
Industrial Hardware and Software Verification

with ACL2

Warren A. Hunt, Jr.1, Matt Kaufmann1, J Strother Moore1, and
Anna Slobodova2

1 Department of Computer Science
University of Texas at Austin

and
2 Centaur Technology, Inc.

Austin, TX.

April, 2016

1



Question: “How did ACL2 come to be used

by industry?” — Philippa Gardner

Short Answer: It’s an efficient

programming language with a good prover,

the user community is cohesive and largely

industrial, and the goal of the project is to

make hardware/software verification

practical.

2



Introduction

ACL2: A Computational Logic for

Applicative Common Lisp

Logic: first-order extended subset of

applicative Common Lisp

Home page:

www.cs.utexas.edu/users/moore/acl2

Distribution: without charge, source-code

form, 3-clause BSD license

3



Implementation: 87% of the 5.7 MB of

source code is in ACL2; rest in “raw”

Common Lisp; runs under six independent

Common Lisp implementations on many

hardware/OS platforms

Online Documentation: 68 MB

Lemma Library: github.com/acl2/acl2;

5,780 “certified books” contributed by

many users; ∼ 123,000 theorems

4



The Origin Story

Computational Logic, Inc. (CLI) was

founded in 1987 to spread verification

technology to industry, initially using

Nqthm.

ACL2 was started at CLI in 1989 to address

inadequacies of Nqthm in industrial-scale

projects like the CLI Verified Stack and the

verification of MC68020 binary code.

5



Design Goals for ACL2, Kaumann and

Moore, 1994:

Foremost among those inadequacies is

the fact that Nqthm’s logic is an

inefficient programming language. We

now recognize that the efficiency of the

logic as a programming language is of

great importance because the models of

microprocessors, operating systems, and

languages . . . must be executed . . .

6



Initial Industrial Demonstrations

CLI was contracted to use ACL2 for:

• Motorola CAP DSP, 1993 – modeled

hardware and microcode and verified an

executable predicate to recognize all

pipeline hazards

• AMD K5 Microprocessor FDIV operation,

1995 – verified IEEE 754 compliance of

FDIV microcode, before fab.
7



In addition to stressing and improving the

tool, these high-risk verification projects

engendered a team-spirit and shared vision

among CLI researchers using ACL2

8



Dispersion

CLI closed its doors 1997-99.

ACL2 users dispersed to CLI clients

including AMD, Motorola, IBM,

Rockwell-Collins

ACL2 was subsequently used in many

experimental industrial projects, led by

ex-CLI researchers

9



• AMD: All elementary floating point on

Athlon – after running 100M test vectors

comparing the ACL2 model to the AMD

RTL simulator; Opteron and all AMD

desktop machines

• Rockwell-Collins: silicon JVM chip,

AAMP7 crypo-box, Greenhills OS

• IBM: Power 4 FDIV and SQRT; and a

deep embedding of a hiearchical HDL

10



• UT ACL2 Group: Sun JVM class loader

and byte-code verifier

• Boyer and Hunt developed an

experimental version of hash cons and a

prototype Common Lisp tool for

bit-blasting ACL2 expressions (verified in

2010)

11



Integration into Design Workflow

In 2007, Centaur Technology, Inc.,

challenged Hunt to verify the VIA Nano

floating-point adder design:

• handles single (32-bit), double (64-bit)

and extended (80-bit) additions

• pipelined to deliver 4-results per cycle

• 33,700 lines of Verilog

12



• 680 modules

• 432,322 transistors

• part of the media unit with 1074 input

signals (including 26 clocks) and 374

output signals

13



In about 9 months’ work, coding in ACL2,

Hunt and a grad student (Swords):

• improved the ACL2 HDL to handle the

Centaur Verilog subset producing an

executable semantic model called E

• wrote a translator from Verilog to E

• developed techniques to slice models to

use bit-blasting and glue pieces together

with proof

14



• executed E model of the media unit to

test the adder and identify proper inputs

to activate adder

• verified the adder – finding a bug in the

80-bit case

15



ACL2 at Centaur Today

ACL2 is an indispensable part of the

Centaur design process

Centaur FV team consists of 3 full-time

employees and a couple of interns

While its main focus is the validation of

the RTL design, the FV team’s wider goal

is to provide design and verification

support at various abstraction levels.

16



Centaur’s current family of x86-based

microprocessors is called VIA Eden

Centaur has an ACL2 specification of the

Eden subset of the x86

Validated by routinely running millions of

tests comparing ACL2 x86 to Intel, AMD,

and Centaur hardware

The ACL2 tool-chain translates the entire

Eden design (700,000+ lines of Verilog)

into a formal object in a few minutes

17



The translated model is validated by

running millions of tests against Cadence

NC Verilog and Synopsys VCS Verilog

simulators

Centaur’s Verilog tool-chain is distributed

in the ACL2 books and is used by Intel and

Oracle

18



Two main applications:

• proving correctness of parts of the RTL

design wrt behavioral spec

• proving correctness of microcode

(typically no longer than several hundred

lines)

All proofs are re-run nightly

“Bugs introduced today are found tonight

and fixed tomorrow.”
19



Centaur uses ACL2 and the Verilog

translation of the design to build custom

tools including

• a linter which is routinely run several

times per day and sends reports to logic

designers

• an RTL design browser

• a reverse engineering tool, e.g., to extract

the clock tree
20



• a tool to produce understandable reports

about synthesized circuits by finding

gate-to-RTL signal correspondences

All Centaur analysis tools are driven off the

same ACL2 object representing the design

Analysis tools are written in ACL2

21



Other Ongoing Industrial Projects

The paper additionally lists some ongoing

ACL2 projects at

• AMD (transaction protocols)

• Intel (Elliptic curve crypto)

• Kestrel Institute (Android apps)

• Oracle (floating point)

• Rockwell-Collins (LLVN)

22



Strengths

• fast execution

• proof/expressive power

• programmable/verifiable extensibility

• system programming capabilities

• proof automation and re-play

• trust tags (allowing calls to unverified

external code)

23



Weaknesses (reported by industry)

• inefficient execution of some primitives

• inconvenient as a scripting language

• does not support visualization/graphics

tools

24



Centaur uses Perl, Ruby, Makefile, C,

HTML, Javascript, CSS, and a Common

Lisp web server, all connected to ACL2

(when necessary and non-critical) via the

underlying Common Lisp features and trust

tags

Critical analysis tools are written in pure

ACL2

Many critical tools (e.g., bit-blasting,

Verilog transformations) are verified

25



Weaknesses (reported by industry)

• inefficient execution of some primitives

• inconvenient as a scripting language

• does not support visualization/graphics

tools

Note: Industry’s complaints about ACL2

rarely concern absence of strong typing,

explicit quantifiers, partial functions, or

higher order functions

26



Support for Industrial Projects

There have been over 1000 changes since

Centaur started using ACL2 in May, 2009.

Of those, these were requested by Centaur:

Changes to Existing Features 95

New Features 44

Heuristic and Efficiency Improvements 22

Bug Fixes 72

Changes at the System Level 18

Total due to Centaur 251

27



Why ACL2 is Successful in Industry

• that was the goal of the project

• efficient, executable logic/programming

language with native verifier

• dual-use bit- and cycle-accurate models

• access to Common Lisp programming

(via trust tags)

• automatic prover with “a human in the

loop”

28



• rugged, well documented, free, open

source form, many useful books, and a

fairly unrestrictive license.

• coherent user community devoted to

making mechanized verification practical

• industry needs help

29


