + d + m, since maz(I) —min(l) <=
holds for any time interval 1. Therefore, we only need to
prove this theorem for configuration o.3.
By Lemma 1 and Lemma 2, the satisfaction probability
of the case: mins = mini + d + € and mazxs = ming +
d + len(I,) where € is a very small positive value, is the
maximum in the configuration a as illustrated in Figure 6.
The maximum satisfaction probability of a timing con-
straint in configuration a3 is

(ming — (d + maz1))?
2len(I)len(I5)
(d+ &+ ming — (d + maz1))?
2(maz1 — miny)(mazs — ming — €)
maxr; —ming — €

2(maz1 — ming)
1 e 1

2 2len(l) < 2

a

: min(ly) + d > maz(ly)
L +d >

Theorem 6 The condition c;
is equivalent to the timing constraint cs
I> with 100% confidence.

Proof:

The satisfaction of c1 implies the satisfaction of co and vice
versa. The violation of c1 implies the violation of cy and

vice versa.
O

Corollary 2 Consider a timing constraint c: I, +d >
I with P where d > 0. Assuming that len(I) is unknown,

d len(I,)-¢
I b—o' w—l’ll

1 2
len(I,)) | d

»
14

min, max, min, max,

Figure 6. Maximum satisfaction probability in
a3 configuration

EET (maz(I1)) |. is given by:

| d+7m ifP<100%
EET(maz (1)) |= { d otherwise
Proof:
This follows from Theorem 3, Theorem 4, and Theorem 5.

a

5. Deriving implicit constraints

The ability to detect a timing constraint violation as early
as possible at run time can be a critical requirement for some
real-time systems. For early detection, we need to derive im-
plicit constraints from the given timing constraint set. Var-
ious derivation algorithms for implicit constraints from a
set of timing constraint on time points were discussed in
[2, 14]. A derivation algorithm where the timestamps of
events are time intervals was presented in [13]. We now ex-
tend the algorithm in [13] to cover the case where the tim-
ing constraints have confidence threshold by incorporating
the findings from the previous section.

Before detailing the derivation of implicit constraints
from timing constraints on time intervals with confidence
thresholds, let us use an example to illustrate how we can
derive an implicit constraint from timing constraints on time
points and why they are useful in detecting a violation.

Example 3 For this example only, we assume that the
timestamp of an event is a time point and not a time inter-
val, and we do not consider modalities. Suppose we have
the following two timing constraints.

Q(el,7) +100 > @(e2,1)
@(e2,i) —95 > @(e3,i)

We can derive an implicit constraint (el,i) + 5 >
Q@(e3, i) by simply merging two timing constraints. This de-
rived implicit constraint can help us to detect a timing vi-
olation as early as possible. Suppose that @(el,i) occurs
at time 0. If the event instance (e3,1) does not happen un-
til time=5, then we can conclude that at least one of origi-
nal timing constraints will be violated eventually.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 30, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

If we do not exploit the implicit constraint, we would
have to wait until time=100 to catch a violation of the first
timing constraint in case (e2,i) does not occur by that time.

5.1. Deriving an implicit constraint

Definition 10 A violation of an implicit constraint occurs
if at least one of the explicit timing constraints from which
the implicit constraint is derived is also violated eventually.

The following theorem derives from a set of timing con-
straints, an implicit constraint which satisfies the violation
definition of implicit constraints.

Theorem 7 Suppose we have a set of n timing constraints
on time intervals with confidence thresholds as follows:

ci: L +dy > Lwith P,
cy: Iy +do > I3 with Py
cz: Iz +ds > Iywith Ps
cn1:Ih 1+dy 1 > I,withP,
cn:In+dy > Inyiwith Py

where I}, is a time interval where 1 < k < n + 1. dy,
is a deadline or a delay, and P, is a confidence threshold
where 1 < k < n. Then the implicit constraint between I
and I, 1 from cy, ca, c3, ..., Cy, is given by:

n
L+ dg+mn+EET (min(L)) |e,> Iny1 with 100%
k=2

where m is the number of Py, # 100% where 2 < k < n.
Proof (by induction):
Base Step: Suppose that the number of timing constraints is
one, i.e., n = 1. In case P; = 100%, the constraint c; re-
quires a conditionmin(I1)+d; > max(Iz). By Theorem 6,
the equivalent constraint c; to this condition is I + d; >
I, with 100%. In case 50% < P; < 100%, the constraint
¢y requires a condition min(Iy) + d; + © > maz(Il3). By
Theorem 6, the equivalent constraint c; to this condition is
I + dy + 7 > I, with 100%. In case P, < 50%, the con-
straint ¢y requires a conditionmin(I)+di +n+len(ly) >
maz(Iy). By Theorem 6, the equivalent constraint c; to this
conditionis I, + dy + 7 + len(Iy) > Iy with 100%. In all
cases, the constraint c; from each case is the same as the im-
plicit constraint, Iy + EET (min(I1)) |¢, > Iz with 100%,
which is the result from this theorem.
Suppose that this theorem holds when the number of tim-
ing constraints is no bigger thann — 1.

Induction Step: We consider the case when the number
of timing constraints is n. Suppose m' is the number of
P, # 100% where 2 < k < n — 1. By the induction hy-
pothesis, the implicit constraint from c1, Ca, ..., Cpn—1 is I1 +
Sy di + m'm + EET(min(l1)) |e,> I, with 100%.
The implicit constraint requires the condition g1 : min(I;)+
2o dp +m'm + EET(min(I1)) |¢,> maz(I,).

If P,, = 100%, c,, requires the condition q2: maz(l,) +
dy, > maz(L,+1). By merging q1 and qa, we get min(I) +
Yiodi +m'm + EET (min(Iy)) |¢, > maz(I,), which
is equivalent to the timing constraint c; = I + 2222 di +
m'm + EET (min(11)) |e, > In with 100% by Theorem 6.
If P,, < 100%, c,, requires the condition qs : maz(I,) +
dn, + m > max(l,4+1). By merging q1 and q2, we get
min(h) + > p_y dp + (m' + 1)7 + EET (min(Iy)) |, >
maz (1), which is equivalentto c; = I + Y p._, dp.+ (m'+
1)m + EET (min(I1)) |¢, > I, with 100% by Theorem 6.
In all cases, the constraint c; from each case is equivalent
to the implicit constraint calculated from this theorem.

O

5.2. Using all-pairs shortest path algorithm

In order to facilitate the derivation of the shortest im-
plicit constraints from a set of timing constraints, an ef-
ficient technique is to use an all-pairs shortest-path algo-
rithms as the core engine, e.g., [14, 15, 13]. Those solu-
tions are based on the Floyd-Warshall algorithm because of
its simplicity of implementation and the efficiency benefits
from matrix-based operations. Our proposed algorithm is
also extended from the Floyd-Warshall algorithm.

We introduce a data type SPATH to store information
about the shortest path identified up to the current point and
a merge operator @ which combines two SPATH instances
into a single SPATH instance.

The SPATH type data structure has the following three
attributes.

dsum a summation of deadlines and delays of the timing
constraints in the shortest path.

count the number of constraints for which confidence
thresholds are less than 100% in the shortest path.

belowh initialized to 1 if P, < 50% and initialized to O
otherwise where P; is the confidence threshold of the
first constraint in the shortest path.

Definition 11 The merge operator @ is defined as follows.

SPAT H (dsumg, county, belowh,)
®SPAT H (dsumsz, counts, belowhs)
= SPATH (dsumy + dsumay, count; + counts, belowh;)

Notice that only belowh; is copied into the merged SPATH
instance in combining two SPATH instances. This is be-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 30, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

cause we need to keep the information whether the confi-
dence threshold of the first constraint is below 50% as indi-
cated in Theorem 7.

As usual, we assume that the set of timing constraints
from which we want to derive implicit constraints are rep-
resented as a directed graph (the constraint graph) where
each timestamp in the timing constraints is represented by a
vertex. Together with its confidence threshold, a delay or a
deadline becomes a weighed edge.

Example 4 Figure 7(A) shows a graph corresponding to
the following set of timing constraints.

Q(el,i) + 150 > Q@(e2,i) with 25%
@(e2,i) =70 > Q@(e3,q) with 100%

Q(e3,7) + 100 > Q(ed,i) with 75%
Q(e2,7) +50 > Q(ed,q) with 20%

Corollary 3 Suppose we derive an implicit constraint c1 :
I + di > I with 100%, for the timestamp I, and Iy by
Theorem 7. If we have another implicit constraint ¢ : I +
d} > I with 100% where dy > dY, then cy is unnecessary.
Proof:
The satisfaction of ¢} always implies the satisfaction of ¢y
and the violation of ¢1 always implies the violation of c/.
Therefore, ci is unnecessary.

O

Corollary 4 Suppose we derive an implicit constraint cq :
I +dy + len(l1) > I with 100%, for the timestamp I,
and Iy by Theorem 7. If we have another implicit constraint
ci I +di +len(ly) > Iy with 100% where dy > df, then
c1 IS unnecessary.

Proof:

Proof can be done similarly as in Corollary 3.

O
AllPairsShortest Path(n, d, P)
1. fori=1ton
2. forj=1ton
3. DY; = SPATH(o0, 1, 0)
4. D} =SPATH(co, 1, 1)
5. if d,‘j 75 o0
6. if (Py; = 100%) DY, = SPATH(d;j, 0, 0)
7. else if (Py; > 50%) DY, = SPATH(djj, 1, 0)
8. else D) = SPATH(d;j, 1, 1)
9. fork=1ton
10. fori=1ton
11. forj=1ton
12. newpath =Dl ' & Manost(D’” ! D”c b
13. newpath' = D'k lg MmC’ost(Dk 1 D"C L
14. ij = MinCost(newpath, ij b
15. D;;“ = MinCost(newpath/, Dgljfl)

MinCost(SPATH a, SPATH b)

1. if ((b.dsum + b.count x) < (a.dsum + a.count x m))
return b

2. else return a

In the algorithm, n is the number of vertices in the con-
straint graph, d;; is a deadline or delay from V; to Vj, and
P;; is a confidence threshold from V; to V;. It is clear that
the run-time complexity of the all pairs shortest path al-
gorithm presented above is O(n3). As explained in Corol-
lary 3 and Corollary 4, two SPATH instances D;; and D;j
are maintained for each pair of vertices. D;; keeps track of
the implicit constraint of which the confidence threshold of
the first constraint is at least 50%. The confidence thresh-
old of the first constraint of the implicit constraint in D;; is
less than 50%.

The MinCost function returns a SPATH instance of
which cost is the minimum among the arguments to the
function. The reader may wonder why only the dsum
and count attributes are considered in comparing the cost
of two SPATH instances in the MinCost function. The
calls to the MinCost function in line 12 and line 13
in AllPairsShortestPath function are valid because the
constraints represented by neither Dy, nor D} will be used
as a header of the shortest path. By Theorem 7, the con-
fidence threshold of only the first constraint is needed for
calculating an implicit constraint. Since both belowh in
newpath and Di-“j should be 0 by program construction, we
do not need to consider belowh in the comparison. Simi-
larly, both belowh in newpath’ and D;;” should be 1 by pro-
gram construction, and there is no need to consider belowh
in the comparison.

At the end of the execution of the algorithm, each
D} and D’” contains information about the shortest im-
plicit constralnt from vertex ¢ to vertex j in the form of
SPATH(dsum, count, belowh) which represents an im-
plicit constraint:

I + dsum + count * m + belowh x len(I;) > I; with 100%

where I; is the timestamp of the event corresponding to ver-
tex ¢ and I; is the timestamp of the event corresponding to
vertex j.

The value belowh in D;? is always 1, which means that
the shortest path information contained in D;;‘ depends on
the length of the time interval of the event instance corre-
sponding to the vertex i. Figure 7(B) shows all implicit con-
straints calculated from the set of timing constraints shown
in Example 4. The derived implicit constraints are repre-
sented in the triple of (dsum, count, belowh). In this ex-
ample, 7 is assumed to be 10.

Since for a pair of vertices, at most two implicit con-
straints can be derived from the algorithm, there can be up
to three constraints for a pair of vertices if we also count the

TEEE .2

COMPUTER
SOCIETY

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 30, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

150, 25%;/2_70’ 100%
e2,i

>

el,i

>

50, 20% 100, 75%

(A) Original Constraints

(150,1,1) /~ "™\ (-70,0,0) .

e2.1
30,1,0)
50,1,1)

100,1,0)

(B) Implicit Constraints

Figure 7. A graph representation

original constraint. In general, we can discard timing con-
straints that can be covered by other timing constraints. For
example, we have following three timing constraints from
vertex (e2,) to vertex (e4,1):

(@) Q@(e2,7) + 50 > Q(e4,17) with 20%

(b) @(e2,i) + 50 + 10 + len(@(e2,i)) > @(e4, i) with 100%

(©) @(e2,i) + 30 + 10 > @(e4, i) with 100%

We can discard (a) in favor of (c) because the satisfaction
of (c) always means the satisfaction of (a) and the violation
of (a) means the violation of (c¢). Similarly, (b) can also be
discarded in favor of (c).

6. Conclusion

In this paper, we have extended our previous work in [13]
to allow users to specify a quantitative measure on the de-
gree of certainty with which timing satisfaction/violation
can be detected. To this end, we introduce a confidence
threshold which is included in the specification of a timing
constraint to specify the desired degree of certainty, ranging
from 0% to 100%. In case the confidence threshold of a tim-
ing constraint cannot be inferred from the timestamps of an
observed event trace, a violation of the timing constraints
is issued. For computational purposes, we define and de-
rive the concept of satisfaction probabilities for both the
deadline constraint and the delay constraint. The all-pairs
shortest-path algorithm is extended to facilitate the deriva-
tion of implicit constraints. A non-obvious result from our
analysis is that the earliest expiration time (EET) of the
deadline timers for timing constraints with P = 100%,
50% < P < 100%, and 0% < P < 50% are all different.
For future work, we plan to investigate more exact bounds
of the EET for each confidence threshold value so that we
can extend the pruning techniques to more efficiently dis-

card unnecessary constraints after deriving the implicit con-
straints.

References

[1] S.Chakravarthy, V. Krishnaprasad, E. Anwar, and S. K. Kim.
Composite events for active databases: semantics, contexts
and detection. In Proc. of the International Conference
on Very Large Data Bases(VLDB), pages 606—-617, August
1994.

[2] S.E. Chodrow, F. Jahanian, and M. Donner. Run-time moni-
toring of real-time systems. In Proc. of IEEE Real-Time Sys-
tems Symposium(RTSS), pages 74-83, December 1991.

[3] F. Cristian. Understanding fault-tolerant distributed sys-
tems. Technical report, Technical Report RJ 6980, IBM,
April 1990.

[4] A. Galton. Time and change for ai. In D. Gabbay, C. Hog-
ger, and J.Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming, volume 4 (Epistemic
and Temporal Reasoning), pages 175-240. Clarendon Press,
1995.

[5] S. Gatziu, A. Geppert, and K. Dittrich. Detecting Compos-
ite Events in Active Database Systems Using Petri Nets. In
Proc. of the 4th International Workshop on Research Issues
in Data Engineering, pages 2-9, Feburary 1994.

[6] N. H. Gehani, H. Jagadish, and O. Shmueli. Composite
Event Specification in Active Databases: Model and Imple-
mentation. In Proc. of the International Conference on Very
Large Data Bases(VLDB), pages 327-338, August 1992.

[7] F.Jahanian, R. Rajkumar, and S. Raju. Run-time monitoring
of timing constraints in distributed real-time systems. Tech-
nical report, Technical Report CSE-TR 212-94, University of
Michigan, April 1994.

[8] M. Kim, I. Lee, U. Sammapun, J. Shin, and O. Sokolsky.
Monitoring, checking, and steering of real-time systems.
Electronic Notes in Theoretical Computer Science, 70(4),
2002.

[9] P. Konana, A. K. Mok, C.-G. Lee, H. Woo, and G. Liu. Im-
plementation and performance evaluation of a real-time e-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 30, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

brokerage system. In Proc. of IEEE Real-Time Systems Sym-
posium(RTSS), pages 109-118, December 2000.

[10] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and
M. Viswanathan. Runtime Assurance Based On For-
mal Specifications. In Proc. of the International Conference
on Parallel and Distributed Processing Techniques and Ap-
plications (PDPTA), pages 56-65, July 1999.

[11] C. Liebig, M. Cila, and A. Buchmann. Event Composition
in Time-dependent Distributed Systems. In Proc. of the 4th
IFCIS International Conference on Cooperative Information
Systems (CooplS 99), pages 70-78. IEEE Computer Society,
1999.

[12] M. Mansouri-Samani and M. Sloman. GEM: A Gen-
eralized Event Monitoring Language for Distributed Sys-
tems. IEE/IOP/BCS Distributed Systems Engineering Jour-
nal, 4(2):96-108, June 1997.

[13] A. K. Mok, C.-G. Lee, H. Woo, and P. Konana. The Moni-
toring of Timing Constraints on Time Intervals. In Proc. of
IEEE Real-Time Systems Symposium(RTSS), pages 191-200,
December 2002.

[14] A.K.Mok and G. Liu. Early Detection of Timing Constraint
Violation at Runtime. In Proc. of IEEE Real-Time Systems
Symposium(RTSS), pages 176-185, December 1997.

[15] A.K.Mok and G. Liu. Efficient Runtime Monitoring of Tim-
ing Constraints. In Proc. of Real-Time Technology and Ap-
plications Symposium(RTAS), pages 252-262, June 1997.

[16] P. R. Pietzuch, B. Shand, and J. Bacon. A Framework for
Event Composition in Distributed Systems. In Proc. of the
4th ACM/IFIP/USENIX Int. Conf. on Middleware (Middle-
ware ’03), pages 62-82. Springer, June 2003.

[17] C. L. Roncancio. Toward Duration-Based, Constrained and
Dynamic Event Types. Lecture Notes in Computer Sci-
ence. Proc. of the Second International Workshop on Active,
Real-Time and Temporal Database Systems (ARTDB’97),
1553:176-193, 1997.

[18] S. Schwiderski. Monitoring the behaviour of distributed sys-
tems. PhD thesis, University of London, 1996.

[19] P. Terenziani. Is point-based semantics always adequate for
temporal databases. In 7th International Workshop on Tem-
poral Representation and Reasoning (TIME-00), pages 191—
199, 2000.

APPENDIX

In this appendix, we validate the computational method
for deriving the satisfaction probability in Theorem 1 and
the result in Theorem 5 by simulation. All of the simula-
tion programs are written in Java and use java.util. Random
package which contains a uniform random number genera-
tor.

In order to verify the correctness of the satisfaction prob-
ability of the deadline constraint in Theorem 1, we gener-
ated randomly 500 timing constraints ci : I + dp > I},
where 1 < k < 500. For each timing interval pair of ([,
I1.), we generated randomly 10000 pairs of time points (
tr, t7) where min(Iy) < 7" < maz(I) and min(l},) <

1r /
2 08 f ”’o
C 06t ”
2 ..“’
S 04+
_"g 0/
= 02 | “/
w

0 o ‘

0 02 04 06 08 1

Calculated probability

Figure 8. Calculated probability v.s. actual
satisfaction ratio

oa aff J61¢] % By 1

min 0 0 0.005 0.008 0.502 1
max 0 0498 0.994 0.997 1 1
avg 0 0.112 0491 0505 0.885 1

Table 1. Actual satisfaction ratio in each con-
figuration

ti™ < maz(I}) and 1 < m < 10000. Given a timing con-
straint ¢ and pairs of time points (¢}, t7), (£3,72), ..., (
£;0000,4110000) "the actual satisfaction ratio ASRy, is deter-
mined as follows:

The number of pairs (¢}, ¢;") satisfying ¢7* + dj, > ¢}
10000

where 1 < m < 10000.

Given a timing constraint ci, the calculated probability
C' Py, is determined simply by SP |, in Theorem 1.

Figure 8 shows a result where a point (C' P, ASRy,) is
plotted for 1 < k£ < 500. Since C Py, is an anticipated prob-
ability by Theorem 1 and ASRj, is the actual satisfaction
probability from the event simulation, the resulting straight
line y = x from the simulation agrees with Theorem 1.

With a similar setup, we calculated the satisfaction ra-
tio for each configuration. Table 1 shows the minimum, the
maximum, and the average satisfaction ratio for each con-
figuration. As stated in Theorem 5, the maximum satisfac-
tion ratio of a3 configuration does exceed 50%.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 30, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

