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Abstract. We consider the problem of bounding the correlation be-
tween parity and modular polynomials over Zq , for arbitrary odd integer
q ≥ 3. We prove exponentially small upper bounds for classes of polyno-
mials with certain linear algebraic properties. As a corollary, we obtain
exponential lower bounds on the size necessary to compute parity by
depth-3 circuits of certain form. Our technique is based on a new repre-
sentation of the correlation using exponential sums.

Our results include Goldmann’s result [Go] on the correlation between
parity and degree one polynomials as a special case. Our general expres-
sion for representing correlation can be used to derive the bounds of Cai,
Green, and Thierauf [CGT] for symmetric polynomials, using ideas of
the [CGT] proof. The classes of polynomials for which we obtain expo-
nentially small upper bounds include polynomials of large degree and
with a large number of terms, that previous techniques did not apply to.

1 Introduction

In this paper, we study the correlation between the MOD2 function and Boolean
functions computed by depth-2 circuits with a MODq gate at the top (for odd q),
and AND gates at the input level (called MODq ◦ AND circuits). The Boolean
function MODm : {0, 1}n → {0, 1} is defined to be 0 when the sum of the input
bits is divisible by m, and 1 otherwise. For every MODm◦AND circuit there is a
multilinear polynomial P over Zm such that on inputs x ∈ {0, 1}n, the output of
the circuit is 0 if and only if P (x) is 0 modulo m. There is a straightforward way
to associate such a polynomial with each circuit, using the inputs associated with
the AND gates to form the monomials. This polynomial is called the defining
polynomial of the circuit, and its degree is the largest fan-in of the AND gates in
the circuit. Thus, depth-2 circuits of the above form correspond to polynomials
over the ring Zm.

The correlation C(f1, f2) between two Boolean functions f1, f2 : {0, 1}n →
{0, 1} is defined as C(f1, f2) = 1

2n

∑
x∈{0,1}n(−1)f1(x)(−1)f2(x) . Our interest in

this question is motivated by its relevance to circuit complexity lower bounds.
In addition, we believe that the question is also interesting on its own right.
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1.1 Bounded Depth Circuits

Proving lower bounds on the size of Boolean circuits for specific functions is
one of the central problems in complexity theory. It is also considered to be
notoriously difficult, since for example, superpolynomial lower bounds on the
size of Boolean circuits computing a function from the complexity class NP
would imply that P �= NP. However, even much weaker (e.g. superlinear) lower
bounds seem to remain out of reach of the current techniques. Imposing various
restrictions on the circuits and developing lower bound methods for restricted
circuit models has received a lot of attention in the last few decades. The hope is
to extend such techniques, and develop new methods that are applicable towards
stronger and stronger models.

One of the circuit models that has been extensively studied is bounded depth
circuits. The results of [Aj, FSS, Ha, Yao85] show that the parity function can-
not be computed by AC0 circuits (constant depth polynomial size circuits with
AND, OR, NOT gates). Barrington [Ba] defined the class ACC0 = ∪qACC0(q),
where ACC0(q) denotes the class of constant depth, polynomial size circuits
with AND,OR, NOT and MODq gates. Smolensky [Sm] proved that MODr �∈
ACC0(pk) when p and r are distinct primes. The power of ACC0(q) circuits when
q is not a prime power is much less understood. For example, it is not known if
all of NP can be computed by depth-3 ACC0(6) circuits.

Depth-3 circuits can be surprisingly powerful. Allender [Al] proved that AC0

is contained in the class of depth-3 circuits of quasipolynomial (2(log n)O(1)
) size

with a MAJORITY gate at the top, MOD2 gates in the middle, and AND
gates of (log n)O(1) fan-in at the input level. (Such circuits are referred to as
MAJ ◦ MOD2 ◦ AND(log n)O(1) circuits.) Yao [Yao90] proved that ACC0 is con-

tained in the class of depth-3 threshold circuits of quasipolynomial (2(log n)O(1)
)

size with AND gates of (log n)O(1) fan-in at the input level. But it remains
open if ACC0 is contained in the class of quasipolynomial (2(log n)O(1)

) size
MAJ ◦MODq ◦AND(log n)O(1) circuits, for some fixed q. In other words, it is not
known whether Allender’s result [Al] can be extended to ACC0. (Essentially this
question was asked by Green in [Gr02].) A recent result of Bourgain [Bo05] im-
plies that parity requires exponential size MAJ ◦MODq◦ANDε log n circuits, for
any odd q and ε depending on q. It is not clear how to extend Bourgain’s result to
larger fan-in AND gates. The results of H̊astad and Goldmann [HG] imply that
a function in ACC0 (the generalized inner product function) requires exponential
size MAJ◦MOD2◦ANDO(log n) circuits. The results of Razborov and Wigderson
[RW] imply that some function in ACC0 requires nΩ(log n) size MAJ ◦ MOD2 ◦
AND circuits. This result was recently extended to circuits with arbitrary AC0

circuits in place of the AND gates by Hansen and Miltersen [HM]. [RW] and
[HM] build on the results of [HG]. However, the method in [HG] applies for arbi-
trary symmetric gates in the middle layer. Thus, in view of Yao’s result [Yao90],
these results cannot be directly extended to obtain exponential lower bounds for
computing an ACC0-function by MAJ ◦ MODq ◦ AND(log n)O(1) circuits.

Other combinations of threshold, MOD and AND gates in depth-3 circuits
and other definitions of MOD gates have been also considered, and in some of
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these models exponential lower bounds have been proved for functions in ACC0

(see e.g. [BM, Gro, GT, KP]). The power of MAJ ◦ MOD ◦ AND(log n)O(1)

circuits remains less understood.

1.2 Correlation and Circuit Lower Bounds

Obtaining exponential lower bounds for MAJ ◦ MODq ◦ AND circuits under
various restrictions has received considerable attention in the last few years (e.g.
[AB, CGT, Gr99, Gr02, Go]. The starting point of all these papers, including
[HG] which considers the more general MAJ ◦ SY M ◦ AND circuits, is the
following special case of a lemma of [HMPST].

Lemma 1. (Lemma 3.3, [HMPST]) Let f : {0, 1}n → {0, 1} be a Boolean func-
tion computed by a Boolean circuit with a fan-in m (unweighted) threshold gate
on top, taking the results of the subcircuits C1, . . . , Cm as inputs to the threshold
gate. Let gi : {0, 1}n → {0, 1} be the Boolean function computed by the subcircuit
Ci (i = 1, . . . , m). Let f be a balanced function, i.e. |f−1(0)| = |f−1(1)|. Then
for at least one of the subcircuits (for some 1 ≤ i ≤ m), the absolute value of
the correlation |C(f, gi)| is at least 1/m.

Thus, upper bounds on the absolute value of the correlation of a balanced func-
tion f with arbitrary functions that can be computed by circuits of a given class
C, imply lower bounds on the fan-in of the MAJORITY gate in MAJ ◦ C type
circuits for computing f .

In particular, proving that the absolute value of the correlation of parity
with modular polynomials over Zq of certain type is exponentially small, implies
exponential lower bounds on the size of the corresponding MAJ ◦ MODq ◦
AND circuits. Smolensky’s results [Sm] imply that for p and r distinct primes,
the absolute value of the correlation of the MODr function and low degree
polynomials over Zpk is at most 1

n1/2−o(1) . Note that the technique of [Sm] does
not yield smaller bounds on the absolute value of the correlation even for degree
2 and very sparse polynomials, and it cannot be applied over Zq, if q is not a
prime power. It is also curious to note that on the other hand, by Ajtai’s [Aj]
result we know that the absolute value of the correlation of parity with functions
in AC0 is exponentially small, and it remains exponentially small even allowing
superpolynomial number of gates [Ha]. Cai, Green and Thierauf [CGT] proved
that the absolute value of the correlation of parity with symmetric polynomials
of degree (log n)O(1) over Zq for q odd, is exponentially small (at most 2−nΩ(1)

).
This was generalized by Green [Gr99] to proving similar exponentially small
upper bounds on the absolute value of the correlation of the MODp function
with symmetric polynomials of degree (log n)O(1) over Zq when p is a prime that
does not divide q.

Extending these bounds to allowing non-symmetric polynomials posed a sig-
nificant challenge. The degree 1 case was solved by Goldmann [Go], who proved
that the absolute value of the correlation of MODp and MODq when p has a
prime factor that does not divide q, is at most 2−Ω(n). Alon and Beigel [AB]
showed that the absolute value of the correlation of parity with degree 2 poly-
nomials over Zq for odd q, is at most 2−(log n)ε

for some constant ε < 1, and
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for degree O(1) polynomials the absolute value of the correlation is o(1). Note
that the bounds of [AB] are weaker than the 1

n1/2−o(1) upper bounds implied by
Smolensky’s results [Sm], but [Sm] is applicable only when q is a prime power.
The first improvement over the bounds of [Sm] and [AB] for non-symmetric poly-
nomials of degree greater than 1 was achieved by Green [Gr02]. Green [Gr02]
proved that the absolute value of the correlation of parity with degree 2 poly-
nomials over Z3 is at most 2−Ω(n). The method used in [Gr02] very specifically
relies on the degree being at most 2 and q = 3, and appears to be not applicable
to other degrees or other values of q. A breakthrough was achieved by Bourgain
[Bo05], proving that for q odd, and p, q relatively prime, the absolute value of
the correlation between MODp and degree d polynomials over Zq is exponen-
tially small for d < ε logn, where ε depends on p and q. Bourgain’s result was
generalized by Green, Roy and Straubing [GRS] to arbitrary (not necessarily
odd) q and p, q relatively prime.

While Bourgain’s result resolves the question about the correlation between
parity and modular polynomials of degree up to ε log n, it leaves open the ques-
tion described in the previous section about whether Allender’s result [Al] can be
extended to ACC0. To obtain sufficiently strong lower bounds for depth 3 circuits
of the desired type by bounding correlation, we would need to be able to provide
estimates on the correlation for up to polylogarithmic degree polynomials.

1.3 Our Approach

We suggest a new approach to estimate the correlation of parity with modular
polynomials over Zq that is applicable to arbitrary odd q, and provides improve-
ments over the previous bounds for several classes of polynomials.

The starting point of our approach is a representation of the correlation using
exponential sums. Exponential sums have been used to estimate correlation in
several previous papers starting with the results of Cai, Green and Thierauf
[CGT] for symmetric polynomials and also in [Gr99, Gr02, Bo05, GRS]. We
give a representation of the correlation of parity with polynomials over Zq using
exponential sums in a very general setting. The novelty of our representation
is that it allows to use certain linear algebraic properties of the terms of the
corresponding polynomials. We also present a general expression for representing
correlation, that can be used to yield our results as well as to derive the bounds
of Cai, Green, and Thierauf [CGT] for symmetric polynomials, using ideas of
the [CGT] proof. The two approaches can be viewed in a unifying framework as
working with different components of our expression.

We are able to evaluate the exponential sums involved in this representation
under various conditions, and we obtain exponentially small upper bounds on
the absolute value of the correlation between parity and modular polynomials of
certain type. Interestingly, the classes of polynomials for which we prove expo-
nentially small bounds include polynomials of very large degree and polynomials
with very large number of terms as well (as long as they satisfy some other, lin-
ear algebraic conditions). All previous methods assumed small degree to obtain
exponentially small upper bounds on correlation with parity, thus could not be
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used to obtain our results. Moreover, some of our results yield exponentially
small upper bounds on the absolute value of the correlation with parity over
every nonempty subset of the variables.

Due to space limitations, all proofs are omitted from this extended abstract.

2 Exact Representations of the Correlation

2.1 Notation

For r ∈ Z
+ and z ∈ Z define δr(z) to be 1, if r|z, and −1, otherwise. We

will use x ≡r y to denote r|(x − y). ≡r is extended to vectors by applying the
congruence on every coordinate. That is, we use the notation x ≡r y to indicate
that xi ≡r yi for every coordinate. The exponent function is extended to vectors
in a component-wise manner, that is, cx denotes (cx1 , . . . , cxn).

We will denote with 0 the all 0’s vector, where the dimension of the vector
will be understood by the context. Similarly 1 is the all 1’s vector. We use 1n

to denote the all 1’s vector of length n, we omit indicating the length when it
is clear from the context. Vectors will be assumed to be in a column form and
xT is the row vector corresponding to a column vector x. Similarly MT is the
transpose of a matrix M . For two vectors x and y, xT y is the usual inner product
of the two vectors, that is, xT y =

∑
i xiyi. For a matrix M and a vector x, Mx

is the product of M and x. Unless indicated otherwise, all sums and products
are over the integers Z.

The following notation for sets will be used: [r] = {1, . . . , r}, [0, r] = {0, . . . , r},
and [0, 1) = {a ∈ R : 0 ≤ a < 1}.

Let h : Z
n → Z be an arbitrary integer valued function and let g ∈ {0, 1}n.

We use the following notation.

C(g, h) := 2−n
∑

x∈{0,1}n

δ2(gT x)δq(h(x))

We wish to estimate how well MODq ◦ AND circuits approximate parity.
Let f : {0, 1}n → {0, 1} be the function computed by a MODq ◦ AND circuit,
and let Pf be the defining polynomial of the circuit. Then (−1)f(x) = δq(Pf (x))
for x ∈ {0, 1}n, and with our notation, the correlation between parity and f is
equal to C(1, Pf ). In general, our methods apply to estimating the correlation
for the parity over arbitrary subsets of the input bits. Thus, we are interested
in estimating C(g, P ) for a multilinear polynomial P (x1, . . . , xn) with integer
coefficients and a vector g ∈ {0, 1}n.

Notice that we do not identify {0, 1} with Z2, i.e. arithmetic with numbers
from {0, 1} is done in Z, unless indicated otherwise. For M ∈ {0, 1}m×n, rk2(M)
denotes the rank of M over Z2.

2.2 Exponential Sums

Following [CGT, Gr99, Gr02], we use exponential sums to represent the cor-
relation. We give a representation of the correlation of parity with modular
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polynomials by exponential sums for arbitrary degree and arbitrary odd q ≥ 3.
Moreover, our representation applies to parity taken over arbitrary subsets of
the input variables.

Let ωq = e2πi/q = cos 2π/q + i sin 2π/q, the principal q-th root of unity, and
ω̄ = ω−1, the complex conjugate of ω. We omit q from the subscript of ω when it
is clear from the context. We have the following lemma, which gives an alterna-
tive expression for the correlation C(g, h) between integer valued functions and
parity.

Lemma 2. Let h : Z
n → Z, g ∈ {0, 1}n, and let q ≥ 3 be an odd integer. Then

C(g, h) = −ν +
2−(n−1)

q

q−1∑

t=0

∑

x∈{0,1}n

(−1)g
T xωth(x),

where ν is 0 if g �= 0, and 1 otherwise.

Definition 1. For t ∈ [0, q − 1], h : Z
n → Z, and g ∈ {0, 1}n define

Ct(g, h) = 2−n
∑

x∈{0,1}n

(−1)g
T xωth(x).

Notice that, if g �= 0, by the triangle inequality applied to the expression in
Lemma 2, there exists t ∈ [0, q − 1] such that |C(g, h)| ≤ 2|Ct(g, h)|. Hence, if
g �= 0 and we can obtain an exponentially small bound on |Ct(g, h)| for every
t ∈ [0, q−1], then we will have an exponentially small bound on |C(g, h)|. We can
show that the converse is also true in some sense: if |C(g, h+ c)| is exponentially
small for every c ∈ [0, q − 1], then |Ct(g, h)| is exponentially small as well for
every t ∈ [0, q − 1].

2.3 Matrix Notation

Let P (x) be a multilinear polynomial with integer coefficients. First we will
construct a multilinear polynomial Q(y) with integer coefficients and with the
same degree as P (x) such that, for x ∈ {0, 1}n, P (x) ≡q Q((−1)x). Recall that
(−1)x denotes ((−1)x1 , . . . , (−1)xn).

For q ≥ 3 odd, there exists a unique integer ρ ∈ [q − 1] such that 2ρ ≡q 1. For
z ∈ Z, let l(z) = ρ(1 − z) and extend l to vectors in a component-wise manner,
that is, l(y) = (ρ(1 − y1), . . . , ρ(1 − yn)). Notice that for x ∈ {0, 1}n

x ≡q l((−1)x). (1)

Define Q(y) = P (l(y)). Since l (considered as a univariate polynomial) is
linear with integer coefficients, Q is a multilinear polynomial with integer co-
efficients of the same degree as P . Also, by (1), for every x ∈ {0, 1}n we have
P (x) ≡q Q((−1)x). Thus

C(g, P ) = 2−n
∑

x∈{0,1}n

δ2(gT x)δq(Q((−1)x)). (2)
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Our next goal will be to express Q((−1)x) using a linear transformation. Since
Q is multilinear with integer coefficients, we can write it as Q(y) =

∑
I⊆[n] cIyI ,

where cI ∈ Z and yI =
∏

i∈I yi. Let M ∈ {0, 1}m×n be the matrix whose rows
are the incidence vectors of the subsets I ⊆ [n], each repeated (cI mod q) times.
(The incidence vector of the empty set is the all zero row, and y∅ = 1 for any
y.) Notice that the degree of Q (and therefore the degree of P ) is at most d if
and only if M has at most d 1’s per row. For x ∈ {0, 1}n we have

Q((−1)x) ≡q 1T (−1)Mx. (3)

We use the following notation:

C(g, M) := 2−n
∑

x∈{0,1}n

δ2(gT x)δq(1T (−1)Mx).

Then, using (2) and (3), we obtain the following.

Lemma 3. Let P and Q be multilinear polynomials with integer coefficients such
that P (x) ≡q Q((−1)x) for x ∈ {0, 1}n. Let M correspond to Q according to the
above mapping, and let g ∈ {0, 1}n. Then C(g, P ) = C(g, M)

Before we proceed, consider the following example. Let Q(y) =
∏n

i=1 yi − 1.
Then M consists of a single row of all 1’s, and q − 1 copies of the all zero
row. The corresponding correlation is C(1, M) = 1, since δq(1T (−1)Mx) =
δq(

∏n
i=1(−1)xi + q − 1) = δ2(1T x) for every x ∈ {0, 1}n (and every q ≥ 3).

Definition 2. For t ∈ [0, q − 1], M ∈ {0, 1}m×n, and g ∈ {0, 1}n define

Ct(g, M) = 2−n
∑

x∈{0,1}n

(−1)g
T xωt1T (−1)Mx

.

With this notation, using Lemma 2

C(g, M) = −ν +
2
q

q−1∑

t=0

Ct(g, M), (4)

where ν is 0 if g �= 0, and 1 otherwise.

Remark 1. Our methods directly apply to estimating the correlation between
parity and MODq ◦MOD2 circuits. In this case, given a MODq ◦MOD2 circuit,
there is a multilinear polynomial Q with integer coefficients such that on inputs
x ∈ {0, 1}n the output of the circuit is 0 if and only if Q((−1)x) is 0 modulo
q. Let M be the matrix corresponding to the polynomial Q as above. Then the
correlation between the output of the circuit and the parity of the subset of
variables corresponding to the vector g is equal to C(g, M).

2.4 Main Lemma

It is immediate from (4) by the triangle inequality that for g �= 0, |C(g, M)| is
exponentially small if |Ct(g, M)| is exponentially small for every t ∈ [0, q − 1].
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Thus, we will be concerned with giving bounds on |Ct(g, M)|, and use them to
bound |C(g, M)| using (4).

Definition 3. For M ∈ {0, 1}m×n and g ∈ {0, 1}n, define

I(M) =
{
z ∈ {0, 1}n : ∃y ∈ {0, 1}m s.t. MT y ≡2 z

}
,

K(M,g) =
{
y ∈ {0, 1}m : MT y ≡2 g

}
.

The following lemma is our main technical tool for obtaining bounds on the
correlation based on linear algebraic properties of the polynomials.

Lemma 4. Let t ∈ [0, q − 1], M ∈ {0, 1}m×n, and g ∈ {0, 1}n. Then

Ct(g, M) = 2−m
∑

y∈K(M,g)

(ωt − ω̄t)|y|(ωt + ω̄t)m−|y|,

where |y| is the number of 1’s in y.

2.5 A More General Framework

Definition 4. For g ∈ {0, 1}n, A ∈ N
m×n, and b ∈ N

m, define

κ(g, A,b) =
∑

x∈{0,1}n:Ax=b

(−1)g
T x.

For z = (z1, . . . , zm) define the following polynomial over z1, . . . , zm.

T (g, A, z) =
∑

b∈IA

κ(g, A,b)zb1
1 · . . . · zbm

m ,

where IA = {b ∈ N
m : 0 ≤ bi ≤

∑n
j=1 aij , for i ∈ [m]}.

First note that this definition includes as a special case the definition of
Krawtchouk polynomials [Sz]. To see this take m = 1 and A to be an all 1’s row
of length n. Then κ(g,1T

n , k) = K
(n)
k (|g|), where K

(n)
k (l) is the k-th Krawtchouk

polynomial, i.e. K
(n)
k (l) =

∑k
i=0(−1)i

(
l
i

)(
n−l
k−i

)
which is the coefficient of yk of

the polynomial (1 − y)l(1 + y)n−l.
In our definition κ(g, A,b) is not necessarily a polynomial except in special

cases, but it gives the coefficient of the monomial zb1
1 · . . . · zbm

m of the polynomial
T (g, A, z), which can be written in the following form.

T (g, A, z) =
∏

j∈[n]:gj=1

⎛

⎝1 −
∏

i∈[m]

z
aij

i

⎞

⎠
∏

j∈[n]:gj=0

⎛

⎝1 +
∏

i∈[m]

z
aij

i

⎞

⎠ . (5)

(This expression can be verified by expanding the right side of (5) and then
grouping the terms in z1, . . . , zm of the same form together.) Thus, in some
sense the functions κ(g, A,b) are analogues of the Krawtchouk polynomials in
a more general setting.

As we have seen before, for g �= 0, and arbitrary h : Z
n → Z, the correlation

|C(g, h)| is exponentially small if |Ct(g, h)| is exponentially small for every t ∈
[0, q − 1]. We give the following general expression for Ct(g, h).
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Lemma 5. Let q, r ∈ N
+ and t ∈ [0, q − 1]. Let h : Z

n → Z be such that there
exists A ∈ N

m×n and G : N
m → Z such that for every x ∈ {0, 1}n and z ∈ N

m,
if z ≡r Ax, then h(x) ≡q G(z). Then

Ct(g, h) = 2−n
∑

y∈[0,r−1]m
T (g, A, ωy

r )φr,q,t(y, G) , (6)

where φr,q,t(y, G) = r−m
∑

z∈[0,r−1]m ω̄yT z
r ω

tG(z)
q .

This lemma can be used to derive our main lemma (Lemma 4) that we use to
exploit the linear algebraic properties of the polynomials when estimating cor-
relation, as well as the bounds of Cai, Green and Thierauf [CGT] for symmetric
polynomials. Interestingly, the statement yields these two arguments by working
with different parts of the expression. To obtain our results in this paper we
carefully estimate φr,q,t, but we set things up so that for T we only have one
possible nonzero value, and we just have to argue about when is T nonzero.
To obtain the bounds of [CGT], we carefully estimate T , and use only a trivial
bound on φr,q,t, namely that |φr,q,t| ≤ 1. The key to derive the bounds of [CGT]
from Lemma 5 is to show that for symmetric polynomials the matrix A = 1T

n

with only one row and certain small odd r have the desired properties.
Note that all our expressions so far have been precise and we obtained exact

representations of the correlation between parity and modular polynomials. Next
we consider cases where we can obtain exponentially small upper bounds on the
absolute value of our expressions.

3 Bounds Based on the Linear Algebraic Structure of the
Polynomials

Lemma 4 allows us to obtain estimates on the correlation of the polynomial P (x)
with parity, based on the linear algebraic properties of the matrix M ∈ {0, 1}m×n

considered as a matrix over Z2. Recall that to obtain M , first P is transformed
to another polynomial Q, and the rows of M are defined by the terms of Q as
described in Section 2.3. Also note that our methods can be used to estimate
the correlation of modular polynomials and parity over arbitrary subsets of the
variables. Parity is taken over the coordinates that are 1 in the vector g, taking
parity of all the variables corresponds to using g = 1.

An immediate consequence of Lemma 4 is that Ct(g, M) = 0, if K(M,g) = ∅.
Hence if 0 �= g �∈ I(M), then C(g, M) = 0. Thus we get the following interesting
statement.

Theorem 1. Let P and Q be multilinear polynomials with integer coefficients
such that P (x) ≡q Q((−1)x) for x ∈ {0, 1}n. Let M be the matrix corresponding
to Q, and let g ∈ {0, 1}n. If the rows of the matrix M do not span the vector g
over Z2, that is when g �∈ I(M), then the correlation C(g, P ) = 0.

This theorem extends the well known fact that if a polynomial P does not depend
on all the variables over which we take parity, then the correlation between parity
and P is zero.
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Estimating Ct(g, M) when g ∈ I(M) is a challenging task in general. We
prove that |Ct(g, M)| is exponentially small for certain classes of matrices M .
Then, (4) can be used to obtain upper bounds on |C(g, M)|. Note that while our
estimates of |Ct(g, M)| apply to arbitrary g ∈ {0, 1}n, and give good bounds
even for g = 0, the bounds on |C(g, M)| are interesting only for g �= 0, since in
(4) ν = 1 for g = 0. Notice that if g �= 0, then C0(g, M) = 0, so it is enough to
estimate |Ct(g, M)| for t ∈ [q − 1].

First we consider the class of non-singular matrices over Z2.

Theorem 2. Let M ∈ {0, 1}n×n be a non-singular matrix over Z2, and g ∈
{0, 1}n. Let q ≥ 3 be an odd integer, and let t ∈ [q − 1]. There exists γ = γ(q) ∈
[0, 1) (depending only on q) such that |Ct(g, M)| ≤ γn.

It is interesting to note that Theorem 2 gives exponentially small upper bounds
on the absolute value of the correlation with parity for polynomials possibly
with arbitrarily large degree that previous techniques did not apply to. It is also
interesting that we get exponentially small correlation with respect to parity
over arbitrary nonempty subsets of the variables. On the other hand, Theorem
2 does not apply for example to all degree one polynomials, since repeating rows
(according to the coefficients of Q) means that the matrix is singular. We are
able to extend our results to a much larger class of matrices, that also includes
all degree one polynomials. First we consider an extension of the non-singularity
condition, next we state our results with respect to arbitrary matrices that have
a partition into submatrices with not too much overlap between the subspaces
spanned by their rows.

Definition 5. A matrix M ∈ {0, 1}m×n is block non-singular over Z2 if M can
be partitioned into submatrices M1, . . . , Mk with Mi ∈ {0, 1}mi×n for i ∈ [k],
such that

∑k
i rk2(Mi) = rk2(M) = n.

Note that the above definition implies that the linear subspaces over Z2 spanned
by the rows of the different blocks are disjoint, except containing the 0 vector. In
other words, the row-space of the matrix M is the direct sum of the row-spaces
of the submatrices in the partition.

Theorem 3. Let M ∈ {0, 1}m×n be a block non-singular matrix over Z2. Let
q ≥ 3 be an odd integer, and let t ∈ [q − 1]. Given g ∈ {0, 1}n, let �(g) be
the smallest number of blocks in the partition that contribute a nonzero vector
to obtaining g as a linear combination over Z2 of the rows of M . There exists
γ = γ(q) ∈ [0, 1) (depending only on q) such that |Ct(g, M)| ≤ γ�(g).

Note that if M corresponds to an arbitrary degree one polynomial, then M is
block non-singular, and �(g) = |g| for any g ∈ {0, 1}n. Thus, the above theorem
contains Goldmann’s result [Go] on the correlation between parity and degree
one polynomials as a special case.

Given a matrix M , the bounds on the correlation obtained by Theorem 3
depend via �(g) on over which subset of variables the parity is taken. On the
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other hand, Theorem 3 can be extended to yield exponentially small bounds
on the correlation as long as the subspaces over Z2 spanned by the blocks do
not overlap too much and many blocks are needed to span g, that is, when∑k

i=1 rk2(Mi) − rk2(M) is relatively small and �(g) is relatively large.
If we further restrict the class of polynomials and allow only coefficients rel-

atively prime to q or 0 modulo q, we obtain a statement that gives the same
(potentially exponentially small) upper bound on the absolute value of the cor-
relation with the parity of every nonempty subset of the variables.

We say that a matrix M ∈ {0, 1}m×n is nontrivial if the polynomial Q it
represents is not identically 0 modulo q over {−1, 1}n. Typically we are only
interested in estimating Ct(g, M) for nontrivial M . Moreover, we can assume
without loss of generality that every submatrix formed by a subset of the rows
of M is nontrivial: deleting the rows of a trivial submatrix cannot change the
value of Ct(g, M).

Theorem 4. Let M ∈ {0, 1}m×n, and g ∈ {0, 1}n. Assume that every submatrix
formed by a subset of the rows of M is nontrivial. Let M1, . . . , Mk be an arbitrary
partition of the nonzero rows of M into blocks, and let r = maxi∈[k]rk2(Mi). Let
q ≥ 3 be an odd integer, and let t ∈ [q − 1]. Assume that M corresponds to a
polynomial such that all coefficients are either relatively prime to q or 0 modulo
q. Then there exists γ = γ(q, r) ∈ [1/2, 1) (depending only on q and r) such that
|Ct(g, M)| ≤ 2

�k
i=1 rk2(Mi)−rk2(M)γk.

If q is prime, the extra condition we consider does not impose any restrictions,
but for composite q it is essential: we have an example of a (mod 15) polynomial
that otherwise satisfies the conditions of the theorem, but has coefficients not
relatively prime to 15 and has constant correlation with parity.

Having rk2(Mi) ≤ r for each block is not essential, it just makes the theorem
simpler to state. It is enough for getting exponentially small upper bounds that
a large number of blocks has small rank. Note that this holds for example if M is
block non-singular with sufficiently many blocks, and in this case the correlation
with parity over every nonempty subset of variables is exponentially small.
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